预应力钢筋计算方法

合集下载

预应力梁配筋计算程序(新规范)

预应力梁配筋计算程序(新规范)

预应力梁配筋计算程序(新规范)一、材料:40fc =19.1MPa 1.00×19.1=19.10MPaftk =2.39MPa Ec =MPaβ1 =0.80εcu=ft = 1.71MPa混凝土达到90%设计强度时开始对预应力筋进行张拉,则f′cu =36.0MPa2. 预应力钢筋:采用MPa 有粘结预应力MPa Es =#######mm 21395MPa1320Mpa 390Mpa kN3. 非预应力普通钢筋:采用Ⅲ级钢(HRB400)Es =Mpa4. 本部分梁抗震等级:二、有粘结预应力框架梁配筋计算1.计算截面:Mk=9652.53kN·mA. 截面参数计算b×h =800×2200hf′=130bf′=2360截面面积A=b×h+(bf′-b)×hf′ =mm 2截面中和轴距梁顶面距离e1=[b×h +(bf′-b)×hf′ ]/2A=mm 截面中和轴距梁底面距离 e2 = h - e1 =mm截面惯性距I = b×h×[h /12+(h/2-e1) ]+(bf′-b)×hf′×[hf′ /12+(e1-hf′/2) ]=mm 4截面抵抗距 W = I / e2 =mm 3B. 截面受拉区配置预应力筋数量计算993.1Mpa139.00fptk =抗压强度设计值f ′py =二级跨中截面7.50E+08有粘结预应力框架梁配筋计算书360 2.0E+050.003301860钢绞线MPa183.4875% 3.25E+041.50预应力筋抗拉强度标准值 fptk =单束预应力筋截面面积 Ap 0=取混凝土拉应力限制系数αct= 1.501206.9单束预应力筋拉力设计值Npy 0 = fpy ×Ap 0 =截面抵抗距塑性影响系数基本值γm =9.05E+111. 混凝土:混凝土强度等级采用C 1.96E+061860fy=fy ′=取预应力筋张拉控制应力σcon =预应力筋抗拉强度设计值 fpy =1.16(当h>1600时,取h=1600)则αct γftk =MPa mmmm kN·m5870.7kN 取计算截面处受拉区预应力筋有效应力σpe =1116.0MPa计算截面处受拉区单束预应力筋有效拉力Npe 0 = σpe ×Ap 0 = kN 梁内受拉区预应力筋数量 np=Npe/Npe 0 =37.8取48束mm 2受拉区预应力筋有效拉力N pe = Ap ×σpe =kN C. 强度验算:| Md | =kN·m 受拉区预应力筋拉力设计值 Npy = np×Npy 0 =kN取预应力强度比λ =则梁中受拉区配置的普通钢筋截面积As =(Npy / λ─Npy )/fy =mm 2受拉区配置普通钢筋As = mm 2Ns = As×fy = kN 计算时考虑受压钢筋As ′ =mm 2Ns′=As′×fy′= kN受拉区纵向普通钢筋合力点至截面受拉边缘的距离 a s =mm 受压区纵向普通钢筋合力点至截面受压边缘的距离a s ′=mm 受拉区非预应力筋重心距梁中和轴的距离 ys = e2-as =mm 受压区非预应力筋重心距梁中和轴的距离ys′= e1-as′ =mm 梁截面有效高度 ho = h-(Npy×a p +Ns×a s )/(Npy+Ns) =2200-193=2007mm Np(1)=1.1×σpe×Ap =kN ("(1)"表示仅考虑第一批预应力损失,下同)epn(1) = yp =σpc(1) = Np(1)/A + Np(1)×epn(1)×yp / I - M2×yp / I =MPa ρ = (Ap+As)/A =σL 5 = (35+280×σpc(1)/f′cu)/(1+15×ρ) =MPa Np =σpe×Ap-σL5×As =kN 取考虑次弯距的调整系数β=956.975155.12247446.0965.3受拉区预应力筋有效预加力Npe= [(|Mk|/w)─ftk]/(1/A+yp/w) =受拉区预应力筋重心距梁中和轴的距离 yp = e2 - ap =6165.8108.780%截面抵抗距塑性影响系数γ =(0.7+120/h)×γm =1.12500.94%1131.9918.10.680σcon =25Ap=np×Ap0 =14013.02511781.68807.011512.54241.424956.98190.54241.47511.4411781.66672.04.17则次弯距M2 = (β-1) × Mk =受拉区预应力筋重心距梁底面的距离 ap =epn = (σpe×Ap×yp-σL5×As×ys)÷(σpe×Ap-σL5×As) =mm MPa kN·m MPaξb=β1/[1+0.002/εcu+(fpy-σpo)/(Es×εcu)] =砼受压区高度x=hf′+(Npy+Ns-Ns′-bf′×hf′×α1×fc)/(b×α1×fc)mm x/ho =< ξb,满足要求受压区砼重心距梁顶面距离 x1 =mm 极限弯距Mu=α1×fc×b×x×(ho-x/2)+α1×fc×(bf′-b)×hf′×(ho-hf′/2)+Ns′×(ho-as′)=kN·m >Md =kN·mE.抗震验算若取砼受压区高度 x = 0.25ho ,则极限弯距 Mu 计算如下:Mu =α1×fc×b×(0.25ho)×(ho-0.25ho/2)+α1×fc×(bf-b)×hf×(ho-hf/2)+Ns′×(ho-as′)=kN·m >Md=kN·m 若取砼受压区高度 x = 0.35ho ,则极限弯距 Mu 计算如下:Mu =α1×fc×b×(0.35ho)×(ho-0.35ho/2)+α1×fc×(bf-b)×hf×(ho-hf/2)+Ns′×(ho-as′)=kN·m >Md=kN·m 纵向受拉钢筋按照非预应力钢筋抗拉强度设计值折算的配筋率ρ =( As + Ap × fpy / fy )/(b × h) =设计配筋的预应力度λ=0.675≤0.75 满足二级抗震要求As′/As=10.3/(1-λ)=0.92As′/As ≥0.3/(1-λ)满足二级抗震要求1/3*(fpy×hp/(fy×hs))*Ap=959≤As 满足要求纵向普通钢筋配筋率As/(b×h)=≥0.2% 满足要求E. 裂缝宽度验算αcr = 1.5C =25mm deq = (n s ×ds 2+n p ×dp 2) / (n s ×υs ×d s +n p ×υp ×d p ) =mm Ate = b × h / 2 =mm 2ρte=(As+Ap)/Ate=Npo =σpo×Ap-σL5×As =kN ep = ho - e1 - epn =mm 1164.7 2.06%29180.3927.06491.0920.614013.014013.033488.790.1610.438.1224821.814013.08.80E+050.021093.3161.4σpo = σpe + σpc × Ep /Ec =σpc = Np/A + Np×epn×yp/ I - M2×yp / I =322.9Mcr = (σpc + γftk)·Wo =8173.7=0.67%e = ep+|Mk+M2|/Npo =mmγf ′= (b f ′-b)×h f ′/(b×ho) =z=[0.87-0.12×(1-γf ′)×(ho/e)2]×ho=mmσsk=[|Mk+M2|-Npo×(z-ep)]/[(Ap+As)×z] =MPa ψ=1.1-0.65×ftk/(ρte×σsk) =Wmax=αcr×ψ×σsk ×(1.9×C+0.08×deq/ρte)/Es =mm0.01514630.12631729.10.264.1-hf′/2) ]Ns′×(ho-as′) )+Ns′×(ho-as′) )+Ns′×(ho-as′)。

预应力钢筋重量计算公式

预应力钢筋重量计算公式

预应力钢筋重量的计算公式根据构件不同,计算方法也有所区别。

以下是几种常见构件预应力钢筋重量计算公式:
1. 梁和板的预应力钢筋重量计算公式:
W = (P * L * f) / S
其中,W为预应力钢筋的重量,P为预应力拉力,L为构件长度,f为材料的应力允许值(即抗拉强度),S为钢筋截面面积。

2. 圆形、矩形预应力混凝土构件的预应力钢筋重量计算公式:
W = (P * L * d) / (4 * f * R)
其中,d为构件直径或宽度,R为构件曲率半径。

3. 预应力锚具的预应力钢筋重量计算公式:
W = (N * P * f) / S
其中,N为锚具数量,P为预应力拉力,f为材料的应力允许值,S为钢筋截面面积。

需要注意的是,不同地区和行业对于预应力钢筋重量的计算方法可能会有所差异,具体计算时需要结合实际情况选择适合的计算公式,并认真核对计算结果,以确保施工质量和安全。

预应力钢筋损失计算

预应力钢筋损失计算

4.1预应力筋的计算和布置采用符合ASTM A416-97标准的270级钢绞线, 标准强度Ryb=1860Mpa, 弹性模量Ey=1.95x105 Mpa, 松弛率为3.5%, 钢绞线规格公称直径为Φj15.20mm。

查《混凝土结构设计规范》知:1.钢绞线规格公称直径为Φj15.20mm为一束21根配置。

公称截面面积为2919mm。

2.C50混凝土的轴心抗压强度标准值为32.4 Mpa, 混凝土的弯压应力限值为32.4×0.5 Mpa =16200 Kpa。

配筋计算选用正常使用极限状态下的弯矩值配筋, 所选弯矩值如表4-1所示。

配筋弯矩值表4-1运用程序进行受弯构件配筋估算, 所得钢筋数量如表4-2所示。

预应力钢筋数量表4-2由于本桥桥跨结构对称,且本桥为连续刚构, 结合计算出来的钢筋情况, 因此只计算支点处(即41截面的预应力损失) 4.1. 1 控制应力及有关参数计算 控制应力: σcon=0.75×1860=1395(MPa)其他参数: 管道偏差系数: k =0.0015;摩擦系数: μ=0.25; 4.2摩擦损失1l σ 4.2.1预应力钢束的分类将钢束分为10类, 分别为a1,a2,a3,a4,a5,a6,a7,a8,a9,a10。

因为桥跨对称,且本桥为连续刚构, 结合计算出来的钢筋情况, 因此只计算支点处(即41截面的预应力损失)下各种损失亦如此。

8.2.21l σ计算由于预应力钢筋是采用两端张拉施工, 为了简化计算, 近似认为钢筋中点截面是固定不变的, 控制截面离钢筋哪端近, 就从哪端起算摩擦损失。

摩擦损失的计算公式(参见参考文献[2]6.2.2)如下[])(11kx u con l e +--=θσσ (8-2)式中 x —从张拉端至计算截面的管道长度, 可近似地取该管道在构件地投影长度。

角 的取值如下: 通长束筋按直线布置, 角 为0;负弯矩顶板筋只算两端下弯角度为10°, 负弯矩腹板筋只考虑下弯角度15°, 不考虑侧弯角度;负弯矩腹板筋只考虑两端上弯角度13°,正弯矩腹板筋只考虑两端上弯角度25°。

预应力梁计算书

预应力梁计算书

YKL-1一、计算条件1、材料1)、预应力钢筋采用高强低松弛钢绞线Φs15.2,其强度为f ptk=1860N/mm22)、张拉控制应力为σcon(N/mm2)= 13023)、孔道成型采用预埋金属波纹管,直径(mm)为70.00 4)、锚具种类:夹片锚5)、非预应力钢筋采用HRB400级钢筋,箍筋采用HRB335级钢筋6)、混凝土强度等级为C40 fc(N/mm2)= 19.1 ftk(N/mm2)=2.517)、施加预应力时的混凝土强度为2、内力计算1)、跨中截面跨中设计弯矩M(KN.m):2287 恒荷载力作用下的弯矩标准值Mk(KN.m):891 活荷载力作用下的弯矩标准值Mk(KN.m):303 2)、支座截面支座设计弯矩M(KN.m):947 恒荷载力作用下的弯矩标准值Mk(KN.m):939 活荷载力作用下的弯矩标准值Mk(KN.m):285 3、结构信息1)、裂缝控制等级:三级2)、配筋情况:下部:2×6Φs15.2+9φ25上部:2×6Φs15.2+8φ254、张拉方式:一端张拉5、跨度L(mm)12.6二、截面验算2.1 截面设计参数梁截面宽度 b(mm) 400 梁截面高度 h(mm) 1000 上翼缘高度 h f(mm) 150 上翼缘宽度b f(mm) 2200 下翼缘高度h f'(mm) 0 下翼缘宽度b f'(mm) 400 支座截面加掖高度h a(mm) 0跨中截面面积A1(mm2) 6.700E+05支座截面面积A2(mm2) 6.700E+05跨中截面形心距上翼缘边缘的距离y11(mm) 329 跨中截面形心距下翼缘边缘的距离y12(mm) 671 支座截面形心距上翼缘边缘的距离y21(mm) 329 支座截面形心距下翼缘边缘的距离y22(mm) 671跨中截面惯性矩I1(mm4) 6.296E+10支座截面惯性矩I2(mm4) 6.296E+102.2 截面抗裂及承载力计算验算(三级)1、跨中截面1—1受拉区普通钢筋根数n1 9 受拉区普通钢筋直径d1(mm) 25 拉区预应力钢筋根数n2 12 弯矩标准值Mk(kN-m) 1194 次弯矩M2(kN-m) 469预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)147张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)33裂缝宽度验算受拉区纵向钢筋的公称直径d eq(mm) 26.56按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.03轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)1003.03纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)788.03等效应力σsk(N/mm2)74.06裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0)0.38裂缝宽度ωmax(mm)0.03 <0.2,满足要求承载力计算跨中计算弯矩包络值+1.2次弯矩M(KN.M)2287实际承载力Mu(KN.M)3313 >M,满足要求2、支座截面2—2受拉区普通钢筋根数n1 8受拉区普通钢筋直径d1(mm) 25拉区预应力钢筋根数n2 12弯矩标准值M k(kN-m) 647次弯矩M2(kN-m) -462预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)277张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)33 裂缝验算受拉区纵向钢筋的公称直径d eq(mm) 26.69按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.01轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)111.88纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)-7144.2等效应力σsk(N/mm2)-299.90裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0) 1.00裂缝宽度ωmax(mm)0.03 <0.2mm,满足要求抗震验算梁端的配筋强度比λ0.61 <0.75,满足要求截面换算配筋率ρ(%) 2.41 <2.5%,满足要求受压区高度比x/h0 0.23 <0.35,满足要求梁端底面与顶面普通钢筋面积比A s’/As 1.13 >0.3/(1-λ),满足要求梁底面普通钢筋配筋率0.66 >0.2%,满足要求承载力计算支座计算弯矩包络值+次弯矩M(KN.M)947(1.2恒荷弯矩+1.4活荷弯矩)*调幅系数+次弯矩M1(KN.M)263实际承载力Mu(KN.M)2710 >M1,满足要求支座计算配筋包络值A s(mm2) 5018支座换算实际配筋面积A s实(mm2) 9065 >As,满足要求支座抗剪设计值V(KN)977抗剪承载力V实(KN)1645 >V,满足条件施工阶段验算支座验算施工阶段上翼缘边缘砼法向压应力ócc(N/mm2) 2.61 <0.6fck,满足要求施工阶段下翼缘边缘砼法向拉应力ótp(N/mm2)-2.68 <0.95ftk,满足要求跨中验算施工阶段下翼缘边缘砼法向压应力ócc(N/mm2) 1.59 <0.6fck,满足要求施工阶段上翼缘边缘砼法向拉应力ócc(N/mm3)-3.14 <0.95ftk,满足要求施工阶段预应力伸长计算值(mm) 76施工阶段反拱验算0.06 0.05751219荷载长期作用下梁挠度验算9.25 满足要求<1/300一、计算条件1、材料1)、预应力钢筋采用高强低松弛钢绞线Φs15.2,其强度为f ptk=1860N/mm22)、张拉控制应力为σcon(N/mm2)= 13023)、孔道成型采用预埋金属波纹管,直径(mm)为80.004)、锚具种类:夹片锚5)、非预应力钢筋采用HRB400级钢筋,箍筋采用HRB335级钢筋6)、混凝土强度等级为C40 fc(N/mm2)= 19.1ftk(N/mm2)=2.517)、施加预应力时的混凝土强度为2、内力计算1)、跨中截面跨中设计弯矩M(KN.m):2364 恒荷载力作用下的弯矩标准值Mk(KN.m):788 活荷载力作用下的弯矩标准值Mk(KN.m):224 2)、支座截面支座设计弯矩M(KN.m):1474 恒荷载力作用下的弯矩标准值Mk(KN.m):1108 活荷载力作用下的弯矩标准值Mk(KN.m):274 3、结构信息1)、裂缝控制等级:三级2)、配筋情况:下部:2×8Φs15.2+9φ25上部:2×8Φs15.2+8φ254、张拉方式:一端张拉5、跨度L(mm)15.5二、截面验算2.1 截面设计参数梁截面宽度 b(mm) 400 梁截面高度 h(mm) 1200 上翼缘高度 h f(mm) 150 上翼缘宽度b f(mm) 2200 下翼缘高度h f'(mm) 0 下翼缘宽度b f'(mm) 400 支座截面加掖高度h a(mm) 0跨中截面面积A1(mm2) 7.500E+05支座截面面积A2(mm2) 7.500E+05跨中截面形心距上翼缘边缘的距离y11(mm) 411 跨中截面形心距下翼缘边缘的距离y12(mm) 789 支座截面形心距上翼缘边缘的距离y21(mm) 411 支座截面形心距下翼缘边缘的距离y22(mm) 789跨中截面惯性矩I1(mm4) 1.057E+11支座截面惯性矩I2(mm4) 1.057E+112.2 截面抗裂及承载力计算验算(三级)1、跨中截面1—1受拉区普通钢筋根数n1 9 受拉区普通钢筋直径d1(mm) 25 拉区预应力钢筋根数n2 16 弯矩标准值Mk(kN-m) 1012 次弯矩M2(kN-m) 692预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)156张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)44裂缝宽度验算受拉区纵向钢筋的公称直径d eq(mm) 26.89按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.03轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)777.51纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)868.11等效应力σsk(N/mm2)-34.20裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0) 1.00裂缝宽度ωmax(mm)0.04 <0.2,满足要求承载力计算跨中计算弯矩包络值+1.2次弯矩M(KN.M)2364实际承载力Mu(KN.M)4809 >M,满足要求2、支座截面2—2受拉区普通钢筋根数n1 8受拉区普通钢筋直径d1(mm) 25拉区预应力钢筋根数n2 16弯矩标准值M k(kN-m) 888次弯矩M2(kN-m) -680预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)292张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)44 裂缝验算受拉区纵向钢筋的公称直径d eq(mm) 27.04按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.01轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)95.45纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)-18520.95等效应力σsk(N/mm2)-355.74裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0) 1.00裂缝宽度ωmax(mm)0.03 <0.2mm,满足要求抗震验算梁端的配筋强度比λ0.68 <0.75,满足要求截面换算配筋率ρ(%) 2.41 <2.5%,满足要求受压区高度比x/h0 0.27 <0.35,满足要求梁端底面与顶面普通钢筋面积比A s’/As 1.13 >0.3/(1-λ),满足要求梁底面普通钢筋配筋率0.59 >0.2%,满足要求承载力计算支座计算弯矩包络值+次弯矩M(KN.M)1474(1.2恒荷弯矩+1.4活荷弯矩)*调幅系数+次弯矩M1(KN.M)310实际承载力Mu(KN.M)3902 >M1,满足要求支座计算配筋包络值A s(mm2) 5989支座换算实际配筋面积A s实(mm2) 11007 >As,满足要求支座抗剪设计值V(KN)895抗剪承载力V实(KN)1996 >V,满足条件施工阶段验算支座验算施工阶段上翼缘边缘砼法向压应力ócc(N/mm2) 4.51 <0.6fck,满足要求施工阶段下翼缘边缘砼法向拉应力ótp(N/mm2)-0.49 <0.95ftk,满足要求跨中验算施工阶段下翼缘边缘砼法向压应力ócc(N/mm2) 5.89 <0.6fck,满足要求施工阶段上翼缘边缘砼法向拉应力ócc(N/mm3)-1.69 <0.95ftk,满足要求施工阶段预应力伸长计算值(mm) 92施工阶段反拱验算 1.36 1.36165642荷载长期作用下梁挠度验算 6.72 满足要求<1/300一、计算条件1、材料1)、预应力钢筋采用高强低松弛钢绞线Φs15.2,其强度为f ptk=1860N/mm22)、张拉控制应力为σcon(N/mm2)= 13023)、孔道成型采用预埋金属波纹管,直径(mm)为55.004)、锚具种类:夹片锚5)、非预应力钢筋采用HRB400级钢筋,箍筋采用HRB335级钢筋6)、混凝土强度等级为C40 fc(N/mm2)= 19.1ftk(N/mm2)=2.517)、施加预应力时的混凝土强度为2、内力计算1)、跨中截面跨中设计弯矩M(KN.m):2058 恒荷载力作用下的弯矩标准值Mk(KN.m):788 活荷载力作用下的弯矩标准值Mk(KN.m):224 2)、支座截面支座设计弯矩M(KN.m):1729 恒荷载力作用下的弯矩标准值Mk(KN.m):1108 活荷载力作用下的弯矩标准值Mk(KN.m):274 3、结构信息1)、裂缝控制等级:三级2)、配筋情况:下部:2×5Φs15.2+7φ25上部:2×5Φs15.2+5φ254、张拉方式:一端张拉5、跨度L(mm)15.5二、截面验算2.1 截面设计参数梁截面宽度 b(mm) 400 梁截面高度 h(mm) 1200 上翼缘高度 h f(mm) 150 上翼缘宽度b f(mm) 2200 下翼缘高度h f'(mm) 0 下翼缘宽度b f'(mm) 400 支座截面加掖高度h a(mm) 0跨中截面面积A1(mm2) 7.500E+05支座截面面积A2(mm2) 7.500E+05跨中截面形心距上翼缘边缘的距离y11(mm) 411 跨中截面形心距下翼缘边缘的距离y12(mm) 789 支座截面形心距上翼缘边缘的距离y21(mm) 411 支座截面形心距下翼缘边缘的距离y22(mm) 789跨中截面惯性矩I1(mm4) 1.057E+11支座截面惯性矩I2(mm4) 1.057E+112.2 截面抗裂及承载力计算验算(三级)1、跨中截面1—1受拉区普通钢筋根数n1 7 受拉区普通钢筋直径d1(mm) 25 拉区预应力钢筋根数n2 10 弯矩标准值Mk(kN-m) 1012 次弯矩M2(kN-m) 433预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)156张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)44裂缝宽度验算受拉区纵向钢筋的公称直径d eq(mm) 26.64按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.02轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)1056.53纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)924.81等效应力σsk(N/mm2)40.15裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0)0.20裂缝宽度ωmax(mm)0.01 <0.2,满足要求承载力计算跨中计算弯矩包络值+1.2次弯矩M(KN.M)2058实际承载力Mu(KN.M)3320 >M,满足要求2、支座截面2—2受拉区普通钢筋根数n1 5受拉区普通钢筋直径d1(mm) 25拉区预应力钢筋根数n2 10弯矩标准值M k(kN-m) 888次弯矩M2(kN-m) -425预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)292张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)44 裂缝验算受拉区纵向钢筋的公称直径d eq(mm) 27.04按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.01轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)340.21纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)-544.20等效应力σsk(N/mm2)-575.16裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0) 1.00裂缝宽度ωmax(mm)0.05 <0.2mm,满足要求抗震验算梁端的配筋强度比λ0.68 <0.75,满足要求截面换算配筋率ρ(%) 1.51 <2.5%,满足要求受压区高度比x/h0 0.14 <0.35,满足要求梁端底面与顶面普通钢筋面积比A s’/As 1.40 >0.3/(1-λ),满足要求梁底面普通钢筋配筋率0.46 >0.2%,满足要求承载力计算支座计算弯矩包络值+次弯矩M(KN.M)1729(1.2恒荷弯矩+1.4活荷弯矩)*调幅系数+次弯矩M1(KN.M)565实际承载力Mu(KN.M)2622 >M1,满足要求支座计算配筋包络值A s(mm2) 5989支座换算实际配筋面积A s实(mm2) 6879 >As,满足要求支座抗剪设计值V(KN)895抗剪承载力V实(KN)1996 >V,满足条件施工阶段验算支座验算施工阶段上翼缘边缘砼法向压应力ócc(N/mm2) 1.65 <0.6fck,满足要求施工阶段下翼缘边缘砼法向拉应力ótp(N/mm2)-2.54 <0.95ftk,满足要求跨中验算施工阶段下翼缘边缘砼法向压应力ócc(N/mm2) 2.09 <0.6fck,满足要求施工阶段上翼缘边缘砼法向拉应力ócc(N/mm3)-1.88 <0.95ftk,满足要求施工阶段预应力伸长计算值(mm) 92施工阶段反拱验算0.11 0.10540212荷载长期作用下梁挠度验算9.24 满足要求<1/300YKL-4一、计算条件1、材料1)、预应力钢筋采用高强低松弛钢绞线Φs15.2,其强度为f ptk=1860N/mm22)、张拉控制应力为σcon(N/mm2)= 13023)、孔道成型采用预埋金属波纹管,直径(mm)为55.004)、锚具种类:夹片锚5)、非预应力钢筋采用HRB400级钢筋,箍筋采用HRB335级钢筋6)、混凝土强度等级为C40 fc(N/mm2)= 19.1ftk(N/mm2)=2.517)、施加预应力时的混凝土强度为2、内力计算1)、跨中截面跨中设计弯矩M(KN.m):1591 恒荷载力作用下的弯矩标准值Mk(KN.m):665 活荷载力作用下的弯矩标准值Mk(KN.m):15 2)、支座截面支座设计弯矩M(KN.m):518 恒荷载力作用下的弯矩标准值Mk(KN.m):773 活荷载力作用下的弯矩标准值Mk(KN.m):55 3、结构信息1)、裂缝控制等级:三级2)、配筋情况:下部:2×5Φs15.2+7φ25上部:2×5Φs15.2+5φ254、张拉方式:一端张拉5、跨度L(mm)15.5二、截面验算2.1 截面设计参数梁截面宽度 b(mm) 400 梁截面高度 h(mm) 1100上翼缘高度 h f(mm) 150 上翼缘宽度b f(mm) 2200 下翼缘高度h f'(mm) 0 下翼缘宽度b f'(mm) 400 支座截面加掖高度h a(mm) 0跨中截面面积A1(mm2) 7.100E+05支座截面面积A2(mm2) 7.100E+05跨中截面形心距上翼缘边缘的距离y11(mm) 369 跨中截面形心距下翼缘边缘的距离y12(mm) 731 支座截面形心距上翼缘边缘的距离y21(mm) 369 支座截面形心距下翼缘边缘的距离y22(mm) 731跨中截面惯性矩I1(mm4) 8.263E+10支座截面惯性矩I2(mm4) 8.263E+102.2 截面抗裂及承载力计算验算(三级)1、跨中截面1—1受拉区普通钢筋根数n1 7 受拉区普通钢筋直径d1(mm) 25 拉区预应力钢筋根数n2 10 弯矩标准值Mk(kN-m) 680 次弯矩M2(kN-m) 422预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)141张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)34裂缝宽度验算受拉区纵向钢筋的公称直径d eq(mm) 26.64按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.02轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)783.06纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)824.19等效应力σsk(N/mm2)-14.48裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0) 1.00裂缝宽度ωmax(mm)0.02 <0.2,满足要求承载力计算跨中计算弯矩包络值+1.2次弯矩M(KN.M)1591实际承载力Mu(KN.M)3013 >M,满足要求2、支座截面2—2受拉区普通钢筋根数n1 5受拉区普通钢筋直径d1(mm) 25拉区预应力钢筋根数n2 10弯矩标准值M k(kN-m) 561次弯矩M2(kN-m) -416预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)265张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)34 裂缝验算受拉区纵向钢筋的公称直径d eq(mm) 27.04按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.01轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)103.56纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)-11681.32等效应力σsk(N/mm2)-367.44裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0) 1.00裂缝宽度ωmax(mm)0.06 <0.2mm,满足要求抗震验算梁端的配筋强度比λ0.68 <0.75,满足要求截面换算配筋率ρ(%) 1.64 <2.5%,满足要求受压区高度比x/h0 0.15 <0.35,满足要求梁端底面与顶面普通钢筋面积比A s’/As 1.40 >0.3/(1-λ),满足要求梁底面普通钢筋配筋率0.48 >0.2%,满足要求承载力计算支座计算弯矩包络值+次弯矩M(KN.M)518(1.2恒荷弯矩+1.4活荷弯矩)*调幅系数+次弯矩M1(KN.M)197实际承载力Mu(KN.M)2356 >M1,满足要求支座计算配筋包络值A s(mm2) 2986支座换算实际配筋面积A s实(mm2) 6815 >As,满足要求支座抗剪设计值V(KN)495抗剪承载力V实(KN)1821 >V,满足条件施工阶段验算支座验算施工阶段上翼缘边缘砼法向压应力ócc(N/mm2) 2.54 <0.6fck,满足要求施工阶段下翼缘边缘砼法向拉应力ótp(N/mm2)-1.24 <0.95ftk,满足要求跨中验算施工阶段下翼缘边缘砼法向压应力ócc(N/mm2) 2.51 <0.6fck,满足要求施工阶段上翼缘边缘砼法向拉应力ócc(N/mm3)-1.90 <0.95ftk,满足要求施工阶段预应力伸长计算值(mm) 94施工阶段反拱验算0.52 0.51765696荷载长期作用下梁挠度验算8.91 满足要求<1/300一、计算条件1、材料1)、预应力钢筋采用高强低松弛钢绞线Φs15.2,其强度为f ptk=1860N/mm22)、张拉控制应力为σcon(N/mm2)= 13023)、孔道成型采用预埋金属波纹管,直径(mm)为55.004)、锚具种类:夹片锚5)、非预应力钢筋采用HRB400级钢筋,箍筋采用HRB335级钢筋6)、混凝土强度等级为C40 fc(N/mm2)=19.1ftk(N/mm2)=2.397)、施加预应力时的混凝土强度为2、内力计算支座截面支座设计弯矩M(KN.m):562 恒荷载力作用下的弯矩标准值Mk(KN.m):400 活荷载力作用下的弯矩标准值Mk(KN.m):213、结构信息1)、裂缝控制等级:三级2)、配筋情况:上部:2×5Φs15.2+7φ254、张拉方式:一端张拉5、跨度L(mm) 5二、截面验算2.1 截面设计参数梁截面宽度 b(mm) 500 梁截面高度 h(mm) 700 上翼缘高度 h f(mm) 150 上翼缘宽度b f(mm) 2300 下翼缘高度h f'(mm) 0 下翼缘宽度b f'(mm) 500 支座截面加掖高度h a(mm) 0支座截面面积A2(mm2) 6.200E+05支座截面形心距上翼缘边缘的距离y21(mm) 230 支座截面形心距下翼缘边缘的距离y22(mm) 470支座截面惯性矩I2(mm4) 2.632E+102.2 截面抗裂及承载力计算验算(三级)支座截面受拉区普通钢筋根数n1 7 受拉区普通钢筋直径d1(mm) 25 拉区预应力钢筋根数n2 10 弯矩标准值M k(kN-m) 421预应力损失计算张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)234预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)43 裂缝验算受拉区纵向钢筋的公称直径d eq(mm) 26.64按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.03轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)305.08纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)218.83等效应力σsk(N/mm2)112.75裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0)0.60裂缝宽度ωmax(mm)0.07 <0.2mm,满足要求抗震验算梁端的配筋强度比λ0.60 <0.75,满足要求截面换算配筋率ρ(%) 2.44 <2.5%,满足要求受压区高度比x/h0 0.26 <0.35,满足要求承载力计算支座计算弯矩包络值M(KN.M)5621.2恒荷弯矩+1.4活荷弯矩M1(KN.M)509实际承载力Mu(KN.M)1568 >M1,满足要求支座计算配筋包络值A s(mm2) 2700支座换算实际配筋面积A s实(mm2) 7814 >As,满足要求支座抗剪设计值V(KN)180抗剪承载力V实(KN)1468 >V,满足条件挠度验算挠度f(mm) 10.31 满足要求。

预应力混凝土预应力损失及计算方法

预应力混凝土预应力损失及计算方法

预应力混凝土预应力损失及计算方法预应力混凝土是一种在混凝土构件承受使用荷载之前,预先对其施加压力的混凝土结构。

通过这种方式,可以有效地提高混凝土构件的抗裂性能、刚度和承载能力。

然而,在实际工程中,由于多种因素的影响,预应力会产生一定的损失。

准确计算和理解这些预应力损失对于保证预应力混凝土结构的安全性和可靠性至关重要。

预应力损失主要包括以下几个方面:锚具变形和钢筋内缩引起的预应力损失当预应力筋在锚固过程中,由于锚具的变形、钢筋与锚具之间的相对滑移以及混凝土的压缩等原因,会导致预应力的损失。

这种损失通常发生在预应力筋的锚固端,其大小与锚具的类型、锚具的尺寸、预应力筋的直径以及张拉控制应力等因素有关。

预应力筋与孔道壁之间的摩擦引起的预应力损失在预应力筋的张拉过程中,由于预应力筋与孔道壁之间存在摩擦力,使得预应力筋在沿孔道长度方向上的应力逐渐减小。

这种摩擦损失与孔道的形状、长度、预应力筋的类型以及施工工艺等因素有关。

混凝土加热养护时受张拉的钢筋与承受拉力的设备之间的温差引起的预应力损失在混凝土构件进行加热养护时,如果预应力筋已经张拉完成,由于钢筋与养护设备之间存在温差,会导致钢筋伸长,从而引起预应力的损失。

预应力筋的应力松弛引起的预应力损失预应力筋在长期保持高应力状态下,会产生应力松弛现象,即应力随时间逐渐降低。

这种损失与预应力筋的类型、初始应力水平、时间以及环境温度等因素有关。

混凝土的收缩和徐变引起的预应力损失混凝土在硬化过程中会发生收缩,在长期荷载作用下会产生徐变。

这些变形会导致预应力筋的回缩,从而引起预应力的损失。

收缩和徐变引起的预应力损失与混凝土的配合比、养护条件、构件的尺寸以及加载龄期等因素有关。

接下来,我们来探讨一下预应力损失的计算方法。

对于锚具变形和钢筋内缩引起的预应力损失,其计算公式通常为:\(\sigma_{l1} = a\times\frac{l}{E_{s}}\)其中,\(\sigma_{l1}\)为锚具变形和钢筋内缩引起的预应力损失,\(a\)为锚具变形和钢筋内缩值,\(l\)为张拉端至锚固端之间的距离,\(E_{s}\)为预应力筋的弹性模量。

桥面板计算及预应力筋估算

桥面板计算及预应力筋估算

第3章桥梁纵向分孔及横截面尺寸拟定3.1桥梁纵向分孔3.1.1变截面连续梁桥构造特点连续孔数一般不超过5跨,多于3跨的连续梁桥,除边跨外,其中间各跨一般采用等跨布置,以方便悬臂施工。

多于两跨的连续梁桥,其边跨一般为中跨的0.6~0.8倍左右,当采用箱形截面,边孔跨径其至可减少至中孔的0.5~0.7倍。

有时为了满足城市桥梁或跨线桥的交通要求而需增大中跨跨径时,可将边跨跨径设计成仅为中跨的0.5倍以下,此时,端支点上将出现较大的负反力,故必需在该位置设置能抵抗拉力的支座或压重以消除负反力。

3.1.2本设纵向分孔计本设计纵向分孔设置为:(3×50)预应力混凝土简支T梁+(56+2×86+56)变截面箱型连续梁+(3×40)预应力混凝土简支T梁,全长550米。

变截面连续梁段:边跨56m中跨86m,边跨为中跨的0.651倍符合要求。

3.2桥横截面尺寸拟定本设计横截面尺寸拟定如表3-1,示意图如图3-1。

. -可修编形式顶板厚腹板厚底板厚根部跨中56+2×86+56 连续梁0.651 单箱单室30 30→60 28→60 5.4 2.8表3-1 横截面拟定高跨比梁宽(m) 悬臂厚度(cm)梗腋形式(cm×cm)根部跨中顶底根部端部顶板与腹板腹板与底板1/15.92 1/30.7 14.0 8.0 65 20 120×30 60×30图3-1 横截面尺寸拟定示意图(cm)图5-2 支点截面尺寸示意图3.3箱型截面尺寸的拟定依据拟定依据参考文献:《公路钢筋混凝土及预应力混凝土桥涵设计规》(JTG_D62-2004)。

3.3.1顶板、底板、悬臂板长度拟定箱梁顶板宽度一般接近桥面总宽度,本设计中顶板长度为14m。

顶板两侧悬臂板的长度对活载弯矩数值的影响不大,但恒载及人群荷载弯矩随悬臂长度几乎成平方关系增加,故悬臂板长度一般不大5m,当长度超过3m后,宜布置横向预应力束筋。

预应力张拉计算说明

预应力张拉计算说明

预应力张拉计算说明预应力张拉计算及现场操作说明本合同段梁板均为先张梁板,根据台座设置长度,实际钢绞线下料长度为89米。

一、理论伸长量计算由公式ΔL=(Nk*L)/EA计算可得理论伸长量。

公式ΔL=(Nk*L)/E g A g中ΔL:理论伸长量Nk:作用于钢绞线的张拉力(控制应力σk= 1395Mp)L:钢绞线下料长度(89m)E g:钢绞线弹性模量(1.95X105 Mp)A g:钢绞线截面面积(140mm2)由公式计算得ΔL=(1395*140*89)/(195700*140)=0.63441m=634.41mm现场张拉采取五级张拉分别为10%σk,20%σk,40%σk,8 0%σk,100%σk;对应理论伸长量分别为L1,L2,L3,L4,L5,L6。

由公式计算得L1=63.44 mm(10%ΔL)L2=126.88 mm(20%ΔL)L3=253.76mm(40%ΔL)L4=507.52mm(80%ΔL)L5=634.41 mm(100%ΔL)二、现场张拉实测(一)现场张拉操作现场张拉采取六级张拉分别为10%σk,20%σk,40%σk , 8 0%σk,100%σk;对应伸长量分别为A,B,C,D,E。

张拉顺序:1、先张拉左侧锚端,用3#千斤顶张拉N1筋,张拉到10%σk,记录此时伸长量A1,再张拉到20%σk,记录此时伸长量B1;后依次张拉N2-N9,对称张拉,分别记录各自伸长量:A2,B2 (9)B9;锚固好左侧。

2、张拉右侧锚端,用1#、2#千斤顶同时同步张拉,张拉到40%σk,记录此时伸长量C,锚固后继续张拉到80%σk,记录此时伸长量D,继续张拉到100%σk,记录下各自伸长量为E。

C、D、E值均为两千斤顶伸长的平均值。

(二)数据处理N1实际伸长量L n1=E+C或L n1=E+2(B1-A1)N2实际伸长量L n1=E+C或L n1=E+2(B2-A2)N3实际伸长量L n1=E+C或L n1=E+2(B3-A3)N4实际伸长量L n1=E+C或L n1=E+2(B4-A4)N5实际伸长量L n1=E+C或L n1=E+2(B5-A5)N6实际伸长量L n1=E+C或L n1=E+2(B6-A6)N7实际伸长量L n1=E+C或L n1=E+2(B7-A7)N8实际伸长量L n1=E+C或L n1=E+2(B8-A8)N9实际伸长量L n1=E+C或L n1=E+2(B9-A9)三、现场张拉注意要点1、现场张拉伸长值与理论伸长值必须随时比对,不得超过理论伸长值的±6%(即38.06mm);2、张拉时应匀速缓慢张拉,并在每级处持荷5min后读数;3、张拉时注意观察钢绞线断丝数,超过规定值必须替换,从新张拉;4、钢绞线张拉8小时后,才可进行下步钢筋施工。

用新规范计算预应力混凝土连续梁

用新规范计算预应力混凝土连续梁

用新规范计算预应力混凝土连续梁预应力混凝土连续梁是一种常用的结构形式,它可以有效地分担荷载,并具有较好的变形性能和挠度控制能力。

本文将以新规范为依据,介绍预应力混凝土连续梁的计算方法。

一、材料强度的计算首先,根据新规范的要求,需要计算混凝土的强度。

混凝土的强度主要包括抗压强度和抗拉强度。

按照规范中的公式,可以得到混凝土的抗压强度和抗拉强度的数值。

对于预应力混凝土连续梁中的预应力钢筋,需要计算其抗拉强度。

根据规范,预应力钢筋的抗拉强度可以根据材料的特性进行计算。

二、截面性能的计算预应力混凝土连续梁的截面性能是指梁的承载能力和变形性能。

承载能力包括极限弯矩和抗剪承载力,变形性能主要包括挠度和裂缝的控制。

1.极限弯矩的计算极限弯矩是指在梁截面的一侧产生最大应力时,梁截面的承载能力。

根据新规范,可以采用一系列公式和计算方法来计算极限弯矩。

2.抗剪承载力的计算抗剪承载力是指连续梁在承受剪力荷载时的承载能力。

根据规范中的要求,可以采用不同的计算方法来计算抗剪承载力。

3.挠度和裂缝的控制挠度和裂缝的控制是预应力混凝土连续梁设计中的重要问题。

通常,可以采用一系列方法来控制梁的挠度和裂缝,如增加截面高度、增加预应力等。

三、校核计算和验算在进行预应力混凝土连续梁的计算时,需要进行校核和验算,以保证梁的安全性和可靠性。

校核计算主要是检查计算结果的合理性和一致性,验算是指将计算结果与规范中要求的标准进行比较,以确定梁是否满足规范的要求。

总结起来,预应力混凝土连续梁的计算要考虑材料强度、截面性能、挠度和裂缝的控制等因素,需要根据新规范进行计算和校核验算。

通过合理的计算和设计,可以确保梁具有较好的承载能力和变形性能,从而满足工程的要求。

预应力裂缝和挠度计算

预应力裂缝和挠度计算
不计算受压区预应力钢筋 Np=σpe*Ap-σl5*As (N) =
3626374.761 481.470161 1275 2.116E+01 1395.90 1.243E+15 1.73146E+15 1.144241197 2.955365457 2333179315 0 6.40E+14
epn=(σpe*Ap*ypn-σl5*As*ysn)/Np (mm)
三级 标准组合并考虑长期作用的最大裂宽 ωmax≤ω1im ω1im-最大裂缝宽度限值按第3.3.4条采用 ωmax=αcr*ψ*σsk/Es*(1.9c+0.08deq/ρte)= ψ=1.1-0.65ftk/(ρte*σsk)= deq=Σni*(di)^2/Σni*vi*di= V1 V2 按表8.1.2-2 1 ρte=(As+Ap)/Ate= ok Ate=0.5bh+(bf-b)hf= 暂时不考虑bf.hf σsk=(Mk±M2-Np0(z-ep))/((Ap+As)z)=
σpe=σcon-σl (N/mm) σpc=Np/An+Np*epn*yn/In+M2*yn/In (N/mm) σp0=σcon-σl+ae*σpc (N/mm) 不出现裂缝 Bs=0.85*Ec*I0 允许裂缝 Bs=0.85EcI0/(kcr+(1-kcr)ω) kcr=Mcr/Mk ω=(1.0+0.21/αEρ)(1+0.45γf)-0.7 Mcr=(σpc+γftk)W0 γf=(bf-b)hf/bh0 B=Mk/(Mq(θ-1)+Mk)*Bs
C35
3.150E+04
M设计值 2.51E+09 M恒 1.70E+09 M活 3.38E+08 短期弯矩 Ms 2.04E+09 长期弯矩 Ml 1.92E+09 M2 -5.06E+08

预应力张拉伸长量计算

预应力张拉伸长量计算

后张法预应力张拉伸长量计算与测定分析一、理论伸长量计算1、理论公式:(1)根据《公路桥涵施工技术规范》(JTJ041— 2000),钢绞线理论伸长量计算公式如下:P P L力筋的工作长度和线型段落的划分。

后张法钢绞线型既有直线又有曲线,由于不同线型区间的平均应力会有很大差异,因此需要分段计算伸长值,然后累加。

于是上式中:L L1 L2 L iA p E式中:P P——预应力筋的平均张拉力(N),直线筋取张拉端的拉力,曲线筋计算方法见②式;L――预应力筋的长度;A P---- 预应力筋的截面面积(mm);E P――预应力筋的弹性模量(N/mm2);P――预应力筋张拉端的张拉力(N);x――从张拉端至计算截面的孔道长度(m);――从张拉端至计算截面的孔道部分切线的夹角之和(rad);k――孔道每米局部偏差对摩擦的影响系数;――预应力筋与孔道壁的摩擦系数。

(2)计算理论伸长值,要先确定预应P p值不是定值,而是克服了从张拉端至第i —1段的摩阻力后的剩余有效拉力值,所以表示成“ Pp ”更为合适;(3)计算时也可采取应力计算方法,各点应力公式如下:i 1 kx i 1各点平均应力公式为:kxi 1 e "kx i各点伸长值计算公式为:X iP i2、根据规范中理论伸长值的公式,举例说明计算方法:某后张预应力连续箱梁,其中4*25米联内既有单端张拉,也有两端张拉。

箱梁中预应力钢束采用高强度低松弛钢绞线(①15.24),极限抗拉强度f p=1860Mpa,锚下控制应力6 o=0.75f p=1395Mpa。

K 取0.0015/m, 尸0.25。

P pe kxkxL iP p L iA p E pPiL i(1)单端张拉预应力筋理论伸长值计算:预应力筋分布图(1) 伸长值计算如下表:(2)两端非对称张拉计算:预应力筋分布图(2)伸长值计算如下表:若预应力钢筋为两端对称张拉,则只需计算出一半预应力筋的伸长值,然后乘以2即得总的伸长量。

预应力钢筋计算

预应力钢筋计算
位置 N1、N2、N3 AB N1、N2、N3 BC N1、N2、N3 CD N4、N5、N6 AB N4、N5、N6 BC N4、N5、N6 CD 强度 1302 1302 1302 1302 1302 1302 1302 1302 1302 1302 1302 1302 1302 218.736 10% 437.472 20% 应力(KN) 2187.36 2187.36 2187.36 2187.36 2187.36 2187.36 2187.36 2187.36 2187.36 2187.36 2187.36 2187.36 2187.36 2187.36 100% 束数 12 12 12 12 12 12 12 12 12 12 12 12 12 Ay 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 2296.728 105% 24.59487843 25.04111241 25.31168733 25.07567427 L(m) 1.915 2.169 2.141 0.844 1.9045 0.603 1.905 0.969 0.141 1.6995 0.62 1.6995 2.065 600 380 中心点竖向H 160
2
1279-1050 1278-1051 236-1051
依据及方法 ))/ [(Eg*Ay*(kx+μ θ ))] 力筋的理论伸长值,㎜; 拉端的张拉力,N; 筋的长度,㎜; 筋的截面积,㎜2; ,Eg=1.95×100N/㎜2或Mpa; 算截面的孔道长度,m; 孔道部分切线的夹角之和,rad; 对摩擦的影响系数,0.0015; 之间的摩擦系数,0.25。
2184.223 2174.809 2159.71 2185.976 2165.72 2130.853 2111.623 2110.144 2187.129 2155.486 2099.524 2070.417 2067.396

预应力的计算公式

预应力的计算公式

预应力的计算公式预应力混凝土结构是在结构承受荷载之前,预先对其施加压力,使其在外荷载作用时的受拉区混凝土内力产生压应力,用以抵消或减小外荷载产生的拉应力,使结构在正常使用的情况下不产生裂缝或者裂得比较晚。

在结构承受外荷载之前,预先对其在外荷载作用下的受拉区施加压应力(预压力),以改善结构使用的性能的结构型式称之为预应力混凝土结构。

张拉控制应力是预应力混凝土结构张拉施工的依据,它可以根据结构的受力要求和材料的性能确定,在结构设计时一般按设计阶段的验算和张拉阶段预应力损失来综合确定。

预应力的计算公式:σ=N/As±M/W/2预应力的张拉控制应力应根据设计要求进行施工,施工中预应力的张拉控制应力不得超过设计要求,但也不宜小于设计要求的张拉控制应力的1/1.25倍。

这是由于在结构破坏时,如为超张拉的试脸,预应力损失值可按设计要求取用;如为非超张拉的试脸,则其损失值比超张拉损失值要小,所以采用比设计值小的控制应力,尚能满足设计要求。

但也不宜采用比设计值大的控制应力,这是因为预应力筋是有弹性变形的,如张拉控制应力较大,则其预埋端的位移也会较大,这样在浇筑混凝土时将产生较大的上拱,使构件在就位后的标高与设计要求的标高不符。

预应力的计算公式预应力混凝土结构是在结构承受荷载之前,预先对其施加压力,使其在外荷载作用时的受拉区混凝土内力产生压应力,用以抵消或减小外荷载产生的拉应力,使结构在正常使用的情况下不产生裂缝或者裂得比较晚。

在结构承受外荷载之前,预先对其在外荷载作用下的受拉区施加压应力(预压力),以改善结构使用的性能的结构型式称之为预应力混凝土结构。

张拉控制应力是预应力混凝土结构张拉施工的依据,它可以根据结构的受力要求和材料的性能确定,在结构设计时一般按设计阶段的验算和张拉阶段预应力损失来综合确定。

预应力的计算公式:σ=N/As±M/W/2预应力的张拉控制应力应根据设计要求进行施工,施工中预应力的张拉控制应力不得超过设计要求,但也不宜小于设计要求的张拉控制应力的1/1.25倍。

预应力钢束引伸量计算

预应力钢束引伸量计算
预应力钢筋理论伸长值计算
计算钢束编号: 预应力钢束采用一束 预应力筋张拉控制应力 1 13 φ15.20 钢铰线; σcon= 1357.8 Mpa
Ap= 1820 预应力筋截面面积 mm2 超张拉系数 b= 1 Ep= 195000 预应力筋弹性模量 Mpa 预应力筋的锚下张拉力: Ncon= σcon×Ap×b/1000= 2471.196 kN 预应力筋伸长量分段计算,考虑预应力钢筋与管道壁间摩擦引起的预应力 损失后的张拉力 N= Ncon[1-e-(μθ+kx)] 预应力筋理论伸长值 Pp×l/(Ap×Ep) Δl= 预应力筋平均张拉力 Pp= Pp×[1-e-(μθ+kx)]/(μθ+kx) 根据以上公式分段计算,结果如下表:
线段 张拉控制力 (kN) 2471.196 2445.545 2413.411 2342.577 2299.146 Ap(mm2) 1820 1820 1820 1820 1820 Ep(Mpa) 195000 195000 195000 195000 195000 l(m) 6.954 0.709 19.8623 1.004 1.962 θ(rad) 0 0.0715585 0 0.1012291 0 μ 0.17 0.17 0.17 0.17 0.17 k 0.0015 0.0015 0.0015 0.0015 0.0015 μθ+kx 0.01043 0.01323 0.02979 0.01871 0.00294
由表中数据分段求得Δl=
200.98962 0.98686 0.97065 0.98146 0.99706
终点力 (kN) 2445.545 2413.411 2342.577 2299.146 2292.387

第3章 预应力钢筋张拉阶段有效应力及张拉伸长值计算

第3章 预应力钢筋张拉阶段有效应力及张拉伸长值计算

第3章预应力钢筋张拉阶段有效应力及张拉伸长值计算3.1 预应力钢筋的张拉控制应力预应力钢筋的张拉控制应力(controlled tensile stress Of prestressing steel reinforcement)是指张拉时预应力钢筋达到的最大应力值,也就是张拉设备(如千斤顶)所控制的总拉力除以预应力钢筋截面面积所得到的应力值,以acon表示。

对于变角张拉而引起变角张拉装置摩阻损失,ocon指经过变角张拉装置并扣除此摩阻力后的(锚具位置)应力值。

概括讲,ocon通指预应力钢筋张拉时锚具位置的控制应力。

从经济角度出发,对于相同截面的预应力筋束,采用愈大的张拉控制应力ocon将使管壁混凝土中建立的环向预压应力就愈大,其抗裂性就愈好;或者要达到同样的抗裂性时,预应力筋束的截面面积就可以减小。

然而张拉控制应力ocon值太高也将存在下述一些问题:1)ocon值愈高,预应力筋束的应力松弛损失将愈大。

2)由于预应力钢筋强度的离散性、张拉操作中的超张拉等原因,张拉时可能使钢筋应力接近甚至进入屈服阶段,产生塑性变形,反而达不到预期的预应力效果。

少数钢筋甚至发生脆断现象。

3)因张拉力的测量可能不够准确,容易发生安全事故。

因此,预应力钢筋的张拉控制应力ocon不能定得过高,应留有适当的余地。

一般宜在比例极限值之下。

研究表明,预应力钢筋的张拉控制应力ocon与所采用的钢筋品种有关。

对预应力钢绞线而言,其塑性较差,没有明显的屈服台阶,ocon应定得低一些。

综合分析《水工混凝土结构设计规范》(DL/T 5057-1996)和《混凝土结构设计规范》(GB50010--2002)的规定[1,2],预应力钢绞线的张拉控制应力值ocon:有粘结预应力技术体系不宜超过0.75fptk,无粘结预应力施工技术体系不宜超过0.70fptk,且不应小于0.4/Ptk。

当考虑部分抵消由于应力松弛、孔道摩擦、钢筋分批张拉等因素产生的预应力损失时,张拉控制应力允许值可提高0.05fptk。

基本构件计算 预应力混凝土结构构件计算

基本构件计算  预应力混凝土结构构件计算

预应力混凝土结构构件计算一、预应力损失值计算 (一)基本公式1.张拉端锚具变形和钢筋内缩引起的预应力损失σl 1 (1)对预应力直线钢筋S1E l al =σ(9-1) 式中 a ——张拉端锚具变形和钢筋内缩值(mm ),按表9-2取用❖;l ——张拉端至锚固端之间的距离(mm );E S ——预应力筋弹性模量(N/mm 2)。

表9-2 锚具变形和钢筋内缩值a注 ①表中的锚具变形和钢筋内缩值也可根据实测数据或有关规范规定;②其他类型(如大型预应力钢索)的锚具变形和钢筋内缩值应根据专门研究或试 验确定。

(2)对于后张法构件的预应力曲线钢筋(预应力筋为圆弧曲线,对应的圆心角θ不大于30o)⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛+f c f con 112l x k r l x l μσσ= (9-2)⎪⎪⎭⎫⎝⎛+=k r aE l f c con s1000μσ(9-3)式中l f _____预应力曲线钢筋与孔道壁之间反向摩擦影响长度,m ;r c _____圆弧曲线预应力筋的曲率半径,m ;μ_____预应力筋与孔道壁的摩擦系数,按表9-3取用;κ_____考虑孔道每米长度局部偏差的摩擦系数,按表9-3取用; x _____张拉端至计算截面的距离,m ,且应符合x ≤l f 的规定;其余符号的意义同前。

表9-3 摩 擦 系 数κ、μ注:当采用钢丝束的钢制锥形锚具时,尚应考虑锚环口处的附加摩擦损失,此值可根据实测数据确定。

2.预应力筋与孔道壁之间的摩擦引起的预应力损失σl 2⎪⎭⎫ ⎝⎛-=+μθσσkx l e11con 2 (9-4)式中 x ——张拉端至计算截面的孔道长度,m ,当曲线曲率不大 时也可近似取该段孔道在纵 轴上的投影长度;θ——从张拉端至计算截面曲线 孔道部分切线的夹角,rad 。

当kx +μθ≤0.2时,σl 2可按下列近 似公式计算σl 2 =(kx +μθ)σcon (9-5)3.混凝土加热养护时,受张拉的钢筋与承受拉力的设备之间的温差引起的预应力损失σl 325s 3N/mm 2100.200001.0t tt E l ∆=∆⨯⨯⨯=∆=ασ(9-6)式中 α——钢筋的温度线膨胀系数,近似取为1×10—5/℃;∆t ——混凝土加热养护时,受张拉的钢筋与承受拉力的设备之间的温差; E s ——预应力钢筋的弹性模量。

预应力加固钢筋混凝土方法的设计及计算方法

预应力加固钢筋混凝土方法的设计及计算方法

预应力加固钢筋混凝土方法的设计及计算方法好尤其是当预应力加固筋的布置与外弯矩图形相似,此法既可大幅度提高原梁的受弯承载力,又可显著提高原梁的受剪承载力,本文主要介绍了预应力加固钢筋混凝土方法的设计过程与计算方法,以及简要施工过程,通过工程实践证明了其可行性。

1前言预应力加固法是采用外加预应力钢拉杆或型钢撑杆对结构构件或整体进行加固的方法,特点是通过预应力手段强迫后加部分一拉杆或撑杆受力,改变原结构内力分布并降低原结构应力水平,致使一般加固结构中所特有的应力应变滞后现象得以完全消除,因此,后加部分与原结构能较好地共同工作,结构的总体承载能力可显著提高。

预应力加固法具有加固、卸荷、改变结构内力的三重效果,适用于大跨结构加固,以及采用一般方法无法加固或加固效果很不理想的较高应力应变状态下的大型结构加固。

采用预应力加固的钢筋混凝土梁,在加固前已经受荷且大部分已出现裂缝。

预应力拉杆横向收紧法加固后,使原梁的裂缝减少甚至闭合,并使原梁产生反拱抵消部分原梁的荷载挠度,从而改善了钢筋混凝土结构的受力性能,提高了原梁的承载力。

但是梁加固后,一般比原梁有一个荷载增量,使加固梁变形,或者本来就是因不满足正常使用状态而进行加固的,因此同普通混凝土结构一样,加固梁除了进行承载力计算之外,还须进行挠度和裂缝宽度的验算。

2体外预应力筋设计2.1加固原理简述我们知道,采用预应力加固法,不仅施工方便、经济,而且加固效果好尤其是当预应力加固筋的布置与外弯矩图形相似,采用折线形预应力筋时,既可大幅度提高原梁的受弯承载力,又可显著提高原梁的受剪承载力。

同时,能减小裂缝宽度和挠度。

这是因为预应力的作用可等效于对原梁施加了反向荷载,所以使原梁的使用性能大为改善。

在最终承载阶段,则由于预应力的施加,一方面使原梁截面内的钢筋面积A。

增加,另一方面因A。

一般地加于梁底,又加大了梁破坏时截面的有效高度ho,从而,大大提高了原梁的受弯承载力。

另外,采用折线预应力筋加固,对原梁的抗剪能力提高作用也是十分显著的。

预应力的计算及预应力损失σl的估算

预应力的计算及预应力损失σl的估算

0→初应力(0.1~0.15σcon左右)→1.05σcon (持 荷2min)→σcon(锚固) • 对于钢丝束 0→初应力(0.1~0.15σcon左右)→1.05σcon(持 荷2min)→0→σcon(锚固) 2)锚具变形、钢筋回缩和接缝压缩引起的应力损失 σl2 (1)概念:在张拉预应力钢筋达到控制应力σcon后, 便将预筋锚固在台座或构件上。由于锚具垫板和构 件之间的缝隙被压紧和压缩,以及预应力钢筋在锚 具中的滑动,造成预应力钢筋回缩而产生的损失
§13.3 预应力的计算及预应力损失σ段σpe不同σcon,σl
有关,σpe=σcon-σl,必确定σcon和σl、
13.3.1钢筋的张拉控制应力σcon 1)概念:σcon是张拉钢筋进行锚固前,张拉千斤顶 所指示的总拉力除以预筋面积所求得的钢筋应力值 2)σcon取值原则 σcon愈高,预应力效果好,但不宜过高。防断丝, 应力松驰大
p
l 2 BB ' 2Bb
《公路桥规》附录D 中推荐一种简化计 算方法,图13-10。直线caa’的斜率为:
d
0 l
l
式中: △σd,单位长度由 管道摩擦引起的预 应力损失(MPa/mm )σ0;张拉端锚下控制应力(MPa);σl,预应力钢筋扣 除沿途管道摩阻损失后锚固端的预应力(MPa);l,张拉 端至锚固端之间的距离(mm)
• • • •
钢筋与台座间的温差引起的损失σl3; 混凝土弹性压缩所引起的应力损失σl4; 钢筋松驰引起的应力损失σl5; 混凝土的收缩和徐变引起的应力损失σl6 1)预应力钢筋与管道间的摩擦引起的应力损失σl1 (1)概念:后张法中,预应力钢筋与管道壁之间产 生的摩擦损失,以致预应力钢筋截面的应力距张 拉端的距离的增加而减小,此应力损失即为 σl1,由两部分组成:一是弯道影响引起的摩擦 力;二是管道偏差影响引起的摩擦力力;三是弯 道部分的总摩擦力;四是钢筋计算截面处因摩擦 力引起的应力损失值

预应力钢筋下料长度计算

预应力钢筋下料长度计算

预应力钢筋下料长度计算12.6预应力筋下料长度计算预应力筋下料长度应按实际条件计算确定,务求准确。

下料长度过大,非但浪费材料,且在某种条杵下无法锚精或需加锚头,从血老响结构安装下料过短.则会使张拉夹具夹不上钢筋,有可能导致整根顶应力筋报废口顼应力筋下料长度的计算,应考慮预应力钢材品种、锚具形式规格“焊接接头、®ffi 头、祷拉拉长率、弹性回缩率、张拉伸长值、台座长度"构件孔道长度性能要求、张拉设Lo十nlo(12-52)备以及施工工艺方法等因素。

12,6.1冷拉钢筋下料长度计算用螺丝端杆锚具,以拉杆或千斤顶,在构件上张拉时,下料长度可按图12・29所示尺 寸计算*一.两用螺丝端杆错具时(图12-29a )1. 预应力筋的成品长度(冷拉后的全长)按F 式计算:Lj = Z + 2122. 预应力筋钢筋部分的成品长度按下式计算:L Q = Lj " 2Zi3・预应力筋钢筋部分的下料长度按下式计算;(12-49)二.一端用螺丝端杆.另一端用帮条(或辙头)锚具时(图12-29^) 1. 预应力筋的成品长度,按下式计算:L1 = I + 耳 + /3(12-50) 2. 预应力筋钢筋部分的成品长度按下式计算:-L o = L L - Zi(12-51)3・预应力筋钢筋部分的下料长度按下式计算:(12-47) (12-48)图12・29冷拉钢筋下料长度计算简图(a )蘭嵋用却丝鞘杆错具时;<&) 一爛用螺丝靖杆铝貝时 1一蚪丝端杆;2—预应力钢fflh 3—对烬接头;4一蛰板;5-煤母&式中5—預应力筋的成品长度;Lo —預应力筋钢筋部分的成品长度;L —预应力筋钢筋部分的下料长度;• I —构件的孔道长度或台座长度(包括横梁在内); h ——螺丝端杆伸出构件外的长度:对张拉端: Z 2 = 2H + A + 0.5cm 对固定端:G = H + A + 1cmH —螺母高度: h —垫板厚度; /3—徹头或帮条锚具长度(包括垫板厚度人);Zo —每个对焊接头的压缩长度; n —対焊接头的数逐;..r —钢筋冷拉拉长率(由试验确定);S —钢筋冷拉弹性回缩率(由试验确定)。

预应力换算截面面积a0

预应力换算截面面积a0

预应力换算截面面积a0
【原创实用版】
目录
1.预应力换算截面面积 a0 的概述
2.预应力换算截面面积 a0 的计算方法
3.预应力换算截面面积 a0 的应用实例
4.结论
正文
一、预应力换算截面面积 a0 的概述
预应力换算截面面积 a0 是在预应力混凝土结构设计中,为了计算预应力钢筋的应力而引入的一个参数。

a0 反映了预应力钢筋在换算截面处的面积,对于预应力结构的计算和分析具有重要意义。

二、预应力换算截面面积 a0 的计算方法
预应力换算截面面积 a0 的计算方法如下:
a0 = A / (πd^2)
其中,A 为换算截面的面积,d 为预应力钢筋的直径。

三、预应力换算截面面积 a0 的应用实例
假设一个预应力混凝土梁,其截面尺寸为 200mm×400mm,预应力钢筋直径为 16mm。

我们需要计算该梁的预应力换算截面面积 a0。

根据公式,我们可以得到:
A = 200mm × 400mm = 80000mm
d = 16mm = 0.016m
a0 = A / (πd^2) = 80000mm / (π× (0.016m)) ≈ 14141mm
因此,该梁的预应力换算截面面积 a0 约为 14141mm。

四、结论
预应力换算截面面积 a0 在预应力混凝土结构设计中起着关键作用,通过计算 a0,可以准确地分析预应力钢筋的应力,从而保证结构的安全性和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

预应力钢筋计算方法
一、工程量计算方法:
先张法预应力钢筋,按构件外形尺寸计算长度。

后张法预应力钢筋按设计图规定的预应力钢筋预留孔道长度加伸出孔道的工作长度计算,伸出孔道的工作长度,设计有规定时,按设计规定计算,设计无规定时,区别不同的锚具类型,分别按下列规定计算:
(1)低合金钢筋两端采用螺杆锚具时,预应力的钢筋按预留孔道长度减0.35m,螺杆另行计算。

考试吧
(2)低合金钢筋一端采用镦头插片,另一端采用螺杆锚具时,预应力钢筋长度按预留孔道长度计算,螺杆另行计算。

(3)低合金钢筋一端采用镦头插片,另一端采用帮条锚具时,预应力钢筋按孔道增加0.15m,两端均采用帮条锚具时,预应力钢筋长度按孔道长度增加0.3m计算。

(4)低合金钢筋采用后张混凝土自锚时,预应力钢筋长度增加0.35m计算。

(5)低合金钢筋(钢铰线)采用JM、XM、QM型锚具,孔道长度在20m以内时,预应力钢筋长度按孔道长度增加1m;孔道长度20m以上时,预应力钢筋(钢铰线)长度按孔道长度增加1.8m计算。

(6)碳素钢丝束采用锥形锚具,孔道在20m以内时,钢丝束长度按孔道长度增加1m;孔道长度在20m以上时,钢丝束长度按孔道长度增加1.8m。

(7)碳素钢丝束采用镦头锚具时,钢丝束长度按孔道长度增加0.35m计算
二、参数计算方法:
预应力的计算公式: F=PS F-张拉力kN,P-压力MPa,S-活塞面积mm2。

根据这个公式转换就行。

通俗些,我给你举个例子,你就明白了。

假设预制板中铺设有10条10.7的钢筋(该规格的钢筋横截面积为90mm2,标准抗拉强度为1420MPa),按照一般标准规定,取张拉系数0.7,即每条钢筋的张拉应力为1420*0.7=994MPa。

张垃机的油缸活塞面积为400cm2,则张拉时,压力表值P2计算为。

由于在张拉过程中,钢筋受拉力F1与张拉机的张拉力F2大小是相等的,所以有F1=F2。

即,P1*S1=P2*S2,所以P2=P1*S1/S2 =1条钢筋张拉应力*1条钢筋横截面积*钢筋条数/张拉机活塞面积=994*90*10/400*100=22.365MPa。

相关文档
最新文档