§1.2.1 热力学系统
热力学统计物理第一章热力学的基本规律

p p1
p1
p2
§1.5 热力学第一定律
能量守恒定律:自然界一切物质都具有能量,能量有各种不 同的形式,可以从一种形式转化为另一种形式,从一个物体 传递到另一个物体,在传递与转化中能量的数量不变。
另一种表述:第一类永动机是不可能造成的。
热力学U系 BUA 统 W: Q W:以外界对系统所功作为的正 Q:以吸热为正
WW 'QRln V V 1 2(T1T2)
热机效率定义: W Q1
卡 诺 热 W T 1 机 T 21 : T 21
Q 1 T 1
T 1
§1.10 热力学第二定律 克劳修斯(克氏)表述: 不可能把热量从低温物体传到高温物体而不引起其他变化 卡尔文(开氏)表述: 不可能从单一热源吸热使之完全变成有用的功而不引起 其他变化
AT B T
A BdTQ A BdTQ r SBSA
SB SA
BdQ AT
dS dQ T
第二定律的数学表述
绝热过 :d程 Q0
SBSA0 ——熵增加原理的数学表述
熵增加原理:经绝热过程后,系统的熵永不减少,经可逆 绝热过程后熵不变,经不可逆绝热过程后熵增加,在绝热 条件下熵减少的过程是不可能实现的。
第一章 热力学的基本规律 §1.1 热力学系统的平衡状态及其描述
1.系统
孤立系 (极限概念) 闭系 开系
热力学系统的状态
平衡态 非平衡态
热力学平衡态:
(1)定义: 一个孤立系统,不论其初态如何复杂,经过 足够长的时间后,将会到达这样的状态,系 统的各种宏观性质在长时间内不发生任何变 化,这样的状态称为热力学平衡态。
n称 为 多 方 指 数: 。理 试想 证气 明体 多的 方热 过容 程
热学 第一章 热力学系统的平衡态与温度

例如:粒子数
箱子假想分成两相同体积 的部分,达到平衡时,两侧粒 子有的穿越界线,但两侧粒子 数相同。
三、状态参量
状态参量:描述系统平衡态宏观性质的物理量。 常用的状态参量包括以下四类:
几何参量,如体积和应变等; 力学参量,如压强和应力等; 电磁参量,如电场和磁场强度、电极化与磁化等; 化学参量,如组成系统各化学组份的质量、物质的量。 只需要体积和压强两个状态参量就能够确定热力学 系统的平衡态,这样的系统称之为简单系统。
不管是哪种气体,当
压强趋于零时,所建立的 温标都趋于相同的极限值
p
V
T lim 273.16 lim 273.16
ptr 0
ptr
ptr 0
Vtr
——理想气体温标
3、热力学温标 (不依赖于任何测温物质及其物理属性)
开尔文根据热力学第二定律建立了热力学温标。
在理想气体温标所能确定的温度范围内,理想气体
线度约为10-4---10-5 , 1cm3气体中包含1011个微粒;
二、宏观物体内的分子在不停地运动并与温度有关
1827年,布朗(英 国植物学家)
在显微镜下观察悬
浮在液体中的小颗粒
永不停息地运动着,
其中任何一个运动都 是 无 规 则 的 或 无 序 的 。 布朗粒子
--------布朗运动
布朗运动
由观察和实验总结出来的热力学规
宏观描述 律,不考虑宏观物体内大量微观粒
研
子的微观结构,从能量观点直接研
究
究宏观物体的性质与规律。——热
方
力学方法
法
从物质的微观结构出发,依据每个
微观描述 分子所遵循的力学规律,用统计的
方法研究宏观物体的性质。——统
热力学与统计物理第一章

三.功的计算 1.简单系统(PVT系统)无摩擦准静态过程体积功 当系统的体积由VA变到VB时,外界对系统所做的功为:
W pdV
VA
VB
式中P,V均为系统平衡态时的状态参量。系统膨胀, 外界对系统做负功,反之外界对系统做正功。 元功记做: dW pdV 2.液体表面膜面积变化功 3.电介质的极化功
温度计与温标: 1)经验温标:以某物质的某一属性随冷热程度 的变化为依据而确定的温标称为经验温标。 经验温标除标准点外,其他温度并不完全一致。 如:水 冰点 沸点
摄氏温标: 0 0C 1000C
华氏温标:
32F
212F
2)理想气体温标:以理想气体作测温物质 3)热力学温标:不依赖任何具体物质特性的温标 在理想气体可以使用的范围内,理想气体温 标与热力学温标是一致的。
是状态量.
热力学第一定律指出:热力学过程中,如果外界 与系统之间不仅作功,而且传递热量,则有
U B U A W Q
即:系统内能的变化等于外界对系统所做的功和 系统从外界吸收的热量之和。
对无限小的状态变化过程:
dU dQ dW
另一表述:第一类永动机不可能造成。 说明: 适用于任何系统的任何过程。
热力学·统计物理
(Thermodynamics and statistical Physics)
导言
一.热力学与统计物理学的研究对象与任务 对象:由大量微观粒子组成的宏观物质系统 任务:研究热运动的规律、与热运动有关的物性 及宏观物质系统的演化。。 二.热力学与统计物理学的研究方法 热力学是讨论热运动的宏观理论.其研究特点是: 不考虑物质的微观结构,从实验和实践总结出的基 本定律出发,经严密的逻辑推理得到物体宏观热性质 间的联系,从而揭示热现象的有关规律。 热力学的基本经验定律有:
1.2工程热力学基础知识

热力学相关的能量的总和. 热力学相关的能量的总和.
真空
真空
p1 V1
p2 V2
绝热系A
绝热系A
上面图示中的闭口绝热系A 上面图示中的闭口绝热系A中的黄色方块是一团 气体,它从状态1变化到状态2 气体,它从状态1变化到状态2,很显然,按照理 想气体状态方程进行分析,由于气体膨胀对外做 功,我们会得到u 功,我们会得到u1<u2的结论,但是根据能量守恒 定律,工质与外界无能量交换,因此工质的能量 总和应当不变,再经过进一步分析,我们会得到 u1+p1V1=u2+p2V2 即H1=H2的结论.
二,热力学第一定律及其应用
热力学第一定律其实就是能量守恒定律在热力学 领域中的应用,由于热力学领域总是把某一系统 作为研究对象,所以强调的是系统和外部环境的 总的能量守恒. 在对单一热力系统进行分析的时候,系统本身能 量变化 ,系统与外界的功交换 量变化E,系统与外界的功交换W,系统与外 界的热交换 界的热交换Q,还有涉及物质进出系统带来和带 出的能量 出的能量e之间满足下列关系:
(五)热力过程
热力过程: 热力过程:系统从一个状态变化到另外一个状态 的时候经历的所有的中间状态的集合称为热力过 程,简称过程.如果系统经历一系列过程最终又 回到初始状态,则说这些过程构成一个热力循环 回到初始状态,则说这些过程构成一个热力循环. 热力循环. 准静态过程:在一个热力过程中,初始状态和最 准静态过程:在一个热力过程中,初始状态和最 终状态都是平衡态,从初始状态变化到最终状态 说明了原有平衡被打破,然后经历一些列变化最 说明了原有平衡被打破,然后经历一些列变化最 后形成了新的平衡.这个变化不会是一瞬间完成 后形成了新的平衡.这个变化不会是一瞬间完成 的,因此意味着在这两个状态之间,系统经历了 一些列连续的,依次相差为无穷小的平衡状态, 一些列连续的,依次相差为无穷小的平衡状态, 这个过程称为准静态过程.例如系统原来的状态 用参数表示为(A,B,C,D,E,F),最终状态表示为 用参数表示为(A,B,C,D,E,F),最终状态表示为 (A',B',C',D',E',F'),如果该过程是准静态过程, ,B',C',D',E',F' 那么6 那么6个参数的变化全部是连续的,如果表示在状 态参数坐标图上,有关6 态参数坐标图上,有关6个参数的曲线全部应当是 连续的.
热学 第一章 导论

我国殷商时期
五行学说:金、木、水、 火、土是构成世界万物的五种基本元素, 称为五行。中国古代提出的元气说,就认 为热(火) 是物质元气聚散变化的表现。
3
从钻木取火到商周的青铜器
伽利略温度计 16世纪 (明)
4
清 初
瓦特早期蒸汽机
5
6
1807年
嘉庆12年
7
1823年
道光3年
8
1892年
33
三、热力学温标 1. 热力学温标是建立在第二定律基 础上,不 依赖于任何物质的特性 的温标。 2. 热力学温度国际单位为“开尔 文”,简称开.记为K 3. 可证明在理想气体温标有效范围 内,热力学温标与理想气体温标 完全一致。 不依赖于测温物质和测温属性的温标
34
开尔文
四、摄氏温标、华氏温标与兰氏温标
V=V0 1 p t
m,p一定
m,V 一定
22
p p0 1 V t
二、理想气体物态方程
p1V1 p2V2 常量 T1 T2
令1mol气体的常量为R
pVm RT R=8.31 Jmol 1K 1
若气体的物质的量为
普适气体 常量
与热力学温度 的关系
T=T
通用 情况 国际 通用
热力学温度 K
摄氏温标 华氏温标
C F
t
tF - 459.67 0
32.00 32.02
t T 273 .15 100.00 0 C K t 9 T 459 .67 英美 212.00 0 F 5 K 等国
兰氏温标 R TR
491.67 491.69 67初步知识 • 液体、固体、相变等物性学
第一章热力学第一定律

第一章热力学第一定律本章主要内容1.1热力学概论1.2热力学第一定律1.3 可逆过程和最大功1.4 焓1.5 热容1.6 热力学第一定律对理想气体的应用1.7实际气体1.8热化学1.9化学反应热效应的求算方法1.10反应热与温度的关系——基尔霍夫定律§1.1热力学概论1.1.1热力学的研究对象(1)研究热、功和其他形式能量之间的相互转换及其转换过程中所遵循的规律;(2)研究各种物理变化和化学变化过程中所发生的能量效应;(3)研究化学变化的方向和限度。
1.1.2 热力学的方法和局限性热力学方法:热力学在解决问题是使用严格的数理逻辑推理方法,其研究对象是大量质点的集合体,所观察的是宏观系统的平均行为,并不考虑个别分子或质点,所得结论具有统计意义。
优点:只须知道宏观系统变化的始终态及外部条件,无须知道物质的微观结构和变化的细节即可进行有关的定量计算。
局限性:(1)对所得的结论只知其然而不知所以然;(2)不能给出变化的实际过程,没有时间的概念,也不能推测实际进行的可能性。
(3)只能适应用于人们所了解的物质世界,而不能任意推广到整个宇宙。
1.1.3 几个基本概念:1、系统与环境系统(System)——把一部分物质与其余分开作为研究对象,这这种被划定的研究对象称为系统,亦称为物系或系统。
环境(surroundings)——与系统密切相关、有相互作用或影响所能及的部分称为环境。
(1)敞开系统(open system) -系统与环境之间既有物质交换,又有能量交换。
(2)封闭系统(closed system)-系统与环境之间无物质交换,但有能量交换。
(3)孤立系统(isolated system )-系统与环境之间既无物质交换,又无能量交换,故又称为隔离系统。
有时把封闭系统和系统影响所及的环境一起作为孤立系统来考虑。
2、状态与状态性质(1)热力学系统的所有物理性质和化学性质的综合表现称为状态,而描述状态的的性质被称为状态性质(或热力学性质)一般用宏观可测性质来描述系统的热力学状态,故这些性质又称为热力学变量。
第一章,热力学第一定律要点

蒸发过程、固体的熔化过程、固体的升华过程以及 两种晶体之间相互变化的过程。
③化学变化过程:系统内发生了化学变化的过程。
若已知过程始末态,需计算过程中某些状态 函数的变化,而其进行的条件不明,或计算困难 较大,可设始末态与实际过程相同的假设途径, 经由假设途径的状态函数的变化,即为实际过程
单位:焦耳(J)。
2. 热是途径函数,与某过程经历的具体途径有关,途径不同热
有不同的称呼:
➢显热:单纯升温或降温时,系统所吸收或放出
的热。
➢潜热(相变热):在恒定温度下,物质相变时吸
中状态函数的变化。这种利用“状态函数的变 化仅取决于始末态而与途径无关”的方法,
称为状态函数法。
17
§1.2 热力学第一定律
一、热和功
1.热 定义:由于温度之差而在系统与环境之间
传递的能量称为热量,或简称热(heat)。
符号: 用“Q”表示; Q>0:系统从环境吸收热量, Q<0:系统向环境放出热量。
过程不同的方式 分类
准静态 t>t驰 非准静态 t<t驰 可逆过程 不可逆过程
15
在热力学中可以将常遇到的过程分为三大类: ①简单物理变化(PVT)过程:既无相变也无化
学变化的仅仅是系统的一些状态函数如P、T、V发 生变化的过程。如单组分均相系统发生的等温过程 、等压过程、恒容过程、恒外压过程、等焓过程、 自由膨胀过程、绝热过程、循环过程……。
孤立系统(isolated system) (理想化的系统)
单组分系统
系统 多组分系统
系统
均相系统 多相系统
描述系统需要用到热力学性质,研究系统要涉及状态 和状态变化。
热力学统计物理第一章讲解

T
p
知道物态方程,可以导出体胀系数和等温压缩系数(见习题);
反过来,知道体胀系数和等温压缩系数,可以导出物态方程, (见习题)。
4. 物态方程举例
(1)理想气体的物态方程:
(2)实际气体
范氏方程(Van der Waals Equation):
(
p
an2 V2
)(V
nb)
nRT
昂尼斯方程
等压过程: W pV
§1.2 热力学第一定律
一、热力学第一定律提出的实验根据 实验根据是焦耳热功当量实验(见书P25图1.9和图1.10)
无论经历何种过程,使水温升高同样的温度,做 的功一样多。表明:绝热过程中外界对系统做功与方 式(或过程)无关。
二、内能的定义
宏观定义:内能U是一个态函数(状态量),它满足:
•热力学第二定律的开尔文表述( 1851): 不可能从单一热源吸热使之完全变成有用功而不引 起其它变化。
开氏表述指明功变热的过程是不可逆的。
开尔文(W. Thomson,1824-1907),原名汤姆 孙,英国物理学家,热力学的奠基人之一。1851 年表述了热力学第二定律。他在热力学、电磁学、 波动和涡流等方面卓有贡献,1892年被授予开尔 文爵士称号。他在1848年引入并在1854年修改的 温标称为开尔文温标。为了纪念他,国际单位制 中的温度的单位用“开尔文”命名。
N d AB NA d B
dt
dt
安培定律给出了磁介质中的磁场强度H 为:
H l NI
dW
NA
dB dt
l N
H
dt
AlH dB
热力学

1、热力学系统与外界 (1)系统:从相互作用的物体中划出一 部分物体,此物体中仍包含大量 微观粒子。
系统—热力学研究的对象
(2)外界:与系统作用的其它部分。 (3)系统的分类: 孤立系统:与外界无物质交换,也
无能量交换。
封闭系统:与外界无物质交换,有能 量交换。
开放系统:与外界既有物质交换,又 有能量交换。
理想气体的物态方程: PV nRT
(4)理想气体: 宏观:严格遵从玻马定律、阿伏伽德罗定律、 焦耳定律的气体。 微观:可忽略气体分子之间的相互作用力 的气体。
通常压强不高的真实气体均可视为理想气体。
2、真实气体: 范德瓦尔斯方程
(
p
an2 V2
)(V
nb)
nRT
1mol :
(
p
a v2
1、机械能转换为热能
2、电能转换为热量
结论:在各种绝热过程中,让物体升高一定的温度 所需的功相等。 说明:系统经过绝热过程,由初态达 到终态,外界对系统所做的功仅取决 于初末两态,而与实际过程无关。
四、内能 U U U B U A WS
(1)定义:在热力学系统中,在做功与热量的 双重作用下,使系统所具有的总能量。
的每一个物体都与第三个物体处于热 平衡,则他们彼此也处于热平衡。 分析:
二、温标 温度测量: 温度计:利用水银或酒精的热胀 冷缩特性。
热力学温标:与任何物质特性无关。
单位:开尔文 K 在理想气体温标使用范围内,热 力学温标与理想气体温标一致。
§1.3 物态方程
一、物态方程: 对于一个简单可压缩系统而言:
引言:
热力学的研究对象:研究物质热运 动的规律。
热力学第一定律2

第二章 热力学第一定律 四、热力学能 U (内能) 内能)
§2.2热力学第一定律 热力学第一定律
体系(宏观) 体系(宏观)处在平衡状态下净止时所具有的能量
∆U = U B − U A = ∆U1 = ∆U2
第二章 热力学第一定律 内能) 四、热力学能 U (内能)
§2.2热力学第一定律
U1 + Q + W = U 2 U 2 − U1 = Q + W ∆U = Q + W
第二章 热力学第一定律 一、热(heat)
§1.2热力学第一定律
系统与环境之间因温差而传递的能量称为 热,用符号Q 表示。 Q的取号: 系统吸热,Q>0 系统放热,Q<0
热的本质是分子无规则运动强度的一种体现 计算热一定要与系统与环境之间发生热交换 的过程联系在一起,系统内部的能量交换不可能 是热。
第二章 热力学第一定律 四、热力学能 U (内能) 内能) 1840年~1848年焦耳 年 年焦耳 (J·P·Joule) 实验,(如 实验, 如 如图1图1-7(a)), (如图 , 如图 7(b)),或(如图 如图1-7(c)) , 如图 使水温升高。 使水温升高。
使一个绝热封闭系统从某一始态变到某一终态, 使一个绝热封闭系统从某一始态变到某一终态,所需的功是 一定的,这个功只与系统的始态和终态有关 这个功只与系统的始态和终态有关。 一定的 这个功只与系统的始态和终态有关。 系统存在一个状态函数, 系统存在一个状态函数,在绝热过程中此状态函数的改变量 等于过程的功。 等于过程的功。 以符号U表示 表示: 以符号 表示 U2-U1 = W(封闭,绝热) (封闭,绝热)
功与过程
功与过程
功与过程 小结:
从以上的膨胀与压缩过程看出,功与变化的途 径有关。虽然始终态相同,但途径不同,所作的功 也大不相同。显然,可逆膨胀,体系对环境作最大 功;可逆压缩,环境对体系作最小功。
第一章 热力学的基本规律

宏观理论
(热力学)
微观理论
(统计物理学) 热现象 微观量
研究对象 物 理 量
热现象 宏观量
出 发 点
方 法 优 点
观察和实验
总结归纳 逻辑推理 普遍,可靠 不深刻
微观粒子
统计平均方法 力学规律 揭露本质
缺 点
二者关系
无法自我验证
热力学验证统计物理学, 统计物理学揭示热力学本质
第一章 热力学的基本规律
几种物质的物态方程: 1、理想气体状态方程 M PV=nRT(= m RT) a (p+ v2)(v-b)=RT
引力修正 斥力修正
2、范德瓦耳斯方程(1mol)
(n mol)(p+n2a2 )(v-nb)=nRT v 3、昂尼斯物态方程( 1mol级数形式) PV=A+Bρ+Cρ +Dρ +...
二、热力学平衡状态 一个孤立系统,不论其初态如何复杂,经过足够长的时间 后,将会到达这样的状态, 系统的各种宏观性质在长时间内
不发生任何变化,这样的状态称为热力学平衡态。 其特点: 1、不限于孤立系统 2、弛豫时间 3、涨落 4、热动平衡
三、状态参量 用于描述系统的平衡状态的量称为状态参量。 系统的平衡状态就是由它的宏观物理量——状态参量的数 值确定的。 常用状态参量: 几何参量 如 体积V 力学参量 如 压强P 化学参量 如 各组分的质量和摩尔数 电磁参量 如 电场强度、电极化强度
三、对无摩擦阻力准静态过程,外 界对系统的作用力,可以用描写系 统平衡状态的参量表示出来。
O
V
四、准静态过程在状态图上可用一条曲线表示.
二、功
功不是能量的形式,而是能量变化的一种量度,它是 一个过程量,没有过程也就谈不上功。 准静态过程中,当系统有了微小的体积变化d V时, 外界对系统所作的功
第一章_热力学第一定律

系统的各种性质,它们均随 状态确定而确定。 如:T, p, V,n 又如:一定量n的理想气体 V=nRT/P V= f(T,P) T, P是独立变量 推广 X=f (x, y) 其变化只与始末态有关,与 变化途径无关。
途径 2
状态2 (T2,p2)
途径 1
状态 1 (T1,p1)
图1.2 状态与途径
6 3 6
1.4.2.可逆过程与不可逆过程
某过程进行之后系统恢复原状的同时,环境也 恢复原状而未留下任何永久性的变化,则该过程 称为热力学可逆过程。
图1.5 恒外压膨胀
图1.6 可逆膨胀
热力学可逆过程有以下特征
(1)可逆过程进行时,系统始终接近于平衡态。 (2)可逆过程进行时,过程的推动力与阻力只相 差无穷小。 (3)系统进行可逆过程时,完成任一有限量变化 均需无限长时间。 (4)在定温可逆过程中,系统对环境所做之功为最 大功;环境对系统所做之功为最小功。
P16例题1 :在298K时2molH2的体积为15dm3 , 此时气体(1)在定温条件下,反抗外力为105Pa时 膨胀到体积为50dm3;(2)在定温下,可逆膨胀 到体积为50dm3。试计算两种膨胀过程的功。 解: (1)过程为不可逆过程 P外= P1= P2 = 105Pa
W p外 (V2 V1 ) [105 (50 15) 103 ]J 3500 J
p2 =-p1V1 (1- )=-V1 (P1 -P2 ) p1
=-10 10-3 m3 (106 -105 )Pa=-9.0 103 J
(3)外压比内压小一个无穷小的值,等温膨胀 过程是无限缓慢。
p1 p1 W pdV nRT ln p1V1 ln p2 p2
热学第1章导论

普遍性。 2.热力学是具有最大普遍性的一门科学---不提出任何一个特
殊模型,但又可应用于任何的宏观的物质系统.
热力学的局限性: (1) 它只适用于粒子数很多的宏观系统;
(2)它主要研究物质在平衡态下的性质. 它不能解答系统如何 从非平衡态进入平衡态的过程;
系统是由大量分子组成,如气缸中的气体。
系统与外界可以有相互作用,例如:热传递、
作功、质量交换等
系统
系统的分类
开放系统 系统与外界之间,既有物质交换, 又有能量交换。
封闭系统 系统与外界没有物质交换,只有能量(热量、
作功)交换。
孤立系统 系统与外界之间,既无物质交换,又无能量交换。
二、热力学与力学的区别 热物理学研究方法不同于其它学科(例如力学)的宏观
宏观理论
热力学
微观理论
统计物理学
§1.1.2 宏观描述方法与微观描述方法
宏观与微观的两种不同描述方法。
一、热力学(thermodynamics)
热力学是热物理学的宏观理论,它从对热现象的大量的直 接观察和实验测量所总结出来的普适的基本定律出发,应用数 学方法,通过逻辑推理及演绎,得出有关物质各种宏观性质之 间的关系、宏观物理过程进行的方向和限度等结论。
特征 例: 从力学可知,若方形刚性箱的光滑底上有n个弹性刚球。任
一球在任一时刻的位置与速度可列出6个方程。n个球就有 6n个方程。
例: 1mol物质中就有6.02×1023个分子。因而有6×6×1023个方 程。 显然,人类不可能造出一部能计算1023个粒子的运动
方程的计算机。
热物理学研究对象的这一特点决定了它有宏观的与微观 的两种不同的描述方法。
第一章温度2

3、热力学第零定律的物理意义 热力学第零定律的物理意义
•互为热平衡的物体之间必存在一个相同的特征,即它们的温 互为热平衡的物体之间必存在一个相同的特征, 互为热平衡的物体之间必存在一个相同的特征 度是相同的。 度是相同的。 •第零定律不仅给出了温度的概念,而且指出了判别温度是 第零定律不仅给出了温度的概念, 第零定律不仅给出了温度的概念 否相同的方法。 否相同的方法。
衡态。 衡态。
平衡态的特点
1)单一性( p, T 处处相等); )单一性( , 处处相等); 2)物态的稳定性—— 与时间无关; )物态的稳定性 与时间无关; 3)自发过程的终点; )自发过程的终点; 4)热动平衡(有别于力平衡). )热动平衡(有别于力平衡)
2、非平衡态
在自然界中,平衡态是相对的、特殊的、 在自然界中,平衡态是相对的、特殊的、局部的与暂 时的,不平衡才是绝对的、普遍的、全局的和经常的。 时的,不平衡才是绝对的、普遍的、全局的和经常的。
结论: 结论
1、理想气体温标与气体种类(即气体个性 无关 但依赖于气体的共性 、理想气体温标与气体种类 即气体个性 无关, 但依赖于气体的共性. 即气体个性)无关 2、对于极低温度(气体液化)和极高温度(≥1000℃)不适用 、对于极低温度(气体液化)和极高温度( ℃
三、温标
(三) 热力学温标 三
课堂练习
题: 道尔顿提出一种温标:规定在给定的压强下理想气体体积的相对增量 正比于温度的增量,采用在标准大气压时水的冰点温度为0摄氏度,沸点 温度为100摄氏度。试用摄氏温度t来表示道尔顿温标的温度λ。
设理想气体的压强一定时,温度的增量为 温度的增量为da,相应的体积的相对增量为 解: 设理想气体的压强一定时 温度的增量为 相应的体积的相对增量为 △V/V, 比例系数为α,则按规定有 则按规定有: 比例系数为 则按规定有
§1-2 热力学第一定律

1 2
c 2 gz 2 p 2 v 2
2
根据能量守恒与转换定律
u1 1 2 c 1 gz 1 p 1 v 1 q u 2
2
1 2
c 2 gz 2 p 2 v 2 w s
2
1 2 1 2 q u 2 u 1 p 2 v 2 p 1 v 1 c 2 c 1 gz 2 gz 1 w s 2 2
闭口系的热力学第一定律解析式
热力学第一定律解析式:
q=△u + w 上式表明:加给工质的热量,一部分用来改变 工质的内能,另一部分则用来使工质膨胀而对 外作功。
注:该式仅适用于闭口系。
开口系的热力学第一定律解析式(稳 定流动能量方程式)
在常见的热力设备中,如电厂锅炉、汽轮机、给水泵等, 工质的流动接近稳定流动。就是说工质的流动情况不随时 间而变化。实现稳定流动的必要条件,即 (1)进、出口截面的参数不随时间变化。
蕴藏的总能量,包括内动能和内势能。
内动能,分子运动的动能。工质内部分子
运动的动能愈大,工质的温度愈高,即工 质的内动能是温度 T 的单值函数;
内势能
分子之间由于相互作用力而具有的能量。 工质的内势能与工质的比体积有关,是比
体积 v 的函数。理想气体由于不存在内 聚力,故内势能为零。
工质的内能,决定于工质的热力学温度和比体 积,即:u = f (T, v)。这表明:工质内能的大 小完全取决于它所处的热力学状态。 理想气体的内能,是温度的单值函数。Biblioteka 比 焓h u pv
1 2 1 2 w t c 2 c 1 gz 2 gz 1 w s 2 2
第一章热力学基础1-2

状态函数共同性质 (1)体系的状态一定,状态函数有确定 (1)体系的状态一定,状态函数有确定值。 体系的状态一定 函数有确 (2)状态函数的改变量只取决于体系的起始状态, (2)状态函数的改变量只取决于体系的起始状态,而与变 状态函数的改变量只取决于体系的起始状态 化过程无关。 代表体系的状态函数,体系由A 化过程无关。若Z代表体系的状态函数,体系由A态,改变 到B态。则△Z = Zb –Za Z (3)对于循环过程, (3)对于循环过程,状态函数的改变量为零 对于循环过程 (4)状态函数之间互为函数关系 (4)状态函数之间互为函数关系 状态函数的特性可描述为:异途同归, 状态函数的特性可描述为:异途同归, 值变相等;周而复始,数值还原。 值变相等;周而复始,数值还原。 状态函数在数学上具有全微分的性质。 状态函数在数学上具有全微分的性质。 全微分的性质
可逆过程(reversible process)
系统经过某一过程从状态(1)变到状态(2)之 后,如果能使体系和环境都恢复 体系和环境都恢复到原来的状态而 体系和环境都恢复 未留下任何永久性的变化,则该过程称为热力学 未留下任何永久性的变化 可逆过程。否则为不可逆过程。 可逆过程
开放系统 有物质和能量交换
隔离系统 封闭系统 只有能量交换 无物质和能量交换
系统+环境=孤立系统 系统+环境=
2. 相
系统还有一种分类法:单相系统,多相系统 系统还有一种分类法:单相系统, 系统中任何物理和化学性质完全相同的、 系统中任何物理和化学性质完全相同的、均匀部分 称为相。根据相的概念,系统可分为: 称为相。根据相的概念,系统可分为:
系统中相数、组分的确定 系统中相数、组分的确定 相数
气 相
H 2O( g ) + air
热力学中的热力学系统

热力学中的热力学系统热力学是研究热与机械能之间相互转化的学科,而热力学系统则是研究对象的核心。
本文将深入探讨热力学系统的基本概念、分类以及相关的热力学定律。
一、热力学系统的概念热力学系统是研究对象的范畴,它广泛存在于自然界和人工制造的实验室中。
一个热力学系统可以是一个封闭的容器,也可以是一个开放的系统。
在封闭系统中,物质不能进入或离开系统,只有能量可以进行交换;而在开放系统中,物质和能量都可以自由地进出系统。
二、热力学系统的分类根据热力学系统的性质和特点,可以将其分为以下几类:孤立系统、封闭系统和开放系统。
1. 孤立系统:孤立系统是指与外界不发生任何物质和能量的交换的系统。
换句话说,孤立系统是一个完全封闭的系统,在孤立系统中,物质和能量都不发生流动和交换。
热力学通常将宇宙视为一个孤立系统。
2. 封闭系统:封闭系统是指与外界的物质交换被限制,但能量可以进行交换的系统。
在封闭系统中,不发生物质的流入和流出,但能量可以从系统中进入或离开。
3. 开放系统:开放系统是指与外界的物质和能量交换都是自由的。
在开放系统中,物质可以通过边界流入或流出系统,同时能量也可以进行交换。
三、热力学定律热力学定律是热力学研究的基石,它们揭示了热力学系统行为的基本规律。
下面我们将介绍三大热力学定律:1. 热力学第一定律(能量守恒定律):热力学第一定律规定了能量在热力学系统中的守恒。
根据第一定律,能量可以在物质和边界之间进行转换,但总能量的数量保持不变。
这意味着能量既不能被创建,也不能被销毁,只能从一种形式转换为另一种形式。
2. 热力学第二定律(熵增定律):热力学第二定律是关于熵增的定律。
它指出孤立系统总是朝着熵增的方向发展,即熵是不可能减少的。
熵可以被理解为系统的混乱程度,熵增表示系统的有序性降低,而熵减则相反。
3. 热力学第三定律(绝对零度定律):热力学第三定律规定了当温度趋近绝对零度时,熵趋于零。
绝对零度是热力学温标的零点,也是热力学系统能够达到的最低温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2.1 热力学系统
热力学所研究的对象称为热力学系统(简称系
统)。
与系统存在密切联系的系统以外的部分称为外界 或媒质。 这种联系可理解为存在作功、热量传递和粒子数交 换。
热力学和力学的区别:
热物理学研究方法不同于其它学科的宏观描述方 法。 • 例如力学中我们把位置、时间、质量及这三者的组 合(如速度、动量、角速度、角动量等)中的某几 个独立参数称为物体的力学坐标。
本定律相一致的,存在于各热力学参量间的 一般关系。
• 热物理学中一般不考虑系统作为一个整体的宏
观的机械运动。
若系统在作整体运动,则常把坐标系建立在运动 的物体上。
•例如,对于在作旋转运动的系统,其坐标系取在旋 ห้องสมุดไป่ตู้轴上。
•
利用力学坐标可描述物体任一时刻的整体的运动状
态。
• 经典力学的目的就在于找出与牛顿定律相一致的、 存在于各力学坐标之间的一般关系。
• 热力学的注意力却指向系统内部: •
我们把与系统内部状态有关的宏观物理量(诸如 压强、体积、温度等)称为热力学参量,也称热力 学坐标。
•热力学的目的就是要求出与热力学各个基