MOSFET 高速驱动设计

合集下载

TC4421 TC4422 9A 高速 MOSFET 驱动器 说明书

TC4421 TC4422 9A 高速 MOSFET 驱动器 说明书
5 引脚 TO-220 .................................................. 1.6W DFN ................................................................... 注 2 PDIP ............................................................ 730 mW SOIC............................................................ 750 mW

电源电流
IS


输入工作电压
VDD
4.5
注 1: 设计可确保开关时间。 2: 封装功耗取决于 PCB 板上铜焊垫的面积。 3: 测试数据仅为特征值,未经生产测试。
>1.5
60 60 30 33
0.2 55 —
— 0.025
— 1.7 — —

75 75 60 60
1.5 150 18
V 直流测试 V 直流测试 Ω IOUT = 10 mA 且 VDD = 18V Ω IOUT = 10 mA 且 VDD = 18V A VDD = 18V A 10V ≤ VDD ≤ 18V 且 TA = +25°C

注 1: 设计可确保开关时间。

V
0.8 V
+10 µA 0V ≤ VIN ≤ VDD
— 0.025
3.6 2.7
V 直流测试 V 直流测试 Ω IOUT = 10 mA 且 VDD = 18V Ω IOUT = 10 mA 且 VDD = 18V

MOSFET的驱动保护电路设计

MOSFET的驱动保护电路设计

摘要:率场效应晶体管由于具有诸多优点而得到广泛的应用;但它承受短时过载的能力较弱,使其应用受到一定的限制。

分析了二极管器件驱动与保护电路的设计要求;计算了MOSFET驱动器的功耗及MOSFET驱动器与MOSFET的匹配;设计了基于IR2130驱动模块的MOSFET驱动保护电路。

该电路具有结构简单,实用性强,响应速度快等特点。

在驱动无刷直流电机的应用中证明,该电路驱动能力及保护功能效果良好。

功率场效应晶体管(Power MOSFET)是一种多数载流子导电的单极型电压控制器件,具有开关速度快、高频性能好、输入阻抗高、噪声小、驱动功率小、动态范围大、无二次击穿现象和安全工作区域(SOA)宽等优点,因此,在高性能的开关电源、斩波电源及电机控制的各种交流变频电源中获得越来越多的应用。

但相比于绝缘栅双极型晶体管IGBT或大功率双极型晶体管GTR等,MOSFET管具有较弱的承受短时过载能力,因而其实际使用受到一定的限制。

如何设计出可靠和合理的驱动与保护电路,对于充分发挥MOSFET 功率管的优点,起着至关重要的作用,也是有效利用MOSFET管的前提和关键。

文中用IR2130驱动模块为核心,设计了功率MOSFET驱动保护电路应用与无刷直流电机控制系统中,同时也阐述了本电路各个部分的设计要求。

该设计使系统功率驱动部分的可靠性大大的提高。

1 功率MOSFET保护电路设计功率场效应管自身拥有众多优点,但是MOSFET管具有较脆弱的承受短时过载能力,特别是在高频的应用场合,所以在应用功率MOSFET对必须为其设计合理的保护电路来提高器件的可靠性。

功率MOSFET保护电路主要有以下几个方面:1)防止栅极 di/dt过高:由于采用驱动芯片,其输出阻抗较低,直接驱动功率管会引起驱动的功率管快速的开通和关断,有可能造成功率管漏源极间的电压震荡,或者有可能造成功率管遭受过高的di/dt 而引起误导通。

为避免上述现象的发生,通常在MOS驱动器的输出与MOS管的栅极之间串联一个电阻,电阻的大小一般选取几十欧姆。

IR2110驱动电路设计

IR2110驱动电路设计

3 IR2110驱动电路设计
IR2110是一种高压高速功率MOSFET 驱动器,有独立的高端和低端输出驱动通道,其内部 功能原理框图如图1所示。

它包括输入/输出逻辑电路、电平移位电路、输出驱动电路欠压保护和自举电路等部分。

各引出端功能分别是:1端(LO)是低通道输出;2端(COM)是公共端;);3端(VCC)是低端固定电源电压;5端(US)是高端浮置电源偏移电压;6端(UB)是高端浮置电源电压;7端(HO)是高端输出;9端(VDD)是逻辑电路电源电压;10端(HIN)是高通道逻辑输入;11端(SD)是输入有效与否的选择端,可用来过流过压保护;12端(LIN)是低通道输入;13端(VSS)是逻辑电路的地端。

如图所示:在BUCK 变换器中只需驱动单个MOEFET ,因此仅应用了IR2110的高端驱动,此时将12端(LIN)低通道输入接地、1端(LO)低通道输出悬空。

5端(US)和6端(UB)间连接一个自举电容C1,自举电容通常为1F μ和0.1F μ并联使用。

正常工作时,电源对自举电容C1的充电是在续流二级管D1的导通期间进行。

此时,MOEFET 截止,其源极电位接近地电位,,+12v 电源通过D2给C1充电,使C1上的电压接近+12v ,当MOEFET 导通而D1截止时,C1自举,D2截止,C1上存储电荷为IR2110的高端驱动输出提供电源。

实际应用中,逻辑电源VDD 接+5V ,低端固定电源电压VCC 接+12V ;对驱动电路测试时需将VS 端接地。

自举电容C1的值不能太小,否则其上的自举电压达不到12V ,驱动脉冲的幅值不够!自举电容通常为1F μ和0.1F μ并联使用或(105)1F μ。

双路高速MOSFET驱动芯片TPS2812的基本介绍

双路高速MOSFET驱动芯片TPS2812的基本介绍

双路高速MOSFET驱动芯片TPS2812的基本介绍1.基本介绍今天和大家分享一颗双路高速(MOSFET)(驱动芯片)-TPS2812的一些设计知识。

这颗(芯片)是(TI)公司的一款驱动芯片,(工业)级。

这颗芯片内部集成了一颗(LDO),最高可以支持到40V的电压,-40到125度的工作温度。

TPS2812芯片集成一颗LDO,输入电压14V到40V,可以支持两路的(信号)输入,最高可以同时控制2路MOSFET.TPS2812内部的框图是由LDO和逻辑门组成,知道这个可以在分析逻辑时,分析自己的设计输入和输出的时序图。

2.TPS2812 引脚分布:1.REG_IN: LDO调节器的输入端1IN: 输入信号1通道GND: 公共地2IN: 输入信号2通道5.2OUT: 输出信号2通道6.VCC: (电源)(供电)引脚1OUT: 输出信号1通道REG_OUT: LDO调节器的输出端3.(电路设计)注意要点:(1)在MOSFET驱动的时间上,是可以调节的,文中标注的25ns 和40ns是在1nf负载和14V供电电源的前提下,因此在不同的负载时,其上升沿和下降沿的时间是会变化的,在设计时,可以预留调节的器件位置,方便后期调整。

(2)REG_IN和REG_OUT这个LDO不使用时,可以悬空处理(这样最简单),而且在VCC输入电源是供给逻辑输入和输出的输入,在连线时,注意和REG_IN分开。

也可以利用集成的LDO进行稳定VCC电压,因为LDO的输入有小浮动波动,也会保持REG_OUT稳定在11.5V(典型值)。

(3)注意电路设计时VCC输入电压不能超过14V,而且在VCC=5V,VCC=10V,VCC=14V时,输出的电压是不同的,这个根据驱动的MOS 的VGS电压调整。

(4)在设计1OUT和2OUT输出电压时,要注意对MOSFET的VGS 电压的应用,如果输出电压不能够完全打开MOSFET,则MOSFET会急剧发热,直至烧坏MOSFET。

FAN3XXX系列高速低端MOSFET驱动器概述

FAN3XXX系列高速低端MOSFET驱动器概述

下 + 时,Q2 截止,IC2 输出的高电压使
F A N 3 X X X 系列 M O S F E T 驱动器 Q3 导通。L1 储存的能量向负载释放,经
与 P W M 控制器及功率 M O S F E T 可以组 Q3 形成回路,其工作状态如图 9 所示。
这种同步整流的
结构具有较高的
转换效率。
图 8 仅画出
值电压可达 9 A
根据选定的开关器,确定其 Q ,则利用 G
表 3 可确定需要多大电流的驱动器。
驱动器的电流参数也可用近似的计
算方法来计算,其计算公式如下:
开关导通时(输出源电流),I DVR,SRC
≥ 1.5(Q /t ) (1) G sw-on
开关关断时(输入沉电流),I DVR,SNK
之和,每通道的功耗为:
P =V × Q × f (3)
DRIVE DD

sw
式中,VDD 为驱动器的工作电压,QG
为 M O S F E T 的总栅极电荷,f 为开关 SW
频率。
按上式计算出的功耗应小于该驱动
器最大允许的功耗。
EPC
今日电子 · 2007 年 11 月
53
QG( n C)
5 10 20 50 100 200 500 1000
驱动器电流参数 *
2A
4A
3.8
7.5
38
15
75
37.5 18.8
75
37.5
150
75
375
187.5
750
375
9A**
3.3 8.3 16.7 33.3 83.3 166.7
* 在 VDD/2 时的值 **FAN3223/4/5 双驱动器在并联后,其峰

电力mosfet驱动电路特点

电力mosfet驱动电路特点

电力mosfet驱动电路特点电力MOSFET驱动电路是一种用于控制高功率MOSFET开关的电路,具有以下特点:1. 高速开关能力: 电力MOSFET驱动电路可以实现对MOSFET的快速开关,使其能够在毫秒甚至微秒的时间内完成快速开关动作。

这种高速开关能力使得电力MOSFET驱动电路在高频率开关电源、电机驱动等应用中得到广泛应用。

2. 低功耗: 电力MOSFET驱动电路采用了先进的功耗优化设计,能够在保证高性能的同时,尽量减小功耗。

这有助于提高系统的能效,减少能源消耗。

3. 高电压驱动能力: 电力MOSFET驱动电路能够提供足够的电流和电压来驱动MOSFET的栅极,保证其能够迅速切换。

这种高电压驱动能力使得电力MOSFET驱动电路适用于高电压应用场景,如电力电子装置。

4. 低输入电流: 电力MOSFET驱动电路的输入电流较低,可以通过外部逻辑电平或微控制器来控制。

这使得电力MOSFET驱动电路具有灵活性和可编程性,可以方便地集成到各种控制系统中。

5. 具有过温保护和短路保护功能: 电力MOSFET驱动电路通常具有过温保护和短路保护功能,当MOSFET温度过高或输出短路时,能够及时切断电源,以保护MOSFET和整个系统的安全运行。

6. 可靠性高: 电力MOSFET驱动电路采用了先进的保护电路和稳定的控制算法,能够有效地避免MOSFET的过压、过流等问题,提高系统的可靠性和稳定性。

7. 适应性强: 电力MOSFET驱动电路能够适应不同的电力MOSFET 器件,不同的工作条件和负载要求。

同时,电力MOSFET驱动电路还可以根据需求进行定制设计,以满足不同应用场景的需求。

总的来说,电力MOSFET驱动电路具有高速开关能力、低功耗、高电压驱动能力、低输入电流、过温保护和短路保护功能、高可靠性和适应性强等特点。

这些特点使得电力MOSFET驱动电路在各种高功率电子设备和系统中发挥着重要作用,提高了系统的性能和可靠性。

基于MOSFET的永磁同步电动机驱动电路设计

基于MOSFET的永磁同步电动机驱动电路设计

基于MOSFET的永磁同步电动机驱动电路设计永磁同步电动机(Permanent Magnet Synchronous Motor,PMSM)是一种被广泛应用于工业和消费电子领域的高性能电机。

为了实现对PMSM的精确控制,需要设计一种高效的驱动电路。

基于MOSFET的驱动电路是目前常见的PMSM驱动方案之一首先,需要理解MOSFET的工作原理。

MOSFET是一种三端器件,分别为栅极(Gate)、漏极(Drain)和源极(Source)。

通过控制栅极电压,可以调节MOSFET的导通和截止状态。

MOSFET在导通状态时能提供较低的导通电阻,从而能够实现高效的电机驱动。

设计基于MOSFET的PMSM驱动电路,首先需要将输入电源电压进行适当的转换和调节,以提供所需的直流电压。

通常,这可以通过使用整流和滤波电路来实现。

接下来,需要使用MOSFET来进行功率放大和开关控制。

为了实现对PMSM的正反转和调速控制,需要配备至少六个MOSFET,分别对应PMSM三相的A相、B相和C相。

这些MOSFET通常形成一个“桥”配置,通常称为功率电子桥。

在PMSM驱动过程中,需要根据电机的状态和所需的转速来控制MOSFET的开关状态。

为了精确控制,可以使用一种被称为PWM(Pulse Width Modulation,脉宽调制)技术。

PWM技术通过控制每个MOSFET的开关时间比例来实现对电机的精确控制。

最后,为了保护电机和驱动电路免受故障和过流的损害,通常还需要添加过流保护电路和温度保护电路。

过流保护电路可通过监测电流并在超过阈值时切断电源来实现。

温度保护电路则可监测电机或驱动电路的温度,并在温度超过一定阈值时采取相应的保护措施,例如减小电流或关闭电源。

总之,基于MOSFET的永磁同步电动机驱动电路设计是一项复杂的工程,需要根据实际需求和电机参数进行详细的设计和计算。

正确设计的驱动电路能够确保电机的稳定运行和高性能工作。

SICMOSFET驱动电路设计概述

SICMOSFET驱动电路设计概述

SICMOSFET驱动电路设计概述SICMOSFET驱动电路是一种用于驱动硅碳化(SiC)金属氧化物半导体场效应晶体管(MOSFET)的电路设计。

SiCMOSFET是一种高压、高温和高速开关设备,具有较低的开启电阻、较高的开启速度和较低的开启电压。

为了充分利用SiCMOSFET的优势,驱动电路设计需要满足以下几个方面的要求:1.功率输出:SiCMOSFET通常用于高功率应用,驱动电路需要能够提供足够的输出功率,以满足设备的需求。

在选择输出功率时,需要考虑到应用的工作频率和负载条件。

2.保护功能:驱动电路需要具备一定的保护功能,以保护SiCMOSFET 免受过压、过流、过温等不良条件的影响。

常见的保护功能包括过电流保护、过温保护和短路保护等。

3.高速开关:SiCMOSFET能够实现较高的开关速度,因此驱动电路需要具备足够的开启和关闭速度,以充分利用SiCMOSFET的高速开关特性。

4.低开启电阻:驱动电路需要具备足够的电流输出能力,以降低SiCMOSFET开启时的电阻,并提供稳定的控制信号。

驱动电路的设计通常包括输入端和输出端两个部分。

输入端是驱动电路的控制信号输入接口,通常由控制器、信号处理器和传感器等组成。

输出端是驱动电路的功率输出接口,通常由功率放大器和电源等组成。

在驱动电路的设计中,选用合适的驱动芯片是关键。

驱动芯片需要具备高速开关和保护等功能,并能够适应SiCMOSFET的特性。

常用的驱动芯片有IR2110、IR2184和ADuM4221等。

此外,在驱动电路的设计中还需要考虑到电路的布局和散热等问题。

由于SiCMOSFET的高功率特性,驱动电路需要具备良好的散热设计,以确保电路的稳定性和安全性。

总结而言,SICMOSFET驱动电路设计是一项复杂而关键的工作。

合理选择驱动芯片、考虑到功率输出和保护等要求,并进行良好的布局和散热设计,是实现高效稳定的SiCMOSFET应用的关键。

大功率SiCMOSFET驱动电路设计

大功率SiCMOSFET驱动电路设计

第40卷第3期 2020年5月核电子学与探测技术Nuclear Electronics Detection TechnologyVol.40 No. 3May.2020大功率Si C M O S F E T驱动电路设计吴凯铭i2,高大庆1#,高杰\李明睿\申万增1(1.中国科学院近代物理研究所,兰州730000;2.中国科学院大学,北京100049)摘要•.为了使强流重离子加速器装置(H IAF)碳化硅功率开关器件SiC M O SFET工作在理想状态,设计了基于SIC1182K驱动芯片的SiC M O SFET驱动电路。

对该驱动电路的输出电压、响应时间、脉宽 连续可调性、稳定性和可靠性进行实验测试,测试结果表明:该驱动电路能够长时间、稳定可靠工作,满 足SiC M O SF E T的工作需求。

关键词:加速器电源;SIC1182K;SiC M O SFET;驱动电路中图分类号:T L56 文献标志码:A文章编号:0258 —0934(2020)3 —0412 —05强流重离子加速器装置(H IA F)[1’2]是“十 二五”国家重大科学工程项目。

硅功率器件是现阶段兰州加速器电源常用的开关器件,与传 统硅器件相比,第三代半导体开关器件SiC M O SFE T有着更加卓越的高温高压工作性能。

并且SiC M O S F E T上升下降时间短、通态损耗 小等特点[3],决定了 SiC M O SF E T在达成更高 开关频率的同时,还兼备更小的功率损耗。

在 相同功率等级下,与硅器件开关电源相比,SiC M O SF E T开关电源能够凭借更高的开关频率,减小电路中电容电感体积,降低滤波成本,提高 功率密度。

器件材料的差异导致驱动电路不可 通用,驱动电路就成为SiC M O SFE T理想工作 所需解决的技术难点。

收稿日期:2020_03—02基金项目:国家自然科学基金项目(11805248)资助。

作者简介:吴凯铭(1995 —),男,福建南靖人,在读硕士生,攻读方向为加速器工程设计研究。

MOS驱动电路设计

MOS驱动电路设计

高速MOS驱动电路设计和应用指南简介MOSFET是Metal Oxide Semiconductor Field Effect Transistor的首字母缩写,它在电子工业高频、高效率开关应用中是一种重要的元件。

或许人们会感到不可思议,但是FET是在1930年,大约比双极晶体管早20年被发明出来。

第一个信号电平FET晶体管制成于二十世纪60年代末期,而功率MOSFET是在二十世纪80年代开始被运用的。

如今,成千上万的MOSFET晶体管集成在现代电子元件,从微型的到“离散”功率晶体管。

本课题的研究重点是在各种开关模型功率转换应用中栅极驱动对功率MOSFET 的要求。

场效应晶体管技术双极晶体管和场效应晶体管有着相同的工作原理。

从根本上说,,两种类型晶体管均是电荷控制元件,即它们的输出电流和控制极半导体内的电荷量成比例。

当这些器件被用作开关时,两者必须和低阻抗源极的拉电流和灌电流分开,用以为控制极电荷提供快速的注入和释放。

从这点看,MOS-FET在不断的开关,当速度可以和双极晶体管相比拟时,它被驱动的将十分的‘激烈’。

理论上讲,双极晶体管和MOSFET的开关速度是基本相同的,这取决与载流子穿过半导体所需的时间。

在功率器件的典型值为20 ~ 200皮秒,但这个时间和器件的尺寸大小有关。

与双极结型晶体管相比,MOSFET在数字技术应用和功率应用上的普及和发展得益于它的两个优点。

优点之一就是在高频率开关应用中MOSFET使用比较方便。

MOSFET更加容易被驱动,这是因为它的控制极和电流传导区是隔离开的,因此不需要一个持续的电流来控制。

一旦MOSFET导通后,它的驱动电流几乎为0。

另外,在MOSFET中,控制电荷的积累和存留时间也大大的减小了。

这基本解决了设计中导通电压降(和多余的控制电荷成反比)和关断时间之间的矛盾。

因此,MOSFET技术以其更加简单的、高效的驱动电路使它比晶体管设备具有更大的经济效益。

此外,有必要突出强调下,尤其是在电源应用上,MOSFET本身具有阻抗特性。

高速MOSFET栅极驱动电路的设计与应用指南

高速MOSFET栅极驱动电路的设计与应用指南

高速MOSFEMOSFET T栅极驱动电路的设计与应用指南摘要本文将展示一个用来设计高速开关应用所需的高性能栅极驱动电路的系统性方案。

它综合了各方面的信息,可一次性解决一些最常见的设计问题。

因此,各个层面的电力电子工程师都值得一读。

文中分析了一些最流行的电路方案及其性能,包括寄生元件、瞬间和极端工作条件的影响。

首先,文章对MOSFET技术和开关操作进行了大致讨论,从简单问题逐渐转向复杂问题,并详细讲述了低端和高端栅极驱动电路以及交流耦合和变压器隔离式方案的设计程序。

另外,文章还专门用一个章节的内容来讨论同步整流器应用中MOSFET的栅极驱动要求。

最后,本文还提供了多个分步骤的设计案例。

简介MOSFET,全称为金属氧化物半导体场效应晶体管,是电子产品领域各种高频高效开关应用的关键元器件。

FET技术发明于1930年,比双极晶体管还要早大约20年,这一点令人感到意外。

最早的信号级FET晶体管出现在20世纪50年代末,而功率MOSFET则是在70年代中期问世的。

如今,数百万的MOSFET 晶体管被集成到了各种电子元器件中,从微控制器到“离散式”功率晶体管。

本话题的重点在于各种开关模式电源转换应用中功率MOSFET的栅极驱动要求。

Design And Application GuideFor High Speed MOSFET Gate Drive CircuitsBy Laszlo BaloghABSTRACTThe main purpose of this paper is to demonstrate a systematic approach to design high performance gate drive circuits for high speed switching applications. It is an informative collection of topics offering a “one-stop-shopping” to solve the most common design challenges. Thus it should be of interest to power electronics engineers at all levels of experience.The most popular circuit solutions and their performance are analyzed, including the effect of parasitic components, transient and extreme operating conditions. The discussion builds from simple to more complex problems starting with an overview of MOSFET technology and switching operation. Design procedure for ground referenced and high side gate drive circuits, AC coupled and transformer isolated solutions are described in great details. A special chapter deals with the gate drive requirements of the MOSFETs in synchronous rectifier applications.Several, step-by-step numerical design examples complement the paper.INTRODUCTIONMOSFET – is an acronym for Metal Oxide Semiconductor Field Effect Transistor and it is the key component in high frequency, high efficiency switching applications across the electronics industry. It might be surprising, but FET technology was invented in 1930, some 20 years before the bipolar transistor. The first signal level FET transistors were built in the late 1950’s while power MOSFETs have been available from the mid 70’s. Today, millions of MOSFET transistors are integrated in modern electronic components, from microprocessors, through “discrete” power transistors.The focus of this topic is the gate drive requirements of the power MOSFET in various switch mode power conversion applications. MOSFET TECHNOLOGYThe bipolar and the MOSFET transistors exploit the same operating principle. Fundamentally, both type of transistors are charge controlled devices which means that their output current is proportional to the charge established in the semiconductor by the control electrode. When these devices are used as switches, both must be driven from a low impedance source capable of sourcing and sinking sufficient current to provide for fast insertion and extraction of the controlling charge. From this point of view, the MOSFETs have to be driven just as “hard” during turn-on and turn-off as a bipolar transistor to achieve comparable switching speeds. Theoretically, the switching speeds of the bipolar and MOSFET devices are close to identical, determined by the time required for the charge carriers to travel across the semiconductor region. Typical values in power devices are approximately 20 to 200 picoseconds depending on the size of the device. The popularity and proliferation of MOSFET technology for digital and power applications is driven by two of their major advantages over the bipolar junction transistors. One of these benefits is the ease of use of the MOSFET devices in high frequency switching applications. The MOSFET transistors are simpler to drive because their control electrode is isolated from the current conducting silicon, therefore a continuous ON current is not required. Once the MOSFET transistors are turned-on, their drive current is practically zero. Also, the controlling charge and accordingly the storage time in the MOSFET transistors is greatly reduced. This basically1eliminates the design trade-off between on state voltage drop – which is inversely proportional to excess control charge – and turn-off time. As a result, MOSFET technology promises to use much simpler and more efficient drive circuits with significant economic benefits compared to bipolar devices.Furthermore, it is important to highlight especially for power applications, that MOSFETs have a resistive nature. The voltage drop across the drain source terminals of a MOSFET is a linear function of the current flowing in the semiconductor. This linear relationship is characterized by the R DS(on) of the MOSFET and known as the on-resistance. On-resistance is constant for a given gate-to-source voltage and temperature of the device. As opposed to the -2.2mV/°C temperature coefficient of a p-n junction, the MOSFETs exhibit a positive temperature coefficient of approximately 0.7%/°C to 1%/°C. This positive temperature coefficient of the MOSFET makes it an ideal candidate for parallel operation in higher power applications where using a single device would not be practical or possible. Due to the positive TC of the channel resistance, parallel connected MOSFETs tend to share the current evenly among themselves. This current sharing works automatically in MOSFETs since the positive TC acts as a slow negative feedback system. The device carrying a higher current will heat up more – don’t forget that the drain to source voltages are equal – and the higher temperature will increase its R DS(on) value. The increasing resistance will cause the current to decrease, therefore the temperature to drop. Eventually, an equilibrium is reached where the parallel connected devices carry similar current levels. Initial tolerance in R DS(on) values and different junction to ambient thermal resistances can cause significant – up to 30% – error in current distribution.Device typesAlmost all manufacturers have got their unique twist on how to manufacture the best power MOSFETs, but all of these devices on the market can be categorized into three basic device types. These are illustrated in Figure 1.Figure 1. Power MOSFET device types Double-diffused MOS transistors were introduced in the 1970’s for power applications and evolved continuously during the years. Using polycrystalline silicon gate structures and self-aligning processes, higher density integration and rapid reduction in capacitances became possible. The next significant advancement was offered by the V-groove or trench technology to further increase cell density in power MOSFET devices. The better performance and denser integration don’t come free however, as trench MOS devices are more difficult to manufacture.The third device type to be mentioned here is the lateral power MOSFETs. This device type is constrained in voltage and current rating due to its inefficient utilization of the chip geometry. Nevertheless, they can provide significant benefits in low voltage applications, like in microprocessor power supplies or as synchronous rectifiers in isolated converters.2The lateral power MOSFETs have significantly lower capacitances, therefore they can switch much faster and they require much less gate drive power.MOSFET ModelsThere are numerous models available to illustrate how the MOSFET works, nevertheless finding the right representation might be difficult. Mostof the MOSFET manufacturers provide Spice and/or Saber models for their devices, but these models say very little about the application traps designers have to face in practice. They provide even fewer clues how to solve the most common design challenges.A really useful MOSFET model which would describe all important properties of the device from an application point of view would be very complicated. On the other hand, very simple and meaningful models can be derived of the MOSFET transistor if we limit the applicabilityof the model to certain problem areas.The first model in Figure 2 is based on the actual structure of the MOSFET device and can be used mainly for DC analysis. The MOSFET symbol in Figure 2a represents the channel resistance and the JFET corresponds to the resistance of the epitaxial layer. The length, thus the resistance of the epi layer is a function of the voltage rating of the device as high voltage MOSFETs require thicker epitaxial layer.Figure 2b can be used very effectively to model the dv/dt induced breakdown characteristic of a MOSFET. It shows both main breakdown mechanisms, namely the dv/dt induced turn-on of the parasitic bipolar transistor - present in all power MOSFETs - and the dv/dt induced turn-onof the channel as a function of the gate terminating impedance. Modern power MOSFETs are practically immune to dv/dt triggering of the parasitic npn transistor due to manufacturing improvements to reduce the resistance between the base and emitter regions.It must be mentioned also that the parasitic bipolar transistor plays another important role. Its base – collector junction is the famous body diode of the MOSFET.Figure 2. Power MOSFET models34Figure 2c is the switching model of the MOSFET. The most important parasitic components influencing switching performance are shown in this model. Their respective roles will be discussed in the next chapter which is dedicated to the switching procedure of the device.MOSFET Critical ParametersWhen switch mode operation of the MOSFET is considered, the goal is to switch between the lowest and highest resistance states of the device in the shortest possible time. Since the practical switching times of the MOSFETs (~10ns to 60ns) is at least two to three orders of magnitude longer than the theoretical switching time (~50ps to 200ps), it seems important to understand the discrepancy. Referring back to the MOSFET models in Figure 2, note that all models include three capacitors connected between the three terminals of the device. Ultimately, the switching performance of the MOSFET transistor is determined by how quickly the voltages can be changed across these capacitors.Therefore, in high speed switching applications, the most important parameters are the parasitic capacitances of the device. Two of these capacitors, the C GS and C GD capacitors correspond to the actual geometry of the device while the C DS capacitor is the capacitance of the base collector diode of the parasitic bipolar transistor (body diode).The C GS capacitor is formed by the overlap of the source and channel region by the gate electrode. Its value is defined by the actual geometry of the regions and stays constant (linear) under different operating conditions.The C GD capacitor is the result of two effects. Part of it is the overlap of the JFET region and the gate electrode in addition to the capacitance of the depletion region which is non-linear. The equivalent C GD capacitance is a function of the drain source voltage of the device approximated by the following formula:DS1GD,0GD V K 1C C ⋅+≈The C DS capacitor is also non-linear since it is the junction capacitance of the body diode. Its voltage dependence can be described as:DS 2DS,0DS V K C C ⋅≈Unfortunately, non of the above mentioned capacitance values are defined directly in the transistor data sheets. Their values are given indirectly by the C ISS , C RSS , and C OSS capacitor values and must be calculated as: RSSOSS DS RSS ISS GS RSSGD C C C C C C C C −=−== Further complication is caused by the C GD capacitor in switching applications because it is placed in the feedback path between the input and output of the device. Accordingly, its effective value in switching applications can be much larger depending on the drain source voltage of the MOSFET. This phenomenon is called the “Miller” effect and it can be expressed as:()GD L fs eqv GD,C R g 1C ⋅⋅+=Since the C GD and C DS capacitors are voltage dependent, the data sheet numbers are valid only at the test conditions listed. The relevant average capacitances for a certain application have to be calculated based on the required charge to establish the actual voltage change across the capacitors. For most power MOSFETs the following approximations can be useful: offDS,spec DS,spec OSS,ave OSS,off DS,spec DS,spec RSS,ave GD,V V C 2C V V C 2C ⋅⋅=⋅⋅=The next important parameter to mention is the gate mesh resistance, R G,I . This parasitic resistance describes the resistance associated by the gate signal distribution within the device. Its importance is very significant in high speed switching applications because it is in between the driver and the input capacitor of the device, directly impeding the switching times and the5dv/dt immunity of the MOSFET. This effect is recognized in the industry, where real high speed devices like RF MOSFET transistors use metal gate electrodes instead of the higher resistance polysilicon gate mesh for gate signal distribution. The R G,I resistance is not specified in the data sheets, but in certain applications it can be a very important characteristic of the device. In the back of this paper, Appendix A4 shows a typical measurement setup to determine the internal gate resistor value with an impedance bridge.Obviously, the gate threshold voltage is also a critical characteristic. It is important to note that the data sheet V TH value is defined at 25°C and at a very low current, typically at 250μA. Therefore, it is not equal to the Miller plateau region of the commonly known gate switching waveform. Another rarely mentioned fact about V TH is its approximately –7mV/°C temperature coefficient. It has particular significance in gate drive circuits designed for logic level MOSFET where V TH is already low under the usual test conditions. Since MOSFETs usually operate at elevated temperatures, proper gate drive design must account for the lower V TH when turn-off time, and dv/dt immunity is calculated as shown in Appendix A and F.The transconductance of the MOSFET is its small signal gain in the linear region of its operation. It is important to point out that every time the MOSFET is turned-on or turned-off, it must go through its linear operating mode where the current is determined by the gate-to-source voltage. The transconductance, g fs , is the small signal relationship between drain current and gate-to-source voltage:GSD fs dV dI g =Accordingly, the maximum current of the MOSFET in the linear region is given by: ()fs th GS D g V V I ⋅−=Rearranging this equation for V GS yields the approximate value of the Miller plateau as a function of the drain current.fs D th Miller GS,g IV V +=Other important parameters like the source inductance (L S ) and drain inductance (L D ) exhibit significant restrictions in switching performance. Typical L S and L D values are listed in the data sheets, and they are mainly dependant on the package type of the transistor. Their effects can be investigated together with the external parasitic components usually associated with layout and with accompanying external circuit elements like leakage inductance, a current sense resistor, etc.For completeness, the external series gate resistor and the MOSFET driver’s output impedance must be mentioned as determining factors in high performance gate drive designs as they have a profound effect on switching speeds and consequently on switching losses.SWITCHING APPLICATIONSNow, that all the players are identified, let’s investigate the actual switching behavior of the MOSFET transistors. To gain a better understanding of the fundamental procedure, the parasitic inductances of the circuit will be neglected. Later their respective effects on the basic operation will be analyzed individually. Furthermore, the following descriptions relate to clamped inductive switching because most MOSFET transistors and high speed gate drive circuits used in switch mode power supplies work in that operating mode.Figure 3. Simplified clamped inductive switchingmodelThe simplest model of clamped inductive switching is shown in Figure 3, where the DC current source represents the inductor. Its current can be considered constant during the short switching interval. The diode provides a path for the current during the off time of the MOSFET and clamps the drain terminal of the device to the output voltage symbolized by the battery.Turn-On procedureThe turn-on event of the MOSFET transistor can be divided into four intervals as depicted in Figure 4.Figure 4. MOSFET turn-on time intervalsIn the first step the input capacitance of the device is charged from 0V to V TH. During this interval most of the gate current is charging the C GS capacitor. A small current is flowing through the C GD capacitor too. As the voltage increases at the gate terminal and the C GD capacitor’s voltage has to be slightly reduced. This period is called the turn-on delay, because both the drain current and the drain voltage of the device remain unchanged.Once the gate is charged to the threshold level, the MOSFET is ready to carry current. In the second interval the gate is rising from V TH to the Miller plateau level, V GS,Miller. This is the linear operation of the device when current is proportional to the gate voltage. On the gate side, current is flowing into the C GS and C GD capacitors just like in the first time interval and the V GS voltage is increasing. On the output side of the device, the drain current is increasing, while the drain-to-source voltage stays at the previous level (V DS,OFF). This can be understood looking at the schematic in Figure 3. Until all the current is transferred into the MOSFET and the diode is turned-off completely to be able to block reverse voltage across its pn junction, the drain voltage must stay at the output voltage level. Entering into the third period of the turn-on procedure the gate is already charged to the sufficient voltage (V GS,Miller) to carry the entire load current and the rectifier diode is turned off. That now allows the drain voltage to fall. While the drain voltage falls across the device, the gate-to-source voltage stays steady. This is the Miller plateau region in the gate voltage waveform. All the gate current available from the driver is diverted to discharge the C GD capacitor to facilitate the rapid voltage change across the drain-to-source terminals. The drain current of the device stays constant since it is now limited by the external circuitry, i.e. the DC current source.The last step of the turn-on is to fully enhance the conducting channel of the MOSFET by applying a higher gate drive voltage. The final amplitude of V GS determines the ultimate on-resistance of the device during its on-time. Therefore, in this fourth interval, V GS is increased from V GS,Miller to its final value, V DRV. This is accomplished by charging the C GS and C GD capacitors, thus gate current is now split between the two components. While these capacitors are being charged, the drain current is still constant, and the drain-to-source voltage is slightly decreasing as the on-resistance of the device is being reduced.6Turn-Off procedureThe description of the turn-off procedure for the MOSFET transistor is basically back tracking the turn-on steps from the previous section. Start with V GS being equal to V DRV and the current in the device is the full load current represented by I DC in Figure 3. The drain-to-source voltage is being defined by I DC and the R DS(on) of the MOSFET. The four turn-off steps are shown in Figure 5. for completeness.Figure 5. MOSFET turn-off time intervals The first time interval is the turn-off delay which is required to discharge the C ISS capacitance from its initial value to the Miller plateau level. During this time the gate current is supplied by the C ISS capacitor itself and it is flowing through the C GS and C GD capacitors of the MOSFET. The drain voltage of the device is slightly increasing as the overdrive voltage is diminishing. The current in the drain is unchanged.In the second period, the drain-to-source voltage of the MOSFET rises from I D⋅R DS(on) to the final V DS(off) level, where it is clamped to the output voltage by the rectifier diode according to the simplified schematic of Figure 3. During this time period – which corresponds to the Miller plateau in the gate voltage waveform - the gate current is strictly the charging current of the C GDcapacitor because the gate-to-source voltage is constant. This current is provided by the bypass capacitor of the power stage and it is subtracted from the drain current. The total drain current still equals the load current, i.e. the inductor current represented by the DC current source in Figure 3.The beginning of the third time interval is signified by the turn-on of the diode, thus providing an alternative route to the load current.The gate voltage resumes falling from V GS,Miller to V TH. The majority of the gate current is coming out of the C GS capacitor, because the C GDcapacitor is virtually fully charged from the previous time interval. The MOSFET is in linear operation and the declining gate-to-source voltage causes the drain current to decrease and reach near zero by the end of this interval.Meanwhile the drain voltage is steady at V DS(off)due to the forward biased rectifier diode.The last step of the turn-off procedure is to fully discharge the input capacitors of the device. V GSis further reduced until it reaches 0V. The bigger portion of the gate current, similarly to the third turn-off time interval, supplied by the C GScapacitor. The drain current and the drain voltage in the device are unchanged.Summarizing the results, it can be concluded that the MOSFET transistor can be switched between its highest and lowest impedance states (either turn-on or turn-off) in four time intervals. The lengths of all four time intervals are a function of the parasitic capacitance values, the required voltage change across them and the available gate drive current. This emphasizes the importance of the proper component selection and optimum gate drive design for high speed, high frequency switching applications.7Characteristic numbers for turn-on, turn-off delays, rise and fall times of the MOSFET switching waveforms are listed in the transistor data sheets. Unfortunately, these numbers correspond to the specific test conditions and to resistive load, making the comparison of different manufacturers’ products difficult. Also, switching performance in practical applications with clamped inductive load is significantly different from the numbers given in the data sheets.Power lossesThe switching action in the MOSFET transistorin power applications will result in some unavoidable losses, which can be divided into two categories.The simpler of the two loss mechanisms is the gate drive loss of the device. As described before, turning-on or off the MOSFET involves chargingor discharging the C ISS capacitor. When the voltage across a capacitor is changing, a certain amount of charge has to be transferred. The amount of charge required to change the gate voltage between 0V and the actual gate drive voltage V DRV, is characterized by the typical gate charge vs. gate-to-source voltage curve in the MOSFET datasheet. An example is shown in Figure 6.Figure 6. Typical gate charge vs. gate-to-sourcevoltage This graph gives a relatively accurate worst case estimate of the gate charge as a function of the gate drive voltage. The parameter used to generate the individual curves is the drain-to-source off state voltage of the device. V DS(off) influences the Miller charge – the area below the flat portion of the curves – thus also, the total gate charge required in a switching cycle. Once the total gate charge is obtained from Figure 6, the gate charge losses can be calculated as:DRVGDRVGATEfQVP⋅⋅=where V DRV is the amplitude of the gate drive waveform and f DRV is the gate drive frequency – which is in most cases equal to the switching frequency. It is interesting to notice that the Q G⋅f DRV term in the previous equation gives the average bias current required to drive the gate. The power lost to drive the gate of the MOSFET transistor is dissipated in the gate drive circuitry. Referring back to Figures 4 and 5, the dissipating components can be identified as the combination of the series ohmic impedances in the gate drive path. In every switching cycle the required gate charge has to pass through the driver output impedances, the external gate resistor, and the internal gate mesh resistance. As it turns out, the power dissipation is independent of how quickly the charge is delivered through the resistors. Using the resistor designators from Figures 4 and 5, the driver power dissipation can be expressed as:OFFDRV,ONDRV,DRVIG,GATELODRVGDRVLOOFFDRV,IG,GATEHIDRVGDRVHIONDRV,PPPRRRfQVR21PRRRfQVR21P+=++⋅⋅⋅⋅=++⋅⋅⋅⋅=In the above equations, the gate drive circuit is represented by a resistive output impedance and this assumption is valid for MOS based gate drivers. When bipolar transistors are utilized in the gate drive circuit, the output impedance becomes non-linear and the equations do not yield the correct answers. It is safe to assume that with low value gate resistors (<5Ω) most gate drive losses are dissipated in the driver. If R GATE is sufficiently large to limit I G below the output89current capability of the bipolar driver, the majority of the gate drive power loss is then dissipated in R GATE .In addition to the gate drive power loss, the transistors accrue switching losses in the traditional sense due to high current and high voltage being present in the device simultaneously for a short period. In order to ensure the least amount of switching losses, the duration of this time interval must be minimized. Looking at the turn-on and turn-off procedures of the MOSFET, this condition is limited to intervals 2 and 3 of the switching transitions in both turn-on and turn-off operation. These time intervals correspond to the linear operation of the device when the gate voltage is between V TH and V GS,Miller , causing changes in the current of the device and to the Miller plateau region when the drain voltage goes through its switching transition.This is a very important realization to properly design high speed gate drive circuits. It highlights the fact that the most important characteristic of the gate driver is its source-sink current capability around the Miller plateau voltage level. Peak current capability, which is measured at full V DRV across the driver’s output impedance, has very little relevance to the actual switching performance of the MOSFET. What really determines the switching times of the device is the gate drive current capability when the gate-to-source voltage, i.e. the output of the driver is at ~5V (~2.5V for logic level MOSFETs).A crude estimate of the MOSFET switching losses can be calculated using simplified linear approximations of the gate drive current, drain current and drain voltage waveforms during periods 2 and 3 of the switching transitions. First the gate drive currents must be determined for the second and third time intervals respectively:()G.I GATE HI MillerGS,DRV G3G.IGATE HI TH Miller GS,DRVG2R R R V V I R R R V V 0.5V I ++−=+++⋅−=Assuming that I G2 charges the input capacitor of the device from V TH to V GS,Miller and I G3 is the discharge current of the C RSS capacitor while the drain voltage changes from V DS(off) to 0V, the approximate switching times are given as:G3offDS,RSS G2THMillerGS,ISS I V C t3I V V C t2⋅=−⋅=During t2 the drain voltage is V DS(off) and the current is ramping from 0A to the load current, I L while in t3 time interval the drain voltage is falling from V DS(off) to near 0V. Again, using linear approximations of the waveforms, the power loss components for the respective time intervals can be estimated:Loff DS,Loff DS,I 2V T t3P32I V T t2P2⋅⋅=⋅⋅=where T is the switching period. The total switching loss is the sum of the two loss components, which yields the following simplifed expression:Even though the switching transitions are well understood, calculating the exact switching losses is almost impossible. The reason is the effect of the parasitic inductive components which will significantly alter the current and voltage waveforms, as well as the switching times during the switching procedures. Taking into account the effect of the different source and drain inductances of a real circuit would result in second order differential equations to describe the actual waveforms of the circuit. Since the variables, including gate threshold voltage, MOSFET capacitor values, driver output impedances, etc. have a very wide tolerance, the above described linear approximation seems to be a reasonable enough compromise to estimate switching losses in the MOSFET.Effects of parasitic componentsThe most profound effect on switching performance is exhibited by the source inductance. There are two sources for parasitic source inductance in a typical circuit, the sourceTt3t22I V P L DS(off)SW +⋅⋅=。

MOSFET驱动电路设计参考

MOSFET驱动电路设计参考

MOSFET驱动电路设计参考MOSFET(金属氧化物半导体场效应晶体管)驱动电路是控制MOSFET开关的电路,它提供适当的电流和电压来确保MOSFET能够在正确的时间和条件下完全关闭和打开。

MOSFET驱动电路设计需要考虑到反馈和保护机制、功耗和效率以及电流和电压需求等因素。

以下是一些MOSFET驱动电路设计的参考。

1.电流放大器驱动电路:电流放大器是一种被广泛使用的MOSFET驱动电路设计,它通过升压变压器和反馈电路来将电流放大,并且能够提供足够的电流来驱动MOSFET。

这种电路设计具有简单、可靠和成本低廉的特点。

2.隔离式驱动电路:隔离式驱动电路是一种通过电流隔离器将控制电路与MOSFET隔离开来的设计。

通过隔离电路,可以阻止外部电路中的噪声、干扰和电压峰值对MOSFET的影响。

这种驱动电路设计适用于需要高耐受性和抗干扰性的应用。

3.模拟驱动电路:模拟驱动电路利用可变电流源来控制MOSFET。

这种设计需要一个与控制信号相对应的电压源,以确保MOSFET的开启和关闭速度与输入信号相匹配。

模拟驱动电路适用于需要快速响应和高精确度的应用,如音频放大器和直流直流变换器。

4.逻辑驱动电路:逻辑驱动电路是一种基于逻辑门电路的设计,通过逻辑门来控制MOSFET的开关。

逻辑驱动电路具有简单、易实现和低功耗的特点,适用于数字电路中的应用。

在设计MOSFET驱动电路时,还需要考虑以下几个关键因素:1.电流和电压需求:根据MOSFET的规格和应用需求,确保设计的驱动电路能够提供足够的电流和电压来使MOSFET达到预期的工作状态。

2.反馈和保护机制:添加适当的反馈和保护电路,如电流限制器和短路保护器,以确保MOSFET在超载、短路或其他异常情况下得到保护。

3.功耗和效率:通过优化电路设计和选择高效的元件来降低功耗,提高效率。

例如,可以选择低电阻的电源和高效的驱动器。

4.温度控制和散热设计:合理布局电路和选择散热器,以降低MOSFET的工作温度,提高可靠性和稳定性。

MOSFET驱动电路的设计与仿真

MOSFET驱动电路的设计与仿真

MOSFET驱动电路的设计与仿真摘要:MOSFET(金属氧化物半导体场效应晶体管)作为一种常见的功率开关元件,广泛应用于电路的开关和驱动控制中。

本文将介绍MOSFET驱动电路的设计与仿真过程,包括驱动电路的选型、电路的设计和电路的性能分析等。

一、驱动电路的选型在选择驱动电路时,需要考虑以下几个因素:1. 驱动电路的电压要能满足MOSFET的驱动要求。

通常,MOSFET的门极电压(Vgs)需要在规定的范围内才能正常工作。

2.驱动电路的电流要能满足MOSFET的驱动要求。

MOSFET的门极电流(Ig)需要足够大才能迅速充放电。

3.驱动电路的速度要能满足应用场景的需求。

驱动电路的响应速度需要足够快以确保MOSFET的正常开关操作。

4.驱动电路的成本要能够接受。

驱动电路的成本包括电路的制作、元件的购买等。

二、电路的设计根据选型的结果,可以开始设计驱动电路。

以下是驱动电路设计的几个关键步骤:1.选择适合的驱动电源。

电源的选择需要根据电路的工作电压和电流要求来确定。

一般来说,可以选择开关电源或者稳压电源。

2.选择合适的驱动电路拓扑结构。

驱动电路常见的拓扑结构包括共射极、共集极和共基极。

选择适合的拓扑结构需要考虑MOSFET的特性,如集电极功率损耗、输出电压的放大倍数等。

3.选择合适的驱动电路元件。

驱动电路元件包括电阻、电容和三极管等。

选取合适的元件需要考虑电压和电流的要求、响应速度和成本等因素。

4.进行电路的原理图设计。

根据选取的驱动电源、拓扑结构和元件,绘制驱动电路的原理图。

5.进行电路的PCB布局设计。

根据原理图,将电路元件进行布局,保证电路的稳定性和可靠性。

三、电路的仿真在完成电路设计后,可以利用电路仿真软件进行电路的性能分析和验证。

通过仿真可以评估电路的各种性能参数,如频率响应、电压和电流波形、功率损耗等。

在进行仿真前,需要建立电路的仿真模型。

根据电路的原理图和元件参数,建立仿真模型。

利用仿真软件进行电路性能分析。

高速MOSFET门极驱动电路的设计应用指南

高速MOSFET门极驱动电路的设计应用指南

高速MOSFET门极驱动电路的设计应用指南一、背景介绍二、设计步骤及要点1.确定MOSFET型号和工作条件:根据实际应用需求,选择合适的MOSFET型号,并确定其工作电压和电流。

这些参数将直接影响到驱动电路的设计。

2.确定驱动电源电压和电流:根据MOSFET的特性参数,选择合适的驱动电源电压和电流。

一般来说,高速应用中通常需要较高的电源电压和电流,以确保MOSFET能够迅速开关。

3.选择驱动芯片或设计驱动电路:根据以上参数,选择合适的驱动芯片或自行设计驱动电路。

常用的驱动芯片有IR2110、TC4420等,可以根据实际应用需求选择合适的芯片。

4.进行驱动电路的布局和连接:根据驱动芯片或电路设计,进行布局和连接。

注意保持短而稳定的门极连接线路,尽量减小电流环路和电磁干扰。

5.添加保护电路:考虑MOSFET的过电流、过压等保护问题,设计相应的保护电路,以确保MOSFET的安全工作。

6.进行仿真和测试:通过仿真软件进行仿真分析,验证电路设计是否满足要求。

同时,进行实际测试,检查电路的性能和稳定性。

三、高速MOSFET门极驱动电路的典型设计示例下图为一种常用的高速MOSFET门极驱动电路设计示例,以IR2110为例:[电路图]该驱动电路可实现高速的MOSFET开关控制,具有较高的转换效率和可靠性。

其中VCC为驱动电源电压,VDD为MOSFET的工作电源电压,VIN为控制信号输入端,VD为MOSFET的漏极电压,R1和R2为限流电阻,D1为反向恢复二极管。

四、设计注意事项1.选择合适的驱动芯片或自行设计驱动电路时,要充分考虑芯片的最大驱动电流和工作频率等参数,以确保其满足实际应用需求。

2.在设计驱动电路时,要注意尽量减小电流回路和电磁干扰,保持稳定的门极连接线路。

3.添加合适的保护电路,以保护MOSFET免受过电流、过压等故障的影响。

4.在设计完成后,进行仿真分析和实际测试,检查电路的性能和稳定性,并及时进行调整和改进。

MOSFET管驱动电路的设计

MOSFET管驱动电路的设计

由此我们可以知道,如果想在更短的时间 内把GS电压拉高或者拉低,就要给MOS管 栅极更大的瞬间驱动电流。 大家常用的PWM芯片输出直接驱动MOS 或者用三极管放大后再驱动MOS的方法, 其实在瞬间驱动电流这块是有很大缺陷的。 比较好的方法是使用专用的MOSFET驱动 芯片如TC4420来驱动MOS管,这类的芯 片一般有很大的瞬间输出电流,而且还兼 容TTL电平输入
因为驱动线路走线会有寄生电感,而寄生 电感和MOS管的结电容会组成一个LC振荡 电路,如果直接把驱动芯片的输出端接到 MOS管栅极的话,在PWM波的上升下降 沿会产生很大的震荡,导致MOS管急剧发 热甚至爆炸,一般的解决方法是在栅极串 联10欧左右的电阻,降低LC振荡电路的Q 值,使震荡迅速衰减掉。
闫力
生命信息与仪器工程学院
一般认为MOSFET是电压驱动的,不需要 驱动电流 然而,在MOS的G S两级之间有结电容存 在,这个电容会让驱动MOS变的不那么简 单
如果不考虑纹波和EMI等要求的话,MOS 管开关速度越快越好,因为开关时间越短, 开关损耗越小,而在开关电源中开关损耗 占总损耗的很大一部分,因此MOS管驱动 电路的好坏直接决定了电源的效率 对于一个MOS管,如果把GS之间的电压从 0拉到管子的开启电压所用的时间越短,那 么MOS管开启的速度就会越快。与此类似, 如果把MOS管的GS电压从开启电压降到 0V的时间越短,那么MOS管关断的速度也 就越快
很荣幸能和大家一起为电赛奋斗,我相信 我们的努力不会白,我们都是国一哥!
高频振铃严重的毁容方波。。 在上升下降沿震荡严重,这种情况管子一 般瞬间死掉。。跟上一个情况差不多,进 线性区。。。BOOM!!原因也类似,主要 是布线的问题
又胖又圆的肥猪波。。 上升下降沿极其缓慢,这是因为阻抗不匹 配导致的。。。芯片驱动能力太差或者栅 极电阻太大。。 果断换大电流的驱动芯片,栅极电阻往小 调调就OK了

两种常见的MOSFET驱动电路设计

两种常见的MOSFET驱动电路设计

两种常见的MOSFET驱动电路设计MOSFET驱动电路是一种常见的电路设计,用于控制和驱动MOSFET晶体管的工作。

MOSFET驱动电路的设计能够确保MOSFET的开关速度,其选择和设计影响到整个电路的性能和可靠性。

以下是两种常见的MOSFET驱动电路设计。

1.单级放大器驱动电路单级放大器驱动电路是一种简单而常见的MOSFET驱动电路设计。

它包含一个放大器和一个偏置电源电路。

其输入端连接到信号源,输出端连接到MOSFET的门极。

当输入信号施加到放大器时,放大器将信号放大至足够高的电压,以控制MOSFET的开关。

单级放大器驱动电路的优点是简单,易于设计和实现。

然而,它可能存在驱动能力不足的问题。

因此,在应用中通常需要考虑额外的电流放大器或放大器级联来增加驱动能力。

2.高侧驱动电路高侧驱动电路是另一种常见的MOSFET驱动电路设计。

高侧驱动电路用于控制高侧(负载连接在电源正极的一侧)MOSFET。

它需要一个额外的电源电路和驱动电路来实现。

高侧驱动电路通常包含一个电源电路,用于提供MOSFET的驱动电压。

该电源电路可以是一个开关电源或线性调节电源。

驱动电路通常由电流源、驱动变压器和栅极驱动电路组成。

电流源用于提供驱动电路所需的电流,驱动变压器用于隔离输入信号源和MOSFET,以减小信号干扰和保护信号源。

高侧驱动电路的优点是能够驱动高侧MOSFET,使其能够正常工作。

然而,高侧驱动电路的设计复杂,需要考虑保护电路和故障检测电路,以确保其可靠性和安全性。

除了以上两种常见的MOSFET驱动电路设计,还有其他一些特殊应用的驱动电路,例如三相桥式驱动电路、半桥和全桥驱动电路等。

这些电路设计根据具体应用需求和性能要求可能有所不同,但基本的驱动原理和设计方法是相似的。

总之,MOSFET驱动电路设计是一项重要而复杂的工作,旨在保证MOSFET工作的可靠性和性能。

根据具体的应用需求和性能要求,选择合适的驱动电路设计,并考虑保护措施和故障检测电路,以确保电路的可靠性和安全性。

高速MOS驱动电路设计和应用指南

高速MOS驱动电路设计和应用指南

高速MOS驱动电路设计和应用指南摘要本篇论文的主要目的是来论证一种为高速开关应用而设计高性能栅极驱动电路的系统研究方法。

它是对“一站买齐”主题信息的收集,用来解决设计中最常见的挑战。

因此,各级的电力电子工程师对它都应该感兴趣。

对最流行电路解决方案和他们的性能进行了分析,这包括寄生部分的影响、瞬态的和极限的工作情况。

整篇文章开始于对MOSFET技术和开关工作的概述,随后进行简单的讨论然后再到复杂问题的分析。

仔细描述了设计过程中关于接地和高边栅极驱动电路、AC耦合和变压器隔离的解决方案。

其中一个章节专门来解决同步整流器应用中栅极驱动对MOSFET的要求。

另外,文章中还有一些一步一步的参数分析设计实例。

简介MOSFET是Metal Oxide Semiconductor Field Effect Transistor的首字母缩写,它在电子工业高频、高效率开关应用中是一种重要的元件。

或许人们会感到不可思议,但是FET是在1930年,大约比双极晶体管早20年被发明出来。

第一个信号电平FET晶体管制成于二十世纪60年代末期,而功率MOSFET是在二十世纪80年代开始被运用的。

如今,成千上万的MOSFET晶体管集成在现代电子元件,从微型的到“离散”功率晶体管。

本课题的研究重点是在各种开关模型功率转换应用中栅极驱动对功率MOSFET 的要求。

场效应晶体管技术双极晶体管和场效应晶体管有着相同的工作原理。

从根本上说,,两种类型晶体管均是电荷控制元件,即它们的输出电流和控制极半导体内的电荷量成比例。

当这些器件被用作开关时,两者必须和低阻抗源极的拉电流和灌电流分开,用以为控制极电荷提供快速的注入和释放。

从这点看,MOS-FET在不断的开关,当速度可以和双极晶体管相比拟时,它被驱动的将十分的‘激烈’。

理论上讲,双极晶体管和MOSFET的开关速度是基本相同的,这取决与载流子穿过半导体所需的时间。

在功率器件的典型值为20 ~ 200皮秒,但这个时间和器件的尺寸大小有关。

MOSFET管经典驱动电路设计大全

MOSFET管经典驱动电路设计大全

MOSFET管经典驱动电路设计大全1.简单的驱动电路最简单的MOSFET驱动电路是使用普通的NPN晶体管作为驱动器。

这种电路只需要一个晶体管和几个电阻。

晶体管的基极通过一个电阻连接到控制信号源,并且其发射极通过一个电阻连接到地。

MOSFET的栅极通过一个电阻与晶体管的集电极相连。

当驱动信号施加在基极时,晶体管将导通,从而允许电流流过栅极电阻,最终控制MOSFET的导通。

2.共射极驱动电路共射极驱动电路使用一个普通的NPN晶体管作为驱动器,并且具有共射极配置。

这种电路可以提供较高的驱动电流,并且对于驱动大功率的MOSFET特别有效。

MOSFET的栅极连接到驱动晶体管的集电极,并且通过一个电阻与源极相连。

此电路还可以通过添加一个二极管来保护MOSFET免受反向电压的损坏。

3.升压驱动电路升压驱动电路是一种通过升压来改善MOSFET开关速度和效率的驱动电路。

这种电路使用一个电感器、一个开关和一个脉冲宽度调制(PWM)控制器来提供短暂的高电压脉冲。

这种高电压脉冲可以快速地开启和关闭MOSFET,从而提高其开关速度和效率。

4.高低侧驱动电路高低侧驱动电路是一种使用驱动器来同时控制高侧和低侧MOSFET的开关的电路。

该电路利用一个半桥驱动器,包括两个晶体管和一个PWM控制器。

其中一个晶体管驱动高侧MOSFET,另一个晶体管驱动低侧MOSFET。

PWM控制器可以调整两个晶体管的开关频率和占空比,从而控制MOSFET 的导通和关断。

以上是一些常见的MOSFET管经典驱动电路设计。

每种电路都有其适用的场景和优缺点。

在设计时,需要根据具体应用的需求来选择合适的驱动电路,并确保合理的功率传输和电流控制。

mosfet高边驱动原理

mosfet高边驱动原理

mosfet高边驱动原理MOSFET(金属氧化物半导体场效应晶体管)是一种常用的电子元件,广泛应用于各种电路中。

高边驱动是MOSFET的一种常见驱动方式,用于控制高电平的开关动作。

本文将详细介绍MOSFET高边驱动的原理及其应用。

一、MOSFET基本原理MOSFET是一种三端器件,由源极(Source)、栅极(Gate)和漏极(Drain)组成。

其工作原理是通过控制栅极电压,改变栅极与漏极之间的电场,从而控制漏极和源极之间的电流。

MOSFET有N沟道型和P沟道型两种不同类型。

二、MOSFET高边驱动原理高边驱动是指MOSFET的漏极连接到负载,源极连接到电源正极,栅极用于控制MOSFET的导通和截止。

在高边驱动中,栅极需要提供高于电源电压的驱动信号,以使MOSFET导通。

高边驱动的基本原理是通过一个电平转换电路将逻辑电平(通常为低电平)转换为高电平,用于驱动MOSFET的栅极。

电平转换电路通常由NPN晶体管和PNP晶体管组成,其工作原理如下:1. 当输入信号为低电平时,NPN晶体管截止,P沟道型MOSFET的栅极电压为电源电压,MOSFET导通,负载得到电源电压供电。

2. 当输入信号为高电平时,NPN晶体管导通,P沟道型MOSFET的栅极电压为电源电压减去NPN晶体管的饱和电压,MOSFET截止,负载断开与电源的连接。

三、MOSFET高边驱动的优势和应用高边驱动相较于低边驱动具有以下优势:1. 高边驱动可以直接将负载与电源相连,不需要额外的电路来连接负载和电源,简化了电路设计。

2. 高边驱动可以实现负载与电源之间的隔离,提高了电路的稳定性和安全性。

3. 高边驱动可以实现更高的开关频率,适用于需要快速切换的应用场景。

MOSFET高边驱动在实际应用中有广泛的用途,例如:1. 直流电机驱动:通过高边驱动,可以方便地控制直流电机的转动方向和速度。

2. LED照明控制:高边驱动可以实现对LED灯的开关控制和亮度调节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MOSFET 高速驱动设计此文章出处:与非网英飞凌MOSFET驱动MOSFET并联摘要:本文阐述了MOSFET驱动的基本要求以及在各种应用中如何优化驱动电路的设计关键词: MOSFET 驱动, MOSFET 并联1.引言随着电源高效,高功率密度的要求,电源的频率由原来的工频,到几十千赫兹,再到如今几百千赫兹甚至兆赫兹。

电源频率的要求越来越高。

如何选择合适的MOSFET, 如何有效的驱动高速的MOSFET,提升电源效率是广大工程师面临的问题。

本文将探讨MOSFET的选型以及高速驱动线路的设计的注意事项。

2.MOSFET结构以及影响驱动的相关参数图1图1是MOSFET的电容等效图。

MOSFET包含3个等效结电容Cgd, Cgs和 Cds.通常在MOSFET的规格书中我们可以看到以下参数其中Ciss=Cgs+CgdCoss=Cgd+CdsCrss=Cgd这些结电容影响着MOSFET开通和关闭速度。

结电容小的MOSFET具有快速的开关速度,可以降低MOSFET开通和关闭时所产生的损耗。

同时对驱动线路需求更低。

但是值得注意的是这些电容跟普通的电容并不完全相同,普通电容的容值并不会有太大的改变,而MOSFET等效电容容值会随着MOSFET Vds的变化而变化。

图2描述了MOSFET结电容随电压的变化状况。

图2由于Q=C*U*t为了方便计算MOSFET所需的驱动功率以及开关损耗,规格书中通常会给出MOSFET 的Q值。

图3中描述了MOSFET开通的过程以及不同的Qg值对MOSFET开通过程中的影响。

Qgs是Cgs的电荷量,Qgd是Cgd的电荷量,而整个开通过程中电荷量的总和我们称之为Qg.图32.1 MOSFET导通时序介绍t1阶段此阶段处于MOSFET死区时间。

MOSFET电压电流并无变化t2阶段t2阶段MOSFET Vgs电压达到阀值并继续上升。

此时MOSFET开始导通,电流从MOSFET漏极流向源极并在t2结束时到达最大值,而Vds此时保持不变。

t3阶段t3阶段MOSFET Vgs电压到达米勒平台并保持动态平衡。

电流从MOSFET漏极流向源极并保持在最大值,Vds开始下降并最终到达最小值。

t4阶段t4阶段Vgs电压上升至最大值,电流从MOSFET漏极流向源极并保持在最大值,Vds同时保持在最小值,MOSFET进入饱和区,导通电阻降至最小。

以上是MOSFET导通的时序介绍,而MOSFET关闭的时序与之完全相反。

从MOSFET驱动时序来看,MOSFET Qg对MOSFET的开通与关闭速度起决定作用。

对于MOSFET的驱动设计应当着手于选择Qg较小的MOSFET,这样不仅可以降低MOSFET开关损耗,同时可以降低对驱动电路峰值电流的需求。

3.降低dv/dt,di/dt造成的震荡门极震荡是MOSFET高速驱动一个常见问题,驱动的震荡直接影响到电源系统的损耗以及可靠性,通常MOSFET门极震荡包含两个回路如图4图4中红色曲线是震荡回路1,其回路由MOSFET漏极寄生电感Ld(包括MOSFET封装电感以及PCB 布线等效电感), MOSFET结电容Cgd, MOSFET门极电感Lg(包括MOSFET封装电感以及PCB布线等效电感), MOSFET内置门极驱动电阻Rgini, 以及装配,PCB布线耦合电容Cgdext 组成。

当MOSFET关闭时,Vds上升,红色回路的电感,电容会形成LC谐振,该谐振频率约在300MHz 至500MHz 之间。

此时外加的门极驱动电阻Rgext对于该回路的阻尼作用并不明显。

而能够明显起到阻尼作用的只有MOSFET内置门极驱动电阻Rgini。

尤其是对于高压MOSFET,由于dv/dt较低压MOSFET更高。

震荡回路2是由图4中蓝色曲线组成。

其回路由MOSFET源极寄生电感(包括MOSFET封装电感以及PCB布线等效电感),MOSFET结电容Cgs, MOSFET门极电感Lg(包括MOSFET封装电感以及PCB布线等效电感),MOSFET内置门极驱动电阻Rgini,MOSFET外置门极驱动电阻Rgext组成。

当MOSFET开通时,MOSFET电流上升,该回路的电感,电容同样会产生LC震荡,震荡频率通常在100MHz 到200MHz左右,同时急剧变化的电流di/dt. 会在Ls上产生一个变化的电压。

di/dt=VLs/Ls. 当假设di/dt=500A/us, Ls=10nH时,根据公式在漏极电感Ls上产生的电压VLs=di/dt*Ls=500A/us*10nH=5V. 一旦门极震荡电压在阀值范围内,MOSFET会不断重复开关,造成极大的开关损耗甚至会影响到MOSFET的可靠性。

图4综上,对于驱动线路设计中如何降低di/dt,dv/dt减小震荡,我们有以下几点考虑:1.减小PCB布线所带来等效寄生电感。

2.选择合适的带内置门极驱动电阻的MOSFET如Infineon CoolMOS C6系列。

3.选择无引线的封装MOSFET,降低由封装所产生的寄生电阻和电感。

4.选择合适的门极驱动电阻从而抑制MOSFET的门极驱动震荡。

图5中是Infineon的600V高压MOSFET ThinPAK封装。

这种封装不仅具有小的封装寄生参数,同时可以缩短PCB布线的长度。

此外该封装门极地线与驱动信号地线分属于不同的管脚,可以有效的降低门极驱动震荡。

图54.MOSFET并联由于功率或者效率的原因,单个MOSFET在某些应用场合并不能完全满足要求,此时需要两个或多个MOSFET进行并联。

我们下面来简单分析MOSFET并联会面临那些问题。

图6图6是当两个MOSFET并联时的等效电路,当MOSFET开关时,很容易在图6红色区域形成自激震荡,该震荡回路由MOSFET寄生参数和驱动电路中Rg1ext, Lg1, Rg1 ini, Cgd1, Ld1, 和Rg2ext, Lg2, Rg2 ini, Cgd2, Ld2共同组成。

由于震荡,并联MOSFET的门极驱动电压并不能保持一致,门极电压高于Vgsth的MOSFET仍然开通,门极电压低于Vgsth的MOSFET关闭,使得各MOSFET之间并不能完全均流。

同时,由于受该震荡回路的影响,电磁干扰,门极击穿同样是工程师面临问题。

而有效的控制MOSFET并联时的自激震荡我们需要注意以下几点:1.保持各个MOSFET布线一直性。

2. MOSFET具有独立的驱动电路,至少具备独立的驱动电阻。

3.合适的驱动电阻可以阻尼震荡,门极上磁珠同样也可以抑制高频干扰。

图7是MOSFET并联时的仿真电路,其初始设置为Rg=10Ohm, Vgsth=3V, MOSFET之间的布线电感L9=0nH.下面我们通过修改该仿真线路中影响MOSFET均流的参数来比较其各自对MOSFET并联时所产生的影响。

1.设置门极驱动电阻2.设置MOSFET阀值电压Vgsth3.设置PCB布线电感图7设置1,如图8将其中一MOSFET门极驱动电阻R3设置为12Ohm,另一MOSFET门极驱动电阻R2保持10Ohm不变。

图8如图7右所示,当门极驱动电阻相差2Ohm时,流过两个MOSFET的电流相差并不十分明显。

设置2,如图9将其中一MOSFET DUT1门极阀值电压设置为3.4V,另一MOSFET DUT2门极阀值电压保持3V不变。

图9如图9右所示,当门极驱动电压相差0.4V时,流过两个MOSFET的电流相差也并不十分明显。

设置3,如图10将其中一MOSFET DUT1门极阀值电压设置为4V,另一MOSFET DUT2门极阀值电压设置为2V。

图10如图10右所示,当门极驱动电压相差2V时,分别通过两个MOSFET的电流相差近40%当情形为多个MOSFET并联时,其中个别MOSFET将会出现过流,过温现象。

设置4,如图11将两个MOSFET之间的布线电感设置为10nH。

图11如图11右所示,当门极驱动电压相差2V时,通过两个MOSFET的电流相差近100%如果MOSFET选型中没有留有足够的电流裕量,在此状况下极有可能出现失效。

综合以上的模拟测试,我们不难得出,PCB布线对于MOSFET并联影响最大,其次是MOSFET门极阀值电压,再次是门极驱动电阻。

因此对于MOSFET并联的驱动设计,我们应该将重点放在PCB的布线当中。

首先需要注意的事PCB的布线一致性,尽可能使并联中的MOSFET布线保持对称,同时减少MOSFET地线之间连接的距离,从而减小寄生电感值,连接注意单点接地;其次选择阀值电压最小值与最大值相差较小的 MOSFET;再次保证门极驱动电阻的误差在5%的范围以内。

5.避免MOSFET进入线性放大区MOSFET驱动的最小电流:Imin=Vgs/Rg而驱动电路的平均损耗:Ploss=Qg*Vgs*f在设计驱动电路时,峰值电流以及驱动平均损耗需要尽量高于最低值,避免MOSFET长时间工作在线性放大区。

图12是MOSFET的I/V特性曲线,MOSFET工作在线性放大区时非完全导,通Vds之间出现高阻抗。

MOSFET具有很高的损耗,其损耗计算如下:图12图13是MOSFET处于线性放大区长达500uS的波形。

如果某些应用需要MOSFET进入放大区,我们必须确定MOSFET 处于安全工作区SOA的限制以内。

图136.结论MOSFET的驱动设计,我们需要考虑以下几个方面:1.选择合适的MOSFET。

Qg小的MOSFET可以达到快速的开关速度,同时减小对驱动的要求。

Vgsth最小值和最大值窗口小的MOSFET可以达到较好的并联效果2.选择合适的封装。

无引线封装具有更小的封装电阻和封装电感,更加适合高频的驱动设计。

同时可以有效的减小驱动震荡,降低开关损耗,提高系统的可靠性。

3. PCB布线是MOSFET的驱动设计的关键。

它影响MOSFET的损耗,震荡,以及MOSFET均流效果。

4.保证足够驱动的功率和峰值电流,避免MOSFET长期工作在线性放大区。

一旦进入放大区,需要确认MOSFET 是否工作在SOA范围之内。

相关文档
最新文档