利用开环对数幅频特性剖析16页PPT
4.2开环频率特性
Bode Diagram 100 System: G Frequency (rad/sec): 0.0998 Magnitude (dB): 51.9
Magnitude (dB)
50 System: G 0 Frequency (rad/sec): 0.496 Magnitude (dB): 35.4 -50
绘制L(ω)例题
L((s)H(s) s(2s 1)(s / 30 1) 的L(ω)曲线
[-20]
40 20 0dB -20 -40 [-40] [-20] 10 20 ω 100
0.1 0.2
1
2
[-40]
40 低频段: 0.1 时为52db 0.5 时为38db S 转折频率:0.5 2 30 斜率: -20 +20 -20
K G ( s) (1 T1s )(1 T2 s )
Q( )
A( ) K
1
1 T12 2
1
1 T22 2
( ) arctanT1 arctanT2
例
设某I型系统的开环频率特性为 绘制开环幅相频率特性。
K (T1 T2 ) P ( ) (1 T12 2 )(1 T22 2 ) K (1 T1T2 2 ) Q ( ) (1 T12 2 )(1 T22 2 )
j 1 l 1 i 1 n1 k 1 n2 m1 m2
K G ( j ) v ( j )
i 1 i
经过ωi后,斜率变化量为+20dB/dec。 经过ωk后,斜率变化量为+40dB/dec。 经过ωj后,斜率变化量为-20dB/dec。 经过ωl后,斜率变化量为-40dB/dec。
4.7 用系统开环频率特性分析闭环系统性能
相位裕量为
c
arctg
2 c
在高频段有更大的斜率时,系统的稳定裕量将减小,其减 小的程度与 2 的值有关。
c 由图可知,ω2不会小于 ωc,因此相位裕量不会小于45°。 ω2离ωc越远,相位裕量越大。
4.7.4 结论
结论
一个设计合理的系统,其开环对数幅频特性在低频段要满足稳态 精度的要求;中频段要根据动态过程的要求来确定其形状。
低频段取决于开环增益和开环积分环节的数目,通常是指开环对数 幅频特性在第一个转折频率以前的区段。
中频段是指开环幅频特性曲线在幅值穿越频率ωc附近的区 段。
高频段是指开环幅频特性曲线在中频段以后的区段(ω>10ωc),这部 分特性是由开环传递函数小时间常数环节决定的。
4.7.2 低频段
稳态位置误差系数KP、稳态速度误差系数Kv和稳态加速度 误差系数Ka,分别是0型系统、I型系统和Ⅱ型系统的开环 放大系数。
各频段的大致形状
中频段的斜率以-20dB/dec为宜。 低频段和高频段可以有更大的斜率。低频段斜率大,可以提高系
统的稳态性能;高频段斜率大,可以排除高频干扰,但中频段必 须有足够的带宽,以保证系统的相位裕量。中频段带宽越宽,相 位裕量越大。 中频段幅值穿越频率ωc的选择,取决于动态过程的速度要求。一 般来说,要求提高系统的响应速度,ωc应选大一些,但ωc过大又 会降低系统的抗干扰能力。
其幅值为
L lim 20lg G jH j 20lg KP
0
0
即低频渐进线是20lgKp分贝的水平线,如图所示。
此时,稳态位置误差系数KP= K0。
4.7.2 低频段
4.7.2 低频段
自动控制原理_卢京潮_利用开环频率特性分析系统的性能
5.6 利用开环频率特性分析系统的性能在频域中对系统进行分析、设计时,通常是以频域指标作为依据的,但是不如时域指标来得直接、准确。
因此,须进一步探讨频域指标与时域指标之间的关系。
考虑到对数频率特性在控制工程中应用的广泛性,本节将以Bode 图为基点,首先讨论开环对数幅频特性)(ωL 的形状与性能指标的关系,然后根据频域指标与时域指标的关系估算出系统的时域响应性能。
实际系统的开环对数幅频特性)(ωL 一般都符合如图5-49所示的特征:左端(频率较低的部分)高;右端(频率较高的部分)低。
将)(ωL 人为地分为三个频段:低频段、中频段和高频段。
低频段主要指第一个转折点以前的频段;中频段是指穿越频率(或截止频率)c ω附近的频段;高频段指频率远大于c ω的频段。
这三个频段包含了闭环系统性能不同方面的信息,需要分别进行讨论。
需要指出,开环对数频率特性三频段的划分是相对的,各频段之间没有严格的界限。
一般控制系统的频段范围在Hz 100~01.0之间。
这里所述的“高频段”与无线电学科里的“超高频”、“甚高频”不是一个概念。
5.6.1 )(ωL 低频渐近线与系统稳态误差的关系系统开环传递函数中含积分环节的数目(系统型别)确定了开环对数幅频特性低频渐近线的斜率,而低频渐近线的高度则取决于开环增益的大小。
因此,)(ωL 低频段渐近线集中反映了系统跟踪控制信号的稳态精度信息。
根据)(ωL 低图5-49 对数频率特性三频段的划分频段可以确定系统型别υ和开环增益K ,利用第3章中介绍的静态误差系数法可以确定系统在给定输入下的稳态误差。
5.6.2 )(ωL 中频段特性与系统动态性能的关系开环对数幅频特性的中频段是指穿越(或截止)频率c ω附近的频段。
设开环部分纯粹由积分环节构成,图5-50(a )所示的对数幅频特性对应一个积分环节,斜率为dec dB /20-,相角 90)(-=ωϕ,因而相角裕度 90=γ;图5-50(b )的对数幅频特性对应两个积分环节,斜率为dec dB /40-,相角 180)(-=ωϕ,因而相角裕度 0=γ。
5·4-Bode稳定判据
– 若开环对数幅频特性达到0分贝,即交于ωc时,其对数相频特性还在-1800线
以上,即相位还不足-1800,则闭环系统稳定;
– 若开环相频特性达到-1800时,其对数幅频特性还在0分贝线以上,即幅值大 于1,则闭环系统不稳定。
• 一般系统的开环系统多为最小相位系统,即P=0
第10页,共20页。
第18页,共20页。
第19页,共20页。
作业
• 5.4(Routh法) • 5.9(2)(Nyquist) • 5.13(2) (Bode)
第20页,共20页。
5·4 Bode(伯德)稳定判据
•Nyquist稳定判据是利用开环频率特性G(K)的极坐 标图(Nyquist图)来判定闭环系统的稳定性。
•如果将开环极坐标图改画为开环对数坐标图,即Bode图, 同样可以利用它来判定系统的稳定性。 •这种方法称为对数频率特性判据,简称为对数判据或 Bode判据,它实质上是Nyquist判据的引申。
第1页,共20页。
一、Nyquist图和Bode图的对应关系
• Bode图与Nyquist图的对应关系: • (1)Nyquist图上的单位园 — Bode图
幅频特性上的0dB线 • (2)Nyquist图上的负实轴 — Bode图
相频特性上的-1800线
第2页,共20页。
2个重要频率
• Nyquist轨迹与单位圆交点的频率,即对数 幅频特性曲线与横轴交点的频率,亦即输入 与输出幅值相等时的频率(开环输入与输出 的量纲相同),称为剪切频率或幅值穿越频 率、幅值交界频率,记为ωc。
第17页,共20页。
Im
G0 ( j g )
kg
-1 g• c•
c
自动控制原理—第五章(6)
3
2 2
4 4 1
arctan
2
2 2 4 4 1
ts c
6
tan
上式表示二阶系统tsc与γ之间的关系,绘成曲线如图5—71所示。 由以上分析可知,对二阶系统,tsc与γ成反比;当γ给定后,ts与c成反比;当要求 系统具有相当的灵敏度时,c应该较大。从物理意义上解释,c越大,说明系统能 够响应的输入信号的频率越高,也就是跟踪输入信号的速度越快,系统的惯性较小, 即快速性好。由于在控制系统的实际运行中,输入的控制信号一般为低频信号,而干 扰信号(如调速系统中电网电压的波动等)一般为高频信号,c越大,说明系统对高 频干扰信号的抑制能力就越差。因此,c的取值要同时根据系统的快速性与抗高频干 扰信号的要求确定。
2.中频段的穿越频率c的选择,决定于系统瞬态响应速 度与抗干扰能力的要求,c较大可保证足够的快速性。
5.6.3开环对数幅频特性L()高频段与系统抗干扰性能的
关系
一、高频段与系统动态性能的关系
从图中可以看出,三个系统的低频段与中频段完全相同,仅高频段的衰减速度有所差别。 由于系统1在高频段的衰减速度最快,说明系统对高频信号有较强的抑制能力,对于输 入信号中的高频分量不能很好地复现,因此,其单位阶跃响应在起始阶段的上升速度相 对较慢。系统开环频率特性的高频段主要影响单位阶跃过程的起始阶段。
由以上对二阶系统与高阶系统的分析可知,如果两个同阶的系统,其γ相同, 那么它们的超调量大致是相同的,而幅值穿越频率c越大的系统,调节时 间ts越短。
根据以上分析可知,一个设计合理的系统,要以动态 性能的要求来确定中频段的形状。为保证系统具有较
好的动态性能,L()中频段应该满足以下要求:
自动控制原理频率特性及其表示法ppt课件
实际系统具有“低通”滤波器特性 实际系统的输出量都随频率的升高而出现失真,
幅值衰减。
频率特性可应用到某些非线性系统的分析中去
自动控制原理
13
1 频率特性的基本概念
频率特性的求取
根据定义求取 对已知系统的微分方程,把正弦输入函数代
入,求出其稳态解,取输出稳态分量与输入正弦 量的复数比即可得到。
系统频率特性能间接地揭示系统的动态特性和 稳态特性,可简单迅速地判断某些环节或参数对系 统性能的影响,指出系统改进方向。
频率特性可以由实验确定,这对于难以建立动 态模型的系统来说,很有用处。
自动控制原理
2
5.1 频率特性及其表示法
1 频率特性的基本概念 2 频率特性的表示
自动控制原理
3
5.1 频率特性及其表示法
5.1 频率特性及其表示法 5.2 典型环节的频率特性 5.3 系统开环频率特性的绘制 5.4 用频率特性分析控制系统的稳定性 5.5 系统瞬态特性和开环频率特性的关系 5.6 闭环系统频率特性 5.7 系统瞬态特性和闭环频率特性的关系
自动控制原理
1
第5章 频域分析法
频率特性是控制系统在频域中的一种数学模 型,是研究自动控制系统的一种工程方法。
这个单位长度代表10倍频的距离,称之为 “十倍频”或“十倍频程”。
❖ 纵坐标用普通比例尺标度。
自动控制原理
21
A()
100
A
增 10
加
10 1
倍
0.1 0.01
自动控制原理
对数频率特性
L()
40
20 L 增加 20 dB
0
_20
_ 40 0.1
自动控制原理第五章频域分析法
第19页/共187页
频率特性
对应的幅值和相角:
同理,可求得对应于2的|G(j2)|和(j2) 。
若对取所有可能的值,则可得到一系列相应的幅值和相位。 其中幅值随频率变化而变化的特性称为系统的幅频特性。 相角随频率变化而变化的特性称为系统的相频特性。
第20页/共187页
每当ω增加十倍, L(ω)减少20dB负20分贝十倍频程 -20dB/ dec
第34页/共187页
5-3典型环节和开环系统频率特性
第35页/共187页
积分环节L(ω)
[-20]
[-20]
[-20]
第36页/共187页
5-3典型环节和开环系统频率特性
三、微分环节
幅频特性与ω成正比,相频特性恒为90°
第12页/共187页
5-2频率特性
以RC网络为例,说明频率特性的基本概念。
取拉氏变换,求网络的传递函数
如果输入为正弦量:
由电路分析,电路达到稳态时,输出也是以ω为角频率的正弦量。
在传递函数中G(s)中,只要令s=jω,则可由⑴式得到⑵式。
第13页/共187页
5-2频率特性
控制系统的三种数学模型:微分方程、传递函数、频率特性可以相互转换,它们的关系见右图。
交接频率将近似对数幅频特性曲线分为二段:低频段和高频段。
第41页/共187页
惯性环节G(jω)
φ(ω) = -tg-10.5 ω
ω
0
0.5
1
2
4
5
8
20
φo(ω)
A(ω)
0
1
-14.5
0.97
-26.6
0.89
河南理工大学自动控制原理第5章 第4讲 系统的闭环频率特性及性能指标和利用开环频率特性分析系统的性能2012
主要内容系统闭环频率特性通过频率特性曲线分析稳态性能指标频域动态性能指标频率域特性指标与时域瞬态指标的关系2)()(1)()()(1s H s G s H s G s H +⋅=4环幅频特性。
闭环幅频特性曲线闭环对数幅频曲线二、由闭环频率特性分析系统的时域响应频率特性分析法比时域性能分析简便,且有成熟的图解法可供使用,但频率特性分析是一种概略性的间接方法,在要求系统性能指标直接而具体时,还需从时域响应面进行讨论。
在已知闭环系统稳定的条件下,可根据系统的闭环幅频特性曲线,对系统的动态过程进行定性分析与定量估算。
51、通常的闭环频域有以下几个指标:V零频幅值:ω=0时闭环幅频特性的数值(反映系统静差(误差))V谐振频率ωr:闭环系统频率特性出现谐振峰值时的频率值V谐振峰值M r:系统闭环频率特性幅值的最大值,反映系统的平稳性,并非所有闭环频率特性的中频段有谐振峰值,若出现了谐振峰值,表明系统的阻尼比较小615M r、σ与ζ的关系曲线当相角裕量γ为30o ~60o 时,对应二阶系统的阻尼比ζ为0.3~0.6在ζ≤0.707时,二阶系统的相角裕量γ与阻尼比ζ之间的关系近似为:ζ=0.01γV谐振频率ωr表征系统瞬态响应的速度。
ωr值越大,响应时间越快。
对于弱阻尼系统(ζ较小),谐振频率ωr与阶跃响应的阻尼振荡频率ωd接近。
V截止频率(带宽频率)ωb当系统闭环幅频特性的幅值M(ω)降到零频率幅值的0.707(或零分贝值以下3dB)时,对应的频率ωb称为截止频率。
0~ωb的频率范围称为带宽它反映系统的快速性和低通滤波特性。
V剪切率ωc幅值=1时的频率ωc,称为剪切率,它既反映系统的相角裕度(相角裕度大,剪切率应较平缓),又表征系统从噪声中辨别信号的能力(剪切率平缓,带宽ωb大,对高频噪声的抑制不利)。
17应注意,剪切频率ωc处斜率平缓(如以-20dB/dec过0dB线)时,系统相角裕量大;而斜率陡峭时,说明具有负相角的环节集图5 剪切率中叠加于此,带来大的负相角,如图5所示,则易造成系统不稳定。
(完整版)幅相频率特性
⑹ 振荡环节
G(s)
wn2 s2 2wns wn2
(
s
1
)2 2
s
wn2
1 (s 1)(s 2 )
G(
jw)
1
w2 wn2
G
1
j2 w 1 wn
(1
w2 wn2
)
wn j2 w
wn
(1
w2 wn2
)2
(2
w wn
)2
wn
G( j0) 10 G( j) 0 180
[1
w2 wn2
(ms 1) (Tn s 1)
,
(
n
m)
(1)起点(低频段):
G(
j0
)H
(
j0
)
lim
w0
(
K jw)v
可得低频段乃氏图:
w 0
( 1 )
(2)终点(高频段):此时 w ,这时频率特性与分子分 母多项式阶次之差n m有关。分析可得如下结论:
终点处幅值: lim G ( jω) 0 ω
终点处相角:lim ω
例 系统的幅相曲线如图所试,求传递函数。
K
由曲线形状有
G(s)
s2
wn2
2
s
wn
1
由起点: G( j0) K0 K 2
K
G
[1
w2 w n2
]2
[2
w wn
]2
2 w
G arctan
wn w2
1 - wn2
由(w0): G( jw0 ) 90 w0 wn 10
由|G(w0)|:
G(w0 )
1 G
1 w2T2 G arctanwT
03-频率特性法——奈氏图和伯德图画法
G(s)H
(s)
40(0.5s 1) s(2s 1)( 1 s 1)
30
其对应的频率特性表达式为
G( j)H ( j)
40(0.5 j 1) j(2 j 1)( 1 j 1)
30
惯性环节
转折频率:0.5 2 30
低频段:V=1,在ω=1 处 20lgK=20lg40=32 , -20 dB/dec,
遇到惯性环节的转折频率,斜率减小20dB/dec 遇到一阶微分环节的转折频率,斜率增加20dB/dec 遇到二阶微分环节的转折频率,斜率增加40dB/dec 遇到振荡环节的转折频率,斜率减小40dB/dec
第11页,共23页。
例:绘制开环对数幅频渐近特性曲线,设开环传递函数为
G(s)H (s) 300 (s 2) s(s 0.5)(s 30)
系统的伯德图:
L(ω)/dB
ω=1
20lgK
L(ω)=20lgK
0
低频段的曲线与横轴
相交点的频率为ω0
-40dB/dec -20dB/dec
1 ω0 ωc ω
-40dB/dec
因为
20lgK lgω0-lg1
=40
故
第23页,共23页。
20lgK=40lgω0
K=ω02
渐近线。
第16页,共23页。
(5) 系统开环对数相频特性表达式为
( ) arctan 0.5 900 arctan arctan 0.05
逐点计算结果 系统开环相频特性数据
第17页,共23页。
-20dB/dec
20
-20dB/dec
-40dB/dec
-40dB/dec
自动控制原理 第五章 第一讲 典型环节和开环频率特性
对数幅相曲线(又称尼柯尔斯曲线):对数幅相图的横坐标表示对数相频 对数幅相曲线(又称尼柯尔斯曲线):对数幅相图的横坐标表示对数相频 尼柯尔斯曲线): 特性的相角,纵坐标表示对数幅频特性的幅值的分贝数。 特性的相角,纵坐标表示对数幅频特性的幅值的分贝数。
5.2 典型环节和开环频率特性
• 典型环节 • 典型环节的频率特性 • 最小相角系统和非最小相角系统
L(ω ) = −20 lg 1 + ω 2T 2
ω<<1/T, L(ω)≈-20lg1=0 ω>>1/T, L(ω)≈-20lgωT =-20(lgω-lg1/T)
(dB) 20 0 0.1 1/T -20 (o) 90 0 0.1 -90 1 10 ω 1 20dB/dec 10 ω -20dB/dec
幅频特性相同, 幅频特性相同,但相频特性符号相反 。 •最小相角系统的幅频特性和相频特性一一对应,只要根据其对 最小相角系统的幅频特性和相频特性一一对应, 数幅频曲线就能写出系统的传递函数 。 L(dB)
L(dB) 20 10 -20 ω L(dB) -20 100 50 -40 ω -40 -20 ω 2 ω1 ωc ω -40
典型环节
•比例环节:G(s)= K 比例环节: ( ) •惯性环节: G(s)= 1/(Ts+1),式中T>0 惯性环节: ( ) ,式中 •一阶微分环节: G(s)= (Ts+1),式中 一阶微分环节: ( ) ,式中T>0 •积分环节: G(s)= 1/s 积分环节: ( ) 微分环节: ( ) •微分环节: G(s)= s •振荡环节: G(s)= 1/[(s/ωn)2+2ζs/ωn+1]; 振荡环节: ( ) 式中ω , 式中 n>0,0<ζ<1 二阶微分环节: ( ) •二阶微分环节: G(s)= (s/ωn)2+2ζs/ωn+1; 式中ω , 式中 n>0,0<ζ<1
5第五章自动控制原理(胡寿松)第五版(共179张)
EXIT 第9页,共179页。
第5章第9页
在零初始条件下,当输入信号为一正弦信号,即
ui(t)=Uisin t
Ui与分别为输入信号的振幅与角频率,可以(kěyǐ)运用时域法 求电路的输出。
输出的拉氏变换为:
Uo(s)=
1 Uiω Ts +1 s2 + ω2
对上式进行拉氏反变换可得输出的时域表达式:
2021年12月25日
EXIT 第5页,共179页。
第5章第5页
③具有(jùyǒu)明确的物理意义,它可以通过实验的方法,借助频率特性 分析仪等测试手段直接求得元件或系统的频率特性,建立数学模型作 为分析与设计系统的依据,这对难于用理论分析的方法去建立数学模 型的系统尤其有利。
④频率分析法使得控制系统的分析十分方便、直观,并且可 以拓展应用到某些非线性系统中。
系统的输出分为两部分,第一部分为瞬态分量,对应特征根; 第二部分为稳态分量,它取决于输入信号的形式。对于一个稳定 系统,系统所有的特征根的实部均为负,瞬态分量必将随时间趋 于无穷大而衰减到零。因此,系统响应正弦信号的稳态分量必为 同频率的正弦信号。
2021年12月25日
EXIT 第21页,共179页。
sint
线性定常 系统
Asin(ωt+)
r(t) Css(t)
t
线性系统及频率响应示意图
2021年12月25日
EXIT 第12页,共179页。
第5章第12页
5.1.2 频率特性
1、基本概念
对系统的频率响应作进一步的分析,稳态输出与输入的幅值比A与相位差 只与系统的结构、参数及输入正弦信号的频率ω有关。在系统结构、参数给定的
= K1 + K2 + ...+ Kn + Kc + K-c
自动控制原理 第五章第九节利用开环频率特性分析系统的性能(上
5.9 利用开环频率特性分析系统的性能(上)1.L(ω)低频渐近线与系统稳态误差的关系2. L(ω)中频段特性与系统动态性能的关系3. L(ω)高频段特性与系统抗高频干扰能力的关系在频域中对系统进行分析、设计时,通常是以频域指标为依据的,但是频域指标不如时域指标直观、准确,因此,需进一步讨论频域指标与时域指标之间的关系。
考虑到对数频率特性在控制工程中应用的广泛性,本节以伯德为基本形式,首先讨论开环对数幅频特性L(w)的形状与性能指标之间的关系,然后在下一节,根据频域指标与时域指标间的关系估计出系统的时域响应性能。
实际系统的开环对数幅频特性L(w)一般都符合如图所示的特征。
左端(频率较低的部分)高,右端(频率较高的部分)低。
将L(w)人为地分为三个频段:低频段、中频段和高频段。
三频段理论低频段:主要指第一个转折频率以左的频段。
中频段:指截止频率w c附近的频段。
高频段:指频率远大于w c的频段。
开环对数频率特性三频段的划分是相对的,各频段之间没有严格的界限。
1.L(ω)低频⇔系统稳态误差e ss低频段对应的传递函数:低频段特性可以确定系统型别v和开环增益K。
在闭环稳定的情况下,利用静态误差系数法可以计算稳态误差essv越高,K越大,e ss越小。
此时,对应的曲线位置相对较高,曲线的形状比较陡。
2. L(ω)中频段⇔系统动态性能(σ%, t)s最小相角系统L(ω) 曲线斜率与相频特性的对应关系希望L(w) 以-20dB/dec斜率穿越0dB线,并保持较宽的频段。
例1 对数频率特性和幅相特性曲线。
)254)(1()1.0(8)(22+++++=s s s s s s s G ⎥⎥⎦⎤⎢⎢⎣⎡+⋅+⎪⎭⎫ ⎝⎛+++=15545)1()11.0(032.022s s s s s s 对数幅频特性曲线的斜率越大,对应的对数相频特性的角度越大。
例2 最小相角系统j (w ) ~ L (w )之间的对应关系( K =1)]1)5()5([)1()(221+++=s s s s K s G ]1)20()20([)1()(223+++=s s s s K s G ]1)10()10([)1()(222+++=s s s s K s G 对数幅频特性曲线的斜率越大、频带越宽,对应的对数相频特性的角度越大。
自动控制原理系统开环频率特性优秀文档PPT
jI ()
0
0
i
R=∞ R()
0
(a)
I 型系统的开环幅相频率特性
例5.3开环系统传递函数的形式为 G(s)s(T1s1K )T (2s1),T1T2
当 0 时,A(0) ,(0)90
0时G ( j )趋于无穷远的渐近
jI ()
线平行于虚轴。这一渐近线的横坐标 按下试确定:
幅相频率特性的形状如下图
jI () (K, j0)
0
0 R()
(b)
图5.23 0型系统幅相频率特性之二
I 型系统的开环幅相频率特性
m
❖ I型系统开环传递函数
K (Tzis 1)
G(S) i1
,
n1
❖ 频率特性
m
K ( jTzi 1)
s(Tjs 1) j1
G( j)
i1 n1
j( jTj 1)
故幅相频率特性由实轴上的点 开场。 系统的开环对数幅频特性
(b)
1 系统的开环幅相频率特性
❖ 总结 ①幅相频率特性的低频段
Im
0
Ⅲ型
Ⅱ型 0
0
I型 0
(a)
0
Re
O型
1 系统的开环幅相频率特性
❖ 总结 ❖ ②幅相频率特性的高频局部
Im nm3
0
Re
nm2
nm1
(b)
1 系统的开环幅相频率特性
❖ 总结 ③幅相频率特性与负实轴和虚轴的交点 频率特性与负实轴的交点:
i1 n
( jTj 1)
❖ 特点
j1
nm
❖ (1) 0 时,A()|G (0)|K,() 0
5-6 开环对数频率特性和时域指标
5-6 开环对数频率特性和时域指标根据系统开环对数频率特性对系统性能的不同影响,将系统开环对数频率特性分为三个频段。
即低频段、中频段和高频段。
一、 低频段低频段通常是指开环对数幅频特性的渐近曲线在第一个交接频率以前的频段,这一频段完全由开环传递函数中的积分环节和放大环节所决定。
低频段的对数幅频为ωωωωlg 20lg 20lg 20)()(lg 20⨯-==v K Kj H j G v (5-32)式中v 为开环传递函数中的积分环节数。
根据式(5-32)及积分环节数,就可作出开环对数幅频特性曲线的低频段,如图5-39所示。
若已知低频段的开环对数幅频特性曲线,则很容易得到K 值和积分环节数v ,故低频段的频率特性决定了系统的稳态性能。
二、中频段中频段是指开环对数幅频特性曲线截止频率c ω附近的频段。
这决定系统的稳定程度,即决定系统的动态性能。
设有二个系统,均为最小相位系统,它们的开环对数幅频特性曲线除中频段的斜率不同(即一个为20-dB/dec,另一个为40-dB/dec) 之外, 其余低频、 高频段均相同。
并且中频段相当长,如图5-40 所示。
显然,系统(a)有将近90°的相裕量,而系统(b)则相裕量很小。
假定另有二个系统, 均为最小相位系统, 开环对数幅频特性曲线除中频段 (斜率为 -20 dB/dec ) 线段的长度不同外, 其余部分完全相同, 如图 5-41 所示。
显然, 中频段线段较长的系统 (a) 的相裕量将大于中频段线短的系统(b)。
可见,开环对数幅频特性中频段斜率最好为20-dB/dec ,而且希望其长度尽可能长些,以确保系统有足够的相角裕量。
如果中频段的斜率为40-dB/dec 时,中频段占据的频率范围不宜过长,否则相裕量会很小;若中频段斜率更小(如60-dB/dec),系统就难以稳定。
另外,截止频率c ω越高,系统复现信号能力越强,系统快速性也就越好。
三、 高频段高频段是指开环对数幅频特性曲线在中频段以后的频段(一般c ωω10>的频段)。
自控原理自动控制系统的性能分析PPT课件
39
第39页/共58页
40
第40页/共58页
41
第41页/共58页
42
第42页/共58页
43
第43页/共58页
44
第44页/共58页
45
第45页/共58页
上式表明,高阶系统的σp随着γ的增大而 减小,调节时间ts随γ的增大也减小,且随ωc, 增大而减小。
由上面对二阶系统和高阶系统的分析可知, 系统的开环频率特性反映了系统的闭环响应特 性。对于最小相位系统,由于开环幅频特性与 相频特性有确定的关系,因此相角裕度取决于 系统开环对数幅频特性的形状,但开环对数幅 频特性中频段(零分贝频率附近的区段)的形状, 对相角裕量影响最大,所以闭环系统的动态性 能主要取决于开环对数幅频特性的中频段。
50
第50页/共58页
(4) 频 带 ωb : 当 ω 增 加 时 , MB(ω) 下 降 到 0.707M0时的频率,它也反映了系统的响应速度, ωb越大, 表明能通过较高频率的信号,系统响应速 度越快。
2. 利用频域指标估算时域指标 对于典型二阶系统,其闭环传递函数为
51
第51页/共58页
上式表明,对于二阶系统,在0≤ξ≤0.707时,频率特 性出现谐振峰值Mr。Mr可表征阻尼系数ξ,反映系统的稳 定性,也能反映系统的快速性(ts≈3/ξωn)。