2019年高考数学艺术生百日冲刺专题01集合与常用逻辑测试题

合集下载

高考数学艺术生百日冲刺专题01 集合与常用逻辑测试题

高考数学艺术生百日冲刺专题01 集合与常用逻辑测试题

专题1集合与常用逻辑测试题制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日命题报告:1.高频考点:集合的运算以及集合的关系,集合新定义问题以及集合与其他知识的交汇,逻辑用语重点考察四种命题的关系,充要条件的判断以及全称命题存在命题等知识。

2.考情分析:高考主要以选择题填空题形式出现,考察集合的运算以及充要条件和其它知识的交汇,题目一般属于容易题。

3.重点推荐:9题,创新题,注意灵敏利用所给新定义进展求解。

一.选择题〔一共12小题,每一题5分〕1.集合A={1,2,3},B={〔x,y〕|x∈A,y∈A,x+y∈A},那么集合B的真子集的个数为〔〕A.5 B.6 C.7 D.8【答案】C【解析】:B={〔1,1〕,〔1,2〕,〔2,1〕};-=:.应选:C.∴B的真子集个数为32172集合M=,那么M∩N=〔〕A.{x|﹣3≤x≤1} B.{x|1≤x<6} C.{x|﹣3≤x<6} D.{x|﹣2≤x≤6}【答案】:B【解析】y=x2﹣2x﹣2的对称轴为x=1;∴y=x2﹣2x﹣2在x∈〔2,4〕上单调递增;∴﹣2<y<6;∴M={y|﹣2<y<6},N={x|x≥1};∴M∩N={x|1≤x<6}.应选:B.3集合A={x|ax﹣6=0},B={x∈N|1≤log2x<2},且A∪B=B,那么实数a的所有值构成的集合是〔〕A.{2} B.{3} C.{2,3} D.{0,2,3}【答案】:D【解析】B={x∈N|2≤x<4}={2,3};∵A∪B=B;∴A⊆B;∴①假设A=∅,那么a=0;②假设A≠∅,那么;∴,或者;∴a=3,或者2;∴实数a所有值构成的集合为{0,2,3}.应选:D.4〔2021秋•期中〕命题p:∀x∈R,x2﹣x+1>0,命题q:假设a<b,那么>,以下命题为真命题的是〔〕A.p∧q B.〔¬p〕∧q C.〔¬p〕∨q D.〔¬p〕∨〔¬q〕【答案】:D【解析】命题p:∀x∈R,x2﹣x+1>0,∵x2﹣x+1=+>0恒成立,∴p是真命题;命题q:假设a<b,那么>,当a<0<b时,不满足>,q是假命题;∴¬q是真命题,¬q是假命题,那么〔¬p〕∨〔¬q〕是真命题,D正确.应选:D.5. 〔2021 •区期末〕在△ABC中,“∠A=∠B“是“acosA=bcosB〞的〔〕A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】:A6. 〔2021•期末〕以下有关命题的说法错误的有〔〕个①假设p∧q为假命题,那么p、q均为假命题②命题“假设x2﹣3x+2=0那么x=1〞的逆否命题为:“假设x≠1,那么x2﹣3x+2≠0③对于命题p:∃x∈R,使得x2+x+1<0那么:¬p:∀x∈R,均有x2+x+1≥0A.0 B.1 C.2 D.3【答案】:B【解析】①假设p∧q为假命题,那么p、q均为假命题,不正确,因为两个命题中,由一个是假命题,那么p∧q为假命题,所以说法错误.②命题“假设x2﹣3x+2=0那么x=1〞的逆否命题为:“假设x≠1,那么x2﹣3x+2≠0,满足逆否命题的定义,正确;③对于命题p:∃x∈R,使得x2+x+1<0那么:¬p:∀x∈R,均有x2+x+1≥0,符号命题的否认形式,正确;所以说法错误的选项是1个.应选:B.7〔2021•金安区校级模拟〕假设A={x∈Z|2≤22﹣x<8},B={x∈R|log2x<1},那么A∩〔∁R B〕中的元素有〔〕A.0个B.1个C.2个D.3个【答案】:B【解析】A={x∈Z|2≤22﹣x<8}={x∈Z|1≤2﹣x<3}={x∈Z|﹣1<x≤1}={0,1},B={x∈R|log2x<1}={x∈R|0<x<2},那么∁R B={x∈R|x≤0或者x≥2},∴A∩〔∁R B〕={0},其中元素有1个.应选:B.8〔2021•大观区校级模拟〕全集U=R,集合,N={x|x2﹣2|x|≤0},那么如图中阴影局部所表示的集合为〔〕A.[﹣2,1〕B.[﹣2,1] C.[﹣2,0〕∪〔1,2] D.[﹣2,0]∪[1,2]【答案】:B【解析】∵全集U=R,集合={x|x>1},N={x|x2﹣2|x|≤0}={x|或者}={x|﹣2≤x≤2},∴C U M={x|x≤1},∴图中阴影局部所表示的集合为N∩〔C U M〕={x|﹣2≤x≤1}=[﹣2,1].应选:B.9.设集合S n={1,2,3,…,n},X⊆S n,把X的所有元素的乘积称为X的容量〔假设X中只有一个元素,那么该元素的数值即为它的容量,规定空集的容量为0〕.假设X的容量是奇〔偶〕数,那么称X为S n的奇〔偶〕子集,假设n=3,那么S n的所有偶子集的容量之和为〔〕A.6 B.8 C.12 D.16【答案】:D【解析】由题意可知:当n=3时,S3={1,2,3},所以所有的偶子集为:∅、{2}、{1,2}、{2,3}、{1,2,3}.所以S3的所有偶子集的容量之和为0+2+2+6+6=16.应选:D.10. 〔2021•三模〕以下有四种说法:①命题:“∃x∈R,x2﹣3x+1>0〞的否认是“∀x∈R,x2﹣3x+1<0〞;②p,q为两个命题,假设〔¬p〕∧〔¬q〕为假命题,那么p∨q为真命题;③命题“假设xy=0,那么x=0且y=0〞的逆否命题为真命题;④数列{a n}为等差数列,那么“m+n=p+q,m,n,p,q为正整数〞是“a m+a n=a p+a q〞的充要条件.其中正确的个数为〔〕A.3个B.2个C.1个D.0个【答案】:C11. 〔2021•模拟〕函数f〔x〕=x2+ax+b,集合A={x|f〔x〕≤0},集合,假设A=B≠∅,那么实数a的取值范围是〔〕A.B.[﹣1,5] C.D.[﹣1,3]【思路分析】由题意可得b=,集合B可化为〔x2+ax+〕〔x2+ax+a+〕≤0,运用判别式法,解不等式即可得到所求范围.【答案】:A【解析】设集合A={x∈R|f〔x〕≤0}={x|x2+ax+b≤0},由f〔f〔x〕〕≤,即〔x2+ax+b〕2+a〔x2+ax+b〕+b﹣≤0,②A=B≠∅,可得b=,且②为〔x2+ax+〕〔x2+ax+a+〕≤0,可得a2﹣4×≥0且a2﹣4〔a+〕≤0,即为,解得≤a≤5,应选:A.12.( 2021•二模〕“a≤0〞是“关于x的方程ax+axcosx﹣sinx=0与方程sinx=0在[﹣3π,3π]上根的个数相等〞的〔〕A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案]:A【解析】∵方程sinx=0在[﹣3π,3π]上根有7个,那么方程ax+axcosx﹣sinx=0也应该有7个根,由方程ax+axcosx﹣sinx=0得ax〔1+cosx〕﹣sinx=0,即ax•2cos2﹣2sin cos=2cos〔axcos﹣sin〕=0,那么cos=0或者axcos﹣sin=0,那么x 除了﹣3π,﹣π,π,3π还有三个根,由axcos﹣sin=0,得axcos=sin,即ax=tan,由图象知a≤0时满足条件,且a>0时,有局部a是满足条件的,故“a≤0〞是“关于x 的方程ax+axcosx﹣sinx=0与方程sinx=0在[﹣3π,3π]上根的个数相等〞的充分不必要条件,应选:A.〔2〕设命题p:“函数y=2f〔x〕﹣t在〔﹣∞,2〕上有零点〞,命题q:“函数g〔x〕=x2+t|x﹣2|在〔0,+∞〕上单调递增〞;假设命题“p∨q〞为真命题,务实数t的取值范围.【思路分析】〔1〕方程f〔x〕=2x有两等根,通过△=0,解得b;求出函数图象的对称轴.求解a,然后求解函数的解析式.〔2〕求出两个命题是真命题时,t的范围,利用p∨q真,转化求解即可.【解析】:〔1〕∵方程f〔x〕=2x有两等根,即ax2+〔b﹣2〕x=0有两等根,∴△=〔b﹣2〕2=0,解得b=2;∵f〔x﹣1〕=f〔3﹣x〕,得,∴x=1是函数图象的对称轴.而此函数图象的对称轴是直线,∴,∴a=﹣1,故f〔x〕=﹣x2+2x……………………………………………〔6分〕〔2〕,p真那么0<t≤2;;假设q真,那么,∴﹣4≤t≤0;假设p∨q真,那么﹣4≤t≤2.……………………………………………〔12分〕21. 〔2021春•校级期中〕集合A={x|≤0},B={x|x2﹣〔m﹣1〕x+m﹣2≤0}.〔1〕假设A∪[a,b]=[﹣1,4],务实数a,b满足的条件;〔2〕假设A∪B=A,务实数m的取值范围.【思路分析】此题涉及知识点:分式不等式和含参的一元二次不等式的解法,集合的并集运算.22. 〔2021•期末〕命题p:指数函数f〔x〕=〔a﹣1〕x在定义域上单调递减,命题q:函数g〔x〕=lg〔ax2﹣2x+〕的定义域为R.〔1〕假设q是真命题,务实数a的取值范围;〔2〕假设“p∧q〞为假命题“p∨q〞为真命题,务实数a的取值范围.【思路分析】〔1〕假设命题q是真命题,即函数g〔x〕=lg〔ax2﹣2x+〕的定义域为R,对a分类讨论求解;〔2〕求出p为真命题的a的范围,再由“p∧q〞为假命题“p∨q〞为真命题,可得p与q 一真一假,然后利用交、并、补集的混合运算求解.【解析】:〔1〕假设命题q是真命题,那么有:①当a=0时,定义域为〔﹣∞,0〕,不合题意.②当a≠0时,由可得,解得:a>,故所务实数a的取值范围为〔,+∞〕;…………6分〔2〕假设命题p为真命题,那么0<a﹣1<1,即1<a<2,由“p∧q〞为假命题“p∨q〞为真命题,可得p与q一真一假.假设p为真q为假,那么,得到1<a≤,假设p为假q为真,那么,得到a≥2.综上所述,a的取值范围是1<a≤或者a≥2.………………12分制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日。

2019高考数学试题汇编之 集合与常用逻辑用语(原卷版)

2019高考数学试题汇编之 集合与常用逻辑用语(原卷版)

5.【2019 年高考浙江】已知全集U = {-1,0,1,2,3},集合 A = {0,1,2}, B = {-1,0,1},则 (ð A)【专题 01 集合与常用逻辑用语1 .【 2019 年高考全国Ⅰ卷文数】已知集合 U = {1,2,3,4,5,6,7 },A = {2,3,4,5},B = {2,3,6,7 },则B ð A =UA . {1,6}C . {6,7}B . {1,7}D . {1,6,7}2.【2019 年高考全国Ⅱ卷文数】已知集合 A={x | x > -1} , B = {x | x < 2},则 A ∩B =A .(-1,+∞)C .(-1,2)B .(-∞,2)D . ∅3.【2019 年高考全国Ⅲ卷文数】已知集合 A = {-1,0,1,2}, B = {x | x 2 ≤ 1} ,则 AB =A . {-1,0,1}C . {-1,1}B . {0,1}D . {0,1,2}4.【2019 年高考北京文数】已知集合 A={x|–1<x<2},B={x|x>1},则 A ∪B =A .(–1,1)C .(–1,+∞)B .(1,2)D .(1,+∞)UB =A . {-1}C . {-1,2,3}B . {0,1}D . {-1,0,1,3}6. 2019 年高考天津文数】设集合 A = {-1,1,2,3,5}, B = {2,3,4}, C = {x ∈ R |1 ≤ x < 3},则 ( A C ) B =A . {2}C . {-1,2,3}B . {2,3}D . {1,2,3,4 }7.【2019 年高考天津文数】设 x ∈ R ,则“ 0 < x < 5 ”是“ | x - 1| < 1 ”的A .充分而不必要条件C .充要条件B .必要而不充分条件D .既不充分也不必要条件8.【2019 年高考浙江】若 a >0,b >0,则“a +b ≤4”是 “ab ≤4”的【【A .充分不必要条件C .充分必要条件B .必要不充分条件D .既不充分也不必要条件9.【2019 年高考全国Ⅱ卷文数】设 α,β 为两个平面,则 α∥β 的充要条件是A .α 内有无数条直线与 β 平行C .α,β 平行于同一条直线B .α 内有两条相交直线与 β 平行D .α,β 垂直于同一平面10.【2019 年高考北京文数】设函数 f (x )=cosx +b sinx (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件C .充分必要条件B .必要而不充分条件D .既不充分也不必要条件11.【2019 年高考江苏】已知集合 A = {-1,0,1,6} , B = {x | x > 0, x ∈ R } ,则 AB = ▲.12. 辽宁省沈阳市 2019 届高三教学质量监测(三)数学】已知集合 A = {( x, y) | x + y ≤ 2, x, y ∈ N } ,则 A中元素的个数为A .1C .6B .5D .无数个13.【云南省玉溪市第一中学 2019 届高三上学期第二次调研考试数学】命题“ ∃x ∈ R, x 2 + x + 1 < 0 ”的否定为A . ∃x ∈ R, x 2 + x + 1 ≥ 00 0C . ∀x ∈ R, x 2 + x + 1 ≥ 0B . ∃x ∈ R, x 2 + x + 1 ≤ 00 0 0D . ∀x ∉ R, x 2 + x + 1 ≥ 00 0 014.【黑龙江省大庆市第一中学 2019 届高三下学期第四次模拟(最后一卷 )考试】已知集合 A = {x | x < 1} ,B = {x | 3x < 1} ,则A . AC . AB = {x x >1}B = {x | x < 0}B . A B = RD . A B =∅15.【北京市通州区 2019 届高三三模数学】已知集合 P = {0,1, 2}, Q = {x | x < 2} ,则 PQ =A . {0}C . {1,2}B .{0,1}D .{0, 2}16. 北京市昌平区 2019 届高三 5 月综合练习(二模)数学】已知全集U = R ,集合 A = {x | x 2 ≤ 1} ,则A . (-∞, -1)(1,+∞)B . (-∞, -1] [1,+∞)U A =C . ⎛ 3 , +∞ ⎪D . ⎢0, ⎪【【20.【天津市第一中学 2019 届高三下学期第五次月考数学】设 x ∈ R ,则“ x 3 < 1”是“ x - 1 21.【福建省龙岩市(漳州市)2019 届高三 5 月月考数学】若 a > 1 ,则“ a x > a y ”是“ log x > log y ”的 22.【河南省郑州市 2019 届高三第三次质量检测数学】“ 0 < m < 2 ”是“方程+ = 1 表示椭圆”的 【C . (-1,1)D . [-1,1]17.【福建省龙岩市(漳州市)2019 届高三 5 月月考数学】已知集合 A = {x | x ≥ 1} , B = {x | 2 x - 3 > 0},则 A B =A . [0, +∞)⎫⎝ 2 ⎭B .[1, +∞ )⎡ 3 ⎫⎣ 2 ⎭18.陕西省 2019 年高三第三次教学质量检测】设集合 A = {x | -1 ≤ x ≤ 2, x ∈ N } ,集合 B = {2,3} ,则 A B等于A .{-1,0,1,2,3}C .{1,2,3}B .{0,1,2,3}D .{2}19. 湖北省安陆一中 2019 年 5 月高二摸底调考数学】已知集合 A = {0,1,2} ,B = {a,2} ,若 B ⊆ A ,则 a =A .0C .2B .0 或 1D .0 或 1 或 21< ”的2 2A .充分而不必要条件C .充要条件B .必要而不充分条件D .既不充分也不必要条件a aA .必要不充分条件C .充要条件B .充分不必要条件D .既不充分也不必要条件x 2 y 2m 2 - mA .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件23. 四川省宜宾市 2019 届高三第三次诊断性考试数学】设是空间两条直线,则“不平行”是“是异面直线”的A .充分不必要条件C .充要条件B .必要不充分条件D .既不充分也不必要条件24.【北京市人大附中 2019 年高考信息卷(三)】设 a , b 为非零向量,则“ a ∥ b ”是“ a 与 b 方向相同”的25. 江西省名校(临川一中、南昌二中)2019 届高三 5 月联合考试数学】已知集合 A = x x 2 + 2 x - 3 ≤ 0 ,{}{{}{ }{}{}B = {x | log x ≤ 1} ,则 A B =【x ≤ 3},则集合 ( A )I B =【29.【北京市朝阳区 2019 届高三第二次(5 月)综合练习(二模)数学】已知等差数列{a } 的首项为 a ,公A .充分而不必要条件C .充分必要条件B .必要而不充分条件D .既不充分也不必要条件【B = xx < 2},则 A B =A . x -3 ≤ x ≤ 1B . x 0 ≤ x ≤ 1C . x -3 ≤ x < 1D . x -1 ≤ x ≤ 026. 广东省深圳市高级中学 2019 届高三适应性考试(6 月)数学】已知集合 A = {x | y = (1- x)(x + 3)} ,2A .{x | -3 ≤ x ≤ 1}C . {x | -3 ≤ x ≤ 2}B .{x | 0 < x ≤ 1}D .{x | x ≤ 2}27. 山东省烟台市 2019 届高三 5 月适应性练习(二)数学】设集合 A = {x | y = x - 3} ,B = { y | y = 2x ,RA .{x | x < 3}B .{x | x ≤ 3}C .{x | 0 < x < 3}D .{x | 0 < x ≤ 3}28.【辽宁省沈阳市 2019 届高三教学质量监测(三)】“ k =切”的3 3”是“直线 l : y = k ( x + 2) 与圆 x 2 + y 2 = 1 相A .充分不必要条件C .充要条件B .必要不充分条件D .既不充分也不必要条件n 1差 d ≠ 0 ,则“ a 1, a 3 , a 9 成等比数列” 是“ a 1 = d ”的A .充分而不必要条件C .充要条件B .必要而不充分条件D .既不充分也不必要条件30.【江西省新八校 2019 届高三第二次联考数学】若“ x > 3 ”是“ x > m ”的必要不充分条件,则 m 的取值范围是________.【31.【甘肃省酒泉市敦煌中学 2019 届高三一诊数学】设集合则=__________.32.河北省衡水市 2019 届高三下学期第三次质量检测数学】设 为两个不同平面,直线,则“”是“”的__________条件.33.【安徽省江淮十校 2019 届高三第三次联考数学】若命题“ ,”的否定是假命题,则实数 的取值范围是__________.。

2019年高考数学(文):专题01-集合与常用逻辑用语(命题猜想)(含答案和解析)

2019年高考数学(文):专题01-集合与常用逻辑用语(命题猜想)(含答案和解析)

【考向解读】集合与常用逻辑用语在高考中是以选择题或填空题的形式进行考查的,属于容易题.但命题真假的判断,这一点综合性较强,联系到更多的知识点,属于中挡题.预测高考会以集合的运算和充要条件作为考查的重点.【命题热点突破一】集合的关系及运算集合是高考每年必考内容,题型基本都是选择题、填空题,题目难度大多数为最低档,有时候在填空题中以创新题型出现,难度稍高.在复习中,本部分应该重点掌握集合的表示、集合的性质、集合的运算及集合关系在常用逻辑用语、函数、不等式、三角函数、解析几何等方面的应用.同时注意研究有关集合的创新问题,研究问题的切入点及集合知识在相关问题中所起的作用.1.集合的运算性质及重要结论 (1)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A . (2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解; (2)若已知的集合是点集,用数形结合法求解; (3)若已知的集合是抽象集合,用Venn 图求解. 例1、(2018年全国卷Ⅱ)已知集合,,则A.B.C.D.【答案】C 【解析】,,故选C 。

【变式探究】【2017全国卷1,文1】已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A【解析】由320x ->得32x <,所以,选A .【变式探究】设集合,则S T =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) 【答案】D 【解析】由解得3x ≥或2x ≤,所以,所以,故选D .【变式探究】【2017天津,文2】设x ∈R ,则“20x -≥”是“|1|1x -≤”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】B【变式探究】设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( ) (A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 【答案】C【解析】由题意得,,故是必要不充分条件,故选C.【感悟提升】充分条件与必要条件的三种判定方法(1)定义法:正、反方向推理,若p ⇒q ,则p 是q 的充分条件(或q 是p 的必要条件);若p ⇒q ,且q ⇏p ,则p 是q 的充分不必要条件(或q 是p 的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A ⊆B ,则A 是B 的充分条件(B 是A 的必要条件);若A =B ,则A 是B 的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.【变式探究】(1)设α,β是两个不同的平面,m 是直线且m ⊂α.则“m ∥β”是“α∥β”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B(2)给出下列命题:①若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ②a =b 的充要条件是|a |=|b |且a ∥b ;③在△ABC 中,sin A >sin B 的充要条件为A >B ;④在△ABC 中,设命题p :△ABC 是等边三角形,命题q :a ∶b ∶c =sin B ∶sin C ∶sin A ,那么命题p 是命题q 的充分不必要条件.其中正确的命题为________.(把你认为正确的命题序号都填上) 【答案】①③【解析】①正确.因为AB →=DC →, 所以|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则AB →∥DC →且|AB →|=|DC →|,因此AB →=DC →.②不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.【点评】判断充分、必要条件时应注意的问题(1)先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .9. (2018年北京卷)设a,b,c,d 是非零实数,则“ad =bc ”是“a,b,c,d 成等比数列”的 A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B10. (2018年天津卷)设,则“”是“” 的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】A 【解析】求解不等式可得,求解绝对值不等式可得或,据此可知:“”是“”的充分而不必要条件,本题选择A 选项。

2019年高考数学艺术生百日冲刺专题01集合与常用逻辑测试题 (12)

2019年高考数学艺术生百日冲刺专题01集合与常用逻辑测试题 (12)

专题12椭圆测试题【高频考点】本知识涉及椭圆的定义,标准方程以及简单的几何性质的应用,直线与椭圆的位置关系。

【考情分析】本阶段是高考考查重点内容之一,涉及客观题和解答题,客观题主要考查椭圆方程的求解,椭圆的几何性质等,难度中等,在解答题中多以椭圆为载体,考查直线与椭圆的位置关系,定值定点,以及最值问题,常常以探索性问题形式出现,难度较大。

【重点推荐】基础卷第11题,数学文化题,第22题考察与不等式的交汇,考察综合解决问题的能力。

一.选择题1.方程表示焦点在x轴上的椭圆,则实数m的取值范围为()A.(1,+∞)B.(﹣∞,1] C.(0,1)D.(﹣1,0)【答案】C【解析】:方程表示焦点在x轴上的椭圆,可得m∈(0,1).故选:C.2.设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.4【答案】:C【解析】椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.3.设F1、F2是椭圆的两个焦点,点P为椭圆上的点,且|F1F2|=8,|PF1|+|PF2|=10,则椭圆的短轴长为()A.6 B.8 C.9 D.10【答案】:A【解析】设F1、F2是椭圆的两个焦点,点P为椭圆上的点,且|F1F2|=8,可得c=4,|PF1|+|PF2|=10,可得a=5,则椭圆的短轴长为:2b=2=6.故选:A.4.(2018•大连二模)设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C交于A,B两点,则|AF|+|BF|的值是()A.2 B.C.4 D.【答案】:C【解析】如图,设F2是椭圆的右焦点,∵O点为AB的中点,丨OF丨=丨OF2丨,则四边形AFBF2是平行四边形,∴AF=BF2.∴|AF|+|BF|=丨BF丨+丨BF2丨=2a=4,故选:C.5若点F1,F2为椭圆的焦点,P为椭圆上的点,满足∠F1PF2=90°,则△F1PF2的面积为()A.1 B.2 C.D.4【答案】:A6.(2018•齐齐哈尔二模)已知椭圆+=1(a>b>0)的离心率为,短轴长大于2,则该椭圆的长轴长的取值范围是()A.(2,+∞)B.(4,+∞)C.(2,4)D.(4,8)【答案】:B【解析】根据题意,椭圆+=1(a>b>0)的离心率为,即e==,则c=a,又由椭圆短轴长大于2,即2b>2,则b>1,则有a2﹣c2=b2>1,即>1,解可得a>2,则该椭圆的长轴长2a>4,即该椭圆的长轴长的范围为(4,+∞);故选:B.7.(2018•大连二模)设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C交于A,B两点,则△AFB周长的取值范围是()A.(2,4)B.C.(6,8)D.(8,12)【答案】:C【解析】∵椭圆的左焦点为F(﹣,0),右焦点F2(,0),直线l:y=kx(k≠0)与椭圆C交于A,B两点,连结BF2,则AF=BF2,AB=2OB,由一的定义可知:BF+BF2=2a=4,OB∈(1,2),则△AFB周长的取值范围是(6,8).故选:C.15.设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点,线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为.【答案】:【解析】由圆的方程可知,圆心C(﹣1,0),半径等于5,设点M的坐标为(x,y ),∵AQ的垂直平分线交CQ于M,∴|MA|=|MQ|.又|MQ|+|MC|=半径5,∴|MC|+|MA|=5>|AC|.依据椭圆的定义可得,点M的轨迹是以 A、C 为焦点的椭圆,且2a=5,c=1,∴b=,故椭圆方程为+=1,即+=1.故答案为:16(2018•西宁二模)已知椭圆C:=1,F1,F2是该椭圆的左右焦点,点A(4,1),P是椭圆上的一个动点,当△APF1的周长取最大值时,△APF1的面积为.【答案】:【解析】:如图所示,由椭圆C=1可得a=5,右焦点F2(4,0).|F1F2|=8∵|PF1|+|PF2|=2a=10,∴|PF1|+|PA|=10﹣|PF2|+|PA|≤10+|AF2|.△APF1的周长取最大值时,三点P、A、F2共线,且点P在第四象限,此时F1F2⊥AP,|PF2|==,△APF1的面积S=|F1F2|×|PA|=.故答案为:.三.解答题,其中左焦点F(-2,0).17.已知椭圆的离心率为2(1)求椭圆C的方程;(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值. 【解析】:(1)由题意,得解得 2.a b ⎧=⎪⎨=⎪⎩∴椭圆C 的方程为22184x y +=.…………5分(2) 设点A 、B 的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0),由消y 得,3x 2+4mx +2m 2-8=0,Δ=96-8m 2>0,∴-23<m <23.…………8分.∵点M (x 0,y 0)在圆x 2+y 2=1上,,m ∴=.……10分 18. (2018•广陵区校级四模)已知椭圆C :(a >b >0)的左焦点为F ,上顶点为A ,直线AF与直线x+y ﹣3垂直,垂足为B ,且点A 是线段BF 的中点.(1)求椭圆C 的方程;(2)若M ,N 分别为椭圆C 的左,右顶点,P 是椭圆C 上位于第一象限的一点,直线MP 与直线x=4交于点Q ,且=9,求点P 的坐标.【分析】(1)由直线AF 与直线x+y ﹣3垂直,可得:=1,则直线AF 的方程为:y=x+c .与椭圆方程联立可得B (,),于是﹣c=0,解得c ,即可得出椭圆方程.(2)设P (x 0,y 0),则直线MP 的方程为y=(x+2),可得Q .9==2(x 0+2)+,由点P 在椭圆上可得:=2﹣,代入解出即可得出.(2)设P(x0,y0),则直线MP的方程为y=(x+2),∴Q.∴9==2(x0+2)+,………7分由点P在椭圆上可得:=2﹣,代入可得:9=2(x0+2)+,化为:+x0﹣2=0,解得x0=1或﹣2.(舍),∴P.…………12分19.(2018•江苏一模)已知椭圆C:(a>b>0)经过点,,点A是椭圆的下顶点.(1)求椭圆C的标准方程;(2)过点A且互相垂直的两直线l1,l2与直线y=x分别相交于E,F两点,已知OE=OF,求直线l1的斜率.【分析】(1)根据题意,将两点的坐标代入椭圆的方程有,解可得、的值,即可得椭圆的方程;(2)设直线l1:y=k1x﹣1,与直线y=x联立方程有,可得E的坐标,设直线l2:,同理可得F的坐标,又由OE=OF,所以,解可得k的值,即可得答案.【解析】:(1)根据题意,椭圆C:(a>b>0)经过点,,则有,解得,…………3分所以椭圆C的标准方程为;…………5分(2)由题意知A(0,﹣1),直线l1,l2的斜率存在且不为零,设直线l1:y=k1x﹣1,与直线y=x联立方程有,得,设直线l2:,同理,…………7分因为OE=OF,所以,①,无实数解;②,,,解得,综上可得,直线l1的斜率为.……12分20(2018•辽宁模拟)已知M()是椭圆C:(a>b>0)上的一点,F1F2是该椭圆的左右焦点,且|F1F2|=2.(1)求椭圆C的方程;(2)设点A,B是椭圆C上与坐标原点O不共线的两点,直线OA,OB,AB的斜率分别为k1,k2,k3,且k1k2=k2.试探究|OA|2+|OB|2是否为定值,若是,求出定值,若不是,说明理由.【分析】(1)根据椭圆的定义及椭圆的性质,即可求得a和b的值,即可求得椭圆方程;(2)设直线AB的方程,代入椭圆方程,利用韦达定理及直线的斜率公式,求得k2=,即可求得|OA|2+|OB|2=5为定值.【解析】:(1)由题意,F1(﹣,0),F2(,0),根据椭圆定义|PF1|+|PF2|=2a,所以2a=+=4,所以a2=4,b2=a2﹣c2=1椭圆C的方程;…………5分(2)设直线AB:y=kx+m,(km≠0),A(x1,y1),B(x2,y2),由,消去y得(1+4k2)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(1+4k2)(4m2﹣4)>0,x1+x2=﹣,x1x2=,因为k1k2=k2,所以•=k2,即km(x1+x2)+m2=0(m≠0),解得k2=,…………8分|OA|2+|OB|2=x12+x22+y12+y22=[(x1+x2)2﹣2x1x2]+2=5,所以|OA|2+|OB|2=5为定值.…………12分21.(2018•南充模拟)已知椭圆C:+=1(a>b>0)的离心率为,点M(2,1)在椭圆C上.(1)求椭圆C的方程;(2)直线l平行于OM,且与椭圆C交于A,B两个不同的点,若∠AOB为钝角,求直线l在y轴上的截距m 的取值范围.【分析】(1)由椭圆C:+=1(a>b>0)的离心率为,点M(2,1)在椭圆C上,列出方程组,求出a,b,由此能求出椭圆C的方程.(2)设l的方程为y=x+m,再与椭圆方程联立,将∠AOB为钝角,转化为<0,且m≠0,利用韦达定理,即可求出直线l在y轴上的截距m的取值范围.【解析】:(1)∵椭圆C:+=1(a>b>0)的离心率为,点M(2,1)在椭圆C上.∴,解得a=2,b=,c=,…………3分∴椭圆C的方程为=1.………………5分(2)由直线l平行于OM,得直线l的斜率k=k OM=,又l在y轴上的截距为m,∴l的方程为y=12x m.由,得x2+2mx+2m2﹣4=0.…………8分又直线l与椭圆交于A、B两个不同点,△=(2m)2﹣4(2m2﹣4)>0,于是﹣2<m<2.∠AOB为钝角等价于<0,且m≠0,设A(x1,y1),B(x2,y2),则=x1x2+y1y2==,由韦达定理x1+x2=﹣2m,x1x2=2m2﹣4,代入上式,化简整理得m2<2,即,故所求范围是(﹣)∪(0,).…………12分22.(2018•聊城一模)已知圆x2+y2=4经过椭圆C:的两个焦点和两个顶点,点A (0,4),M,N是椭圆C上的两点,它们在y轴两侧,且∠MAN的平分线在y轴上,|AM|≠|AN|.(Ⅰ)求椭圆C的方程;(Ⅱ)证明:直线MN过定点.【分析】(Ⅰ)根据题意,由圆的方程分析可得椭圆的焦点和顶点坐标,即可得c、b的值,由椭圆的几何性质计算可得a的值,即可得椭圆的标准方程;(Ⅱ)设直线MN的方程为y=kx+m,与椭圆的方程联立,消去y得(2k2+1)x2+4kmx+2m2﹣8=0.设M(x1,y1),N(x2,y2),由根与系数的关系分析直线AM、AN的斜率,进而分析可得k1+k2==0,解可得m 的值,由直线的斜截式方程即可得答案.(Ⅱ)证明:设直线MN的方程为y=kx+m.由,消去y得(2k2+1)x2+4kmx+2m2﹣8=0.设M(x1,y1),N(x2,y2),则,.直线AM的斜率=;直线AN的斜率=.k1+k2===.…………8分由∠MAN的平分线在y轴上,得k1+k2=0.即=0,又因为|AM|≠|AN|,所以k≠0,所以m=1.因此,直线MN过定点(0,1).……12分。

2019年高考数学备考艺体生百日突围系列 强化训练01(理)解析版

2019年高考数学备考艺体生百日突围系列 强化训练01(理)解析版

2106届艺体生强化训练模拟卷一(理)一.选择题.1. 已知集合}22{≤≤-=x x M ,}1{x y x N -==,那么=N M ( ) A .}12{<≤-x x B .}12{≤≤-x x C .}2{-<x x D .}2{≤x x【答案】B【解析】因为{}{}{|10|1,N x y x x x x ===-≥=≤又因为}22{≤≤-=x x M ,所以=N M {}|1x x ≤⋂{22}x x -≤≤=}12{≤≤-x x ,所以应选B.2. 2015i ++,则复数z 在复平面内对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】由于4()n k k i i n Z +=∈,所以22015231i i i i i i +++=++=-,所以1(1)111(1)(1)22i z i i i i ---===-+++-,对应点11(,)22-,在第二象限,故选B .3. 下列说法正确的是( )A .命题“若21x =,则1x =”的否命题是“若21x =,则1x ≠”B .“1x =-”是“220x x --=”的必要不充分条件C .命题“若x y =,则sin sin x y =”的逆否命题是真命题D .“t an 1x =”是“4x π=”的充分不必要条件【答案】C 【解析】4. 已知向量)2,1(=,)1,3(21=-b a ,)3,(x =,若()//2+,则=x ( ) .A 2- .B 4- .C 3- .D 1-【答案】C【解析】由题意,()1(3,1)2(3,1)4,22a b b a ⎡⎤-=⇒=-=-⎣⎦,则()()2=-5,52//-15-503a b a b c x x ++∴=∴=-,故选C.5. 已知等差数列{}n a 中,25a = ,411a =,则前10项和=10S ( ) A .55 B .155C .350D .400【答案】B【解析】 由21110(101)10124152101553113a a d a S a d a a d d -=+==⎧⎧⇒∴=+=⎨⎨=+==⎩⎩. 6.某程序框图如图所示,若该程序运行后输出k 的值是6,则输入的整数0S 的可能值为( )A .5B .6C .8D .15 【答案】C 【解析】7.函数()21ln 2f x x x =-的图象大致是( )【答案】B 【解析】8.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70),[70,80),[)90,80,[)100,90 加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .120 【答案】B【解析】由频率分布直方图可知,该模块测试成绩不少于60分的频率为(0.0300.0250.0150.010)10+++⨯=0.8,所以该模块测试成绩不少于60分的学生人数为4808.0600=⨯,故选B .9.在ABC ∆中,角,,A B C 所对边分别为,,a b c , 且(2)cos cos b a C c A -= , 3c =,sin sin sin A B A B +=,则ABC ∆的面积为( )A.8 B.2 C.2 D.4【答案】D【解析】2221(2)cos cos ,,cos ,=23b a Cc A a b c ab C C π-=∴+-=∴=∴,结合sin sin sin A B A B +=可得()sin sin sin sin A B C A B += , 由正弦定理可得()222,,c 2cos a b c a b a b ab C +=∴+==+- ,()22390,3ab ab ab ∴--=∴=,1sin 2ABC S ab C ∆∴==,故选D. 10.已知双曲线)0,0(12222>>=-b a by a x 的一个焦点到一条渐近线的距离为c 35(c 为双曲线的半焦距长),则双曲线的离心率为( ) A .25 B .253 C . 23 D .53【答案】C 【解析】二、填空题. 11.二项式5的展开式中常数项为 . 【答案】10-.【解析】因为二项式5的展开式的通项为:1555655((1)rr r r r rC C x --=-,令1550r -=,即3r =,所以其展开式中的常数项为:335(1)10C -=-,故应填10-.12.设变量,x y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数2z y x =-的最小值为 .【答案】7-【解析】如图作出约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩的可行域,ABC ∆内部(含边界),再作出直线0:20l y x -=,当把直线0l 向下平移时对应的2z y x =-在减小,向上平移时,z 增大,因此当平移直线0l 过点(5,3)B 时,z 取得最小值7-.13. 若函数()cos2sin f x x a x =+在区间,62ππ⎛⎫⎪⎝⎭是减函数,则a 的取值范围是 . 【答案】(],2-∞. 【解析】三.解答题14. 在公差不为零的等差数列{n a }中,32=a ,731,,a a a 成等比数列. (1)求数列{n a }的通项公式;(2)设数列{n a }的前n 项和为n S ,记nn S b 31=. 求数列}{n b 的前n 项和n T .【解析】①设{n a }的公差为d ,依题意得⎪⎩⎪⎨⎧≠+=+=+0)6()2(311211d d a a d a d a ,解得 21=a ,1=d ,∴ 1)1(2⨯-+=n a n 即 1+=n a n . ② .2)1(92)132(32)(3313+=++=+=n n n n a a n S n n)111(92)1(9213+-=+==n n n n S b n n )1(92)]111()3121()211[(9221+=+-++-+-=+++=n nn n b b b T n n故 T n =)1(92+n n.15. 汽车是碳排放量比较大的行业之一,某地规定,从2015年开始,将对二氧化碳排放量超过130g/km 的轻型汽车进行惩罚性征税.检测单位对甲、乙两品牌轻型汽车各抽取5量进行二氧化碳排放量检测,记录如下(单位:g/km )经测算得乙品牌轻型汽车二氧化碳排放量的平均值为120/x g km =乙.(Ⅰ)求标准x 的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性;(Ⅱ)从被检测的5量甲品牌轻型汽车中任取2量,二氧化碳排放量超过130g/km 的车辆数为X ,求X 的分布列与期望. 【解析】(Ⅱ)被检测的5辆甲品牌轻型汽车中二氧化碳排放量超过130g/km 的车辆数为2,故X 的可能取值为0,1,2,所以2325(0)C P X C ===310,113225(1)C C P X C ===35,2225(2)C P X C ===110, 所以X 的分布列为EX=3310+1+210510⨯⨯⨯=45…………………………12分 16. 如图,已知ACD AB DE ACD DE ∆⊥,//,平面是正三角形,22===AB DE AD ,且CD F 是的中点.⑴求证:BCE AF 平面//;【解析】17. 已知椭圆C 的中心在原点,焦点在x 轴上,长轴长为4,且点⎪⎪⎭⎫⎝⎛23,1在椭圆C 上.求椭圆C 的方程.【答案】1422=+y x 【解析】因为C 的焦点在x 轴上且长轴为4,故可设椭圆C 的方程为14222=+b y x (0>>b a ), 因为点⎪⎪⎭⎫ ⎝⎛23,1在椭圆C 上,所以143412=+b , 解得12=b ,所以,椭圆C 的方程为1422=+y x . 18. 已知函数()32=3 1.f x x x +++讨论()f x 的单调性.【答案】(1)-∞1,)+∞11) 【解析】请考生在第19、20、21三题中任选一题做答,如果多做,则按所做的第一题记分.19. 如图,在ABC ∆中,90B ∠=︒,以AB 为直径的圆O 交AC 于D ,过点D 作圆O 的切线交BC 于E ,AE 交圆O 于点F .(1)证明:E 是BC 的中点;(2)证明:AD AC AE AF ⋅=⋅. 【解析】(1)证明:连接BD ,因为AB 为O 的直径,所以BD AC ⊥. 又90B ∠=︒,所以CB 切O 于点B ,且ED 切于O 于点E ,因此EB ED =,EBD EDB ∠=∠,90CDE EDB EBD C ∠+∠=︒=∠+∠, 所以CDE C ∠=∠,得ED EC =,因此EB EC =,即E 是BC 的中点.(2)证明:连接BF ,显然BF 是Rt ABE ∆斜边上的高, 可得ABEAFB ∆∆,于是有AB AEAF AB=, 即2AB AE AF =⋅,同理可得2AB AD AC =⋅,所以AD AC AE AF ⋅=⋅. 20. 已知在直角坐标系xOy 中,圆C 的参数方程为12cos 2sin x y θθ=+⎧⎨=⎩(θ为参数).(1)以原点为极点、x 轴正半轴为极轴建立极坐标系,求圆C 的极坐标方程; (2)直线l 的坐标方程是3πθ=,且直线l 圆C 交于,A B 两点,试求弦AB 的长.【解析】21. 已知函数()|21||23|f x x x =++-. (1)求不等式()6f x ≤的解集;(2)若关于x 的不等式()|1|f x a <-的解集非空,求实数a 的取值范围.【解析】(1)原不等式等价于32(21)(23)6x x x ⎧>⎪⎨⎪++-≤⎩或1322(21)(23)6x x x ⎧-≤≤⎪⎨⎪+--≤⎩或12(21)(23)6x x x ⎧<-⎪⎨⎪-+--≤⎩, 解得322x <≤或1322x -≤≤或112x -≤≤-,即不等式的解集为[]2,1-; (2)∵|21||23||(21)(23)|4x x x x ++-≥+--=, ∴|1|4a ->,∴3a <-或5a >.试题习题,尽在百度百度文库,精选试题。

艺考之路·2019高考数学考点快速过关答案

艺考之路·2019高考数学考点快速过关答案

艺考之路·考点快速过关数学参考答案第一章集合与常用逻辑用语第1课集合的概念与运算要点梳理1。

∈∉⊆、⊈=2。

{x|x∈A且x∈B}{x|x∈A或x∈B}3。

{x|x∈S且x∉A}激活思维1。

③④⑤⑥2。

⌀Z3.{(1,2)}4. 4真题演练1。

{1,8}2.{2,4,5}能力提升例1【答案】2例2【解答】由题意知A={—4,0},由A∩B=B,得B⊆A,所以B=⌀,{0},{-4}或{—4,0}.若B={-4,0},则0,—4是方程x2+2(a+1)x+a2—1=0的两个根,所以{Δ>0,a2-1=0,(-4)2+2(a+1)(-4)+a2-1=0,解得a=1;若B={0},则0是方程x2+2(a+1)x+a2—1=0的两个等根,所以{Δ=0,a2-1=0,解得a=-1;若B={-4},则-4是方程x2+2(a+1)x+a2—1=0的两个等根,所以{Δ=0,(-4)2+2(a+1)(-4)+a2-1=0,无解;若B=⌀,则Δ=4(a+1)2-4(a2—1)〈0,解得a<—1。

综上,实数a的取值范围是{a|a≤—1或a=1}.当堂反馈1.{—2}2. 3第2课四种命题和充要条件要点梳理1.若非p则非q 若q则p 若非q则非p 逆否命题否命题2.充分不必要必要不充分充要既不充分也不必要激活思维1。

若两条直线的斜率相等,则这两条直线平行若两条直线不平行,则这两条直线的斜率不相等2。

23。

(1) 充要条件 (2) 既不充分也不必要条件 (3) 必要不充分条件 (4) 充分不必要条件 4。

[0,12] 【解析】因为 p 是 q 的必要不充分条件,所以p 是q 的充分不必要条件。

又因为p :x ∈[12,1],q :x ∈[a ,a +1],所以有[12,1]⫋[a ,a +1],所以{a ≤12,a +1≥1,且两个等号不同时成立,解得0≤a ≤12.故实数a 的取值范围为[0,12]。

2019年高考数学艺术生百日冲刺专题01集合与常用逻辑测试题 含答案解析

2019年高考数学艺术生百日冲刺专题01集合与常用逻辑测试题 含答案解析

专题1集合与常用逻辑测试题命题报告:1.高频考点:集合的运算以及集合的关系,集合新定义问题以及集合与其他知识的交汇,逻辑用语重点考查四种命题的关系,充要条件的判断以及全称命题存在命题等知识。

2.考情分析:高考主要以选择题填空题形式出现,考查集合的运算以及充要条件和其它知识的交汇,题目一般属于容易题。

3.重点推荐:9题,创新题,注意灵活利用所给新定义进行求解。

一.选择题(共12小题,每一题5分)1.集合A={1,2,3},B={(x,y)|x∈A,y∈A,x+y∈A},则集合B的真子集的个数为()A.5 B.6 C.7 D.8【答案】C【解析】:B={(1,1),(1,2),(2,1)};-=:.故选:C.∴B的真子集个数为32172已知集合M=,则M∩N=()A.{x|﹣3≤x≤1} B.{x|1≤x<6} C.{x|﹣3≤x<6} D.{x|﹣2≤x≤6}【答案】:B【解析】y=x2﹣2x﹣2的对称轴为x=1;∴y=x2﹣2x﹣2在x∈(2,4)上单调递增;∴﹣2<y<6;∴M={y|﹣2<y<6},N={x|x≥1};∴M∩N={x|1≤x<6}.故选:B.3已知集合A={x|ax﹣6=0},B={x∈N|1≤log2x<2},且A∪B=B,则实数a的所有值构成的集合是()A.{2} B.{3} C.{2,3} D.{0,2,3}【答案】:D【解析】B={x∈N|2≤x<4}={2,3};∵A∪B=B;∴A⊆B;∴①若A=∅,则a=0;②若A≠∅,则;∴,或;∴a=3,或2;∴实数a所有值构成的集合为{0,2,3}.故选:D.4(2018秋•重庆期中)已知命题p:∀x∈R,x2﹣x+1>0,命题q:若a<b,则>,下列命题为真命题的是()A.p∧q B.(¬p)∧q C.(¬p)∨q D.(¬p)∨(¬q)【答案】:D【解析】命题p:∀x∈R,x2﹣x+1>0,∵x2﹣x+1=+>0恒成立,∴p是真命题;命题q:若a<b,则>,当a<0<b时,不满足>,q是假命题;∴¬q是真命题,¬q是假命题,则(¬p)∨(¬q)是真命题,D 正确.故选:D.5. (2018 •朝阳区期末)在△ABC中,“∠A=∠B“是“acosA=bcosB”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】:A6. (2018•抚州期末)下列有关命题的说法错误的有()个①若p∧q为假命题,则p、q均为假命题②命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0③对于命题p:∃x∈R,使得x2+x+1<0则:¬p:∀x∈R,均有x2+x+1≥0A.0 B.1 C.2 D.3【答案】:B【解析】①若p∧q为假命题,则p、q均为假命题,不正确,因为两个命题中,由一个是假命题,则p∧q为假命题,所以说法错误.②命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0,满足逆否命题的定义,正确;③对于命题p:∃x∈R,使得x2+x+1<0则:¬p:∀x∈R,均有x2+x+1≥0,符号命题的否定形式,正确;所以说法错误的是1个.故选:B.7(2018•金安区校级模拟)若A={x∈Z|2≤22﹣x<8},B={x∈R|log2x<1},则A∩(∁R B)中的元素有()A.0个B.1个C.2个D.3个【答案】:B【解析】A={x∈Z|2≤22﹣x<8}={x∈Z|1≤2﹣x<3}={x∈Z|﹣1<x≤1}={0,1},B={x∈R|log2x<1}={x∈R|0<x<2},则∁R B={x∈R|x≤0或x≥2},∴A∩(∁R B)={0},其中元素有1个.故选:B.8(2018•大观区校级模拟)已知全集U=R,集合,N={x|x2﹣2|x|≤0},则如图中阴影部分所表示的集合为()A.[﹣2,1)B.[﹣2,1] C.[﹣2,0)∪(1,2] D.[﹣2,0]∪[1,2]【答案】:B【解析】∵全集U=R,集合={x|x>1},N={x|x2﹣2|x|≤0}={x|或}={x|﹣2≤x≤2},∴C U M={x|x≤1},∴图中阴影部分所表示的集合为N∩(C U M)={x|﹣2≤x≤1}=[﹣2,1].故选:B.9.设集合S n={1,2,3,…,n},X⊆S n,把X的所有元素的乘积称为X的容量(若X中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X的容量是奇(偶)数,则称X为S n的奇(偶)子集,若n=3,则S n的所有偶子集的容量之和为()A.6 B.8 C.12 D.16【答案】:D【解析】由题意可知:当n=3时,S3={1,2,3},所以所有的偶子集为:∅、{2}、{1,2}、{2,3}、{1,2,3}.所以S3的所有偶子集的容量之和为0+2+2+6+6=16.故选:D.10. (2018•商丘三模)下列有四种说法:①命题:“∃x∈R,x2﹣3x+1>0”的否定是“∀x∈R,x2﹣3x+1<0”;②已知p,q为两个命题,若(¬p)∧(¬q)为假命题,则p∨q为真命题;③命题“若xy=0,则x=0且y=0”的逆否命题为真命题;④数列{a n}为等差数列,则“m+n=p+q,m,n,p,q为正整数”是“a m+a n=a p+a q”的充要条件.其中正确的个数为()A.3个B.2个C.1个D.0个【答案】:C11.(2018•嘉兴模拟)已知函数f(x)=x2+ax+b,集合A={x|f(x)≤0},集合,若A=B≠∅,则实数a的取值范围是()A.B.[﹣1,5] C.D.[﹣1,3]【思路分析】由题意可得b=,集合B可化为(x2+ax+)(x2+ax+a+)≤0,运用判别式法,解不等式即可得到所求范围.【答案】:A【解析】设集合A={x∈R|f(x)≤0}={x|x2+ax+b≤0},由f(f(x))≤,即(x2+ax+b)2+a(x2+ax+b)+b﹣≤0,②A=B≠∅,可得b=,且②为(x2+ax+)(x2+ax+a+)≤0,可得a2﹣4×≥0且a2﹣4(a+)≤0,即为,解得≤a≤5,故选:A.12.( 2018•漳州二模)“a≤0”是“关于x的方程ax+axcosx﹣sinx=0与方程sinx=0在[﹣3π,3π]上根的个数相等”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案]:A【解析】∵方程sinx=0在[﹣3π,3π]上根有7个,则方程ax+axcosx﹣sinx=0也应该有7个根,由方程ax+axcosx ﹣sinx=0得ax(1+cosx)﹣sinx=0,即ax•2cos2﹣2sin cos=2cos(axcos﹣sin)=0,则cos=0或axcos ﹣sin=0,则x除了﹣3π,﹣π,π,3π还有三个根,由axcos﹣sin=0,得axcos=sin,即ax=tan,由图象知a≤0时满足条件,且a>0时,有部分a是满足条件的,故“a≤0”是“关于x的方程ax+axcosx﹣sinx=0与方程sinx=0在[﹣3π,3π]上根的个数相等”的充分不必要条件,故选:A.(2)设命题p:“函数y=2f(x)﹣t在(﹣∞,2)上有零点”,命题q:“函数g(x)=x2+t|x﹣2|在(0,+∞)上单调递增”;若命题“p∨q”为真命题,求实数t的取值范围.【思路分析】(1)方程f(x)=2x有两等根,通过△=0,解得b;求出函数图象的对称轴.求解a,然后求解函数的解析式.(2)求出两个命题是真命题时,t的范围,利用p∨q真,转化求解即可.【解析】:(1)∵方程f(x)=2x有两等根,即ax2+(b﹣2)x=0有两等根,∴△=(b﹣2)2=0,解得b=2;∵f(x﹣1)=f(3﹣x),得,∴x=1是函数图象的对称轴.而此函数图象的对称轴是直线,∴,∴a=﹣1,故f(x)=﹣x2+2x……………………………………………(6分)(2),p真则0<t≤2;;若q真,则,∴﹣4≤t≤0;若p∨q真,则﹣4≤t≤2.……………………………………………(12分)21. (2018春•江阴市校级期中)已知集合A={x|≤0},B={x|x2﹣(m﹣1)x+m﹣2≤0}.(1)若A∪[a,b]=[﹣1,4],求实数a,b满足的条件;(2)若A∪B=A,求实数m的取值范围.【思路分析】本题涉及知识点:分式不等式和含参的一元二次不等式的解法,集合的并集运算.22. (2018•南京期末)已知命题p:指数函数f(x)=(a﹣1)x在定义域上单调递减,命题q:函数g(x)=lg(ax2﹣2x+)的定义域为R.(1)若q是真命题,求实数a的取值范围;(2)若“p∧q”为假命题“p∨q”为真命题,求实数a的取值范围.【思路分析】(1)若命题q是真命题,即函数g(x)=lg(ax2﹣2x+)的定义域为R,对a分类讨论求解;(2)求出p为真命题的a的范围,再由“p∧q”为假命题“p∨q”为真命题,可得p与q一真一假,然后利用交、并、补集的混合运算求解.【解析】:(1)若命题q是真命题,则有:①当a=0时,定义域为(﹣∞,0),不合题意.②当a≠0时,由已知可得,解得:a>,故所求实数a的取值范围为(,+∞);…………6分(2)若命题p为真命题,则0<a﹣1<1,即1<a<2,由“p∧q”为假命题“p∨q”为真命题,可得p与q一真一假.若p为真q为假,则,得到1<a≤,若p为假q为真,则,得到a≥2.综上所述,a的取值范围是1<a≤或a≥2.………………12分。

集合与常用逻辑用语-2019年高考真题和模拟题分项汇编数学(文)+Word版含解析

集合与常用逻辑用语-2019年高考真题和模拟题分项汇编数学(文)+Word版含解析

专题 集合与常用逻辑用语1.【2019年高考全国Ⅰ卷文数】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C【解析】由已知得{}1,6,7U A =ð, 所以U BA =ð{6,7}.故选C .【名师点睛】本题主要考查交集、补集的运算,根据交集、补集的定义即可求解.2.【2019年高考全国Ⅱ卷文数】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2)C .(-1,2)D .∅【答案】C【解析】由题知,(1,2)A B =-. 故选C .【名师点睛】本题主要考查交集运算,是容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.3.【2019年高考全国Ⅲ卷文数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考北京文数】已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B = A .(–1,1) B .(1,2) C .(–1,+∞)D .(1,+∞)【答案】C【解析】∵{|12},{|1}A x x B x =-<<=>, ∴(1,)AB =-+∞.故选C.【名师点睛】本题考查并集的求法,属于基础题.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =-ð.故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考天津文数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4 【答案】D 【解析】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D.【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.7.【2019年高考天津文数】设x ∈R ,则“05x <<”是“|1|1x -<”的 A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件, 即“05x <<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果. 9.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行.故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.10.【2019年高考北京文数】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】当0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数; 当()f x 为偶函数时,()()f x f x -=对任意的x 恒成立,由()cos()sin()cos sin f x x b x x b x -=-+-=-,得cos sin cos sin x b x x b x +=-, 则sin 0b x =对任意的x 恒成立, 从而0b =.故“0b =”是“()f x 为偶函数”的充分必要条件. 故选C.【名师点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.11.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB = ▲ .【答案】{1,6}【解析】由题意利用交集的定义求解交集即可. 由题意知,{1,6}AB =.【名师点睛】本题主要考查交集的运算,属于基础题.12.【辽宁省沈阳市2019届高三教学质量监测(三)数学】已知集合{(,)|2,,}A x y x y x y =+≤∈N ,则A 中元素的个数为 A .1 B .5 C .6D .无数个【答案】C【解析】由题得{(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)}A =, 所以A 中元素的个数为6. 故选C.【名师点睛】本题主要考查集合的表示和化简,意在考查学生对这些知识的理解掌握水平和分析推理能力.13.【云南省玉溪市第一中学2019届高三上学期第二次调研考试数学】命题“2000,10x x x ∃∈++<R ”的否定为A .2000,10x x x ∃∈++≥RB .2000,10x x x ∃∈++≤RC .2000,10x x x ∀∈++≥R D .2000,10x x x ∀∉++≥R【答案】C【解析】由题意得原命题的否定为2000,10x x x ∀∈++≥R .故选C.【名师点睛】本题考查含有一个量词的命题的否定,全称命题的否定是特称命题,特称命题的否定是全称命题.14.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试】已知集合{|1}A x x =<,{|31}x B x =<,则A .{}1AB x x => B .A B =RC .{|0}AB x x =<D .AB =∅【答案】C【解析】集合{|31}xB x =<,即{}0B x x =<,而{|1}A x x =<, 所以{}1A B x x =<,{}0A B x x =<.故选C.【名师点睛】本题考查集合的交集、并集运算,属于简单题.15.【北京市通州区2019届高三三模数学】已知集合{}0,1,2P =,{|2}Q x x =<,则PQ =A .{}0B .{0,1}C .{}1,2D .{0,2}【答案】B【解析】因为集合{0,1,2}P =,{|2}Q x x =<,所以{0,1}P Q =.故选B.【名师点睛】本题主要考查集合的交集运算,熟记概念即可,属于基础题型.16.【北京市昌平区2019届高三5月综合练习(二模)数学】已知全集U =R ,集合2{|1}A x x =≤,则U A =ðA .(,1)(1,)-∞-+∞B .(,1][1,)-∞-+∞C .(1,1)-D .[1,1]-【答案】A【解析】因为2{|1}A x x =≤={|11}x x -≤≤, 所以U A =ð{|1x x <-或1}x >, 表示为区间形式即(,1)(1,)-∞-+∞.故选A.【名师点睛】本题主要考查集合的表示方法,补集的定义与运算等知识,意在考查学生的转化能力和计算求解能力.17.【福建省龙岩市(漳州市)2019届高三5月月考数学】已知集合}1|{≥=x x A ,{|230}B x x =->,则AB =A .[0,)+∞B .[1,)+∞C .3,2⎛⎫+∞⎪⎝⎭D .30,2⎡⎫⎪⎢⎣⎭【答案】B【解析】因为{|230}B x x =->=}23|{>x x ,}1|{≥=x x A , 所以A B =[1,)+∞.故选B.【名师点睛】本题考查并集其运算,考查了不等式的解法,是基础题.18.【陕西省2019年高三第三次教学质量检测】设集合{|12,}A x x x =-≤≤∈N ,集合{2,3}B =,则BA 等于A .{1,0,1,2,3}-B .{0,1,2,3}C .}3,2,1{D .{2}【答案】B【解析】因为集合{|12,}{0,1,2}A x x x =-≤≤∈=N ,{2,3}B =, 所以0,1,3}2,{AB =.故选B .【名师点睛】本题主要考查了集合的表示方法,以及集合的并集运算,其中正确求解集合A ,熟练应用集合并集的运算是解答的关键,着重考查了运算与求解能力,属于基础题.19.【湖北省安陆一中2019年5月高二摸底调考数学】已知集合{0,1,2}A =,{,2}B a =,若B A ⊆,则a =A .0B .0或1C .2D .0或1或2【答案】B【解析】由B A ⊆,可知{0,2}B =或{1,2}B =, 所以0a =或1. 故选B.【名师点睛】本小题主要考查子集的概念,考查集合中元素的互异性,属于基础题. 20.【天津市第一中学2019届高三下学期第五次月考数学】设x ∈R ,则“31x <”是“1122x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】由31x <可得1x <,由1122x -<可得01x <<, 据此可知“31x <”是“1122x -<”的必要而不充分条件. 故选B .【名师点睛】本题主要考查不等式的解法,充分性与必要性的判定等知识,意在考查学生的转化能力和计算求解能力.21.【福建省龙岩市(漳州市)2019届高三5月月考数学】若1a >,则“y x a a >”是“log log a a x y >”的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由a >1,得y x a a >等价为x >y ;log log a a x y >等价为x >y >0,故“y x a a >”是“log log a a x y >”的必要不充分条件. 故选A.【名师点睛】本题主要考查充分条件和必要条件的判断,指数函数和对数函数的单调性,掌握充分条件和必要条件的定义是解决本题的关键.22.【河南省郑州市2019届高三第三次质量检测数学】“02m <<”是“方程2212x y m m+=-表示椭圆”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C【解析】方程2212x ym m +=-表示椭圆,即020022m m m m m>⎧⎪->⇒<<⎨⎪≠-⎩且1m ≠,所以“02m <<”是“方程2212x y m m+=-表示椭圆”的必要不充分条件.故选C.【名师点睛】本题考查了椭圆的概念,充分条件和必要条件的判断,容易遗漏椭圆中2m m ≠-,属于基础题.23.【四川省宜宾市2019届高三第三次诊断性考试数学】设 是空间两条直线,则“ 不平行”是“ 是异面直线”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】由 是异面直线⇒ 不平行.反之,若直线 不平行,也可能相交,不一定是异面直线. 所以“ 不平行”是“ 是异面直线”的必要不充分条件. 故选B .【名师点睛】本题考查了异面直线的性质、充分必要条件的判定方法,属于基础题.24.【北京市人大附中2019年高考信息卷(三)】设a ,b 为非零向量,则“a ∥b ”是“a 与b 方向相同”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】因为a ,b 为非零向量,所以a ∥b 时,a 与b 方向相同或相反, 因此“a ∥b ”是“a 与b 方向相同”的必要而不充分条件. 故选B .【名师点睛】本题考查充要条件和必要条件的判断,属基础题.25.【江西省名校(临川一中、南昌二中)2019届高三5月联合考试数学】已知集合{}2230,A x x x =+-≤{}2B =<,则A B =A .{}31x x -≤≤B .{}01x x ≤≤ C .{}31x x -≤< D .{}10x x -≤≤【答案】B【解析】因为{}{}31,04A x x B x x =-≤≤=≤<, 所以A B ={}01x x ≤≤.故选B.【名师点睛】本题主要考查集合的化简和交集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.26.【广东省深圳市高级中学2019届高三适应性考试(6月)数学】已知集合{|A x y ==,2{|log 1}B x x =≤,则A B =A .1{|}3x x ≤≤-B .{|01}x x <≤C .{|32}-≤≤x xD .{|2}x x ≤【答案】B【解析】由二次根式有意义的条件,可得(1)(3)0x x -+≥, 解得31x -≤≤,所以{|A x y =={|31}x x =-≤≤. 由对数函数的性质可得22log log 2x ≤, 解得02x <≤,所以2{|log 1}B x x =≤{|02}x x =<≤, 所以AB ={|01}x x <≤.故选B .【名师点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质是求满足属于集合A 且属于集合B 的元素的集合.27.【山东省烟台市2019届高三5月适应性练习(二)数学】设集合{|A x y ==,{|2,x B y y ==3}x ≤,则集合()A B =R I ðA .}3|{<x xB .{|3}x x ≤C .{|03}x x <<D .{|03}x x <≤ 【答案】C【解析】因为{}{|3A x y x x ===≥,所以{}3A x x =<R ð,又{}{}|2,3|08xB y y x y y ==≤=<≤,所以(){}03A B x x =<<R ð.故选C .【名师点睛】本题考查了集合的交集运算、补集运算,正确求出函数3-=x y 的定义域,函数2,3x y x =≤的值域是解题的关键.28.【辽宁省沈阳市2019届高三教学质量监测(三)】“k =:(2)l y k x =+与圆221x y +=相切”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】因为直线:(2)l y k x =+与圆221x y +=相切,1,=则3k =±.所以“3k =”是“直线:(2)l y k x =+与圆221x y +=相切”的充分不必要条件. 故选A. 【名师点睛】本题主要考查直线和圆的位置关系和充分不必要条件的判定,意在考查学生对这些知识的理解掌握水平和分析推理能力.29.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)数学】已知等差数列{}n a 的首项为1a ,公差0d ≠,则“139,,a a a 成等比数列” 是“1a d =”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】若139,,a a a 成等比数列,则2319a a a =,即2111(2)(8)a d a a d +=+,变形可得1a d =, 则“139,,a a a 成等比数列”是“1a d =”的充分条件;若1a d =,则3123a a d d =+=,9189a a d d =+=,则有2319a a a =,则“139,,a a a 成等比数列”是“1a d =”的必要条件.综合可得:“139,,a a a 成等比数列”是“1a d =”的充要条件.故选C .【名师点睛】本题考查等差数列的通项公式、等比数列的性质,充分必要条件的定义与判断,属于基础题.30.【江西省新八校2019届高三第二次联考数学】若“3x >”是“x m >”的必要不充分条件,则m 的取值范围是________.【答案】(3,)+∞【解析】因为“3x >”是“x m >”的必要不充分条件,所以(),m +∞是()3,+∞的真子集,所以3m >,故答案为(3,)+∞.【名师点睛】本题考查根据必要不充分条件求参数的值,由题意得到(),m +∞是()3,+∞的真子集是解答的关键,属于基础题.31.【甘肃省酒泉市敦煌中学2019届高三一诊数学】设集合则 =__________.【答案】【解析】求解绝对值不等式 可得 ,求解函数 的值域可得 ,由交集的定义可知: .故答案为 .【名师点睛】本题主要考查绝对值不等式的解法,函数的值域,交集的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.32.【河北省衡水市2019届高三下学期第三次质量检测数学】设 为两个不同平面,直线 ,则“ ”是“ ”的__________条件.【答案】充分不必要【解析】根据题意,α,β表示两个不同的平面,直线m α⊂,当α∥β时,根据面面平行的性质定理可知,α中任何一条直线都平行于另一个平面,得 ,所以α∥β ⇒ ;当 且m α⊂时,α∥β或α与β相交,所以“ ”是“ ”的充分不必要条件.故答案为充分不必要.【名师点睛】本题主要考查了面面平行的性质定理,面面的位置关系,充分条件和必要条件定义的理解,属于基础题.33.【安徽省江淮十校2019届高三第三次联考数学】若命题“,”的否定是假命题,则实数的取值范围是__________.【答案】∞【解析】因为命题的否定是假命题,所以原命题为真命题,即不等式对恒成立,又在上为增函数,所以,即.故实数的取值范围是:∞.【名师点睛】本题考查命题否定的真假以及不等式恒成立问题,考查基本分析能力和转化求解能力,属中档题.。

2019年高考数学艺术生百日冲刺专题01集合与常用逻辑测试题 (9)

2019年高考数学艺术生百日冲刺专题01集合与常用逻辑测试题 (9)

专题9立体几何初步测试题命题报告:1. 高频考点:三视图的认识,几何体的表面积和体积的求解。

2. 考情分析:高考主要以选择题填空题形式出现,每年必考,重点考查三视图和表面积、体积的综合,与球有关的外接和内切问题。

3.重点推荐:基础卷16题,涉及数学文化题的应用,是近几年热点问题;一.选择题1. 所有棱长都为1的正四棱锥的体积是( )A 、23B 、3C 、6D 【答案】:C【解析】正四棱锥的侧棱、高、底面对角线的一半构成直角三角形,所以高为,正四棱锥的底面积为1,所以体积为,故选C.2. 将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为( )【答案】 B【解析】 先根据正视图和俯视图还原出几何体,再作其侧视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧视图为图②.3.(2018•黄山一模)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为()A. B.C. D.【答案】:B4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π答案 B解析法一(割补法)由几何体的三视图可知,该几何体是一个圆柱被截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱体从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π. 法二 (估值法)由题意知,12V 圆柱<V 几何体<V 圆柱,又V 圆柱=π×32×10=90π, ∴45π<V 几何体<90π.观察选项可知只有63π符合.5. 在棱长为a 的正方体中,P 、Q 是体对角线1A C 上的动点, 且2a PQ ,则三棱锥P-BDQ 的体积为( )A 、336aB 、318aC 、324aD 、312a【答案】:A【解析】 特殊化处理,让点Q 与C 重合,则三棱锥P-BDC 的体积为所求,因为,由三角形的相似比可得P 到底面BCD,所以3,故选A. 6. (2018•烟台一模)已知三棱锥P ﹣ABC 的所有顶点都在球O 的球面上,△ABC 是边长为的正三角形,PA ,PB ,PC 两两垂直,则球O 的体积为( )A .B .C .3πD .4【答案】:A7. 长方体的体积为V ,P 是1DD 的中点,Q 是AB 上的动点,则四面体P-CDQ 的体积是( ) A 、14V B 、16V C 、18V D 、112V【答案】:D【解析】设长方体的长、宽、高分别为AB=a ,BC=b ,1AA c ,则有V=abc ,由题意知,所以112V8. (2018•三明二模)如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,则以下四个命题中错误的是( )A.直线A1C1与AD1为异面直线B.A1C1∥平面ACD1C.BD1⊥AC D.三棱锥D1﹣ADC的体积为【答案】:D【解析】由正方体ABCD﹣A1B1C1D1的棱长为2,知:在A中,直线A1C1⊂平面A1B1C1D1,BD1⊂平面A1B1C1D1,D1∉直线A1C1,由异面直线判定定理得直线A1C1与AD1为异面直线,故A正确;在B中,∵A1C1∥AC,A1C1⊄平面ACD1,AC⊂平面ACD1,∴A1C1∥平面ACD1,故B正确;在C中,∵正方体ABCD﹣A1B1C1D1中,AC⊥BD,AC ⊥DD1,∵BD∩DD1,∴AC⊥面BDD1,∴BD1⊥AC,故C正确;在D中,三棱锥D1﹣ADC的体积:==,故D错误.故选:D.9.如图是棱长为2的正八面体(八个面都是全等的等边三角形),球O是该正八面体的内切球,则球O的表面积为()A. B. C.D.【答案】A;【解析】:由题意,该八面体的棱长为2,设球O的半径为r,=,解得r=,所以球O的表面积为:4=.故选:A.10. (2018年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)三模)棱长为2的正方体ABCD﹣A1B1C1D1中,E为棱AD中点,过点B1,且与平面A1BE平行的正方体的截面面积为()A.5 B.2C.2D.6【答案】.C11.如图,若Ω是长方体ABCD﹣A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是()A.EH∥FG B.四边形EFGH是矩形C.Ω是棱柱D.四边形EFGH可能为梯形【答案】D;【解析】:若FG不平行于EH,则FG与EH相交,交点必然在B1C1上,与EH∥B1C1矛盾,所以FG∥EH,故A正确;由EH⊥平面A1ABB1,得到EH⊥EF,可以得到四边形EFGH为矩形,故B正确;将Ω从正面看过去,就知道是一个五棱柱,故C正确;因为EFGH截去几何体EFGHB 1C1后,EH B1C1CF,所以四边形EFGH不可能为梯形,故D错误.故选:D.12.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺【答案】:A【解析】由题意,将楔体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示:沿上棱两端向底面作垂面,且使垂面与上棱垂直,则将几何体分成两个四棱锥和1个直三棱柱,则三棱柱的体积V 1=×3×2×2=6,四棱锥的体积V 2=×1×3×2=2,由三视图可知两个四棱锥大小相等,∴V=V 1+2V 2=10立方丈=10000立方尺.故选:A .二.填空题13. 正△AOB 的边长为a ,建立如图所示的直角坐标系xOy ,则它的直观图的面积是________.答案 616a 2 解析 画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图).D ′为O ′A ′的中点.易知D ′B ′=12DB (D 为OA 的中点),∴S △O ′A ′B ′=12×22S △OAB =24×34a 2=616a 2. 14. 如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,则四棱锥A 1-BB 1D 1D 的体积为 .【答案】.13【解析】由题意可知四棱锥A 1-BB 1D 1D 的底面是矩形,边长为1和2,四棱锥的高为12A 1C 1=22,则四棱锥A 1-BB 1D 1D 的体积为13×1×2×22=13.故答案为13.15. 有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________.答案 2+22解析 如图1,在直观图中,过点A 作AE ⊥BC ,垂足为E .在Rt △ABE 中,AB =1,∠ABE =45°,∴BE =22. 又四边形AECD 为矩形,AD =EC =1.∴BC =BE +EC =22+1. 由此还原为原图形如图2所示,是直角梯形A ′B ′C ′D ′.在梯形A ′B ′C ′D ′中,A ′D ′=1,B ′C ′=22+1,A ′B ′=2. ∴这块菜地的面积S =12(A ′D ′+B ′C ′)·A ′B ′=12×⎝ ⎛⎭⎪⎫1+1+22×2=2+22. 16. 《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均匀直角三角形的四面体).在如图所示的堑堵ABC ﹣A 1B 1C 1中,AA 1=AC=5,AB=3,BC=4,则阳马C 1﹣ABB 1A 1的外接球的表面积是_______。

2019年艺术生高考数学复习 考点快速过关 第一章 集合与常用逻辑用语

2019年艺术生高考数学复习 考点快速过关 第一章 集合与常用逻辑用语

第1课集合的概念与运算要点梳理1.元素与集合的关系,用或表示.集合与集合的关系,用或表示.2.交集:A∩B=.并集:A∪B=.3.补集:∁S A=.激活思维1. (必修1P9习题3改编)有下列表示:①a⊆{a};②{1}∈{1,2,3};③{a,b}⊆{b,a};④π∉Q;⑤∈R;⑥⌀⊆{1}.其中正确的是.(填序号)2. (必修1P13习题5改编)若集合A={x|x=2k-1,k∈Z},B={x|x=2k,k∈Z},则A∩B=,A∪B=.3. (必修1P13习题4改编)若集合A={(x,y)|y=-4x+6},B={(x,y)|y=5x-3},则A∩B=.4. (必修1P17习题8改编)满足{1,3}∪A={1,3,5}的集合A共有个.真题演练1. (2018·江苏卷)已知集合A={0,1,2,8},B={-1,1,6,8},那么A∩B=.2. (2018·浙江卷)已知全集U={1,2,3,4,5},若集合A={1,3},则∁U A=.能力提升例1(2018·苏州期末)已知集合A={1,2a},B={-1,1,4},且A⊆B,那么正整数a的值为.例2已知集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},且A∩B=B,求实数a的取值范围.当堂反馈1. (2018·常州期末)若集合A={-2,0,1},B={x|x2>1},则集合A∩B=.2. (2018·无锡期末)已知集合A={1,3},B={1,2,m},若A∪B=B,则实数m=.第2课四种命题和充要条件要点梳理1.记“若p则q”为原命题,则否命题为“”,逆命题为“”,逆否命题为“”.其中互为逆否命题的两个命题同真假,即等价,原命题与等价,逆命题与等价.因此,四种命题为真的个数只能是偶数.2. (1) 若p⇒q,且q p,则p是q的条件;(2) 若p q,且q⇒p,则p是q的条件;(3) 若p⇒q,且q⇒p,则p是q的条件,记作p⇔q;(4) 若p q,且q p,则p是q的条件.激活思维1. (选修2-1P8习题改编)将命题“斜率相等的两直线平行”改为“若p则q”的形式:;它的逆否命题是.2. (选修2-1P7练习改编)命题“若x<0,则x2>0”及其逆命题、否命题、逆否命题这四个命题中,正确命题的个数为.3. (选修2-1P9习题改编)从“充分不必要条件”“必要不充分条件”“充要条件”和“既不充分也不必要条件”中,选出适当的一种填空.(1) “a=0”是“函数f(x)=x2+ax(x∈R)为偶函数”的;(2) “sinα>sinβ”是“α>β”的;(3) “M>N”是“log2M>log2N”的;(4) “x-1=0”是“(x-1)(x+2)=0”的.4. (选修1-1P34习题2改编)设p:-1≤4x-3≤1,q:x2-(2a+1)x+a(a+1)≤0.若p是q的必要不充分条件,则实数a的取值范围为.真题演练1. (2018·天津卷)若x∈R,则“x3>8”是“|x|>2”的条件.2. (2017·北京卷)能够说明“设a,b,c是任意实数,若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为.能力提升例1若m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的条件.例2从“充分不必要条件”“必要不充分条件”“充要条件”和“既不充分也不必要条件”中,选出适当的一种填空.(1) “x=2kπ+π(k∈Z)”是“tan x=1”的;(2) “,”是“,”的;(3) “m<”是“一元二次方程x2+x+m=0有实数解”的.当堂反馈1.若p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,则r是q的条件,p是q 的条件.2. (2018·常州期末)命题“∃x∈[0,1],x2-1≥0”是命题.(填“真”或“假”)第3课简单的逻辑联结词、全称量词与存在量词要点梳理1.含有的命题,叫做全称命题.如“对任意实数x∈M,都有p(x)成立”简记成“”.2.含有的命题,叫做存在性命题.如“存在实数x0∈M,使p(x0)成立”简记成“”.3.简单的逻辑联结词有(符号为∨),(符号为∧),(符号为).4.命题的否定:“∀x∈M,p(x)”与“”互为否定.激活思维1. (选修2-1P13习题改编)下列命题中:①2<3或3<2;②1≤2且3≤2;③∃x∈Q,x2-8=0;④∀x∈R,x2+2>0.其中真命题的个数为.2. (选修2-1P16例题改编)命题“∀x∈R,x2+x+1>0”的否定是.3. (选修2-1P16例题改编)命题“∃x∈R,x2-x+1=0”的否定是.4. (选修1-1P24习题3改编)命题“对于函数f(x)=x2+(a∈R),存在a∈R,使得f(x)是偶函数”为命题.(填“真”或“假”)真题演练1. (2017·山东卷)已知命题p:∃x∈R,x2-x+1≥0;命题q:若a2<b2,则a<b.那么下列命题为真命题的是.(填序号)①p∧q; ②p∧q; ③p∧q; ④p∧q.2. (2017·苏州暑假测试)命题“∃x0>1,≥2”的否定是.能力提升例1已知命题p:∀x∈(0,+∞),+m-1<0;命题q:∃x∈(0,+∞),mx2+4x-1=0.若“p且q”为真命题,求实数m的取值范围.例2已知命题p:∃x0∈[1,3],x0-ln x0<m;命题q:∀x∈R,x2+2>m2.(1) 若“(p)∧q”为真命题,求实数m的取值范围;(2) 若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.当堂反馈1.已知p:≤x≤1,q:(x-a)(x-a-1)>0,若p是q的充分不必要条件,则实数a的取值范围是.2.已知命题p:∀x∈[1,2],x2≥a;命题q:∃x∈R,x2+2ax+2-a=0.若命题“p∧q”是真命题,则实数a的取值范围为.第一章集合与常用逻辑用语第1课集合的概念与运算要点梳理1. ∈∉⊆、⊈=2. {x|x∈A且x∈B}{x|x∈A或x∈B}3. {x|x∈S且x∉A}激活思维1. ③④⑤⑥2. ⌀Z3. {(1,2)}4. 4真题演练1. {1,8}2. {2,4,5}能力提升例1【答案】2例2【解答】由题意知A={-4,0},由A∩B=B,得B⊆A,所以B=⌀,{0},{-4}或{-4,0}.若B={-4,0},则0,-4是方程x2+2(a+1)x+a2-1=0的两个根,所以-解得a=1;---解得a=-1;若B={0},则0是方程x2+2(a+1)x+a2-1=0的两个等根,所以-若B={-4},则-4是方程x2+2(a+1)x+a2-1=0的两个等根,无解;所以---若B=⌀,则Δ=4(a+1)2-4(a2-1)<0,解得a<-1.综上,实数a的取值范围是{a|a≤-1或a=1}.当堂反馈1. {-2}2. 3第2课四种命题和充要条件要点梳理1.若非p则非q 若q则p 若非q则非p 逆否命题否命题2.充分不必要必要不充分充要既不充分也不必要激活思维1.若两条直线的斜率相等,则这两条直线平行若两条直线不平行,则这两条直线的斜率不相等2. 23. (1) 充要条件(2) 既不充分也不必要条件(3) 必要不充分条件(4) 充分不必要条件4.【解析】因为p是q的必要不充分条件,所以p是q的充分不必要条件.又因为p:x∈,q:x∈[a,a+1],所以有⫋[a,a+1],所以且两个等号不同时成立,解得0≤a≤.故实数a的取值范围为.真题演练1.充分不必要2. -1,-2,-3(答案不唯一)能力提升例1【答案】充分不必要【解析】若存在负数λ,使得m=λn,则m·n=λn·n=λn2<0成立;当“m·n<0”时,m与n不一定共线,所以“存在负数λ,使得m=λn”不一定成立.综上可知,“存在负数λ,使得m=λn”是“m·n<0”的充分不必要条件.例2【答案】(1) 充分不必要条件(2) 充分不必要条件(3) 必要不充分条件【解析】(1) tan x=1⇔x=+kπ,k∈Z,所以x=2kπ+,k∈Z⇒x=+kπ,k∈Z,反之不成立.(2) 因为x>2,y>2,根据不等式的性质易得x+y>4,xy>4,但反过来不一定成立,如x=,y=24.(3) 一元二次方程x2+x+m=0有实数解⇔m≤,所以m≤⇒m<,反之不成立.当堂反馈1.充要必要2.真第3课简单的逻辑联结词、全称量词与存在量词要点梳理1.全称量词∀x∈M,p(x)2.存在量词∃x0∈M,p(x0)3.或且非4.∃x∈M,p(x)激活思维1. 22.∃x∈R,x2+x+1≤03.∀x∈R,x2-x+1≠04.真真题演练1.②2.∀x>1,x2<2能力提升例1【解答】若命题p是真命题,则+m-1<0对x>0恒成立,即m-1<-对x>0恒成立.当x>0时,0<<1,所以-1<-<0,所以m-1≤-1,即m≤0.若命题q是真命题,则关于x的方程mx2+4x-1=0有正实数根.因为x>0,由mx2+4x-1=0,得m=-=--4∈[-4,+∞).因为“p且q”为真命题,所以p和q都是真命题,所以实数m的取值范围是[-4,0].例2【解答】设y=x-ln x,x∈[1,3],则y'=1-=-,当x∈[1,3]时,y'≥0,故函数y=x-ln x在x∈[1,3]为单调增函数,所以y min=1,故若p为真,则m>1.因为∀x∈R,x2+2>m2,所以m2<2,故若q为真,则-<m<.(1) 若“(p)∧q”为真,则实数m满足所以-<m≤1,即实数m的取值范围的(--,1].(2) 若“p∧q”为真命题,“p∧q”为假命题,则p,q一真一假.若p真q假,即m≥;则实数m满足-或若p假q真,即-<m≤1.则实数m满足-综上,实数m的取值范围为(-,1]∪[,+∞).当堂反馈1.【解析】因为q:(x-a)(x-a-1)>0,所以x<a或x>a+1,所以q:a≤x≤a+1.又p是q的充分不必要条件,所以解得0≤a≤,故实数a的取值范围为.2. (-∞,-2]∪{1}【解析】若p是真命题,即a≤(x2)min,x∈[1,2],所以a≤1;若q是真命题,即x2+2ax+2-a=0有解,则Δ=4a2-4(2-a)≥0,即a≥1或a≤-2.命题“p∧q”是真命题,则p是真命题,q也是真命题,故有a≤-2或a=1.。

2019年高考数学艺术生百日冲刺专题01集合与常用逻辑测试题20190307361

2019年高考数学艺术生百日冲刺专题01集合与常用逻辑测试题20190307361

专题1集合与常用逻辑测试题命题报告:1.高频考点:集合的运算以及集合的关系,集合新定义问题以及集合与其他知识的交汇,逻辑用语重点考查四种命题的关系,充要条件的判断以及全称命题存在命题等知识。

2.考情分析:高考主要以选择题填空题形式出现,考查集合的运算以及充要条件和其它知识的交汇,题目一般属于容易题。

3.重点推荐:9题,创新题,注意灵活利用所给新定义进行求解。

一.选择题(共12小题,每一题5分)1.集合A={1,2,3},B={(x,y)|x∈A,y∈A,x+y∈A},则集合B的真子集的个数为()A.5 B.6 C.7 D.8【答案】C【解析】:B={(1,1),(1,2),(2,1)};-=:.故选:C.∴B的真子集个数为32172已知集合M=,则M∩N=()A.{x|﹣3≤x≤1} B.{x|1≤x<6} C.{x|﹣3≤x<6} D.{x|﹣2≤x≤6}【答案】:B【解析】y=x2﹣2x﹣2的对称轴为x=1;∴y=x2﹣2x﹣2在x∈(2,4)上单调递增;∴﹣2<y<6;∴M={y|﹣2<y<6},N={x|x≥1};∴M∩N={x|1≤x<6}.故选:B.3已知集合A={x|ax﹣6=0},B={x∈N|1≤log2x<2},且A∪B=B,则实数a的所有值构成的集合是()A.{2} B.{3} C.{2,3} D.{0,2,3}【答案】:D【解析】B={x∈N|2≤x<4}={2,3};∵A∪B=B;∴A⊆B;∴①若A=∅,则a=0;②若A≠∅,则;∴,或;∴a=3,或2;∴实数a所有值构成的集合为{0,2,3}.故选:D.4(2018秋•重庆期中)已知命题p:∀x∈R,x2﹣x+1>0,命题q:若a<b,则>,下列命题为真命题的是()A.p∧q B.(¬p)∧q C.(¬p)∨q D.(¬p)∨(¬q)【答案】:D【解析】命题p:∀x∈R,x2﹣x+1>0,∵x2﹣x+1=+>0恒成立,∴p是真命题;命题q:若a <b,则>,当a<0<b时,不满足>,q是假命题;∴¬q是真命题,¬q是假命题,则(¬p)∨(¬q)是真命题,D正确.故选:D.5. (2018 •朝阳区期末)在△ABC中,“∠A=∠B“是“acosA=bcosB”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】:A6. (2018•抚州期末)下列有关命题的说法错误的有()个①若p∧q为假命题,则p、q均为假命题②命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0③对于命题p:∃x∈R,使得x2+x+1<0则:¬p:∀x∈R,均有x2+x+1≥0A.0 B.1 C.2 D.3【答案】:B【解析】①若p∧q为假命题,则p、q均为假命题,不正确,因为两个命题中,由一个是假命题,则p∧q 为假命题,所以说法错误.②命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0,满足逆否命题的定义,正确;③对于命题p:∃x∈R,使得x2+x+1<0则:¬p:∀x∈R,均有x2+x+1≥0,符号命题的否定形式,正确;所以说法错误的是1个.故选:B.7(2018•金安区校级模拟)若A={x∈Z|2≤22﹣x<8},B={x∈R|log2x<1},则A∩(∁R B)中的元素有()A.0个B.1个C.2个D.3个【答案】:B【解析】A={x∈Z|2≤22﹣x<8}={x∈Z|1≤2﹣x<3}={x∈Z|﹣1<x≤1}={0,1},B={x∈R|log2x<1}={x∈R|0<x<2},则∁R B={x∈R|x≤0或x≥2},∴A∩(∁R B)={0},其中元素有1个.故选:B.8(2018•大观区校级模拟)已知全集U=R,集合,N={x|x2﹣2|x|≤0},则如图中阴影部分所表示的集合为()A.[﹣2,1)B.[﹣2,1] C.[﹣2,0)∪(1,2] D.[﹣2,0]∪[1,2]【答案】:B【解析】∵全集U=R,集合={x|x>1},N={x|x2﹣2|x|≤0}={x|或}={x|﹣2≤x≤2},∴C U M={x|x≤1},∴图中阴影部分所表示的集合为N∩(C U M)={x|﹣2≤x≤1}=[﹣2,1].故选:B.9.设集合S n={1,2,3,…,n},X⊆S n,把X的所有元素的乘积称为X的容量(若X中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X的容量是奇(偶)数,则称X为S n的奇(偶)子集,若n=3,则S n的所有偶子集的容量之和为()A.6 B.8 C.12 D.16【答案】:D【解析】由题意可知:当n=3时,S3={1,2,3},所以所有的偶子集为:∅、{2}、{1,2}、{2,3}、{1,2,3}.所以S3的所有偶子集的容量之和为0+2+2+6+6=16.故选:D.10. (2018•商丘三模)下列有四种说法:①命题:“∃x∈R,x2﹣3x+1>0”的否定是“∀x∈R,x2﹣3x+1<0”;②已知p,q为两个命题,若(¬p)∧(¬q)为假命题,则p∨q为真命题;③命题“若xy=0,则x=0且y=0”的逆否命题为真命题;④数列{a n}为等差数列,则“m+n=p+q,m,n,p,q为正整数”是“a m+a n=a p+a q”的充要条件.其中正确的个数为()A.3个B.2个C.1个D.0个【答案】:C11.(2018•嘉兴模拟)已知函数f(x)=x2+ax+b,集合A={x|f(x)≤0},集合,若A=B≠∅,则实数a的取值范围是()A.B.[﹣1,5] C.D.[﹣1,3]【思路分析】由题意可得b=,集合B可化为(x2+ax+)(x2+ax+a+)≤0,运用判别式法,解不等式即可得到所求范围.【答案】:A【解析】设集合A={x∈R|f(x)≤0}={x|x2+ax+b≤0},由f(f(x))≤,即(x2+ax+b)2+a(x2+ax+b)+b﹣≤0,②A=B≠∅,可得b=,且②为(x2+ax+)(x2+ax+a+)≤0,可得a2﹣4×≥0且a2﹣4(a+)≤0,即为,解得≤a≤5,故选:A.12.( 2018•漳州二模)“a≤0”是“关于x的方程ax+axcosx﹣sinx=0与方程sinx=0在[﹣3π,3π]上根的个数相等”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案]:A【解析】∵方程sinx=0在[﹣3π,3π]上根有7个,则方程ax+axcosx﹣sinx=0也应该有7个根,由方程ax+axcosx﹣sinx=0得ax(1+cosx)﹣sinx=0,即ax•2cos2﹣2sin cos=2cos(axcos﹣sin)=0,则cos=0或axcos﹣sin=0,则x除了﹣3π,﹣π,π,3π还有三个根,由axcos﹣sin=0,得axcos=sin,即ax=tan,由图象知a≤0时满足条件,且a>0时,有部分a是满足条件的,故“a≤0”是“关于x的方程ax+axcosx﹣sinx=0与方程sinx=0在[﹣3π,3π]上根的个数相等”的充分不必要条件,故选:A.(2)设命题p:“函数y=2f(x)﹣t在(﹣∞,2)上有零点”,命题q:“函数g(x)=x2+t|x﹣2|在(0,+∞)上单调递增”;若命题“p∨q”为真命题,求实数t的取值范围.【思路分析】(1)方程f(x)=2x有两等根,通过△=0,解得b;求出函数图象的对称轴.求解a,然后求解函数的解析式.(2)求出两个命题是真命题时,t的范围,利用p∨q真,转化求解即可.【解析】:(1)∵方程f(x)=2x有两等根,即ax2+(b﹣2)x=0有两等根,∴△=(b﹣2)2=0,解得b=2;∵f(x﹣1)=f(3﹣x),得,∴x=1是函数图象的对称轴.而此函数图象的对称轴是直线,∴,∴a=﹣1,故f(x)=﹣x2+2x……………………………………………(6分)(2),p真则0<t≤2;;若q真,则,∴﹣4≤t≤0;若p∨q真,则﹣4≤t≤2.……………………………………………(12分)21. (2018春•江阴市校级期中)已知集合A={x|≤0},B={x|x2﹣(m﹣1)x+m﹣2≤0}.(1)若A∪[a,b]=[﹣1,4],求实数a,b满足的条件;(2)若A∪B=A,求实数m的取值范围.【思路分析】本题涉及知识点:分式不等式和含参的一元二次不等式的解法,集合的并集运算.22. (2018•南京期末)已知命题p:指数函数f(x)=(a﹣1)x在定义域上单调递减,命题q:函数g(x)=lg(ax2﹣2x+)的定义域为R.(1)若q是真命题,求实数a的取值范围;(2)若“p∧q”为假命题“p∨q”为真命题,求实数a的取值范围.【思路分析】(1)若命题q是真命题,即函数g(x)=lg(ax2﹣2x+)的定义域为R,对a分类讨论求解;(2)求出p为真命题的a的范围,再由“p∧q”为假命题“p∨q”为真命题,可得p与q一真一假,然后利用交、并、补集的混合运算求解.【解析】:(1)若命题q是真命题,则有:①当a=0时,定义域为(﹣∞,0),不合题意.②当a≠0时,由已知可得,解得:a>,故所求实数a的取值范围为(,+∞);…………6分(2)若命题p为真命题,则0<a﹣1<1,即1<a<2,由“p∧q”为假命题“p∨q”为真命题,可得p与q一真一假.若p为真q为假,则,得到1<a≤,若p为假q为真,则,得到a≥2.综上所述,a的取值范围是1<a≤或a≥2.………………12分。

专题01 集合与常用逻辑用语-2019年高考真题和模拟题分项汇编数学(文)(解析版)

专题01 集合与常用逻辑用语-2019年高考真题和模拟题分项汇编数学(文)(解析版)

A.2
B. 2, 3
C.1, 2,3
D.1, 2,3, 4
【答案】D
【解析】因为 A C {1, 2} ,所以 ( A C) B {1, 2,3, 4}.
故选 D. 【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结 合,即借助数轴、坐标系、韦恩图等进行运算.
故α∥β的充要条件是α内有两条相交直线与β平行.
3
故选 B.
【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观
臆断.
10.【2019 年高考北京文数】设函数 f(x)=cosx+bsinx(b 为常数),则“b=0”是“f(x)为偶函数”的
A.充分而不必要条件
D.
【答案】C 【解析】由题知, A B (1, 2) .
故选 C.
【名师点睛】本题主要考查交集运算,是容易题,注重了基础知识、基本计算能力的考查.易
错点是理解集合的概念及交集概念有误,不能借助数轴解题.
3.【2019 年高考全国Ⅲ卷文数】已知集合 A {1, 0,1, 2}, B {x | x 2 1} ,则 A B
【答案】A
【解析】∵ ðU A { 1,3} ,∴ ðU A B {1} .
故选 A.
【名师点睛】注意理解补集、交集的运算.
6.【2019 年高考天津文数】设集合 A {1,1, 2, 3, 5}, B {2, 3, 4}, C {x R |1 x 3},则 ( A C) B
故选 B.
【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到 x 的取值范围.

2019年高考数学(文):专题01-集合与常用逻辑用语(仿真押题,含答案).doc

2019年高考数学(文):专题01-集合与常用逻辑用语(仿真押题,含答案).doc

1.集合A ={x ∈N |-1<x <4}的真子集个数为( ) A .7 B .8 C .15D .16【解析】选C.A ={0,1,2,3}中有4个元素,则真子集个数为24-1=15.2.已知集合A ={x |2x 2-5x -3≤0},B ={x ∈Z |x ≤2},则A ∩B 中的元素个数为( ) A .2 B .3 C .4D .53.设集合M ={-1,1},N ={x |x 2-x <6},则下列结论正确的是( ) A .N ⊆M B .N ∩M =∅ C .M ⊆ND .M ∩N =R【解析】选C.集合M ={-1,1},N ={x |x 2-x <6}={x |-2<x <3},则M ⊆N ,故选C. 4.已知p :a <0,q :a 2>a ,则﹁p 是﹁q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解析】选B.因为﹁p :a ≥0,﹁q :0≤a ≤1,所以﹁q ⇒﹁p 且﹁p ⇒ ﹁q ,所以﹁p 是﹁q 的必要不充分条件.5.下列命题正确的是( )A .若p ∨q 为真命题,则p ∧q 为真命题B .“a >0,b >0”是“b a +ab≥2”的充要条件C .命题“若x 2-3x +2=0,则x =1或x =2”的逆否命题为“若x ≠1或x ≠2,则x 2-3x +2≠0” D .命题p :∃x ∈R ,x 2+x -1<0,则﹁p :∀x ∈R ,x 2+x -1≥0【解析】选D.若p ∨q 为真命题,则p ,q 中至少有一个为真,那么p ∧q 可能为真,也可能为假,故A 错;若a >0,b >0,则b a +ab ≥2,又当a <0,b <0时,也有b a +a b ≥2,所以“a >0,b >0”是“b a+a b≥2”的充分不必要条件,故B 错;命题“若x 2-3x +2=0,则x =1或x =2”的逆否命题为“若x ≠1且x ≠2,则x 2-3x +2≠0”,故C 错;易知D 正确.6.设集合A ={x |x >-1},B ={x ||x |≥1},则“x ∈A 且x ∉B ”成立的充要条件是( ) A .-1<x ≤1 B .x ≤1 C .x >-1D .-1<x <1【解析】选D.由题意可知,x ∈A ⇔x >-1,x ∉B ⇔-1<x <1,所以“x ∈A 且x ∉B ”成立的充要条件是-1<x <1.故选D.【答案】C16.已知命题p :“φ=π2”是“函数y =sin(x +φ)为偶函数”的充分不必要条件;命题q :∀x ∈⎝ ⎛⎭⎪⎫0,π2,sin x =12的否定为:“∃x 0∈⎝⎛⎭⎪⎫0,π2,sin x 0≠12”,则下列命题为真命题的是( )A .p ∧(綈q )B .(綈p )∧qC .(綈p )∨(綈q )D .p ∧q【答案】D17.用C (A )表示非空集合A 中的元素个数,定义A *B =⎩⎪⎨⎪⎧C A C B C A C B C BC AC BC A,若A ={x |x 2-ax -1=0,a ∈R},B ={x ||x 2+bx +1|=1,b ∈R},设S ={b |A *B =1},则C (S )等于( )A .4B .3C .2D .1【解析】因为二次方程x 2-ax -1=0满足Δ=a 2+4>0,所以C (A )=2,要使A *B =1,则C (B )=1或C (B )=3,函数f (x )=x 2+bx +1的图象与直线y =1或y =-1相切,所以b 2=0或b 2-8=0,可得b =0或b =±22,故C (S )=3.【答案】B18.以下有关命题的说法错误的是( )A .命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 2-3x +2≠0” B .“x =1”是“x 2-3x +2=0”的充分不必要条件 C .若p ∨q 为假命题,则p 、q 均为假命题D .对于命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,均有x 2+x +1>0 【解析】选项D 中綈p 应为:∀x ∈R ,均有x 2+x +1≥0.故选D. 【答案】D19.已知命题p :∃x 0∈R ,x 0-2>0,命题q :∀x ∈R,2x >x 2,则下列说法中正确的是( ) A .命题p ∨q 是假命题 B .命题p ∧q 是真命题 C .命题p ∧(綈q )是真命题D .命题p ∨(綈q )是假命题【解析】显然命题p 是真命题,又因为当x =4时,24=42,所以命题q 是假命题,所以命题p ∧(綈q )是真命题.【答案】C20.若命题“p 且q ”是假命题,“綈p ”也是假命题,则( ) A .命题“綈p 或q ”是假命题 B .命题“p 或q ”是假命题 C .命题“綈p 且q ”是真命题 D .命题“p 且綈q ”是假命题【答案】A21.定义一种新的集合运算△:A △B ={x |x ∈A ,且x ∉B },若集合A ={x |x 2-4x +3<0},B ={x |2≤x ≤4},则按运算△,B △A =( )A .{x |2<x ≤4}B .{x |3≤x ≤4}C .{x |2<x <3}D .{x |2≤x ≤4}【解析】∵A ={x |1<x <3},B ={x |2≤x ≤4},∴B △A ={x |3≤x ≤4}. 【答案】B22.下列说法中正确的是( )A .“f (0)=0”是“函数f (x )是奇函数”的充要条件B .若p :∃x 0∈R ,x 20-x 0-1>0,则綈p :∀x ∈R ,x 2-x -1<0 C .若p ∧q 为假命题,则p ,q 均为假命题D .命题“若α=π6,则sin α=12”的否命题是“若α≠π6,则sin α≠12”【解析】f (0)=0,函数f (x )不一定是奇函数,如f (x )=x 2,所以A 错误;若p :∃x 0∈R ,x 20-x 0-1>0,则綈p :∀x ∈R ,x 2-x -1≤0,所以B 错误;p ,q 只要有一个是假命题,则p ∧q 为假命题,所以C 错误;否命题是将原命题的条件和结论都否定,D 正确.【答案】D23.已知命题p :∀x ∈R,2x>0;命题q :在曲线y =cos x 上存在斜率为2的切线,则下列判断正确的是( )A .p 是假命题B .q 是真命题C .p ∧(綈q )是真命题D .(綈p )∧q 是真命题【解析】易知,命题p 是真命题,对于命题q ,y ′=-sin x ∈[-1,1],而2∉[-1,1],故命题q 为假命题,所以綈q 为真命题,p ∧(綈q )是真命题.故选C.【答案】C24.命题p :∃a ∈⎝ ⎛⎭⎪⎫-∞,-14,使得函数f (x )=⎪⎪⎪⎪⎪⎪x +a x +1在⎣⎢⎡⎦⎥⎤12,3上单调递增;命题q :函数g (x )=x +log 2x 在区间⎝ ⎛⎭⎪⎫12,+∞上无零点.则下列命题中是真命题的是( )A .綈pB .p ∧qC .(綈p )∨qD .p ∧(綈q )【答案】D25.若a ,b ∈R ,则1a 3>1b3成立的一个充分不必要条件是( )A .a <b <0B .b >aC .ab >0D .ab (a -b )<0【解析】1a 3-1b 3=b 3-a 3ab 3=b -ab 2+ab +a 2ab 3,选项A 可以推出1a 3>1b 3.故选A.【答案】A26.不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2; p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1.其中的真命题是( ) A .p 2,p 3 B .p 1,p 2 C .p 1,p 4D .p 1,p 3【答案】B27.已知集合A ={x |2x 2+3x -2<0},集合B ={x |x >a },如果“x ∈A ”是“x ∈B ”的充分不必要条件,则实数a 的取值范围是( )A .a ≤-2B .a <-2C .a >-2D .a ≥-2【解析】由2x 2+3x -2<0,解得-2<x <12,即A ={x |-2<x <12},因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A ⊆B ,所以a ≤-2,即实数a 的取值范围是a ≤-2.【答案】A28. “m <0”是“函数f (x )=m +log 2x (x ≥1)存在零点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解析】当m <0时,由图象的平移变换可知,函数f (x )必有零点;当函数f (x )有零点时,m ≤0,所以“m <0”是“函数f (x )=m +log 2x (x ≥1)存在零点”的充分不必要条件,故选A.【答案】A29.已知命题p :∃x 0∈R ,x 20-x 0+1≥0;命题q :若a <b ,则1a >1b,则下列命题中为真命题的是( ) A .p ∧q B .p ∧(綈q ) C .(綈p )∧qD .(綈p )∧(綈q )【解析】x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34>0,所以∃x 0∈R ,使x 20-x 0+1≥0成立,故p 为真命题,綈p为假命题,又易知命题q 为假命题,所以綈q 为真命题,由复合命题真假判断的真值表知p ∧(綈q )为真命题,故选B.【答案】C33.下列说法正确的是 ( )A .“若a >1,则a 2>1”的否命题是“若a >1,则a 2≤1” B .“若am 2<bm 2,则a <b ”的逆命题为真命题 C .存在x 0∈(0,+∞),使3x 0>4x 0成立 D .“若sin α≠12,则α≠π6”是真命题【解析】对于选项A ,“若a >1,则a 2>1”的否命题是“若a ≤1,则a 2≤1”,故选项A 错误;对于选项B ,“若am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,因为当m =0时,am 2=bm 2,所以逆命题为假命题,故选项B 错误;对于选项C ,由指数函数的图象知,对任意的x ∈(0,+∞),都有4x >3x,故选项C 错误;对于选项D ,“若sin α≠12,则α≠π6”的逆否命题为“若α=π6,则sin α=12”,该逆否命题为真命题,所以原命题为真命题,故选D. 【答案】D34.已知集合A ={x |x 2-x -6≤0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x≤1,则A ∩B =________.【解析】∵A ={x |x 2-x -6≤0}=[-2,3],B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x≤1=[1,+∞)∪(-∞,0),∴A ∩B =[-2,0)∪[1,3].【答案】[-2,0)∪[1,3]35.若条件p :|x +1|>2,条件q :x >a ,且綈p 是綈q 的充分不必要条件,则实数a 的取值范围是________.【解析】綈p 是綈q 的充分不必要条件等价于q 是p 的充分不必要条件,条件p :|x +1|>2即x >1或x <-3.因为条件q :x >a ,故a ≥1.【答案】a ≥136.已知命题p :∀x ∈[2,4],log 2x -a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p ∧(綈q )”是真命题,则实数a 的取值范围是________.【解析】命题p :∀x ∈[2,4],log 2x -a ≥0⇒a ≤1.命题q :∃x 0∈R ,x 20+2ax 0+2-a =0⇒a ≤-2或a ≥1,由p ∧(綈q )为真命题,得-2<a <1.【答案】-2<a <137.设集合A ={x |x 2+2x -3>0},B ={x |x 2-2ax -1≤0,a >0},若A ∩B 中恰含有一个整数,则实数a 的取值范围是________.【答案】⎣⎢⎡⎭⎪⎫34,4338.设[x ]表示不大于x 的最大整数,集合A ={x |[x ]2-2[x ]=3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪18<2x<8,则A ∩B=________.【解析】因为A ={x |[x ]2-2[x ]=3},所以[x ]=-1或3,所以-1≤x <0或3≤x <4,由B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪18<2x <8得B ={x |-3<x <3},则A ∩B ={x |-1≤x <0}. 【答案】{x |-1≤x <0}39.已知∀x ∈R ,不等式ax 2+ax +1>0恒成立,则实数a 的取值范围是________.【解析】因为不等式ax 2+ax +1>0对一切x ∈R 恒成立,当a =0时,不等式即1>0,显然满足对一切x ∈R 恒成立;当a >0时,应有Δ=a 2-4a <0,解得0<a <4.综上,0≤a <4.即实数a 的取值范围是[0,4).【答案】[0,4) 40.用C (A )表示非空集合A 中的元素个数,定义|A -B |=⎩⎪⎨⎪⎧C A C B C AC BC BC AC A <C B .若A ={1,2},B ={x ||x 2+2x -3|=a },且|A -B |=1,则a=________.【解析】由于|x 2+2x -3|=a 的根可能是2个,3个,4个,而|A -B |=1,故|x 2+2x -3|=a 只能有3个根,故a =4.【答案】441.设集合S ,T 满足∅≠S ⊆T ,若S 满足下面的条件:(i)对于∀a ,b ∈S ,都有a -b ∈S 且ab ∈S ;(ⅱ)对于∀r ∈S ,n ∈T ,都有nr ∈S ,则称S 是T 的一个理想,记作S ⊲T .现给出下列集合对:①S ={0},T =R ;②S ={偶数},T =Z ;③S =R ,T =C(C 为复数集),其中满足S ⊲T 的集合对的序号是________.【答案】①②42.已知f (x )=m (x -2m )(x +m +3),g (x )=2x-2.若同时满足条件: ①∀x ∈R ,f (x )<0或g (x )<0;②∃x ∈(-∞,-4),f (x )g (x )<0,则m 的取值范围是________.【解析】当x <1时,g (x )<0;当x >1时,g (x )>0;当x =1时,g (x )=0.m =0不符合要求. 当m >0时,根据函数f (x )和函数g (x )的单调性,一定存在区间[a ,+∞)使f (x )≥0且g (x )≥0,故m >0时不符合第①条的要求.当m <0时,如图所示,如果符合①的要求,则函数f (x )的两个零点都得小于1,如果符合第②条要求,则函数f (x )至少有一个零点小于-4,问题等价于函数f (x )有两个不相等的零点,其中较大的零点小于1,较小的零点小于-4.函数f (x )的两个零点是2m ,-(m +3),故m 满足⎩⎪⎨⎪⎧m <0,2m m +32m <-4,m +31或⎩⎪⎨⎪⎧m <0,m +32m ,2m <1,m +34,解第一个不等式组得-4<m <-2,第二个不等式组无解,故所求m 的取值范围是(-4,-2).【答案】(-4,-2)。

2019年高考数学真题分类汇编:专题(01)集合与常用逻辑用语(文科)及答案

2019年高考数学真题分类汇编:专题(01)集合与常用逻辑用语(文科)及答案

2019年高考数学真题分类汇编 专题01 集合与常用逻辑用语 文1.【2018高考新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2 【答案】D 【解析】试题分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A ∩B={8,14},故选D. 考点:集合运算【名师点睛】对集合运算问题,首项要确定集合类型,其次确定集合中元素的特征,先化简集合,若元素是离散集合,紧扣集合运算定义求解,若是连续数集,常结合数轴进行集合运算,若是抽象集合,常用文氏图法,本题是考查元素是离散的集合交集运算,是基础题.2.【2018高考重庆,文1】已知集合{1,2,3},B {1,3}A ==,则A B =( ) (A) {2} (B) {1,2} (C) {1,3} (D) {1,2,3} 【答案】C【解析】由已知及交集的定义得A B ={1,3},故选C. 【考点定位】集合的运算.【名师点睛】本题考查集合的概念和运算,本题属于基础题,注意观察的仔细. 3.【2018高考浙江,文3】设a ,b 是实数,则“0a b +>”是“0ab >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】D【解析】本题采用特殊值法:当3,1a b ==-时,0a b +>,但0ab <,故是不充分条件;当3,1a b =-=-时,0ab >,但0a b +<,故是不必要条件.所以“0a b +>”是“0ab >”的即不充分也不必要条件.故选D.【考点定位】1.充分条件、必要条件;2.不等式的性质.【名师点睛】本题主要考查充分条件和必要条件.解答本题时要根据不等式的性质,采用特殊值的方法,对充分性与必要性进行判断.本题属于容易题,重点考查学生对不等式的性质的处理以及对条件的判断. 4.【2018高考重庆,文2】“x 1=”是“2x 210x -+=”的( ) (A) 充要条件 (B) 充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件【答案】A【解析】由“x 1= ”显然能推出“2x 210x -+=”,故条件是充分的,又由“2x 210x -+=”可得10)1(2=⇒=-x x ,所以条件也是必要的,故选A.【考点定位】充要条件.【名师点睛】本题考查充要条件的概念和判断,采用推出法进行判断,本题属于基础题,注意推理的正确性. 5.【2018高考浙江,文1】已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P=( )A .[)3,4B .(]2,3C .()1,2-D .(]1,3- 【答案】A【解析】由题意得,{}|31P x x x =≥≤或,所以[3,4)PQ =,故选A.【考点定位】1.一元二次不等式的解法;2.集合的交集运算.【名师点睛】本题主要考查集合的交集运算.利用解一元二次不等式确定集合P 的范围,从而进行两个集合的交集运算.本题属于容易题,要注意不等式解的准确性.6.【2018高考天津,文1】已知全集{1,2,3,4,5,6}U =,集合{2,3,5}A =,集合{1,3,4,6}B =,则集合A U B =()ð( )(A) {3} (B) {2,5} (C) {1,4,6} (D){2,3,5} 【答案】B【解析】{2,3,5}A =,{2,5}U B =ð,则{}A 2,5U B =()ð,故选B. 【考点定位】本题主要考查集合的交集与补集运算.【名师点睛】集合是高考中的高频考点,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算. 7.【2018高考天津,文4】设x R Î,则“12x <<”是“|2|1x -<”的( )(A) 充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件 【答案】A【解析】由2112113x x x -<⇔-<-<⇔<<,可知“12x <<”是“|2|1x -<”的充分而不必要条件,故选A.【考点定位】本题主要考查不等式解法及充分条件与必要条件.【名师点睛】本题考查的知识点有两个,一是绝对值不等式的解法,与本题有关的结论是:若0a >,则()()f x a a f x a <⇔-<<,另一个是充分条件与必要条件,与本题有关的结论是:对于非空集合,A B ,若A是B 的真子集,则x A ∈是x B ∈的充分不必要条件.8.【2018高考四川,文1】设集合A ={x|-1<x <2},集合B ={x|1<x <3},则A ∪B =( )(A){x|-1<x <3} (B){x|-1<x <1} (C){x|1<x <2} (D){x|2<x <3} 【答案】A9.【2018高考山东,文1】 已知集合{}|{|24130}A x x B x x x =<<=--<,()(),则A B ⋂= ( ) (A )1,3() (B )1,4() (C )(2,3() (D )2,4()) 【答案】C【解析】因为|13B x x =<<{},所以{|24}{|13}(2,3)A B x x x x ⋂=<<⋂<<=,故选C . 【考点定位】1.集合的基本运算;2.简单不等式的解法. 【考点定位】1.集合的基本运算;2.简单不等式的解法.【名师点睛】本题考查集合的基本运算及简单不等式的解法,不等式中出现一次因式积的形式,降低了不等式求解的难度.本题属于基础题,注意基本概念的正确理解以及基本运算方法的准确性.10.【2018高考四川,文4】设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( )(A)充要条件 (B)充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件 【答案】A【解析】a >b >1时,有log 2a >log 2b >0成立,反之当log 2a >log 2b >0成立时,a >b >1也正确.选A 【考点定位】本题考查对数函数的概念和性质、充要条件等基本概念,考查学生综合运用数学知识和方法解决问题的能力.【名师点睛】判断条件的充要性,必须从“充分性”和“必要性”两个方向分别判断,同时注意涉及的相关概念和方法.本题中涉及对数函数基本性质——单调性和函数值的符号,因此可以结合对数函数的图象进行判断,从而得出结论.属于简单题.11.【2018高考陕西,文1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 【答案】A【解析】由2{|}{0,1}M x x x M ==⇒=,{|lg 0}{|01}N x x N x x =≤⇒=<≤,所以[0,1]M N =,故答案选A .【考点定位】集合间的运算.【名师点睛】1.本题考查以不等式为基础的集合间的运算,解不等式时注意原式意义的范围.2.本题属于基础题,高考常考题型,注意运算的准确性.12.【2018高考安徽,文2】设全集{}123456U =,,,,,,{}12A =,,{}234B =,,,则()U A C B =( )(A ){}1256,,, (B ){}1 (C ){}2 (D ){}1234,,, 【答案】B【解析】∵{}6,5,1=B C U ,∴()U AC B ={}1,∴选B. 【考点定位】本题主要是考查了集合的交集、补集运算.【名师点睛】在判断充分、必要条件时,考生一定要作好三个步骤:①p ⇒q 是否成立;②p q ⇒是否成立;③形成结论,本题考查了考生的逻辑分析能力.13.【2018高考广东,文1】若集合{}1,1M =-,{}2,1,0N =-,则MN =( )A .{}0,1-B .{}0C .{}1D .{}1,1- 【答案】C 【解析】{}1MN =,故选C .【考点定位】集合的交集运算.【名师点晴】本题主要考查的是集合的交集运算,属于容易题.解题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.14.【2018高考山东,文5】设m R ∈,命题“若0m >,则方程20x x m +-=有实根”的逆否 (A )若方程20x x m +-=有实根,则0m > (B) 若方程20x x m +-=有实根,则0m ≤ (C) 若方程20x x m +-=没有实根,则0m > (D) 若方程20x x m +-=没有实根,则0m ≤ 【答案】D【解析】一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D . 【考点定位】 【名师点睛】本题考查15.【2018高考湖南,文3】设x ∈R ,则“x >1”是“2x >1”的( ) A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 【答案】C【解析】由题易知“x >1”可以推得“2x >1”, “2x >1”不一定得到“x >1”,所以“x >1”是“2x >1”的充分不必要条件,故选A. 【考点定位】充要关系【名师点睛】判断充分条件和必要条件的方法 (1)设“若p ,则q”为原 ①原 ②原 ③原 ④原(2)集合判断法:从集合的观点看,建立 ①若A ⊆B ,则p 是q 的充分条件;若时,则p 是q 的充分不必要条件;②若B ⊆A ,则p 是q 的必要条件;若时,则p 是q 的必要不充分条件;③若A ⊆B 且B ⊆A ,即A =B 时,则p 是q 的充要条件. (3)等价转化法:p 是q 的什么条件等价于綈q 是綈p 的什么条件.16.【2018高考福建,文2】若集合{}22M x x =-≤<,{}0,1,2N =,则M N 等于( )A .{}0B .{}1C .{}0,1,2D {}0,1 【答案】D【解析】由交集定义得{}0,1MN =,故选D .【考点定位】集合的运算.【名师点睛】本题考查集合的交集运算,理解交集的含义是正确解答的前提,属于基础题. 17.【2018高考湖北,文3】命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( )A .0(0,)x ∃∈+∞,00ln 1x x ≠-B .0(0,)x ∃∉+∞,00ln 1x x =-C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-【答案】C .【解析】由特称命题的否定为全称命题可知,所求命题的否定为(0,)x ∀∈+∞,ln 1x x ≠-,故应选C . 【考点定位】本题考查特称 【名师点睛】本题主要考查特称18.【2018高考北京,文1】若集合{}52x x A =-<<,{}33x x B =-<<,则AB =( )A .{}32x x -<< B .{}52x x -<< C .{}33x x -<< D .{}53x x -<< 【答案】A【解析】在数轴上将集合A ,B 表示出来,如图所示,由交集的定义可得,AB 为图中阴影部分,即{}32x x -<<,故选A.【考点定位】集合的交集运算.【名师点晴】本题主要考查的是集合的交集运算,属于容易题.解题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误. 19.【2018高考安徽,文3】设p :x<3,q :-1<x<3,则p 是q 成立的( ) (A )充分必要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 【答案】C【解析】∵3: x p ,31: x q -∴p q ⇒,但p ⇒/q ,∴p 是q 成立的必要不充分条件,故选C. 【考点定位】本题主要考查充分、必要条件的判断.【名师点睛】在判断充分、必要条件时,考生一定要作好三个步骤:①p ⇒q 是否成立;②p q ⇒是否成立;③形成结论,本题考查了考生的逻辑分析能力.20.【2018高考湖南,文11】已知集合U={}1,2,3,4,A={}1,3,B={}1,3,4,则A (U B ð)=_____.【答案】{1,2,3}.【解析】由题U B ð={2},所以A (U B ð)={1,2,3}.【考点定位】集合的运算【名师点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 或不属于集合B 的元素的集合. 本题需注意检验集合的元素是否满足互异性,否则容易出错.21.【2018高考上海,文2】设全集R =U .若集合}4,3,2,1{=A ,}32|{<≤=x x B ,则=)(B C A U .【答案】}4,1{【解析】因为}32|{<≤=x x B ,所以2|{<=x x B C U 或}3≥x ,又因为}4,3,2,1{=A , 所以}4,1{)(=B C A U . 【考点定位】集合的运算.【名师点睛】先求B C U ,再求)(B C A U .集合的运算是容易题,应注意用描述法表示集合应注意端点值是否取号.【2018高考上海,文15】设1z 、C ∈2z ,则“1z 、2z 均为实数”是“21z z -是实数”的( ). A. 充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件 【答案】A【考点定位】复数的概念,充分条件、必要条件的判定.【名师点睛】判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ,二是由条件q 能否推得条件p.对于带有否定性的。

2019年高考数学艺术生百日冲刺 专题01集合与常用逻辑测试题-有答案解析

2019年高考数学艺术生百日冲刺  专题01集合与常用逻辑测试题-有答案解析

专题1集合与常用逻辑测试题命题报告:1.高频考点:集合的运算以及集合的关系,集合新定义问题以及集合与其他知识的交汇,逻辑用语重点考查四种命题的关系,充要条件的判断以及全称命题存在命题等知识。

2.考情分析:高考主要以选择题填空题形式出现,考查集合的运算以及充要条件和其它知识的交汇,题目一般属于容易题。

3.重点推荐:9题,创新题,注意灵活利用所给新定义进行求解。

一.选择题(共12小题,每一题5分)1.集合A={1,2,3},B={(x,y)|x∈A,y∈A,x+y∈A},则集合B的真子集的个数为()A.5 B.6 C.7 D.8【答案】C【解析】:B={(1,1),(1,2),(2,1)};-=:.故选:C.∴B的真子集个数为32172已知集合M=,则M∩N=()A.{x|﹣3≤x≤1} B.{x|1≤x<6} C.{x|﹣3≤x<6} D.{x|﹣2≤x≤6}【答案】:B【解析】y=x2﹣2x﹣2的对称轴为x=1;∴y=x2﹣2x﹣2在x∈(2,4)上单调递增;∴﹣2<y<6;∴M={y|﹣2<y<6},N={x|x≥1};∴M∩N={x|1≤x<6}.故选:B.3已知集合A={x|ax﹣6=0},B={x∈N|1≤log2x<2},且A∪B=B,则实数a的所有值构成的集合是()A.{2} B.{3} C.{2,3} D.{0,2,3}【答案】:D【解析】B={x∈N|2≤x<4}={2,3};∵A∪B=B;∴A⊆B;∴①若A=∅,则a=0;②若A≠∅,则;∴,或;∴a=3,或2;∴实数a所有值构成的集合为{0,2,3}.故选:D.4(2018秋•重庆期中)已知命题p:∀x∈R,x2﹣x+1>0,命题q:若a<b,则>,下列命题为真命题的是()A.p∧q B.(¬p)∧q C.(¬p)∨q D.(¬p)∨(¬q)【答案】:D【解析】命题p:∀x∈R,x2﹣x+1>0,∵x2﹣x+1=+>0恒成立,∴p是真命题;命题q:若a<b,则>,当a<0<b时,不满足>,q是假命题;∴¬q是真命题,¬q是假命题,则(¬p)∨(¬q)是真命题,D正确.故选:D.5. (2018 •朝阳区期末)在△ABC中,“∠A=∠B“是“acosA=bcosB”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】:A6. (2018•抚州期末)下列有关命题的说法错误的有()个①若p∧q为假命题,则p、q均为假命题②命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0③对于命题p:∃x∈R,使得x2+x+1<0则:¬p:∀x∈R,均有x2+x+1≥0A.0 B.1 C.2 D.3【答案】:B【解析】①若p∧q为假命题,则p、q均为假命题,不正确,因为两个命题中,由一个是假命题,则p∧q 为假命题,所以说法错误.②命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0,满足逆否命题的定义,正确;③对于命题p:∃x∈R,使得x2+x+1<0则:¬p:∀x∈R,均有x2+x+1≥0,符号命题的否定形式,正确;所以说法错误的是1个.故选:B.7(2018•金安区校级模拟)若A={x∈Z|2≤22﹣x<8},B={x∈R|log2x<1},则A∩(∁R B)中的元素有()A.0个B.1个C.2个D.3个【答案】:B【解析】A={x∈Z|2≤22﹣x<8}={x∈Z|1≤2﹣x<3}={x∈Z|﹣1<x≤1}={0,1},B={x∈R|log2x<1}={x∈R|0<x<2},则∁R B={x∈R|x≤0或x≥2},∴A∩(∁R B)={0},其中元素有1个.故选:B.8(2018•大观区校级模拟)已知全集U=R,集合,N={x|x2﹣2|x|≤0},则如图中阴影部分所表示的集合为()A.[﹣2,1)B.[﹣2,1] C.[﹣2,0)∪(1,2] D.[﹣2,0]∪[1,2]【答案】:B【解析】∵全集U=R,集合={x|x>1},N={x|x2﹣2|x|≤0}={x|或}={x|﹣2≤x≤2},∴C U M={x|x≤1},∴图中阴影部分所表示的集合为N∩(C U M)={x|﹣2≤x≤1}=[﹣2,1].故选:B.9.设集合S n={1,2,3,…,n},X⊆S n,把X的所有元素的乘积称为X的容量(若X中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X的容量是奇(偶)数,则称X为S n的奇(偶)子集,若n=3,则S n的所有偶子集的容量之和为()A.6 B.8 C.12 D.16【答案】:D【解析】由题意可知:当n=3时,S3={1,2,3},所以所有的偶子集为:∅、{2}、{1,2}、{2,3}、{1,2,3}.所以S3的所有偶子集的容量之和为0+2+2+6+6=16.故选:D.10. (2018•商丘三模)下列有四种说法:①命题:“∃x∈R,x2﹣3x+1>0”的否定是“∀x∈R,x2﹣3x+1<0”;②已知p,q为两个命题,若(¬p)∧(¬q)为假命题,则p∨q为真命题;③命题“若xy=0,则x=0且y=0”的逆否命题为真命题;④数列{a n}为等差数列,则“m+n=p+q,m,n,p,q为正整数”是“a m+a n=a p+a q”的充要条件.其中正确的个数为()A.3个B.2个C.1个D.0个【答案】:C11.(2018•嘉兴模拟)已知函数f(x)=x2+ax+b,集合A={x|f(x)≤0},集合,若A=B≠∅,则实数a的取值范围是()A.B.[﹣1,5] C.D.[﹣1,3]【思路分析】由题意可得b=,集合B可化为(x2+ax+)(x2+ax+a+)≤0,运用判别式法,解不等式即可得到所求范围.【答案】:A【解析】设集合A={x∈R|f(x)≤0}={x|x2+ax+b≤0},由f(f(x))≤,即(x2+ax+b)2+a(x2+ax+b)+b﹣≤0,②A=B≠∅,可得b=,且②为(x2+ax+)(x2+ax+a+)≤0,可得a2﹣4×≥0且a2﹣4(a+)≤0,即为,解得≤a≤5,故选:A.12.( 2018•漳州二模)“a≤0”是“关于x的方程ax+axcosx﹣sinx=0与方程sinx=0在[﹣3π,3π]上根的个数相等”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案]:A【解析】∵方程sinx=0在[﹣3π,3π]上根有7个,则方程ax+axcosx﹣sinx=0也应该有7个根,由方程ax+axcosx﹣sinx=0得ax(1+cosx)﹣sinx=0,即ax•2cos2﹣2sin cos=2cos(axcos﹣sin)=0,则cos=0或axcos﹣sin=0,则x除了﹣3π,﹣π,π,3π还有三个根,由axcos﹣sin=0,得axcos=sin,即ax=tan,由图象知a≤0时满足条件,且a>0时,有部分a是满足条件的,故“a≤0”是“关于x的方程ax+axcosx﹣sinx=0与方程sinx=0在[﹣3π,3π]上根的个数相等”的充分不必要条件,故选:A.(2)设命题p:“函数y=2f(x)﹣t在(﹣∞,2)上有零点”,命题q:“函数g(x)=x2+t|x﹣2|在(0,+∞)上单调递增”;若命题“p∨q”为真命题,求实数t的取值范围.【思路分析】(1)方程f(x)=2x有两等根,通过△=0,解得b;求出函数图象的对称轴.求解a,然后求解函数的解析式.(2)求出两个命题是真命题时,t的范围,利用p∨q真,转化求解即可.【解析】:(1)∵方程f(x)=2x有两等根,即ax2+(b﹣2)x=0有两等根,∴△=(b﹣2)2=0,解得b=2;∵f(x﹣1)=f(3﹣x),得,∴x=1是函数图象的对称轴.而此函数图象的对称轴是直线,∴,∴a=﹣1,故f(x)=﹣x2+2x……………………………………………(6分)(2),p真则0<t≤2;;若q真,则,∴﹣4≤t≤0;若p∨q真,则﹣4≤t≤2.……………………………………………(12分)21. (2018春•江阴市校级期中)已知集合A={x|≤0},B={x|x2﹣(m﹣1)x+m﹣2≤0}.(1)若A∪[a,b]=[﹣1,4],求实数a,b满足的条件;(2)若A∪B=A,求实数m的取值范围.【思路分析】本题涉及知识点:分式不等式和含参的一元二次不等式的解法,集合的并集运算.22. (2018•南京期末)已知命题p:指数函数f(x)=(a﹣1)x在定义域上单调递减,命题q:函数g(x)=lg(ax2﹣2x+)的定义域为R.(1)若q是真命题,求实数a的取值范围;(2)若“p∧q”为假命题“p∨q”为真命题,求实数a的取值范围.【思路分析】(1)若命题q是真命题,即函数g(x)=lg(ax2﹣2x+)的定义域为R,对a分类讨论求解;(2)求出p为真命题的a的范围,再由“p∧q”为假命题“p∨q”为真命题,可得p与q一真一假,然后利用交、并、补集的混合运算求解.【解析】:(1)若命题q是真命题,则有:①当a=0时,定义域为(﹣∞,0),不合题意.②当a≠0时,由已知可得,解得:a>,故所求实数a的取值范围为(,+∞);…………6分(2)若命题p为真命题,则0<a﹣1<1,即1<a<2,由“p∧q”为假命题“p∨q”为真命题,可得p与q一真一假.若p为真q为假,则,得到1<a≤,若p为假q为真,则,得到a≥2.综上所述,a的取值范围是1<a≤或a≥2.………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题1集合与常用逻辑测试题命题报告:1. 高频考点:集合的运算以及集合的关系,集合新定义问题以及集合与其他知识的交汇,逻辑用语重点考查四种命题的关系,充要条件的判断以及全称命题存在命题等知识。

2. 考情分析:高考主要以选择题填空题形式出现,考查集合的运算以及充要条件和其它知识的交汇,题目一般属于容易题。

3. 重点推荐:9题,创新题,注意灵活利用所给新定义进行求解。

一•选择题(共12小题,每一题5分)1.集合A={1 , 2, 3}, B={(x,y) |x € A, y€ A,x+y € A},则集合B的真子集的个数为()A. 5B. 6C.7D.8【答案】C【解析】:B={ (1 ,1),(1, 2), (2, 1) };• B的真子集个数为23-1=7 :. 故选:C.2已知集合M={y |y=xE (2, W=聞疗/匚1},贝y M n N=( )A. {x| - 3< x< 1}B. {x|1w x v 6}C.{x| - 3w x v 6}D.{x| - 2w x w 6}【答案】:B【解析】y=x - 2x - 2的对称轴为x=1 ;••• y=x - 2x - 2在x €( 2, 4)上单调递增;二-2 v y v 6;二M={y| -2 v y v 6}, N={x|x > 1} ; • MA N={x|1 < x v 6}.故选:B.3已知集合A={x|ax - 6=0} , B={x € N|1 < log氷v 2},且A U B=B,则实数a的所有值构成的集合是( ) A. {2} B. {3} C. {2 , 3} D. {0, 2, 3}【答案】:D【解析】B={x € N|2 w x v 4}={2 , 3} ; v A U B=B; •• A? B;.••①若A=?,贝U a=0;6②若A M ?,则日;.2二2,或2二3;. a=3,或2 ;•••实数a所有值构成的集合为3. 3.{0 , 2, 3}.故选:D.4 (2018秋?重庆期中)已知命题p: ? x€ R, x2-x+1>0,命题q:若a v b,则丄>〔,下列命题为真命题a b的是(A. p A qB. (「p) A qC. (「p)V qD.厂p)V(「q)【答案】:D【解析】命题p:? x€ R, x2- x+1 > 0,T x2- x+仁,.」+ > 0恒成立,••• p是真命题;命题q:若a2 4v b,则丄> 1,当a v 0v b时,不满足一〉丄,q是假命题;••厂q是真命题,「q是假命题,则(「p)a b a bV(「q)是真命题,D正确.故选:D.5. (2018 ?朝阳区期末)在厶ABC中,“/ A=Z B “是“ acosA=bcosB'的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】:A【解析】在三角形中〉'.*A=B7 ,'.a= b且COB AF COS B J则acgAPbcoiB咸立.若acosA=bcosEj 则根1®正罡芷理可得sinAcosA=sitLBcosBj 即丄sin2A=™sin2Bj2 2;.sin2A=sin2B;即2A=2B 或2A=7t - 2B f解得A=B 或A+B=—,2二"厶二4"是<f acosA=bcosB,J的充分不必要条件』故选:A.6. (2018?抚州期末)下列有关命题的说法错误的有()个①若p A q为假命题,则p、q均为假命题②命题“若x2- 3x+2=0则x=1 ”的逆否命题为:“若x丰1,贝U x2- 3x+2M 02 2③对于命题p: ? x€ R,使得x +x+1 v 0则:「p:? x€ R,均有x +x+1 >0A. 0B. 1C. 2D. 3【答案】:B【解析】①若p A q为假命题,则p、q均为假命题,不正确,因为两个命题中,由一个是假命题,则p A q 为假命题,所以说法错误.②命题“若x2- 3x+2=0则x=1 ”的逆否命题为:“若x丰1,则x2- 3x+2M 0,满足逆否命题的定义,正确;③对于命题p: ? x€ R,使得x2+x+1 V 0则:「p:? x€ R,均有x2+x+1 >0,符号命题的否定形式,正确;所以说法错误的是 1个. 故选:B.7 (2018?金安区校级模拟)若 A={x € Z|2 < 2“ x < 8} , B={x € R|log 2X < 1},则 A A( ?R B )中的元素有( )A . 0个B . 1个C. 2个D. 3个【答案】:B【解析】A={x € Z|2 W 2x < 8}={x € Z|1 < 2 - x < 3}={x € Z| - 1< x < 1}={0 , 1},B={x € R|log 2x < 1}={x € R|0 < x < 2},则?R B={X € R|x W 0 或 x > 2}, ••• A n ( ?R B ) ={0},其中元素有1个.故选:B .M= (y |y=—» (0<y<l )]x<0}={x| - 2 W x W 2}, j m 一+2 耳 VO• CM={x|x W 1},•图中阴影部分所表示的集合为 N n ( C U M ) ={x| - 2W x W 1}=[ - 2, 1]. 故选:B. 9.设集合S n ={1 , 2, 3,…,n } , X? S n ,把X 的所有元素的乘积称为 X 的容量(若X 中只有一个元素,则该 元素的数值即为它的容量,规定空集的容量为 0).若X 的容量是奇(偶)数,则称 X 为S n 的奇(偶)子集,若n=3,则S n 的所有偶子集的容量之和为( ) A . 6B . 8C. 12D. 16【答案】:D【解析】由题意可知:当 n=3时,S={1 , 2, 3},所以所有的偶子集为:?、{2}、{1 , 2}、{2 , 3}、{1 , 2, 3}.[-2, 0)U( 1, 2] D . [ - 2, 0] U [1 , 2]【解析】•••全集 H 二{y|尸丄,(X&1)}U=R集合 ={x|x > 1},2 N={x|x - 2|x| W 0}={x| *【答案】:B8 (2018?大观区校级模拟)已知全集 U=R 集合 :'所以S3的所有偶子集的容量之和为0+2+2+6+6=16.故选:D.10. (2018?商丘三模)下列有四种说法:2 _________________________ 2①命题:“ ? x € R, x - 3x+1 > 0” 的否定是“ ? x € R, x - 3x+1 V 0”;②已知p, q为两个命题,若(「p) A(^ q)为假命题,则p V q为真命题;③命题"若xy=0,则x=0且y=0”的逆否命题为真命题;④数列{a n}为等差数列,则“m +n=p+q, m n, p, q为正整数”是"a m+a n=a p+a q”的充要条件.其中正确的个数为()A. 3个B. 2个C. 1个D. 0个【答案】:C【解折】①命题:"抚€恥- 3x+l>0^的否定是"旳€Rp x*- Sr+1^0^故①错误“②已知"4为两个命題,若厂小A (飞)为假命题,则和6至少有f 为假命题,则"q至少有一个为真命題」则pVq为真命题正确,故②正确;③命题疗若巧=0,则汩0或y=O悴,则若可=5则浒0且冋为假命题,则命题的逆否命題为假命题,故③错误1④数列1, 1? 1; 1J1 .............. 満足数列{生}为等差数列,则型+备=色但3i+n=p+q不成立,则fb m+n=p+q^叫m pj Q为正整数"不是"九俎二生+打‘的充要条件.故④错误』故正确的是②,故选:C.11. ( 2018?嘉兴模拟)已知函数f ( x ) =x2+ax+b ,集合A={x|f ( x ) < 0},集合,若A=B^ ?,则实数a的取值范围是( )B. [ - 1 , 5]C.宀门D. [ - 1, 3]I思路分析】由题意可得b=[,集合B可化为(冷訂)("+» X0,运用判别式法,解不等式即可得到所求范围.【答案】:A【解析】设集合A={x € R|f (x) < 0}={x|x 2+ax+b w 0},由 f (f (x))< ,即(x2+ax+b) 2+a (x2+ax+b) +b- < 0,②44A=B M ?,可得b=,且②为(x?+ax+ ) (x?+ax+a+ ) < 0,4 4 4可得a2- 0 且a2- 4 (a+—)w 0,即为,解得 -< a < 5,4 4故选:A.12. ( 2018?漳州二模)"a<0” 是"关于x 的方程ax+axcosx - sinx=0 与方程sinx=0 在[-3n , 3 n ]上根的个数相等”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案]:A【解析】T方程sinx=0在[-3 n , 3 n ]上根有7个,则方程ax+axcosx - sinx=0也应该有7个根,由方程ax+axcosx - sinx=0 得ax (1+cosx) - sinx=0 , 即ax?2cos 空-2sin JL cos^=2cos K (axcos虽-sin 壬)=0,2 2 2 2 2 2则cos丄=0或axcos丄-sin —=0,贝U x除了- 3 n ,- n , n , 3 n还有三个根,由axcos丄-sin丄=0,得2 2 2 2 2axcos ' =sin二,即ax=tan ',由图象知a<0时满足条件,且a>0时,有部分a是满足条件的,故"a w0”2 2 2是"关于x的方程ax+axcosx - sinx=0与方程sinx=0在[-3 n ,3 n ]上根的个数相等”的充分不必要条件,故选:A.(2)设命题p:"函数y=2f (x) - t在(-8, 2)上有零点”,命题q:"函数g (x) =x2+t|x - 2|在(0,+R)上单调递增”;若命题“ p V q”为真命题,求实数t的取值范围.【思路分析】(1)方程f (x) =2x有两等根,通过△ =0,解得b;求出函数图象的对称轴.求解a,然后求解函数的解析式.(2)求出两个命题是真命题时,t的范围,利用p V q真,转化求解即可.【解析】:(1 )•••方程f (x) =2x有两等根,即ax2+ (b - 2) x=0有两等根, •••△ = ( b - 2) 2=0,解得b=2; ••• f (x - 1) =f (3 - x),得_ ''-,2 一丄• x=1是函数图象的对称轴.而此函数图象的对称轴是直线- a=- 1,2a 2a故 f ( x) = - X2+2X ................................. ( 6 分)( 2y=2_x也七疋2)s 2_x +2k€ (0, 2]p 真则0v t w 2;x^_t x+2t j x<2.< i ■:.U<2若q 真,则U-2t+2t<4+2t-2t ,• - 4w t w 0 ;若p V q 真,则-4w t w 2. ................................... ( 12 分)21. (2018 春?江阴市校级期中)已知集合A={x|〉’ w 0}, B={X|X2-( m- 1) x+m- 2w 0}.x-3(1 )若A U [a , b]=[ - 1, 4],求实数a, b满足的条件;(2 )若A U B=A,求实数m的取值范围.【思路分析】本题涉及知识点:分式不等式和含参的一元二次不等式的解法,集合的并集运算.【解析】:⑴ TA*|迅二(}*|-10<3打 AUE b>[-l, 4],x-3二由数形结合知"4 -l^a<3 .................................... 5分(2) '/B= {a |x* - ( nt - 1) x-hii — 2^0} = {x || (K — 1) (x — (m — 2 )) WO} - AljB=Am,二分情况讨论①H-2<1,即I<3时严乡:得l^n<3;[旷2< 1②若2=1 f 即IRF :3, Ei 中只有一个兀素1符合題意§二综上lWmV 氏 .......... 12分22. (2018?南京期末)已知命题 p :指数函数f (x ) = (a - 1) x 在定义域上单调递减,命题 q :函数g (x ) =lg ( ax 2 - 2x^—)的定义域为 R.2(1 )若q 是真命题,求实数 a 的取值范围; (2)若"p A q ”为假命题“ p V q ”为真命题,求实数a 的取值范围.【思路分析】(1)若命题q 是真命题,即函数 g (x ) =lg ( ax 2 - 2x+1)的定义域为R ,对a 分类讨论求解;2(2)求出p 为真命题的a 的范围,再由"p A q ”为假命题“ p V q ”为真命题,可得 p 与q —真一假,然后利用交、并、补集的混合运算求解. 【解析】:(1)若命题q 是真命题,则有: ①当a=0时,定义域为(-R,0),不合题意.②当a 丰0时,由已知可得,解得:a >匚,③若in -3>lj 即m>4时严2< 3 £「2>+ ・4Vjn<5故所求实数a的取值范围为(,+8); ............ 6分(2)若命题p为真命题,则0v a- 1v 1,即卩1v a v 2,由"p A q”为假命题“ p V q”为真命题,可得p与q —真一假. 若p为真q为假,则,得到1 v a w,若p为假q为真,则,得到a > 2.综上所述,a的取值范围是1v a w或a>2. ............................... 12分。

相关文档
最新文档