九年级数学用频率估计概率PPT优秀课件

合集下载

新北师大版九年级数学上册《用频率估计概率》优质课课件(15p)

新北师大版九年级数学上册《用频率估计概率》优质课课件(15p)
小球的颜色不影响恰好是一双的可能性大小
练习提高
(1)在抛一枚均匀硬币的实验中,如果没有硬币,则下列
可作为替代物的是
(D )
A.一颗均匀的骰子
B.瓶盖
C.图钉
D.两张扑克牌(1张黑桃,1张红桃)
(2)不透明的袋中装有3个大小相同的小球,其中2个为白 色球,另一个为红色球,每次从袋中摸出一个球,然后放回 搅匀再摸,研究恰好摸出红色小球的机会,以下替代实验方 法不可行的是 ( B ) A.用3张卡片,分别写上“白”、“红”, “红”然后反复抽取 B.用3张卡片,分别写上“白”、“白”、“红”,然后反复抽取 C.用一枚硬币,正面表示“白”,反面表示“红”,然后反复抽取 D.用一个转盘,盘面分:白、红两种颜色,其中白色盘面的面 积为红色的2倍,然后反复转动转盘
提出问题
但在我们的身边,有很多试验的所有可 能性是不相等且结果不是有限多个,这些 事件的概率怎样确定呢?
在同样条件下,通过大量反复的试验,根 据一个随机事件发生的频率所逐渐稳定到的 常数,可以估计这个事件发生的概率。
问题1
某林业部门要考查某种幼树在一定 条件的移植成活率,应采用什么具 体的做法?
答:在同样条件下,大量地对这种幼树 进行移植,并统计成活情况,计算成活 的频率。如果m 随着移植棵数n的越来越 大,频率 越n 来越稳定于某个常数, 那么这个常数就可以被当作成活率的近 似值。
柑橘在运输途中会有些损坏,公司必须估算出
所以可能估损计坏柑的柑橘橘损总坏数的,以概便率将是损坏0的.1柑0。橘成本
折算到没有损坏的柑橘的售价中。
所销以售估人计员首柑先橘从完所好有的的柑概橘率中随是机0地.9抽0 。取若干
柑橘,进行了“柑橘损坏率”的统计,把获得

新人教版九年级数学上册25.3用频率估计概率课件

新人教版九年级数学上册25.3用频率估计概率课件

任务1:考察频率与概率是否相同?
活动: 全班同学四人一组,每组抛掷一枚硬币 50 次,统计“正面向上”出现的 频数,计算频率,填写表格1,并在图1中标出对应的点.
组员分工: 1 号同学 抛掷硬币,约达 1 臂高度,接住落下的 硬币,报告试验结果; 2 号同学 用划记法记录试验结果(准备一张纸); 3 号同学 监督,尽可能保证每次试验条件相同, 确保试验的随机性,填写表格. 4号同学 到黑板填本组最后结果也要在电脑上填写哦!
九年级 上册 25.3 用频率估计概率
在数学的天地里,重要 的不是我们知道什么,而是 我们怎么知道什么。
——毕达哥拉斯
你闻到了吗?
探索,实验, 发现,再勇敢 的表达自己的 想法!
回顾与思考2
频率与概率知几何
频数,频率 在考察中,每个对象出现的次数称为频数,而每个对象出 现的次数与总次数的比值称为频率.
雅各布·伯努利给出了严格的证明。
用这个 因此,我们可以通过大量重复试验, 随机事件发生的频率去估计 它的概率.
雅各布·伯努利
大家能举一些例子吗
▪练一练 ▪P144.1
本节课主要讲什么内容。
8.布置作业
教科书习题 25.3 第 4 题.
感谢我们两位 “嘉宾”的到来,以及观
众们的参与,谢谢大家再见!
概率 刻画一个随机事件发生可能性大小的数值,称为随机事件发生的概率 (probability).
1.问题引入
抛掷一枚硬币,“正面向上”的概率为 0.5.
这是否意味着: “抛掷 2 次,就一定1 次正面向上”呢? “抛掷 50 次,就一定25 次正面向上”呢?
我们不妨用试验进行检验.
2.活动二
Just do it!

人教新课标九年级上 利用频率估计概率课件(共8张PPT)

人教新课标九年级上 利用频率估计概率课件(共8张PPT)

移植总数 (m) 10 50 270 400 750 1500 3500 7000 14000
成活数 (m) 8 47 235 369 662 1335 3203 6335 12628
成活的频 率(m/n)
0.8
0.94
0.870 0.923
0.883
0.890
0.915 0.905
0.902
第3页,共8页。
用频率估计概率
第1页,共8页。
复习
当试验次数很大时,一个事件发生频率也稳定在相 应的概率附近.因此,我们可以通过多次试验,用一个事
件发生的频率来估计这一事件发生的概率.
在相同情况下随机的抽取若干个体进行实验,
进行实验统计.并计算事件发生的频率
m
n
根据频率估计该事件发生的概率.
第2页,共8页。
例1:张小明承包了一片荒山,他想把这片荒山改造成一个苹果果园,现在有两批幼苗 可以选择,它们的成活率如下两个表格所示: A类树苗:
14000
11914
0.851
第4页,共8页。
在 并相计同算情 事况 件下 发随 生机 的的 频抽 率取1若干、个体从进行表实验中, 可以发现,A类幼树移植成活的频率在
你能设计一个利用频率估计概率的实验方法估算该不规则图形的面积的方案吗?
_____ 小红和小明在操场上做游戏,他们先在左0地.9右上画摆了半动径分,别为并2m且和3随m的着同心统圆(如计图数),蒙据上眼的在增一定加距离,外向这圈内种掷规小石子,掷中阴影小
估计B类幼树移 植成活的概率为 . ___ 例1:张小明承包了一片荒山,他想把这片荒山改造成一个苹果果园,现在有两批幼苗可以选择,它们的成活率如下两个表格所示:

初中数学九年级上册25.3《用频率估计概率》PPT课件

初中数学九年级上册25.3《用频率估计概率》PPT课件

袋中摇匀,不断重复上述过程20次,得到红球数与10的
比值的平均数为0.4.根据上述数据,估计口袋中大约
答案:15.

个黄球.
4.在有一个10万人的小镇, 随机调查了2000人,其 中有250人看中央电视 台的早间新闻.在该镇 随便问一个人,他看早 间新闻的概率大约是 多少?该镇看中央电视 台早间新闻的大约是
券,设特等奖1个,一等奖10个,二等奖20个,三等奖
(301个)一.已张知奖每券张中奖特券等获奖奖的的概可率能;性P =相1同010 .求:
(2)一张奖券中奖的概率;P =
1+10+20+30 100
61 = 100
(3)一张奖券中一等奖或二等奖的概率.
P
=1100+02=0
13000=
3 10
2、九年级三班同学作了关于私家车乘坐人数的统计,在
100辆私家车中,统计结果如下表:
每辆私家车乘客数目
1
2
3
4
5
私家车数目
58
27
8
4
3
根据以上结果,估计抽查一辆私家车而它载有超过2名乘客
【的解概析率】是P多=少8?1+040+3 =
15 100
ቤተ መጻሕፍቲ ባይዱ
=
3 20
=
0.15
例题
【例2】生命表又称死亡 表,是人寿保险费率计算 的主要依据,如下图是 2010年6月中国人民银行 发布的中国人寿保险经验 生命表,(2006-2009年)的 部分摘录,根据表格估算
摸出一个球记下颜色,再把它放回箱子中,多次重复
上述过程后,她发现摸到黑球的频率在0.7附近波动,
据答此案可:2以10估0计个黑. 球的个数约是

人教版九年级数学上册《用频率估计概率》概率初步PPT优质课件

人教版九年级数学上册《用频率估计概率》概率初步PPT优质课件
10
10
=
小练习
1. 在一次质检抽测中,随机抽取某摊位20袋食盐,测得各袋的质量分别
为(单位:g):492,496,494,495,498,497,501,502,504,
496,497,503,506,508,507,492,496,500,501,499根据
以上抽测结果,任买一袋该摊位的食盐,质量在497.5g~501.5g之间的概
在抛掷一枚硬币时,结果不是“正面向上”,就是“反面向上”
因此,从上面的试验中也能得到相应的“反面向上”的频率。当
“正面向上”的频率稳定于0.5时,“反面向上”的频率也稳定于
0.5.它也与前面用列举法得出的“反面向上”的概率是同一个数值。
探索新知
历史上,有些人曾做过成千上万次抛掷硬币的试验,其中一些
动物1200只,作标记后放回。若干天后,再逮到该种动物1000只,其中
有100只作过标记。按概率方法估算,保护区内这种动物有 12000 只。
【解析】∵该种动物1000只,其中有100只作过标记。∴作过标记的动物占这种动物总
100
数的
1000
=
12000只。
1
1
。∵该种动物共1200只做了标记,∴保护区内这种动物有1200 ÷
试验结果见下表。
探索新知
实际上,从长期实践中,人们观察到,对一般
的随机事件,在做大量重复试验时,随着试验
次数的增加,一个事件出现的频率,总在一个
固定数的附近摆动,显示出一定的稳定性。因
此,我们可以通过大量的重复试验,用一个随
机事件发生的频率去估计它的概率。
探索新知
从抛掷硬币的试验还可以发现,“正面向上”的概率是
植成活的概率为 0.9 。

人教版九年级数学上册第25章第3节《用频率估计概率》优秀课件

人教版九年级数学上册第25章第3节《用频率估计概率》优秀课件

抛掷次数n
“正面向上” 的频数m
“正面向上”
的频率
m n
50 100 150 200 250 300 350 400
根据上表中的数据,在下图中标注出对应的点.
y 1
0.5
O 100 200 300 400
x
请同学们根据试验所得的数据想一想: “正面向上”的频率有什么规律?
随着抛掷硬币次数的增加,硬币“正面朝 上”的频率会在0.5左右摆动,并且摆动幅度越 来越小.
0.105
0.101
0.097 0.097 0.103 0.101 0.098 0.099 0.103
根据估计的概率可以知道,在 10 000 kg 柑橘
中完好柑橘的质量为
10 000×0.9=9 000(kg).
设每千克柑橘售价为 x 元,则
9 000x -2×10 000=5 000.
解得
x ≈ 2.8(元).
kg柑橘.如果公司希望这些柑橘能够获得利润 5 000 元,
那么在出售柑橘(去掉损坏的柑橘)时,每千克大约定
价为多少元比较合适?
柑橘在运输、储存
中会有损坏,公司必
分析:首先要确认损坏的柑橘
须估算出可能损坏的
有多少,可以通过统计“柑橘
柑橘总数,以便将损
损坏率”进行确认.
坏的柑橘的成本折算
到没有损坏的柑橘售
历史上,有些人曾做过成千上万次抛掷硬币的试 验,试验结果如下:
试验者
棣莫弗 布丰 费勒 皮尔逊 皮尔逊
抛掷次数n
2048 4040 10000 12000 24000
“正面向上” 次数m 1061 2048 4979 6019 12012
“正面向上n ” 的频m率 0.518 0.5069 0.4979 0.5016 0.5005

《用频率估计概率》ppt课件

《用频率估计概率》ppt课件

频率的定义
01
频率是指在一定数量的 试验或观察中某一事件 发生的次数与总次数之 比。
02
03
04
频率通常用分数或小数 表示,并且具有以下特 点
• 频率介于0和1之间, 即0≤频率≤1。
• 当试验次数趋向于无 穷时,频率趋向于某 一固定值,即概率。
频率与概率的关系
频率是概率的近似值,当试验次数足够多时,频率趋近于概率。
人工智能算法
人工智能算法中,频率估计概率的方法也被 广泛应用。许多机器学习算法和自然语言处 理算法都需要用到概率和统计学的知识,而 频率估计概率是其中的重要组成部分。
例如,在自然语言处理中,词频统计是一种 常见的方法,通过对大量文本数据的分析, 可以估计某个词出现的概率,从而更好地理 解和处理自然语言。同样地,在机器学习中 ,频率估计概率的方法也被用于分类、聚类
交叉验证
采用交叉验证等方法评估频率 估计概率的准确性,以提高预
测的可靠性。
05
频率估计概率的应用场景
统计学研究
统计学研究是频率估计概率的重要应用领域之一。在统计 学中,频率估计概率的方法被广泛应用于数据分析和推断 中,例如在样本大小的计算、假设检验和置信区间的确定 等方面。
频率估计概率可以帮助统计学家了解数据分布的特征和规 律,从而为决策提供科学依据。例如,在市场调研中,通 过频率估计概率可以对市场趋势和消费者行为进行预测和 分析。
0到1之间,其中0表示事件不可能发 生,1表示事件一定发生。
概率的估计方法
01
02
03
直接估计
通过观察和实验直接得到 随机事件的频率,从而估 计概率。
间接估计
通过已知的概率分布函数 或者概率密度函数来计算 概率。

人教版九年级数学上册《25.3用频率估计概率》课件(共27张PPT)

人教版九年级数学上册《25.3用频率估计概率》课件(共27张PPT)

3 B.在答卷中,喜欢足球的答卷与总问卷的比5为3︰8
C.在答卷中,喜欢足球的答卷占总答卷的
D.在答卷中,每抽出100份问卷,恰有60份答卷是喜欢足球
练习巩固
3.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他相
同.通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中
白球可能有( D ).
在同样条件下,对这种幼树进行大量移植,并统计成活情况,计算成活 的频率.随着移植数n越来越大,频率 m 会越来越稳定,于是就可以把频
n 率作为成活率的估计值.
从表中可以发现,随着移植数的增加,幼树移植成活的频率越来越稳 定.当移植总数为14 000时,成活的频率为0.902,于是可以估计幼树移植 成活的概率为0.9.
转动转盘的次数n
落在“铅笔”的次数m
落在“铅笔”的频率
m n
100 150 200 500 800 1 000 68 111 136 345 546 701
(2) 请估计,当n很大时,频率将会接近多少?
(3) 转动该转盘一次,获得铅笔的概率约是多少?
(4) 在该转盘中,标有“铅笔”区域的扇形的圆心角大
如果随着抛掷次数的增加,“正面向上”的频率的变化在0.5的左右摆动幅度不完全是越来越小,本次实验依然不能称为严格意义上的大量重复实验. 2.某射击运动员在同一条件下的射击成绩记录如下: 902,于是可以估计幼树移植成活的概率为 . 例2 某水果公司以2元/kg的成本价新进了10 000 kg的柑橘.如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(去掉损坏的柑橘)时,每千克大约定价为多少元比较合适 ? 2.某射击运动员在同一条件下的射击成绩记录如下:
约是多少(精确到1°).

用频率估计概率-完整版PPT课件

用频率估计概率-完整版PPT课件

当堂练习
1一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕
获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个
水塘里有鲤鱼 尾3,鲢10鱼 尾
270
2 养鱼专业户为了估计他承包的鱼塘里有多少条鱼假设 这个塘里养的是同一种鱼,先捕上100条做上标记,然后放回 塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后 ,再捕上100条,发现其中带标记的鱼有10条,鱼塘里大约 有鱼多少条?
解:设鱼塘里有鱼条,根据题意可得
10 100 , 100 x
解得 =1000 答:鱼塘里有鱼1000条
3抛掷硬币“正面向上”的概率是05如果连续抛掷100次,而结 果并不一定是出现“正面向上”和“反面向上”各50次,这是这 什么?
答:这是因为频数和频率的随机性以及一定的规律性或者说 概率是针对大量重复试验而言的,大量重复试验反映的规律 并非在每一次试验中都发生
方法归纳
一般地,当试验的可能结果有很多且各种可能结果发生的 可能性相等时, 则用列举法,利用概率公式PA= 的方m 式得出
n
概率 当试验的所有可能结果不是有限个,或各种可能结果发生 的可能性不相等时,常常是通过统计频率来估计概率,即在同 样条件下,大量重复试验所得到的随机事件发生的频率的稳 定值来估计这个事件发生的概率
226 281 260 238 246 259 1490
450 550 503 487 510 495 2995
0502 0510 0517 049 0483 0523 0497
050
问题2 分析试验结果及下面数学家大量重复试验数据, 大家有何发现?
试验者
棣莫弗 布丰 费勒 皮尔逊 皮尔逊
抛掷次数n “正面向上” 次数m

《利用频率估计概率》课件1(21张PPT)(人教新课标九年级)

《利用频率估计概率》课件1(21张PPT)(人教新课标九年级)
1500 3500 7000 9000 14000
成活率(m) 8 47
235 369 662 1335 3203 6335 8073 12628
成活的频率( m )
n
0.80 0.94 0.871 0.923 0.883 0.890 0.915
0.905 0.897 0.902
从表可以发现,幼树移植成活的频率在___9_0_%____左右摆动,并 且随着统计数据的增加,这种规律愈加越明显,所以估计幼树 移植成活率的概率为____0_.9___
500
51.54
0.103
柑橘总质量(n)/千克 50 100 150 200 250 300 350 400 450 500
思考
损坏柑橘质量(m)/千克 5.50 10.5 15.15 19.42 24.25 30.93 35.32 39.24 44.57 51.54
柑橘损坏的频率(
m n

0.110
复习巩固
一次试验中,所有可能出现的结果是有限多个。 一次试验中,各种结果发生的可能性完全相同。
做做实验
从一定高度落下的图钉,会有几种可能的结果? 它们发生的可能性相等吗?
试验累计次 20 40 数
钉帽着地的 9 19 次数(频数)
利用频率估计概率
60 80 100 120 140 160 180 200 36 50 61 68 77 84 95 109
问题2 某水果公司以2元/千克的成本新进了10 000千克的柑橘,如果 公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(已去掉 损坏的柑橘)时,每千克大约定价为多少元比较合适?
销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘

北师大版九年级数学上册-第三章第2节用频率估计概率(共22张)PPT课件

北师大版九年级数学上册-第三章第2节用频率估计概率(共22张)PPT课件

(C) 明天有可能性是晴天 (D) 明天不可能性是晴天
3.有一种麦种,播种一粒种子,发芽的概率是
98%,成秧的概率为85%.若要得到10 000株
麦苗,则需要
粒麦种.(精确到1粒)
15
.
4.对某服装厂的成品西装进行抽查,结果如下表:
抽检件数 100 200 300 400
正品 频数 97 频率
198 294 392
色,其余面是黄、蓝、白、黑;乙的骰子六个面中,分别是红
黄、蓝、白、黑、紫,规则是各自掷自己的骰子,红色向上的 得2分,其余各色向上都得1分,共进行10次,得分高的胜,你 认为这个规则公平吗? 14.一个不透明口袋中装有红球6个,黄球9个,绿球3个,这些
球除颜色外没有任何其它区别。现从中任意摸出一个球。
那么在一个班级中,有2个人的生日相 同的概率到底有多大呢?(一个班级以50
人来计算)
我们应该如何来做才能得 到这个概率?
6Байду номын сангаас
.
生日相同的概率
w要想使这种估计尽可能精确,就需要尽可能多 地增加调查对象,而这样做既费时又费力.
w有没有更为简洁的方法呢?
能不能不用调查即可估计出这一 概率呢?
7
.
试验
1、分别在表示“月”和“日”的盒子中各抽出一 张纸片,用来表示一个人的生日日期,并将这个 结果记录下来,为一次实验。抽完后并分别放回
11.一个十字路口的交通信号灯每分钟红灯亮30秒,绿 灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯 的概率是多少?
20
.
12.在分别写有1至100共100个数字的卡片中,将它们背面朝上洗 匀后,随意抽出一张则:
(1)P(抽到数字43)=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料1:
则估计抛掷一枚硬币正面朝上的概率为_o._5
材料2:
则估计油菜籽发芽的概率为_0_.9 _
▪ 国家在明年将继续实施山川秀美工程,各地 将大力开展植树造林活动.为此林业部要考 查幼树在一定条件下的移植成活率,应采用 什么具体做法?
▪ (1)阅读教材P157.158的相关内容,完成表 25-5
▪ 验所得到的随机事件发生的频率的稳定值来估 计这个事件发生
课堂检测
▪ 1.经过大量试验统计,香樟树在我市的移植 的成活率未95%.
▪ (1)吉河镇在新村建设中栽了4000株香樟 树,则成活的香樟树大约是________株.
▪ (2)双龙镇在新村建设中要栽活2850株香 樟树,需购幼树______株.
演讲人: XXX
PPT文档·教学课件
▪ 获利5000元,那么售价应定为__2._8 ____元/千 克比较合适.
讨论:如果你是柑橘销售商,在整个销售过程 中应注意些什么?
▪ 一般地,当试验的可能结果有很多且各种可能结 果发生的可能性相等时, 可以用
▪ P(A)=m/n的方式得出概率.当试验的所有 可能结果不是有限个,或各种可能结果发生的可 能性不相等时,常常是通过统计频率来估计概率, 即在同样条件下,大量重复试
3.某射击运动员在同一条件下练习射 击,结果如下表所示:
射击次数n
10 20 50 100 200 500
击中靶心次数m 8
19 44 92 178 452
击中靶心频率m/n
(1)计算表中击中靶心的各个频率并填入表中. (2)这个运动员射击一次,击中靶心的概率约是_____.
THANKS
FOR WATCHING
▪ 2.一个口袋中放有20个球,其中红球6个,白球和 黑球个若干个,每个球出了颜色外没有任何区别.
▪ (1)小王通过大量反复实验(每次取一个球,放回搅 匀后再取)发现,取出黑球的概率稳定在1/4左右, 请你估计袋中黑球的个数.
▪ (2)若小王取出的第一个是白球,将它放在桌上,从 袋中余下的球中在再任意取一个球,取出红球的 概率是多少?
▪ (2)思考:在实验时为了使实验结果更接近 现实情况,需要注意些什么问题?
▪ 小组讨论:在进行移植试验时,移植的总数 是越多越
▪ (2)根据表中数据填空:
▪ 这批柑橘损坏的概率是__0_.1___,则完好柑橘 的概率是___0._9 ___,
▪ 如果某水果公司以2元/千克的成本进了 10000千克柑橘,则这批柑橘中完好柑橘的 质量是__90_00_____,若公司希望这些柑橘能够
相关文档
最新文档