超疏水静电纺丝纳米纤维
静电纺丝纳米纤维材料的制备与性能分析
静电纺丝纳米纤维材料的制备与性能分析静电纺丝技术是一种制备超细纤维的方法,它能够制备出纳米级别的纤维材料,并具有很多优异的性能。
本文将探讨静电纺丝纳米纤维材料的制备方法以及其性能分析。
静电纺丝纳米纤维材料的制备方法主要包括溶液电纺和熔融电纺两种。
溶液电纺是将聚合物或溶液通过电纺设备喷射至接收器上,形成纳米纤维。
溶液中的聚合物会在高电场作用下形成一个带电液滴,然后逐渐凝固并拉伸成纤维。
熔融电纺则是将熔融的聚合物通过电纺设备喷射至接收器上,形成纳米纤维。
熔融电纺方法相比于溶液电纺方法更适用于高熔点聚合物的制备。
静电纺丝方法制备的纳米纤维具有直径细小、物理结构均匀等特点。
静电纺丝纳米纤维材料具有许多优异的性能。
首先,静电纺丝制备的纤维直径通常在几十纳米到几百纳米之间,这个尺度处于微观和宏观之间。
这种超细纤维的尺度使得其具有更好的比表面积和更好的透气性能,能够在过滤、分离、吸附等领域发挥重要作用。
其次,静电纺丝纳米纤维材料具有较好的力学性能。
由于纤维直径较小,阻力较低,可以承受更大的应变,因此具有较好的拉伸强度和弹性模量。
同时,纳米纤维的表面粗糙度较小,内部结构较紧密,具有较好的抗疲劳性能。
此外,静电纺丝纳米纤维材料还具有优异的化学和物理性能。
在化学性能方面,纳米纤维具有较高的化学惰性,对化学物质和强酸、强碱等有较好的抵抗能力。
在物理性能方面,纳米纤维具有较好的光学透明性、热稳定性和隔音性能。
静电纺丝纳米纤维材料的性能分析主要通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、红外光谱(FTIR)和拉伸测试等方法进行。
SEM和TEM可以观察纳米纤维的形态和结构,包括纤维直径、形状和表面形貌等。
FTIR可以分析纳米纤维的化学成分和有机物官能团。
拉伸测试则可以测定纳米纤维的力学性能,如拉伸强度、断裂应变和弹性模量等。
综上所述,静电纺丝纳米纤维材料具有许多优异的性能,包括超细纤维直径、良好的力学性能和优异的化学与物理性能。
静电纺丝制备超疏水TiO_2纳米纤维网膜
Vol .30高等学校化学学报No .42009年4月 CHE M I CAL JOURNAL OF CH I N ESE UN I V ERSI TI ES 731~734静电纺丝制备超疏水T iO 2纳米纤维网膜王丽芳1,2,赵 勇1,江 雷1,王佛松1(1.北京分子科学国家实验室,有机固体院重点实验室,中国科学院化学研究所,北京100190;2.中国科学院研究生院,北京100049)摘要 采用静电纺丝技术构筑粗糙表面,再使用廉价的低表面能物质硅油在煅烧过程中进行同步修饰,制备出接触角大于150°,滚动角小于5°的Ti O 2超疏水表面.该超疏水表面具有由Ti O 2纳米纤维和微米尺寸颗粒状硅油高温分解产物织构而成的纳米纤维网膜结构,这种特殊的微纳米复合粗糙结构和疏水性硅油分解产物的修饰作用导致Ti O 2纳米纤维网膜的超疏水性.这种超疏水的Ti O 2材料为超疏水材料在防水织物、无损失液体运输和微流体等领域的应用提供了新的研究视野.关键词 二氧化钛;超疏水;纳米纤维;静电纺丝中图分类号 O647.5 文献标识码 A 文章编号 025120790(2009)0420731204收稿日期:2008210207.基金项目:国家自然科学基金(批准号:20801057,20774101)、国家“八六三”计划(批准号:2007AA03Z327)和国家“九七三”计划(批准号:2007CB936403,2009CB930404)资助.联系人简介:江 雷,男,博士,研究员,博士生导师,主要从事仿生纳米功能界面材料研究.E 2mail:jianglei@iccas .ac .cn浸润性是固体表面的重要性质之一,通过固液界面的接触角(CA )表征.固体表面的浸润性主要由其表面的化学组成和结构共同决定.改变固体表面的自由能和粗糙度都可改变浸润性[1].近年来,与水的接触角大于150°,同时滚动角小于10°的超疏水材料由于在微流体及生物分析等领域具有广泛的应用前景,从而引起了人们极大的研究兴趣.受荷叶自清洁效应的启发,人们制备了一系列的仿生超疏水表面[2].研究表明,超疏水表面可以通过两种方法获得:一是在粗糙表面修饰低表面能物质;二是在疏水材料表面构建粗糙结构[3].迄今为止,人们已经提出了许多制备粗糙表面的方法,诸如相分离法,刻蚀法,模板压印法,电化学沉积法等[4~6].J iang 等[7]以廉价的聚苯乙烯为原料,采用简单的静电纺丝技术,制备了具有多孔微球和纳米纤维复合结构的超疏水薄膜,由于Ti O 2具有光、电和化学稳定性以及生物相容性,因此在理论研究和工业应用领域一直是研究热点.制备具有特殊表面性质的Ti O 2材料,有利于拓展Ti O 2在自清洁表面、太阳能电池及生物分析等方面的应用[8].本文采用静电纺丝技术[9~13]构筑粗糙表面,再使用廉价的低表面能物质硅油在煅烧过程中同步修饰,制备出接触角大于150°,滚动角小于5°的Ti O 2超疏水表面.1 实验部分1.1 复合膜的制备将聚乙烯吡咯烷酮[Poly (vinyl pyrr olidone ),P VP,M w =1300000,Acr os 公司]和钛酸四丁酯[Ti (OBu )4,北京化工精细化学有限公司]溶解在乙醇和醋酸(体积比4∶1)的混合溶剂中,配制质量分数分别为4%P VP 和20%Ti (OBu )4的前驱体溶液;将上述溶液置于内径为0143mm 针头的注射器中,采用118k V /c m 的工作电压强度(电压强度=工作电压/接收距离)进行静电纺丝,最后在玻璃基底接收装置上收集得到P VP /钛凝胶复合膜.1.2 复合膜的煅烧在负载上述复合膜的玻璃基底上,加入1g 硅油(M w =4000),置于程序升温马弗炉(Naberther m LH15213,德国)中,以115℃/m in 的升温速度升至450℃,然后在该温度下持续煅烧3h,选择性除去P VP,得到Ti O 2膜.1.3 表 征样品形貌采用场发射扫描电子显微镜(6700F FE 2SE M ,日本JE OL 公司)表征;膜的表面化学组成采用X 射线光电子能谱(XPS )测试;利用接触角测量仪(OCA20德国Dataphysics 公司)在室温下进行接触角和滚动角测定,所用水滴均为3μL,在样品的5个不同位置进行测定,取平均值.2 结果与讨论2.1 煅烧前后膜的组成分析图1为复合膜煅烧前后的XPS 图.从图1(A )可以看出,煅烧前复合膜表面主要由C,O ,Ti 和N 元素组成,与P VP /钛凝胶复合膜的组成符合.从图1(B )可以看出,煅烧后纤维表面N 元素信号峰消失,纤维表面主要由C,O,Ti 和Si 元素组成.这说明,煅烧过程选择性除去了P VP,表明复合膜煅烧后制备了表面含有Si 和C 的Ti O 2膜.因此,通过静电纺丝,同步煅烧硅油和P VP /钛凝胶复合膜的方法,可以制备被硅油高温分解物修饰的Ti O 2膜.F i g .1 XPS spectra of co m posite m esh before(A)and after(B)ca lc i n a ti on2.2 纤维的形貌F i g .2 SE M i m ages of co m posite m esh before[(A),(B)]and after[(C),(D )]ca lc i n a ti on图2为静电纺丝所制备的煅烧前P VP /钛凝胶复合膜和煅烧后Ti O 2膜的SE M 照片.图2(A )和(B )为煅烧前P VP /钛凝胶复合膜的形貌图.由图2(A )可见,P VP /钛凝胶复合膜由连续纤维构成纤维网膜,纤维中只有少量的珠状结构.图2(B )显示纤维直径为40~400nm.图2(C )和(D )为复合纤维膜在硅油氛围中高温煅烧后的Ti O 2膜形貌图.在图2(C )中未见到明显的纤维网结构,只能见到颗粒状粗糙表面.图2(C )放大后的SE M 照片[图2(D )]则清楚地显示底层为煅烧后得到的Ti O 2纤维网状237高等学校化学学报 Vol .30 结构,并且Ti O 2纤维网膜上堆积粒径约为01023~117μm 的球状颗粒,形成颗粒状粗糙表面.SE M 结果表明,采用静电纺丝技术可以在基底上制备纳米纤维网膜,烧结过程并未破坏纤维网状结构,并能同时粗糙化纤维网表面.2.3 表面浸润性烧结过程中不添加硅油得到的Ti O 2纳米纤维网膜的接触角为0°,显示出超亲水特性.图3(A )为水滴在表面修饰硅油的Ti O 2纳米纤维网膜表面的照片,显示接触角为15415°±117°,表现出显著的超疏水特性.这种超亲水向超疏水的转变首先与纤维表面的自由能有关.硅油中亲水性基团与Ti O 2表面—OH 相结合,致使硅油中疏水基团向外,大大降低了Ti O 2纤维表面自由能,因而使其表面由亲水性向疏水性发生本质变化.图3(B )为水滴在硅油修饰的平滑Ti O 2表面的照片.从图3(B )中测量得出水在平滑Ti O 2表面的接触角为9317°±213°,表明硅油修饰的Ti O 2表面由亲水性转变至疏水性.其次,这种超亲水向超疏水的转变与粗糙多孔结构的表面有关.Ti O 2纳米纤维网膜表面的粗糙多孔结构能够产生足够多的空隙来填充空气,从而减少了水与固体表面的接触,这种情况符合Cassie 方程提出的增大空气含量将增强疏水材料表面疏水性这一定律[14].这种由纤维和纤维之间空气所组成的复合表面可以用Cassie 方程计算得出水与固体表面接触时三相接触线中空气所占的比例:cos θr =f 1cosθ-f 2式中,θr 和θ分别为水与粗糙表面和化学组成相同的平滑表面的接触角,f 1和f 2分别为Ti O 2纳米纤维和空气所占的分数,且f 1+f 2=1.平滑表面和粗糙表面的接触角分别为θ=9317°±213°和θr =15415°±117°.由上述公式可以得出f 2=01908,这表明空气所占比例达到了9018%. F i g .3 CA on sili cone m od i f i ed T i O 2nanofabr i c m esh(A)and s m ooth T i O 2f il m (B)F i g .4 Sli d i n g angle of the sili cone m od i f i ed T i O 2nanofabr i c m esh表面固2液2气三相接触线的间断性使得水滴在超疏水表面容易滚动.滚动角测试结果表明水滴在纳米纤维网膜上的滚动角为211°(图4),显示了低黏滞力的超疏水性.这表明,我们制备的超疏水表面与水的接触角为15415°,滚动角为211°.3 结 论采用静电纺丝技术制备了超疏水、低滚动角的Ti O 2纤维网膜.先通过简单的静电纺丝技术先制备粗糙P VP /钛凝胶复合纳米纤维网膜,然后煅烧制备Ti O 2纤维网的同时,加入硅油共同煅烧,得到表面沉积颗粒的Ti O 2纳米纤维网膜,实现了Ti O 2纳米纤维网膜由超亲水性(与水的接触角约为0°)向超疏水性的转变(与水的接触角为15415°,滚动角211°),这样不需要对煅烧后亲水的Ti O 2进行后续处理,就能制备Ti O 2超疏水材料.这种超疏水的Ti O 2材料可被设计运用于防水织物、无损失液体运输、微流体等领域.参 考 文 献[1] Feng L.,L i S .,L i Y .,et al ..Adv .Mater .[J ],2002,14(24):1857—1860[2] Zhai L.,BergM.C .,Cebeci F .,et al ..Nano Lett .[J ],2006,6(6):1213—1217[3] Sun T .,Feng L.,Gao X .,et al ..Acc .Chem.Res .[J ],2005,38(8):644—652[4] Erbil H.Y .,De m irel A.L.,Avcl Y .,et al ..Science[J ],2003,299(5611):1377—1380[5] Shiu J.,Kuo C .,Chen P .,et al ..Che m.Mater .[J ],2004,16(4):561—564[6] ZHANG Ya 2Nan (张亚南),X I A Fan (夏帆),WANG N ü(王女),et al ..Chem.J.Chinese Universities (高等学校化学学报)[J ],2007,28(3):568—570337 No .4 王丽芳等:静电纺丝制备超疏水Ti O 2纳米纤维网膜437高等学校化学学报 Vol.30 [7] J iang L.,Zhao Y.,Zhai J..Ange w.Che m.I nt.Ed.[J],2004,43(33):4338—4341[8] Meng Q.,Takahashi K.,Zhang X.,et ng muir[J],2003,19(9):3572—3574[9] HUANG Hui2M in(黄绘敏),L I Zhen2Yu(李振宇),Y ANG Fan(杨帆),et al..Chem.J.Chinese Universities(高等学校化学学报)[J],2007,28(6):1200—1202[10] SHAO Chang2Lu(邵长路),G UAN Hong2Yu(关宏宇),W EN Shang2B in(温尚彬),et al..Che m.J.Chinese Universities(高等学校化学学报)[J],2004,25(6):1013—1015[11] Zhao Y.,Cao X.,J iang L..J.Am.Che m.Soc.[J],2007,129(4):764—765[12] HAN Guo2Zhi(韩国志),SHAO Ye(邵晔),XU Hua(徐华),et al..Chem.J.Chinese Universities(高等学校化学学报)[J],2009,30(1):185—190[13] ZHOU Xian2Feng(周险峰),Z HAO Yong(赵勇),CAO Xin2Yu(曹新宇),et al..Chem.J.Chinese Universities(高等学校化学学报)[J],2007,28(7):1220—1222[14] Cassie A. B. D.,Baxter S..Trans.Faraday Soc.[J],1944,40:546—551Superhydrophob i c T i O2Nanofabr i c M esh Fabr i ca tedby Electrosp i n n i n gWANG L i2Fang1,2,ZHAO Yong1,J I A NG Lei13,WANG Fo2Song1(1.B eijing N ational L aboratory forM olecular Sciences(BNLM S),CAS Key L aboratory of O rganic Solids,Institute of Che m istry,Chinese A cade m y of Sciences,B eijing100190,China;2.Graduate U niversity of Chinese A cade m y of Sciences,B eijing100049,China)Abstract A Ti O2mesh with superhydr ophobic p r operty is facile fabricated thr ough electr os p inning p r ocess foll owed by calcinati ons with silicon oil.The P VP/titania mesh inter weaved by nanofibers,which is of r ough surface structures,is firstly p repared by electr os p inning.Then the silicon oil is dr opped on the titania mesh. After this mesh is calcinated,it turns t o Ti O2and silican composite with m icr o/nanoscale r oughness.This composite mesh exhibits superhydr ophobic p r operty with high water contact angle and l ow sliding angle,which is attributed t o the combinati on of l ow surface free energy and high surface r oughness.This study p r ovides a si m p le and effective method for generating non2wetting materials and may blazes interesting insights t o design novel materials including non2l oss liquid trans port,self2cleaning surface and many other app licati ons. Keywords Ti O2;Superhydr ophobic;Nanofibers;Electr os p inning(Ed.:V,I)。
抗污染超级疏水纳米纤维薄膜的制备及其应用研究
抗污染超级疏水纳米纤维薄膜的制备及其应用研究一、引言随着人类工业化的发展,工业污染严重威胁我们的环境和健康。
为了解决这一问题,研究人员不断探索新型的抗污染材料。
对于超级疏水材料的应用越来越引人关注。
本文的主要目的是介绍一种抗污染超级疏水纳米纤维薄膜的制备方法及其应用研究。
二、抗污染超级疏水纳米纤维薄膜的制备1、纳米纤维技术的应用纳米纤维技术是一种重要的纳米材料制备方法,该技术通过热致变性或静电纺丝技术制备具有纳米尺度的纤维。
纳米纤维具有特殊的形态结构和材料性能,因此在纳米科技领域应用广泛。
2、超级疏水现象的原理超级疏水材料表面的接触角通常大于150°,这是因为超级疏水表面具有微纳结构,使得水滴在表面形成独特的几何形态,从而形成很小的接触面积。
当液滴滑过表面时,会带走表面上的污渍,从而实现自清洁功能。
3、制备方法制备抗污染超级疏水纳米纤维薄膜的方法通常有两种:一种是将溶解的高分子聚合物加工成超级疏水材料;另一种是将聚合物纳米纤维通过静电纺丝或其他纺丝技术制备成超级疏水材料。
其中,静电纺丝技术是最为常用的制备方法之一。
三、抗污染超级疏水纳米纤维薄膜的应用研究1、自清洁陶瓷涂层传统的陶瓷涂层很容易受到空气中的灰尘或污染物的附着。
然而,经过特殊处理的超级疏水陶瓷涂层可以有效地防止污染物的附着,从而实现自清洁功能。
研究人员通过制备超级疏水的陶瓷涂层,使得陶瓷表面具有独特的微纳结构,从而实现自清洁功能。
2、自清洁建筑材料将超级疏水材料应用于建筑材料,可以有效地减少污染物对建筑表面的侵蚀,从而延长建筑材料的使用寿命。
研究人员通过制备抗污染超级疏水纳米纤维薄膜,将其用于建筑材料表面涂层,从而实现自清洁功能。
3、自清洁电池电池的附着污染物会导致电池的性能下降。
即使是微小的污染物也会对电池的性能产生影响。
因此,制备自清洁电池材料具有重要的研究意义。
研究人员通过制备超级疏水材料,将其应用于电池表面,实现电池的自清洁功能。
超疏水涂料的制备方法研究
超疏水涂料的制备方法研究在当今科技飞速发展的时代,超疏水涂料因其独特的性能引起了广泛的关注和研究。
超疏水涂料具有出色的防水、防污、自清洁等特性,在众多领域都有着潜在的应用价值,如建筑、汽车、航空航天、电子等。
因此,探索超疏水涂料的制备方法具有重要的意义。
一、超疏水涂料的基本原理要理解超疏水涂料的制备方法,首先需要了解其实现超疏水性能的基本原理。
超疏水现象通常是由表面的微观结构和低表面能物质共同作用的结果。
从微观结构来看,表面通常具有粗糙的微纳米结构,这些结构可以增加表面的实际接触面积,使得液滴在表面上难以完全浸润。
就像荷叶表面的乳突结构,使得水滴能够在其表面轻松滚动而不留下痕迹。
而低表面能物质则能够降低表面的自由能,进一步增强疏水性能。
常见的低表面能物质包括含氟化合物、硅氧烷等。
二、常见的超疏水涂料制备方法1、溶胶凝胶法溶胶凝胶法是一种较为常见的制备超疏水涂料的方法。
其基本过程是将前驱体在溶液中进行水解和缩合反应,形成溶胶,然后经过凝胶化、干燥和热处理等步骤,得到具有特定结构和性能的涂层。
在制备过程中,可以通过控制反应条件,如溶液的浓度、pH 值、反应温度和时间等,来调节涂层的微观结构和性能。
同时,还可以引入低表面能物质,如含氟硅烷,来降低表面能,实现超疏水性能。
例如,以正硅酸乙酯(TEOS)为前驱体,通过水解和缩合反应形成二氧化硅溶胶。
然后将含氟硅烷与溶胶混合,涂覆在基底上,经过干燥和热处理,得到超疏水涂层。
2、相分离法相分离法是利用两种或多种不相容的聚合物在共混过程中发生相分离,形成具有微观粗糙结构的涂层。
通过选择合适的聚合物体系和相分离条件,可以控制涂层的微观结构和疏水性能。
一种常见的相分离法是热诱导相分离(TIPS)。
将聚合物共混物加热到高于其熔点的温度,形成均相溶液。
然后在冷却过程中,由于不同聚合物的相容性差异,发生相分离,形成微观结构。
例如,将聚偏氟乙烯(PVDF)和聚苯乙烯(PS)共混,通过热诱导相分离制备超疏水涂层。
静电纺丝制备纳米纤维及其在生物医学中的应用
静电纺丝制备纳米纤维及其在生物医学中的应用随着科技的发展,人们对于纳米材料和纳米技术的研究逐渐深入,其中静电纺丝制备纳米纤维是一种较为常见的方法。
它能够制备出具有很高比表面积和可控直径的纳米纤维,对于生物医学领域具有很好的应用前景。
一、静电纺丝制备纳米纤维的原理及方法静电纺丝是利用静电作用将高分子液体拉丝形成纤维的一种技术。
通常,它的原理是利用带电高分子液体在电场作用下形成锥形喷头,从喷头中心一点开始流下,当距离液体表面足够近时,因表面张力的作用液体受到拉伸,导致出现细流,流出的液体在其后被蒸发成纳米纤维。
静电纺丝制备纳米纤维的方法非常简单,在实验室条件下,只需要一个高电压电源、一个喷雾装置和喷嘴即可完成。
但是要注意控制电场强度、高分子溶液的稠度、温度等因素,调整它们之间的相互关系进行控制,才能使得纤维直径、形态等性质得到合适的调控。
二、静电纺丝制备纳米纤维在生物医学中的应用纳米纤维具有很多优异的物理和生物学特性,因此在生物医学领域中有一定的应用前景。
以下列出其中几个方面的应用:1. 组织工程:纳米纤维是构建人工组织的重要组成部分,它可以用于人工血管、软骨修复和牙齿修复等领域。
2. 治疗性药物携带:纳米纤维可以作为一种载体来传递药物分子,能够控制药物的释放速度和路径。
并且其高比表面积和微纳米级尺寸的特性也能够增加药物在体内的相对生物利用度。
3. 制备生物传感器:纳米纤维可以用来制备生物传感器,用于检测分子、抗体和细胞等。
4. 健康产品:静电纺丝法制备的纳米纤维具有良好的吸湿性和透气性,可以用于制备口罩、衣服和卫生巾等健康产品,起到防菌和抗病毒的作用。
三、静电纺丝制备纳米纤维存在的问题及展望尽管静电纺丝制备纳米纤维具有很多优势和潜在应用,但是它也存在着一些问题。
如:纤维直径的不稳定性、可持续性和成本等,这些问题限制了它的应用和推广。
就未来而言,静电纺丝制备纳米纤维的展望依旧非常乐观。
伴随着科技的进步和新材料的研制,一些问题也逐渐得到缓解。
静电纺丝制备超疏水功能材料研究进展
静电纺丝制备超疏水功能材料研究进展摘要:近年来,纳米技术飞速发展,纳米材料成为各大学者的研究热点。
静电纺丝是制备纳米材料和微细纳米结构最简单最切实可行的方法,也是一种具有广泛应用前景的技术。
通过静电纺丝制备的超疏水材料在油水分离、膜蒸馏、防腐涂层、隐身材料、传感材料等方面具有极大的应用前景。
20世纪90年代静电纺丝引起人们的广泛关注和研究,这些研究推动了静电纺丝的快速发展,并为超疏水材料带来一系列新的制备方法。
笔者简要介绍了静电纺丝的基本原理和超疏水理论,重点阐述了利用静电纺丝制备超疏水功能材料的最新研究进展并对其性能进行分析比较。
关键词:静电纺丝,超疏水,功能材料引言:受到自然界许多动植物的启发,如荷叶、水黾等,超疏水材料应运而生。
人们通过细心的观察发现它们都具备了相似的共同点,荷叶的表面呈现粗糙的微观形貌,才有了莲花的出淤泥而不染。
水黾的腿部也存在微纳米结构,才可以自由的在水面上行走或奔跑。
他们的这种结构可以和水面形成“空气垫”,所以防止了表面被水润湿,也就达到了疏水的效果。
超疏水材料的出现,应用在了很多领域,如防水、防雾、防污染、自清洁及油水分离,为我们的生活带来了便利,起着至关重要的作用。
理想的超疏水材料通常被认为具有超疏水、超亲油性能、高吸油能力以及低吸水率、低密度、环保无公害,对各种油类具有良好的可回收性。
1静电纺丝的原理和装置静电纺丝是静电雾化的一种形式,也称电纺,它通过一个外加强电场,使聚合物溶液或熔体在喷射孔形成喷射流,同时在静电场中进行拉伸,形成纤维固化在接收板上。
在外加电场和表面张力的作用下,液滴被拉长成一个Taylor圆锥。
静电纺丝设备通常由高压电源、喷头、注射泵、收集平台等装置构成。
2静电纺丝碳基纳米材料碳纳米材料超级电容器具有大比表面积、快充放电速率和长循环寿命等优点,在为可穿戴电子设备供电方面具有广阔的应用前景。
碳纳米纤维(CNF)作为一种高性能的电极材料,在储能/转换系统中具有多功能性,一直以来都被人们作为一种高性能的电极材料来研究。
静电纺制备PVDF纳米纤维膜的应用
静电纺制备PVDF纳米纤维膜的应用纳米纤维膜由于其独特的微观结构和特殊的性能,已经在多个领域得到了广泛的应用。
静电纺制备的PVDF(聚偏氟乙烯)纳米纤维膜因其优良的性能和广泛的应用前景备受关注。
本文将介绍静电纺制备PVDF纳米纤维膜的制备原理和性能特点,并重点探讨其在过滤材料、生物医药、膜分离和传感器等领域的应用。
静电纺是一种通过高压电场使溶液或熔融聚合物在空气中喷射成纳米纤维的方法。
PVDF纳米纤维膜的制备过程主要包括以下几个步骤:溶液或熔融聚合物通过喷丝头喷出,受到高压电场的作用形成纳米级的纤维,纤维在电场的作用下被拉伸成直径几十至几百纳米的纳米纤维,最终在收集器上形成有序排列的纳米纤维膜。
静电纺制备PVDF纳米纤维膜的关键是采用适当的溶剂和电场条件,使得PVDF能够形成均匀直径分布的纳米纤维,并且在收集器上形成致密的纳米纤维膜。
1. 高比表面积:PVDF纳米纤维膜具有非常高的比表面积,纳米级的纤维直径和纤维之间的孔隙结构使得PVDF纳米纤维膜的比表面积远高于传统的微米级纤维膜,因此具有更好的吸附和分离性能。
2. 超疏水性:PVDF是一种疏水性材料,静电纺制备的PVDF纳米纤维膜表面具有微纳米级的粗糙结构,使得其具有超疏水性,水珠在其表面呈现出良好的滚动性,因此具有良好的自清洁性能。
3. 高拉伸强度:PVDF本身具有良好的拉伸强度和韧性,静电纺制备的PVDF纳米纤维膜由于其微米级的纤维直径,在保持良好的拉伸强度的还具有较好的柔韧性。
4. 良好的化学稳定性:PVDF本身具有良好的化学稳定性,能够耐受多种溶剂和酸碱介质的侵蚀,因此静电纺制备的PVDF纳米纤维膜具有良好的耐腐蚀性能。
由于PVDF纳米纤维膜具有高比表面积、超疏水性和良好的拉伸强度等特点,因此在过滤材料中具有广泛的应用前景。
静电纺制备的PVDF纳米纤维膜可以应用于空气过滤、水处理、生物医药等领域。
将PVDF纳米纤维膜应用于空气过滤器中,可以有效地捕集空气中的微粒和颗粒物,提高空气质量;将其应用于水处理领域,可以高效地去除水中的微生物、颗粒物和有机物质,提高水质;将其应用于生物医药领域,可以用于医用口罩、手术衣等制品,起到抗菌、防护等作用。
超疏水及双侧亲水静电纺丝纳米纤维复合膜的制备方法
超疏水及双侧亲水静电纺丝纳米纤维复合膜的制备方法超疏水及双侧亲水静电纺丝纳米纤维复合膜的制备方法1. 引言超疏水及双侧亲水静电纺丝纳米纤维复合膜是一种在材料领域备受关注的新型材料。
它具有超疏水表面,即使在极其潮湿的环境中也能实现液体的自洁和自排特性。
与此该复合膜的双侧亲水性使其在吸附液体、分离杂质等方面具有广泛的应用潜力。
本文将从制备方法、性能表征、应用前景等多个角度来探讨超疏水及双侧亲水静电纺丝纳米纤维复合膜。
2. 制备方法2.1 静电纺丝法静电纺丝法是制备静电纺丝纳米纤维的常用方法。
主要通过将高分子溶液置于高压中,利用静电作用使纳米纤维喷丝形成。
在制备超疏水及双侧亲水纳米纤维复合膜中,我们可以通过调整溶液的成分和浓度来控制纳米纤维的直径、密度和形貌。
在静电纺丝过程中,加入适当的复合材料可以赋予纳米纤维复合膜超疏水性和双侧亲水性。
2.2 表面改性技术为了增强纳米纤维复合膜的超疏水性和双侧亲水性,可以采用表面改性技术。
一种常见的方法是利用化学改性剂对纳米纤维复合膜进行表面处理,如在表面引入含氟基团,形成疏水表面。
另外,还可以通过物理处理方法,如等离子体处理、溅射法等,提高复合膜的亲水性。
3. 性能表征3.1 超疏水性能超疏水性能一般通过接触角来表征。
接触角越大,表明材料的超疏水性能越好。
在评估纳米纤维复合膜的超疏水性能时,可通过测量液滴在表面的接触角来进行定量分析。
3.2 双侧亲水性双侧亲水性主要通过液体渗透测试来评估。
可以将液体分别施加在纳米纤维复合膜的正反面,观察其与材料的接触状态。
如果液体能够均匀渗透,说明复合膜具有双侧亲水性。
4. 应用前景超疏水及双侧亲水静电纺丝纳米纤维复合膜具有广泛的应用潜力。
在自洁材料领域,它可以应用于建筑物表面、玻璃窗、车身等,实现液体的自洁和自排。
在油水分离领域,该复合膜可用于处理含油废水,有效分离出清澈水质和油类物质。
该复合膜还可以应用于过滤、吸附、催化和生物医学等领域。
静电纺丝制备纳米纤维的研究与应用
静电纺丝制备纳米纤维的研究与应用一、前言静电纺丝是一种通过电场作用力在液体表面制备纳米纤维的方法,其具有直接、简单、低成本、高效等优点。
静电纺丝法制备的纳米纤维不仅在医学、生物学、材料学、环境科学等领域具有潜在应用前景,而且对纳米材料的制备和应用具有重要的意义。
本文将从静电纺丝的基本原理、工艺条件、纤维形貌以及其应用领域等方面进行探讨。
二、静电纺丝的基本原理静电纺丝法的基本原理是利用电场作用将高分子液体以均匀的方式吸附在锥形棒或者圆柱体表面。
然后,通过控制高分子液体流速和电场强度,使得液体在锥形棒或者圆柱体表面逐渐形成液滴,并且在阳极下方的收集器上进行电沉积,最终形成纳米纤维的过程。
电场的作用力使得液体表面形成一个膜,并在电荷分布的作用下产生静电势,从而使高分子液体成为由荷电粒子构成的稳定流体。
三、静电纺丝的工艺条件静电纺丝法的成纤参数受多种因素的影响,包括高分子液体的性质、电场参数、纺丝距离、气流速度等等。
下面将逐一进行说明:(一)高分子液体的性质静电纺丝的高分子液体通常是聚合物、淀粉、天然纤维素、蛋白质、DNA等。
高分子液体的浓度和黏度是影响成纤质量和形貌的重要因素。
通常来说,高浓度的高分子液体可以提供更高的纤维强度和更小的纤维直径。
而高黏度的高分子液体可以提供更好的流控性和更光滑的纤维表面。
(二)电场参数电场参数包括电压、电场距离和电场形状。
电压为重要的工艺参数,通常调节电压可变容易地控制成纤直径。
而电场距离则对成纤丝数量和直径的分布有影响。
最后,学术圈建议圆锥体电极通常比平台电极更适用于成纤,因为其较小的成纤距和更强的电场。
(三)纺丝距离纺丝距离是指悬架在电极上液滴顶部与收集电极之间的距离。
它是影响成纤直径和分布的重要因素。
通常来说,越短的纺丝距离可以提供更小的成纤直径,同时更大的纤维密度。
四、静电纺丝的纤维形貌静电纺丝的纤维形貌与工艺条件、高分子液体性质、收集电极形式等有关。
常见的纤维形态有孔状、大分子状、漏斗状、直线状、非直线状等。
静电纺丝技术制备纳米纤维材料的研究
静电纺丝技术制备纳米纤维材料的研究一、前言近年来,静电纺丝技术广泛应用于纳米纤维材料的制备中。
通过该技术,可以制备出具有高比表面积、高孔隙率、高通透性等多种优异性能的纳米纤维材料,在能源、环境、医疗等领域得到了广泛的应用。
二、静电纺丝技术的原理静电纺丝技术是一种通过高电场将聚合物溶液或熔体喷射成纳米级纤维的技术。
其主要原理是:将高压电源接在喷液口附近,形成强电场,使聚合物溶液或熔体加速运动,并在射流过程中产生链段拉伸、分子排列等现象,最终形成纳米级纤维。
三、静电纺丝技术的优点静电纺丝技术具有以下几个优点:1. 制备成本低。
静电纺丝技术所需的设备简单,生产成本较低。
2. 制备的纳米纤维材料性能优异。
制备出的纳米纤维材料具有高比表面积、高孔隙率、高通透性等优异性能,适用于能源、环境、医疗等领域。
3. 制备精度高。
静电纺丝技术可以制备出直径从几十纳米到几百纳米的纳米纤维。
4. 生产效率高。
静电纺丝技术可以实现连续生产,生产效率较高。
四、静电纺丝技术在纳米纤维材料制备中的应用静电纺丝技术可以制备出各种形状、尺寸、结构的纳米纤维材料,目前已经在以下领域得到了广泛的应用。
1. 软件复合材料领域。
静电纺丝技术制备的纳米纤维材料可以用于增强软件复合材料的力学性能和导热性能。
2. 组织工程领域。
静电纺丝技术制备的纳米纤维材料可以作为组织工程载体,用于修复和再生组织。
3. 能源领域。
静电纺丝技术制备的纳米纤维材料可以用于太阳能电池、锂离子电池等能源领域。
4. 过滤材料领域。
静电纺丝技术制备的纳米纤维材料可以用于空气过滤、水处理等领域。
五、未来发展方向随着对纳米纤维材料需求的不断增加,静电纺丝技术在纳米纤维材料制备中的应用将不断扩大。
未来,静电纺丝技术还有很大的发展空间,可以通过改进材料的制备工艺和结构,提高纳米纤维材料的性能,扩大其应用领域。
六、结论静电纺丝技术是一种简单、高效的纳米纤维材料制备技术。
随着对纳米材料需求的不断增加,它在能源、环境、医疗等领域的应用将会越来越广泛。
静电纺丝制备纳米纤维结构及其应用
静电纺丝制备纳米纤维结构及其应用纳米材料是一种新兴的材料,具有独特的物理、化学和生物学性质,此类性质通常源于材料的纳米级尺寸。
由于材料的尺寸和形状对其性质有很大的影响,因此研究如何控制纳米材料的尺寸和形状成为了纳米材料制备的一个重要问题。
其中静电纺丝是一种制备纳米级纤维的有效方法,已经在纳米科技领域得到了广泛应用。
1.静电纺丝原理静电纺丝是一种制备纤维的方法,利用高电场强度使聚合物溶液产生电荷分离,从而形成纳米级纤维。
静电纺丝的原理是应用高电压使聚合物液体形成尖端,并通过空气流动拉伸成纤维,最终以干燥、交联或硬化等方式制备出单一纤维或纤维网络。
2.静电纺丝制备纳米纤维结构静电纺丝是一种快速、简单的方法,可以制备具有纳米级的纤维。
在静电纺丝制备过程中,重要的参数包括聚合物类型和浓度、电荷分离和流速控制等。
2.1.聚合物类型和浓度静电纺丝制备中,聚合物的类型和浓度对制备纤维的形状和大小具有重要影响。
聚合物浓度越高,纤维的直径越大,同时也会更难形成单纤维。
另一方面,聚合物类型也会影响纤维的形态,例如聚酰胺制备的纤维较细,聚甲基丙烯酸甲酯制备的纤维较粗。
2.2.电荷分离静电纺丝制备中,电荷分离对纤维直径有显著的影响。
以聚乙烯醇为例,当导入电压为3至5 kV时可以得到直径约为200 nm的纤维,而导入电压为14 kV时可以得到直径约为70 nm的纤维。
2.3.流速控制在静电纺丝的制备过程中,聚合物的流速也会影响纤维的形态。
低速流使得纤维的形状向球形倾斜,而高流速可能会导致纤维断裂或不规则形状。
因此,流速的控制是非常重要的。
3.静电纺丝纳米纤维结构的应用利用静电纺丝制备的纳米纤维,具有广泛的应用前景,包括生物医学、环保、能源等领域。
以下列举了几个具有代表性的应用案例。
3.1.生物医学静电纺丝制备的纳米纤维能够被用来制备复杂的医学补品,如人工血管和心脏瓣膜等等。
利用静电纺丝制备的纳米纤维具有类似生物组织的微观结构和功能,因此被广泛运用于生物医学领域。
静电纺丝法制备功能性超疏水材料
静电纺丝法制备功能性超疏水材料摘要:超疏水材料是一种具有极高水接触角和极低水润湿系数的材料,在自清洁、防水防尘、生物医学等领域具有广泛的应用前景。
静电纺丝法作为一种常见的制备纳米纤维的方法,可用于制备具有优异性能的功能性超疏水材料。
本文主要介绍了静电纺丝法制备功能性超疏水材料的过程、表征及其性质,并与传统纺丝法进行了比较和讨论。
关键词:静电纺丝法、超疏水材料、纺丝法、表征分析。
超疏水材料是一种具有极高水接触角和极低水润湿系数的材料,即水滴在材料表面呈球形,不润湿材料表面,从而具有自清洁、防水防尘等特性。
超疏水材料在生物医学领域也有广泛的应用,如细胞移植、药物传递等。
静电纺丝法是一种制备纳米纤维的方法,其基本原理是在高压电场作用下,聚合物溶液或熔体克服表面张力形成纤维。
静电纺丝法的具体实现过程包括溶液制备、电场设置、纺丝液的喷射和固化等步骤。
采用静电纺丝法制备超疏水材料,需要选择合适的聚合物作为原料,如聚四氟乙烯(PTFE)、聚酰亚胺(PI)等。
然后,将这些聚合物溶解在适当的溶剂中,形成纺丝液。
接下来,将纺丝液放入高压电场中,在电场力作用下,纺丝液克服表面张力形成纤维。
通过热处理或化学处理使纤维固化,并形成超疏水表面。
通过扫描电子显微镜(SEM)对制备出的超疏水材料进行形貌观察,可以发现其纤维直径在纳米级别,且表面光滑。
通过测量水接触角和滚动角,可以进一步确定材料的超疏水性能。
与传统纺丝法相比,静电纺丝法具有更多的优点。
静电纺丝法可以更好地控制纤维的直径和形状,从而更好地满足特定应用的需求。
静电纺丝法可以更好地实现在纤维表面引入特殊功能基团,从而制备出具有更多功能性的超疏水材料。
静电纺丝法的生产效率更高,更适于大规模生产。
本文介绍了静电纺丝法制备功能性超疏水材料的过程、表征及其性质。
通过静电纺丝法成功制备出了具有优异性能的超疏水材料,其纤维直径在纳米级别,表面光滑。
这些材料还具有高透光性、高耐腐蚀性等特点。
静电纺丝法制备纳米纤维的研究
静电纺丝法制备纳米纤维的研究一、引言纳米材料的制备和研究已成为材料科学领域的热点之一。
纳米纤维作为一种具有极细直径和高比表面积的纳米材料,在生物医学、材料科学、环境保护等领域有着广泛的应用前景。
而静电纺丝法作为一种简单易操作、优越的纳米纤维制备技术,近年来在纳米纤维制备领域受到越来越多的关注。
二、静电纺丝法的原理与基本过程静电纺丝法是一种利用静电作用将聚合物液体纺出成纳米级的纤维的过程。
其基本原理是利用电场将聚合物液体与导电液体之间的表面张力降至足够小的极限,从而使液体成为类似于电极反应的液态电荷状态,最终通过空气的干燥使其形成纤维。
静电纺丝法的最基本过程包括:聚合物液体的输送、聚合物液体与导电液体之间的电场形成、纳米材料的形成。
三、静电纺丝法制备纳米纤维的优点静电纺丝法制备纳米纤维具有以下优点:1. 纳米纤维的制备过程简单易操作。
2. 纳米纤维的尺寸可调,可以精确控制。
3. 纳米纤维的成本低廉。
4. 纳米纤维的制备效率高。
5. 纳米纤维的应用范围广泛。
四、静电纺丝法制备纳米纤维的参数及其对纳米纤维的影响静电纺丝法的参数对纳米纤维的形成和性质有着重要的影响,主要包括:1. 聚合物液体的浓度,聚合物液体浓度增加,纤维直径减小。
2. 电压,电压增加,纤维直径减小。
3. 电极之间的距离,电极之间的距离增加,纤维直径增大。
4. 收集器与电极的距离,距离增大,纤维直径减小。
5. 环境湿度,湿度增加,纤维直径减小。
五、静电纺丝法制备纳米纤维在材料领域的应用静电纺丝法制备的纳米纤维,在材料领域有广泛的应用,主要包括:1. 医用纳米纤维:用于制备医用敷料、人工皮肤等。
2. 环保材料:用于制备空气和水净化材料。
3. 能源材料:用于制造太阳能污染物的防护材料,生物燃料电池等。
4. 其他领域:用于制备过滤器、电磁屏蔽涂层、传感器等。
六、结论静电纺丝法是制备纳米纤维的一种重要方法,其制备过程简单、成本低廉、效率高、应用范围广泛。
超疏水静电纺丝纳米纤维
超疏水静电纺丝纳米纤维摘要:这篇文章介绍了最先进的静电纺丝纳米纤维的科技发展,以及它在自清洁簿膜、智能响应材料和其他相关领域的应用。
超疏水自清洁,也成为“荷叶效应”,就是利用表面化学结构和拓扑学的正确结合,在表面形成了一个非常大的接触角并且通过重力使水带着表面上的污垢、颗粒以及其他污染物离开表面。
本文简单介绍了超疏水自清洁的理论和静电纺丝过程中的基本原则,为了生成超疏水自清洁表面还讨论了静电纺丝过程的各种参数,这些参数可以有效的控制疏水实体的多渗透性结构的粗糙度,静电纺丝在纳米尺寸上的主要原则以及在通过静电纺丝合成一维材料时存在的困难也被完全的隐藏。
另外,本文还比较了不同的静电纺丝纳米纤维的超疏水性能以及它们的科技应用。
关键字:超疏水静电纺丝纳米纤维性能应用展望Superhydrophobic electrospun nanofibers Abstract: This review describes state-of-the-art scientific and technological developments of electrospun nanofibers and their use in self-cleaning membranes, responsive smart materials, and other related applications. Superhydrophobic self-cleaning, also called the lotus effect, utilizes the right combinations of surface chemistry and topology to form a very high contact angle on a surface and drive water droplets away from it, carrying with them dirt, particles, and other contaminants by way of gravity. A brief introduction to the theory of superhydrophobic self-cleaning and the basic principles of the electrospinning process is presented. Also discussed is electrospinning for the purpose of creating superhydrophobic self-cleaning surfaces under a wide variety of parameters that allow effective control of roughness of the porous structure with hydrophobic entities. The main principle of electrospinning at the nanoscale and existing difficulties in synthesis of one-dimensional materials by electrospinning are also covered thoroughly. The results of different electrospun nanofibers are compared to each other in terms of their superhydrophobic properties and their scientific and technological applications.Key words: superhydrophobic; electrospinning; nanofibers; properties; applications; outlook第1章概述1.1 超疏水的简介1.1.1 超疏水的背景最近,超疏水表面因其无粘着力和不润湿的特性而受到了很大的关注,它适用于多功能材料各种各样的应用,例如,自清洁、防腐蚀、防冻、低的流体动力学摩擦和用于纳米材料直接自组装的模板等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超疏水静电纺丝纳米纤维
摘要:这篇文章介绍了最先进的静电纺丝纳米纤维的科技发展,以及它在自清洁簿膜、智能响应材料和其他相关领域的应用。
超疏水自清洁,也成为“荷叶效应”,就是利用表面化学结构和拓扑学的正确结合,在表面形成了一个非常大的接触角并且通过重力使水带着表面上的污垢、颗粒以及其他污染物离开表面。
本文简单介绍了超疏水自清洁的理论和静电纺丝过程中的基本原则,为了生成超疏水自清洁表面还讨论了静电纺丝过程的各种参数,这些参数可以有效的控制疏水实体的多渗透性结构的粗糙度,静电纺丝在纳米尺寸上的主要原则以及在通过静电纺丝合成一维材料时存在的困难也被完全的隐藏。
另外,本文还比较了不同的静电纺丝纳米纤维的超疏水性能以及它们的科技应用。
关键字:超疏水静电纺丝纳米纤维性能应用展望
Superhydrophobic electrospun nanofibers Abstract: This review describes state-of-the-art scientific and technological developments of electrospun nanofibers and their use in self-cleaning membranes, responsive smart materials, and other related applications. Superhydrophobic self-cleaning, also called the lotus effect, utilizes the right combinations of surface chemistry and topology to form a very high contact angle on a surface and drive water droplets away from it, carrying with them dirt, particles, and other contaminants by way of gravity. A brief introduction to the theory of superhydrophobic self-cleaning and the basic principles of the electrospinning process is presented. Also discussed is electrospinning for the purpose of creating superhydrophobic self-cleaning surfaces under a wide variety of parameters that allow effective control of roughness of the porous structure with hydrophobic entities. The main principle of electrospinning at the nanoscale and existing difficulties in synthesis of one-dimensional materials by electrospinning are also covered thoroughly. The results of different electrospun nanofibers are compared to each other in terms of their superhydrophobic properties and their scientific and technological applications.
Key words: superhydrophobic; electrospinning; nanofibers; properties; applications; outlook
第1章概述
1.1 超疏水的简介
1.1.1 超疏水的背景
最近,超疏水表面因其无粘着力和不润湿的特性而受到了很大的关注,它适用于多功能材料各种各样的应用,例如,自清洁、防腐蚀、防冻、低的流体动力学摩擦和用于纳米材料直接自组装的模板等。
另外,它还可以用于微电子机械系统、纳米电子机械系统、微流体和纳米流体材料以及装置等。
超疏水表面展现了非常大的接触角(>150°),以及在进退接触角之间低的接触角滞后现象,这种滞后典型的都小于5°,这种现象显示了其自身的本质[1]。
例如,昆虫的翅膀都是超疏水的,这是由于他们的表面化学结构引起的,因此,水滴一滴在翅膀上就会马上从其表面滚下来。
荷叶是另一个超疏水表面的例子,当雨水滴在荷叶上时,雨水会以一个很小的倾斜角迅速的从叶子上滚落,并且在这个过程中带走叶子上的污垢和寄生虫。
由此,超疏水自清洁也称为“荷叶效应”,它是利用表面化学结构和其粗糙度的有效结合来排斥水滴,并在表面形成一个大的接触角使水滴迅速离开表面,在这个过程中,水滴会带走表面上的所有东西[2],达到自清洁的效果,由于其较大的接触角以及污水与表面有限的接触面积,超疏水表面不仅具有自清洁性能,它同时还具有抗应变性能。
在1998年,Neinhaus and Barthlott[2]第一次发现了超疏水性能并把它作为“荷叶效应”注册了专利,这种“荷叶效应”原理鼓舞了世界各地的研究者们来制造这种具有超疏水特性的材料。
总结科学家们的研究,可以通过两种方式来合成超疏水表面:一种是制造粗糙的表面;另一种是通过添加低表面能的材料修饰现有表面,包括氟处理或者添加硅化物[3]。
在荷叶上进行的研究显示了具有大的水接触角和低的倾斜角的超疏水表面需要微米和纳米结构的支持,并且这些结构的排列方式会影响水滴离开表面的路径。
生产具有超疏水特性的表面有很多方法,例如,模板合成法、控制结晶化、层层沉积法、相分离法、溶胶-凝胶法以及静电纺丝等[2]。
近年来,由于小的纤维直径有利于超疏水特性,静电纺丝技术已经被广泛用来生产超疏水静电纺丝纤维,它具有独特的表面粗糙度和纹理。
通过添加一些纳米材料来后处理静电纺丝纤维,可以有助于进一步增加表面粗糙度,进而提高其超疏水性能。
用来制造这。