山东大学数院常微分方程02年真题

合集下载

常微分方程计算题及答案

常微分方程计算题及答案

计 算 题(每题10分)1、求解微分方程2'22x y xy xe -+=。

2、试用逐次逼近法求方程2y x dxdy+=通过点(0,0)的第三次近似解. 3、求解方程'2x y y y e -''+-=的通解4、求方程组dx dt ydydtx y ==+⎧⎨⎪⎩⎪2的通解5、求解微分方程'24y xy x +=6、试用逐次逼近法求方程2y x dxdy-=通过点(1,0)的第二次近似解。

7、求解方程''+-=-y y y e x '22的通解8、求方程组dxdt x ydydtx y =+=+⎧⎨⎪⎩⎪234的通解9、求解微分方程xy y x '-2=24 10、试用逐次逼近法求方程2y x dxdy-=通过(0,0)的第三次近似解. 11、求解方程''+-=-y y y e x '24的通解12、求方程组dxdtx y dydtx y =+=+⎧⎨⎪⎩⎪2332的通解13、求解微分方程x y y e x (')-=14、试用逐次逼近法求方程22x y dxdy+=通过点(0,0)的第三次逼近解. 15、求解方程''+-=--y y y e x '22的通解16、求解方程x e y y y -=-+''32 的通解17、求方程组⎪⎩⎪⎨⎧-+=-+=yx dt dydtdx x y dt dy dt dx243452的通解 18、解微分方程22(1)(1)0x y dx y x dy -+-= 19、试用逐次逼近法求方程2dyx y dx=-满足初始条件(0)0y =的近似解:0123(),(),(),()x x x x ϕϕϕϕ.20、利用逐次逼近法,求方程22dyy x dx=-适合初值条件(0)1y =的近似解:012(),(),()x x x ϕϕϕ。

山东大学高等数学上试题及答案

山东大学高等数学上试题及答案

山东大学(南新区、软件学院)2009~2010年度第一学期高等数学(本科) 课程试卷一、填空题(每小题4分,共20分)二、选择题(每小题4分,共20分)2018sin cos (1)lim_____.3ln(1)x x x x x →+=+sin 1(2)e sin ,'______x y y x=⋅=设则2120e e sin (3)lim[]_____.||e 1x xx xk xk x →+-=+设存在,则常数22()22(4)()()3()d 2,()_____.()e e ln 2009d 1,_____.d f y y f x f x x f x x f x y y x x f yf x=--==='≠=⎰设是连续函数,且满足则(5)设函数由方程确定,其中具有二阶导数,且则(6)(,)()tan (A)0(B)1(C)2(D)3xy xππ-=在内函数的可去间断点的个数为2(7)ln(1)()(A)(1)(B)(1,0)(C)(0,1)(D)(1,)y x =+-∞--+∞函数单调增加且其图形为凹的区间是,00000000000000000000000(8)(,)(,),'(,)()(2,)(,)(,)(,)(A)lim(B)lim(,)(,)(,)(,)(C)lim(D)limx x x x x x z f x y x y x y f x y f x x y f x y f x y f x x y xxf x x y y f x y f x y f x y x x x ∆→∆→∆→→==-∆---∆∆∆+∆+∆--∆-设函数在点处存在对的偏导数,则sin 2(9)(0,1)()cos (A)210(B)210(C)210(D)220ttx ty ty x y x y x y x ⎧=⎪⎨=⎪⎩+-=--=++=+-=e 曲线在点处的法线方程为e三、计算、证明题(每小题10分,共60分)1(10)ln(1)()(A)0(B)1(C)2(D)3x y x =++曲线e 渐近线的条数为120...(11)lim(),.x x nx x x n n→+++e e e 求极限其中是给定的正整数32ln(1)0arcsin ()60e 1sin 4()00().ax ax x x x f x x x ax x x x a f x x a x f x ⎧⎪+<⎪-⎪⎪==⎨⎪+--⎪>⎪⎪⎩==,(12)设函数,,问为何值时,在连续;为何值时,是的可去间断点?333(0).z axy x y a =-->(13)求函数的极值[]32261871,4y x x x =---(14)求函数在上的最大值和最小值.12121221()(0,)()1'(1)4,0,0()()().()(0,)'().f x f x x f x x f x x x f x x f x f x f x +∞==>>=++∞(15)设在上有定义,在处可导且若对所有的有试证:在上可导,并求[]22(16),().(),()()0.(),,() 2.y x Bx C x x a x b a b f x a b f a f b y f x y x Bx C a b a b f ξξ=-++==<====-++''=-设抛物线与轴有两个交点又在上有二阶导数,且若曲线与在()内有一个交点,求证:在()内存在一点,使答案(请各位老师在阅卷前先演算一遍,发现错误及时反馈。

山东大学数学分析考研真题2000-2019

山东大学数学分析考研真题2000-2019

2001年山东大学数学分析真题一、填空题1.220cos 21lim sin x x x x→-=+______。

2.2!lim n n n n n→-∞=______。

3.设u =xln (xy ),则22u x∂=∂______。

4.积分220x x =⎰______。

5.交换积分次序2120d (,)d x x x f x y y -=⎰⎰______。

6.积分(3,4)(0,1)d d x x y y -+=⎰______。

7.幂级数1(1)n n n n x ∞=+∑的和函数为______。

8.设f (x )=arctanx ,则f (2n +1)(0)______。

二、1.叙述函数f (x )在[a ,b] 上一致连续和不一致连续的ε-δ型语言。

2.计算定积分20d x e x +∞-⎰。

3.叙述并证明连续函数的中间值定理。

三、本题任选两题1.设f (x ,y )处处具有连续的一阶偏导数,且f (1,0)=f (-1,0),试证在单位圆上存在两点(x 1,y 1)和(x 2,y 2),满足下列两式:x i f y ′(x i ,y i )-y i f x ′(x i ,y i )=0,i =1,22.设f (x )在[0,+∞] 上连续且f ≥0,如果f (x )f (y )f (z )≤x 2yf (z )+y 2zf (x )+z 2xf (y ) 求证:520()d 2a f x x a ≤⎰3.设f (x )在(0,+∞)上连续可微,且()lim 0x f x x →+∞= 求证:存在序列{x n }使得x n →+∞且f′(x n )→0。

2005年山东大学数学分析真题10.f (x )对一切b 在[0,b]上可积,且lim ()2x f x →+∞=证明 00lim ()d 2t tx t t e f x x -→=⎰11.证明:2101d 16x x x π=-⎰2015年山东大学数学分析真题2016年山东大学数学分析真题2017年山东大学数学分析真题2018年山东大学数学分析真题2019年山东大学数学分析真题。

(完整版)常微分方程期末考试试卷

(完整版)常微分方程期末考试试卷

常微分方程期末考试试卷学院 ______ 班级 _______ 学号 _______ 姓名 _______ 成绩 _______一. 填空题 (30分)1.)()(x Q y x P dxdy+= 称为一阶线性方程,它有积分因子 ⎰-dx x P e )( ,其通解为 _________ 。

2.函数),(y x f 称为在矩形域R 上关于y 满足利普希兹条件,如果_______ 。

3. 若)(x ϕ为毕卡逼近序列{})(x n ϕ的极限,则有)()(x x n ϕϕ-≤ ______ 。

4.方程22y x dxdy+=定义在矩形域22,22:≤≤-≤≤-y x R 上,则经过点(0,0)的解的存在区间是 _______ 。

5.函数组t t t e e e 2,,-的伏朗斯基行列式为 _______ 。

6.若),,2,1)((n i t x i =为齐线性方程的一个基本解组,)(t x -为非齐线性方 程的一个特解,则非齐线性方程的所有解可表为 ________ 。

7.若)(t Φ是x t A x )('=的基解矩阵,则向量函数)(t ϕ= _______是)()('t f x t A x +=的满足初始条件0)(0=t ϕ的解;向量函数)(t ϕ= _____是)()('t f x t A x +=的满足初始条件ηϕ=)(0t 的解。

8.若矩阵A 具有n 个线性无关的特征向量n v v v ,,,21 ,它们对应的特征值分别为n λλλ ,,21,那么矩阵)(t Φ= ______ 是常系数线性方程组Ax x ='的一个基解矩阵。

9.满足 _______ 的点),(**y x ,称为驻定方程组。

二. 计算题 (60分)10.求方程0)1(24322=-+dy y x dx y x 的通解。

11.求方程0=-+x e dxdydx dy的通解。

12.求初值问题⎪⎩⎪⎨⎧=--=0)1(22y y x dx dy1,11:≤≤+y x R 的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计。

常微分方程试题及答案

常微分方程试题及答案

常微分方程试题及答案(共4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--常微分方程模拟试题一、填空题(每小题3分,本题共15分)1.一阶微分方程的通解的图像是 2 维空间上的一族曲线.2.二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是.3.方程02=+'-''y y y 的基本解组是 .4.一个不可延展解的存在在区间一定是 区间.5.方程21d d y xy -=的常数解是 . 二、单项选择题(每小题3分,本题共15分)6.方程y x xy +=-31d d 满足初值问题解存在且唯一定理条件的区域是( ). (A )上半平面 (B )xoy 平面 (C )下半平面 (D )除y 轴外的全平面7. 方程1d d +=y xy ( )奇解. (A )有一个 (B )有两个 (C )无 (D )有无数个8.)(y f 连续可微是保证方程)(d d y f xy =解存在且唯一的( )条件. (A )必要 (B )充分 (C )充分必要 (D )必要非充分9.二阶线性非齐次微分方程的所有解( ).(A )构成一个2维线性空间 (B )构成一个3维线性空间(C )不能构成一个线性空间 (D )构成一个无限维线性空间10.方程323d d y xy =过点(0, 0)有( B ). (A) 无数个解 (B) 只有一个解 (C) 只有两个解 (D) 只有三个解三、计算题(每小题6分,本题共30分)求下列方程的通解或通积分: 11. y y xy ln d d = 12. xy x y x y +-=2)(1d d 13. 5d d xy y xy += 14.0)d (d 222=-+y y x x xy15.3)(2y y x y '+'=四、计算题(每小题10分,本题共20分)16.求方程255x y y -='-''的通解.17.求下列方程组的通解.⎪⎪⎩⎪⎪⎨⎧-=+=x ty t y t x d d sin 1d d 五、证明题(每小题10分,本题共20分)18.设)(x f 在),0[∞+上连续,且0)(lim =+∞→x f x ,求证:方程 )(d d x f y xy =+ 的一切解)(x y ,均有0)(lim =+∞→x y x . 19.在方程0)()(=+'+''y x q y x p y 中,)(),(x q x p 在),(∞+-∞上连续,求证:若)(x p 恒不为零,则该方程的任一基本解组的朗斯基行列式)(x W 是),(∞+-∞上的严格单调函数.常微分方程模拟试题参考答案一、填空题(每小题3分,本题共15分)1.2 2.线性无关(或:它们的朗斯基行列式不等于零)3.x x x e ,e 4.开 5.1±=y二、单项选择题(每小题3分,本题共15分)6.D 7.C 8.B 9.C 10.A三、计算题(每小题6分,本题共30分)11.解: 1y =为常数解 (1分)当0≠y ,1≠y 时,分离变量取不定积分,得 C x yy y +=⎰⎰d ln d (3分) 通积分为x C y e ln = (6分)注:1y =包含在常数解中,当0c =时就是常数解,因此常数解可以不专门列出。

[考研类试卷]考研数学二(常微分方程)历年真题试卷汇编4.doc

[考研类试卷]考研数学二(常微分方程)历年真题试卷汇编4.doc

[考研类试卷]考研数学二(常微分方程)历年真题试卷汇编4.doc[考研类试卷]考研数学二(常微分方程)历年真题试卷汇编4一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1 (02年)设y=y(x)是二阶常系数微分方程y"+py'+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时.函数的极限.(A)不存在(B)等于1(C)等于2(D)等于32 (03年)已知是微分方程的表达式为3 (04年)微分方程y"+y=x2+1+sinx的特解形式可设为(A)y*=ax2+bx+c+x(Asinx+Bcosx).(B)y*=x(ax2+bx+c+Asinx+Bcosx).(C)y*=(ax2+bx+c+Asinx.(D)y*=ax2+bx+c+Acosx.4 (06年)函数y=C1e x+C2e-2x+xe x满足的一个微分方程是(A)y"一y’一2y=3xe x.(B)y"-y’一2y=3e x.(C)y”+y’一2y=3xe x.(D)y"+y'-2y=3e x.5 (08年)在下列微分方程中,以y=C1e x+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是(A)y"'+y"-4y’-4y=0.(B)y"'+y"+4y’+4y=0.(C)y"'一y”一4y’+4y=0.(D)y"'-y"+4y’一4y=0.6 (10年)设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则7 (11年)微分方程y"一λ2y=eλx+e-λx(λ>0)的特解形式为(A)a(eλx+e-λx).(B)ax(eλx+e-λx).(C)x(aeλx+be-λx).(D)x2(aeλx+be-λx).8 (17年)微分方程y”一4y’+8y=r2x(1+cos2x)的特解可设为y’=(A)Ae2x+e2x(Bcos2x+Csin2x).(B)Axe2x+e2x(Bcos2x+Csin2x).(C)Ae2x+xe2x(Bcos2x+Csin2x).(D)Axe2x+xe2x(Bcos2x+Csin2x).二、填空题9 (04年)微分方程(y+x3)dx一2xdy=0满足y|x=1=的特解为_______.10 (05年)微分方程xy’+2y=3xlnx满足y(1)=的解为______.11 (06年)微分方程的通解是_______.12 (07年)二阶常系数非齐次线性微分方程y"一4y’+3y=2e2x 的通解为y=________.13 (08年)微分方程(y+x2e-x)dx—xdy=0的通解是y=______.14 (10年)3阶常系数线性齐次微分方程y"'一2y"+y’一2y=0的通解为y=_______.15 (11年)微分方程y’+y=e-x cosx满足条件y(0)=0的解为y=________.16 (12年)微分方程ydx+(x一3y2)dy=0满足条件y|x=1=1的解为y=______.17 (13年)已知y1=e3x一xe3x,y2=e x一xe2x,y3=一xe2x 是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y|x=0=0,y'|x=0=1的解为y=______.18 (15年)设函数y=y(x)是微分方程y"+y'-2y=0的解,且在x=0处y(x)取得极值3,则y(x)=______.19 (16年)以y=x2一e x和y=x2为特解的一阶非齐次线性微分方程为__________.三、解答题解答应写出文字说明、证明过程或演算步骤。

常微分方程期末考试练习题及答案

常微分方程期末考试练习题及答案

一,常微分方程的基本概念常微分方程:含一个自变量x,未知数y及若干阶导数的方程式。

一般形式为:F(x,y,y,.....y(n))=0 (n≠0).1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。

如:f(x)(3)+3f(x)+x=f(x)为3阶方程。

2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。

3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。

如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。

4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。

5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。

(方程线性与否与自变量无关)。

如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。

注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。

余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。

另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。

b.教材28页第八题不妨做做。

二.可分离变量的方程A.变量分离方程1.定义:形如dxdy=f (x)φ(y)的方程,称为分离变量方程。

这里f (x ),φ(x )分别是x ,y 的连续函数。

2.解法:分离变量法⎰⎰+=c dx x f y dy)()(ϕ. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。

需视情况补上φ(y )=0的特解。

(有时候特解也可以和通解统一于一式中)b.不需考虑因自变量引起的分母为零的情况。

例1.0)4(2=-+dy x x ydx解:由题意分离变量得:042=+-ydy x dx即:0)141(41=+--ydydx x x 积分之,得:c y x x =+--ln )ln 4(ln 41故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。

《常微分方程》练习题库参考答案

《常微分方程》练习题库参考答案

《常微分⽅程》练习题库参考答案江苏师范⼤学数学教育专业《常微分⽅程》练习测试题库参考答案⼀、判断说明题1、在线性齐次⽅程通解公式中C 是任意常数⽽在常数变易法中C (x )是x 的可微函数。

将任意常数C 变成可微函数C (x ),期望它解决线性⾮齐次⽅程求解问题,这⼀⽅法成功了,称为常数变易法。

2、因p(x)连续,y(x)= y 0exp(-dx xx p(x))在p(x)连续的区间有意义,⽽exp(-dx xx p(x))>0。

如果y 0=0,推出y(x)=0,如果y(x)≠0,故零解y(x)=0唯⼀。

3、(1)它是常微分⽅程,因为含有未知函数的导数,f,g 为已知函数,y 为⼀元函数,所建⽴的等式是已知关系式。

(2)它是常微分⽅程,理由同上。

(3)它不是常微分⽅程,因y 是未知函数,y(y(y(x)))也是未知的,所建⽴的等式不是已知关系式。

4、微分⽅程求解时,都与⼀定的积分运算相联系。

因此,把求解⼀个微分⽅程的过程称为⼀个微分⽅程。

微分⽅程的解⼜称为(⼀个)积分。

5、把微分⽅程的通解⽤初等函数或通过它们的积分来表达的⽅法。

注意如果通解能归结为初等函数的积分表达,但这个积分如果不能⽤初等函数表⽰出来,我们也认为求解了这个微分⽅程,因为这个式⼦⾥没有未知函数的导数或微分。

6、 y `=f(x,y)主要特征是f(x,y)能分解为两个因式的乘积,其中⼀个因式仅含有x,另⼀因式仅含y ,⽽⽅程p(x,y)dx+q(x,y)dy=0是可分离变量⽅程的主要特征,就像f(x,y)⼀样,p,q 分别都能分解成两个因式和乘积。

7、⼆元函数f(x,y)满⾜f(rx,ry)=r mf(x,y),r.>0,则称f(x,y)为m 次齐次函数。

m=0则称它为0次齐次函数。

8、如果f(x,y)是0次齐次函数,则y `=f(x,y)称为齐次⽅程。

如果p(x,y)和q(x,y)同为m 次齐次函数,则pdx+qdy=0为齐次⽅程。

考研数学二(常微分方程)历年真题试卷汇编2(题后含答案及解析)

考研数学二(常微分方程)历年真题试卷汇编2(题后含答案及解析)

考研数学二(常微分方程)历年真题试卷汇编2(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(2004年)微分方程y〞+y=χ2+1+sinχ的特解形式可设为【】A.y*=aχ2+bχ+c+χ(Asinχ+Bcosχ).B.y*=χ(aχ2+bχ+c+Asinχ+Bcosχ).C.y*=aχ2+bχ+c+Asinχ.D.y*=aχ2+bχ+c+Acosχ.正确答案:A解析:方程y〞+y=0的特征方程为ρ2+1=0,其特征根为ρ=±i,因此方程y〞+y=χ2+1+sinχy*=aχ+bχ+C+χ(Asinχ+Bcosχ) 故应选A.知识模块:常微分方程2.(2006年)函数y=C1eχ+C2e-2χ+χeχ满足的一个微分方程是【】A.y〞-y′-2y=3χeχ.B.y〞-y′-2y=3eχ.C.y〞+y′-2y=3χeχ.D.y〞+y′-2y=3eχ.正确答案:D解析:由y=C1eχ+C2e-2χ+χeχ知,齐次方程的两个特征根分别为1和-2,所以只有C和D项可能是正确的选项,将y=χeχ代入D项中方程知其满足该方程,则应选D.知识模块:常微分方程3.(2008年)在下列微分方程中,以y=C1eχ+C2cos2χ+C3sin2χ(C1,C2,C3为任意常数)为通解的是【】A.+y〞-4y′-4y=0.B.+y〞+4y′+4y=0.C.-y〞-4y′+4y=0.D.-y〞+4y′-4y=0.正确答案:D解析:由原题设知所求方程的特征方程的根为ρ1=1,ρ2,3=±2i 则其特征方程为(ρ-1)(ρ2+4)=0,故所求方程应为y″′-y〞+4y′-4y=0 故应选D.知识模块:常微分方程4.(2010年)设y1,y2是一阶线性非齐次微分方程y′+p(χ)y=q(χ)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则【】A.B.C.D.正确答案:A解析:由于λy1+μy2为方程y′+p(χ)y=q(χ)的解,则(λy1+μy2)′+p(χ)(λy1+μy2)=g(χ) 即λ(y′1+p(χ)y1)+μ(y′2+p(χ)y2)=q(χ) λq(χ)+μ(χ)=q(χ) λ+μ=1 (1) 由于λy1-μy2为方程y′+p(χ)y=0的解,则(λy1-μy2)′+p(χ)(λy1-μy2)=0 λ(y′1+p(χ)y1)-μ(y′2+p(χ)y2)=0 λq(χ)-μq(χ)=0 λ-μ=0 (2) 由(1)式和(2)式解得λ=μ=知识模块:常微分方程5.(2011年)微分方程y〞-λ2y=eλχ+e-λχ(λ>0)的特解形式为【】A.aχ(eλχ+e-λχ).B.aχ(eλχ+e-λχ).C.χ′〞(aeλχ+be-λχ).D.χ2(aeλχ+be-λχ).正确答案:C解析:方程y〞-λ2y=0的特征方程为r2-λ2=1 r1=λ,r2=-λ方程y〞-λ2y=eλχ的特解形式为aχeλχ方程y〞-λ2y=e-λχ的特解形式为bχe-λe 则原方程的特解形式为y=χ(aχeλχ+bχe-λχ) 故应选C.知识模块:常微分方程填空题6.(2006年)微分方程y′=的通解是_______.正确答案:y=Cχe-χ.解析:则ln|y|=ln|χ|-χ=ln|χ|+lne-χ=ln(|χ|e-χ) y=Cχe-χ.知识模块:常微分方程7.(2007年)二阶常系数非齐次线性微分方程y〞-4y′+3y=2e2χ的通解为y=_______.正确答案:y=C1eχ+C2e3χ-2e2χ.解析:齐次方程特征方程为ρ2-4ρ+3=0 解得ρ1=1,ρ2=3,则齐次方程通解为y=C1eχ+C2e3χ设非齐方程特解为=Ae2χ,代入原方程得A=-2,则原方程通解为y=C1eχ+C2e3χ-2e2χ知识模块:常微分方程8.(2008年)微分方程(y+χ2e-χ)dχ-χdy=0的通解是y=_______.正确答案:y=χ(C-e-χ).解析:方程(y+χ2e-χ)dχ-χdy=0可改写为知识模块:常微分方程9.(2010年)3阶常系数线性齐次微分方程-2y〞+y′-2y=0的通解为y =________.正确答案:y=C1e2χ+C2cosχ+C1sinχ.解析:方程y″′=2y〞+y′-2y=0的特征方程为r3-2r2+r-2=0 即r2(r-2)+(r-2)=0 (r-2)(r2+1)=0 r1=2,r2,3=±l′则原方程通解为y=C1e2χ+C2cosχ+C1sinχ.知识模块:常微分方程10.(2011年)微分方程y′+y=e-χcosχ满足条件y(0)=0的解为y=_______.正确答案:e-χsinχ.解析:由一阶线性方程的通解公式得y==e-χ[∫cosχdχ+c]=e-χ[sinχ+C] 由y(0)=0知,C=0,则y=e-χsinχ知识模块:常微分方程11.(2012年)微分方程ydχ+(χ-3y2)dy=0满足条件y|χ=1=1的解为y=_______.正确答案:解析:由ydχ+(χ-3y2)dy=0 得这是一阶线性微分方程,由通解公式得又因为y=1时,χ=1,解得C=0,故χ=y2.y=知识模块:常微分方程12.(2013年)已知y1=e3χ-χe2χ,y2=eχ-χe2χ,y3=-χe2χ是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y|χ=0=0,y′|χ=0=1的解为y=_______.正确答案:C1eχ+C2e3χ-χe2χ.解析:由题设知y1-y3=e3χ,y2-y3=eχ为齐次方程两个线性无关的特解,则非齐次方程的通解为y=C1eχ+C2e3χ-χe2χ.知识模块:常微分方程13.(2015年)设函数y=y(χ)是微分方程y〞+y′-2y=0的解,且在χ=0处y(χ)取得极值3,则y(χ)=_______.正确答案:2eχ+e-2χ.解析:原方程的特征方程为λ2+λ-2=0 特征根为λ1=1,λ2=2 原方程的通解为y=C1eχ+C2e-2χ由y(0)=3,y′(0)=0得则C1=2,C2=1,y=2eχ+e-2χ.知识模块:常微分方程解答题解答应写出文字说明、证明过程或演算步骤。

考研数学二(常微分方程)历年真题试卷汇编1(题后含答案及解析)

考研数学二(常微分方程)历年真题试卷汇编1(题后含答案及解析)

考研数学二(常微分方程)历年真题试卷汇编1(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(1989年)微分方程y〞-y=eχ+1的一个特解应具有形式(式中a,b 为常数) 【】A.aeχ+bB.aχeχ+bC.aeχ+bχD.aχeχ+bχ正确答案:B解析:y〞-y=eχ+1的特解应为方程y〞-y=eχ和y〞-y=1的特解之和,而特征方程为r2-1=0,解得r=±1 因此y-y=eχ的特解应为y1*=aχeχ,y〞-y=1的特解应为y2*=b 则原方程特解应具有形式y=aχeχ+b 知识模块:常微分方程2.(1998年)已知函数y=f(χ)在任意点χ处的增量△y=+α,其中α是比△χ(△χ→0)的高阶无穷小,且y(0)=π,则y(1)=【】A.B.2πC.πD.正确答案:A解析:由于△y与△χ+α,其α是比△χ(△χ→0)高阶的无穷小,则解此变量可分离方程得y=Cearctanχ,再由y(0)=π得C=π故y=兀earctanχ,y(1)=π知识模块:常微分方程3.(2000年)具有特解y1=e-χ,y2=2χe-χ,y3=3eχ的三阶常系数齐次线性微分方程是【】A.y〞′-y〞-y′+y=0B.y〞′+y〞-y′-y=0C.y〞′-6y〞+11y′-6y=0D.y〞′-2y〞-y′+2y=0正确答案:B解析:由本题所给三个特解可知,所求方程的特征方程的根为λ1=1,λ2=-1(二重),故特征方程是(λ-1)(λ+1)2=0,展开得λ3+λ2-λ-1=0 从而,微分方程应为y′〞+y′-y=0,则应选B.知识模块:常微分方程4.(2002年)设y=y(χ)是二阶常系数微分方程y〞+py′+qy=e3χ满足初始条件y(0)=y′(0)=0的特解,则当χ→0时,函数的极限.【】A.不存在B.等于1C.等于2D.等于3正确答案:C解析:由于y(χ)是方程y〞+py′+qy=e3χ满足初始条件y(0)=y′(0)=0的特解,在方程y〞+py′+qy=e3χ中,令χ=0 得y〞(0)+Py′(0)+qy(0)=e0=1 即y〞(0)=1 所以应选C.知识模块:常微分方程5.(2003年)已知y=是微分方程y′=的解,则φ()的表达式为【】A.B.C.D.正确答案:A解析:将y=代入方程y′=得故应选A.知识模块:常微分方程填空题6.(1994年)微分方程ydχ+(χ2-4χ)dy=0的通解为_______.正确答案:(χ-4)y4=Cχ.解析:该方程是一个变量可分离方程,即(χ-4)y4=Cχ知识模块:常微分方程7.(1995年)微分方程y〞+y=-2χ的通解为_______.正确答案:y=-2χ+C1cosχ+C2sinχ.解析:特征方程为r2+1=0,解得r1=i,r2=-I 齐次通解为=C1cos χ+C2sinχ易观察出非齐次一个特解为y*=-2χ则原方程通解为y=C1>cosχ+C2sinχ-2χ知识模块:常微分方程8.(1996年)微分方程y〞+2y′+5y=0的通解为_______.正确答案:y=e-χ(C1cos2χ+C2sin2χ).解析:特征方程为r2+2r+5=0,r1,2=-1±2i 故通解为y=C1e-χcos2χ+C2e-χsin2χ.知识模块:常微分方程9.(1999年)微分方程y〞-4y=e2χ的通解为________.正确答案:y=C1e-2χ+(C2+χ)e2χ(C1,C2为任意常数).解析:特征方程为r2-4=0,r1,2=±2 齐次通解为=1e-2χ+C2e2χ设非齐次方程特解为y*Aχe2χ代入原方程得A=,故原方程通解为知识模块:常微分方程10.(2001年)过点(,0)且满足关系式y′arcsinχ+=1的曲线方程为_______·正确答案:yarcsinχ=χ-.解析:由y′arcsinχ+=1 知(yarcsinχ)′=1 则yarcsinχ=χ+C 由因此yarcsinχ=χ-知识模块:常微分方程11.(2002年)微分方程yy〞+y′2=0满足初始条件的特解是_______.正确答案:y2=χ+1或y=解析:令y′=P,则,y〞=,代入原方程得则所求的特解为y2=χ+1.知识模块:常微分方程12.(2004年)微分方程(y+χ3)dχ-2χdy=0满足的特解为_______.正确答案:解析:方程(y+χ3)dχ-2χdy=0可改写为设方程为一阶线性方程,则其通解为由知C=1,则所求特解为y=知识模块:常微分方程13.(2005年)微分方程χy′+2y=χlnχ满足y(1)=-的解为_______.正确答案:解析:方程χy+2y=χlnχ是一阶线性方程,方程两端同除以χ得:y′+=lnχ,则通解为由y(1)=-得,C=0,则知识模块:常微分方程解答题解答应写出文字说明、证明过程或演算步骤。

数学系常微分方程试卷C及答案汇编

数学系常微分方程试卷C及答案汇编

试卷(C)试卷份数考试本科考试科目常微分方程第1 页(共5页)年月日第 3 页(共 5 页)年月日年月日第5页(共 5 页)12-13-2学期期末考试《常微分方程》C 参考答案及评分标准制卷 赵志锟 审核 一、填空题(每小题3分,本题共15分)1. ,2,1,0,±±==k k y π; 或 ,2,1,0,2±±=π+π=k k x 2.xx x e ,e3.}0),{(2>∈=y R y x D ,(或不含x 轴的上半平面) 4.充分 5.32C Cx y +=二、单项选择题(每小题3分,本题共15分)6.D 7.B 8.A 9.D 10.D三、简答题(每小题6分,本题共30分)11.解 当0≠y ,1≠y 时,分离变量取不定积分,得C x y y y+=⎰⎰d ln d (3分) 通积分为xC y e ln = (6分)12.解 令xu y =,则xuxu x y d d d d +=,代入原方程,得 21d d u x ux-= (3分) 分离变量,取不定积分,得C xxu u ln d 1d 2+=-⎰⎰(0≠C ) 通积分为: Cx xyln arcsin= (6分)13.解 对应齐次方程dy y dx x=的通解为Cx y = (2分)令非齐次方程的特解为x x C y )(= (3分)代入原方程,确定出/1()c x x=(4分) 再求初等积分得C x x C +=ln )( (5分)因此原方程的通解为Cx y =+x x ln (6分)14.解: 积分因子为21()2()2ln 21()x x e y x dx dx xx y xxx ee exμ∂-∂----∂∂⎰⎰==== (3分) 取001,0x y ==,则原方程的通积分为 1012d d )(e C y x x yy x x=+-⎰⎰(5分)即1e e C xyx+=+(6分)15.解: 原方程为恰当导数方程,可改写为 1)(-=''y y则 1C x y y +-=' (2分) 分离变量,取积分21)d (d C x C x y y ++-=⎰⎰ (4分) 得原方程的通积分为2212)(2121C C x y +--= (6分)四、计算题(每小题10分,本题共20分)16.解:对应的齐次方程为650y y y '''-+=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山大数院常微分02年真题
一.下述结论是否正确,若回答是则打“√”,否则打“×”(每题2分)
1,若dy/dx=f(x,y),右端的函数f(x,y)连续,则初值问题的解存在
2,在奇解能表示的积分曲线上的每一点,解的唯一性都不成立
3,y=x^2是方程y=2xy'-(y')^2的奇解
4,M(x,y)dx+N(x,y)dy=0为恰当方程的充要条件是dM/dy=dN/dx(注:这里是偏导)
5,对于一般的齐次线性微分方程是没有普遍的解法的
二.确定n的值、使y=x^n为x^3y'''+2x^2y''-10xy'-8y=0的解
三,解下列微分方程(每题9分)
1,(sinxy+xycosxy)dx+x^2cosxydy=0
2,2xyy'=y^2+xtany^2/x
3,(x-y^2)dx+2xydy=0
4,4x^4y'''-4x^3y''+4x^2y'=1
5,xy''+2(1-x)y'+(x-2)y=2expx
已知其对应的齐次方程有一个特解expx
四,解下列微分方程组(每题10分)
1,dx/dt=3x+5y
dy/dt=-2x-8y
x(0)=2,y(0)=5
2,dx/x=dy/y=dz/(z-(x^2+y^2+z^2)
以下三题中任选两题
五,利用一次近似研究方程组
dx/dt=2x+y-5y^2
dy/dt=3x+y+0.5x^3
零解的稳定性
六,求下列方程的通解
已知一个特解y1=-2/x
x^2y'+x^2y^2+4xy+2=0
七,求解微分方程组
tdx/dt-x-3y=t
tdy/dt-x+y=0
这是我自己打上去的
我不太会弄
大家将就着看吧。

相关文档
最新文档