应用回归分析论文
回归分析法论文
回归分析方法在数据处理中的应用摘要:回归分析方法是处理变量间相关关系的有力工具[1]。
回归分析模型目前已应用于生活中的各个方面.并在实际应用中证实了其准确性和可行性。
正因为回归分析方法应用范围广、效果好,因此如何进行回归分析就变得至关重要。
本文通过一个实例介绍了如何使用EXCEL 进行回归分析,从而实现生活中数据的有效处理。
关键词:数据处理回归分析应用举例1 引言随着社会的发展,生活中很多问题交叉、重叠,涉及到众多复杂相关的可变因素,解决的难度日益加大[2]。
解决这些问题需要多学科的融合,其中数学方法在这些问题的分析预测中起到了重要作用。
随着计算机的发展.使用数学方法更加准确高效,大大推进了其在生活中的应用。
回归分析是一种处理变量间相关关系的数理统计方法[3].它能够科学地寻求事件规律并预测其发展趋势,回归分析模型目前已应用于生活中各个方面。
2 回归分析回归分析法,是在掌握大量观察数据的基础上,利用烽理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式)。
回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。
此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析[4]。
通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理。
回归分析法是定量预测方法之一。
它依据事物内部因素变化的因果关系来预测事物未来的发展趋势。
由于它依据的是事物内部的发展规律,因此这种方法比较精确。
回归分析是统计分析中应用最为广泛的一个分支,它起源于19 世纪高斯的最小二乘法[5]。
根据回归分析方法得出的数学表达式称为回归方程,它可能是直线,也可能是曲线。
对于某一个试验项目,通过实验数据所得出的相关图,可以直观地发现各个状态量并不都落在一条直线上,而是在直线上上下波动,呈现出线性相关的趋势。
论文回归分析方法
论文回归分析方法回归分析是一种常用的统计分析方法,用于描述自变量和因变量之间的关系。
在回归分析中,通过建立回归方程来预测因变量的值。
在论文中使用回归分析方法可以有多种目的,包括:1. 描述变量之间的关系:回归分析可以帮助研究者了解自变量和因变量之间的线性关系。
通过分析回归方程的系数,可以判断不同自变量对因变量的影响程度。
2. 预测和预测精度评估:回归分析可以用于预测因变量的值。
通过建立回归方程,并输入自变量的值,可以估计因变量的值。
此外,还可以利用回归模型的拟合优度(R-squared)等指标评估预测模型的精度。
3. 因果关系检验:回归分析可以用来检验自变量和因变量之间的因果关系。
通过检验回归方程中系数的显著性,可以判断自变量对因变量的影响是否具有统计学意义。
4. 模型改进和变量选择:通过比较多个回归模型的性能,可以进行模型改进和变量选择。
可以添加或删除自变量,以提高模型的拟合优度和预测精度。
在进行回归分析时,需要注意以下几个方面:1. 数据的准备:确保数据的完整性和准确性。
需要对缺失值进行处理,并检验数据的正态分布性和变量间的相关性。
2. 模型的选择:根据具体研究目的选择适合的回归模型,包括线性回归、多元回归、非线性回归等。
还需要考虑是否需要进行变量的标准化或变换。
3. 系数解释:对于回归方程中的系数,需要解释其含义。
通过解释系数,可以判断自变量对因变量的影响方向和程度。
4. 模型的诊断:需要对回归模型进行诊断,检验残差的正态性和独立性。
还可以利用回归诊断图形和统计测试来检验模型的拟合优度和预测精度。
通过合理应用回归分析方法,可以充分利用数据,并进行科学而准确的统计分析,为论文提供有力的支持和证据。
多元回归分析论文
多元回归分析论文引言多元回归分析是一种利用多个自变量与因变量之间关系的统计方法。
它是统计学中重要的工具之一,在许多研究领域都有广泛的应用。
本论文将通过介绍多元回归分析的原理以及应用案例,探讨其在实践中的作用,并提出相关的方法和建议。
方法数据收集在进行多元回归分析之前,首先需要收集相关的数据。
这些数据应该包括自变量和因变量的观测值。
数十个样本的规模是多元回归分析的常见要求之一。
此外,在进行数据收集时,还需要注意数据的质量和准确性,以确保多元回归分析的可靠性。
模型设定在进行多元回归分析时,需要确定一个适当的回归模型。
回归模型是通过自变量对因变量进行预测的数学模型。
在确定回归模型时,可以使用领域知识、经验和统计指标等来指导模型设定的过程。
参数估计参数估计是多元回归分析中的关键步骤之一。
它通过最小化预测值与观测值之间的误差,来确定自变量与因变量之间的关系。
常用的参数估计方法有最小二乘法、最大似然法等。
模型诊断在进行参数估计之后,需要对模型进行诊断,以评估模型的拟合度和有效性。
常用的模型诊断方法包括检验残差的正态性、检验自变量之间的共线性等。
解释结果在完成参数估计和模型诊断之后,需要解释多元回归分析的结果。
这涉及到解释每个自变量的系数和拟合优度指标等。
通过解释结果,可以获取对因变量的预测和解释性的认识。
应用案例以某学校的学生成绩预测为例,假设因变量为学生成绩,自变量为学生的学习时间、就餐次数和睡眠时间。
收集到了100个样本的数据。
通过上述方法进行多元回归分析。
数据收集在数据收集阶段,通过学校的学生管理系统,获取了学生的学习时间、就餐次数和睡眠时间的观测值。
模型设定根据领域知识和经验,我们假设学生的学生成绩与学习时间、就餐次数和睡眠时间存在一定的关系。
因此,我们可以设定模型为:成绩= β0 + β1 * 学习时间+ β2 * 就餐次数+ β3 * 睡眠时间+ ε。
参数估计通过最小二乘法,我们可以估计回归模型的参数。
毕业论文中如何正确运用相关性分析和回归分析
毕业论文中如何正确运用相关性分析和回归分析相关性分析和回归分析是毕业论文中常用的统计分析方法,它们可以帮助我们探索变量之间的关系、预测未来趋势以及验证假设。
本文将介绍如何正确运用相关性分析和回归分析来进行毕业论文的研究和写作。
一、引言在引言部分,我们需要简要介绍研究背景和选题意义,概述相关性分析和回归分析在毕业论文中的作用,并明确论文的研究目的和主要内容。
二、相关性分析相关性分析用于探究两个或多个变量之间的关系强度和方向。
在相关性分析中,我们可以使用皮尔逊相关系数或斯皮尔曼等级相关系数来衡量变量之间的相关性。
在研究中,我们需要进行以下步骤:1. 收集数据:根据研究目的,收集所需的数据,确保数据的准确性和完整性。
2. 数据处理:对收集到的数据进行清洗和整理,剔除异常值和缺失数据,并进行合适的变量转换(如对数转换、标准化等)。
3. 相关性分析:根据研究的具体要求选择合适的相关系数进行计算,并进行统计显著性检验,判断变量之间的相关性是否具有统计意义。
4. 结果解释:对相关性系数进行解释,说明变量之间的相关性强度和方向,并给出适当的图表或统计指标来支持分析结果。
三、回归分析回归分析是研究变量之间依赖关系的一种统计方法,它可以用于构建模型、预测未来趋势和验证假设。
在进行回归分析时,需要进行以下步骤:1. 确定研究模型:明确需要研究的因变量和自变量,构建回归模型。
2. 数据收集和处理:与相关性分析类似,需要收集准确完整的数据,并进行数据处理和变量转换。
3. 回归模型估计:使用合适的回归方法(如线性回归、多元回归、逻辑回归等)对回归模型进行参数估计,并进行统计显著性检验。
4. 结果解释:解释回归模型的系数和显著性,说明自变量对因变量的解释力度,给出适当的模型拟合度指标和图表。
四、综合应用和案例分析在毕业论文中,我们不仅需要运用相关性分析和回归分析进行独立的研究,还可以将它们综合应用于实际案例分析。
通过综合应用和案例分析,我们可以更全面地了解变量之间的关系,并形成相应的结论。
实用回归分析论文
实用回归分析论文回归分析是一种广泛应用于研究和预测变量关系的统计方法。
它可以用来探索自变量与因变量之间的关系,并根据这些关系进行预测。
本篇论文旨在利用SPSS软件进行回归分析,并解释实验结果。
为了说明回归分析的实用性,本论文以一个假设为例进行讨论。
假设我们想研究其中一种健康饮食对人体血糖水平的影响。
我们能够搜集到500名参与者的相关数据,包括他们的饮食习惯和血糖水平。
在SPSS软件中,我们可以采用多元线性回归模型来探索自变量(饮食习惯)与因变量(血糖水平)之间的关系。
首先,我们需要将数据输入SPSS软件,并进行数据清洗和处理,确保数据的准确性和可靠性。
接下来,我们可以使用回归模型来进行实验结果的分析。
在SPSS软件中,我们可以选择"回归"选项,并指定因变量和自变量。
在这个示例中,我们将血糖水平作为因变量,饮食习惯作为自变量。
SPSS软件会给出回归模型的结果。
其中最重要的指标是相关系数和显著性水平。
相关系数用来衡量自变量与因变量之间的线性关系的强度,取值范围在-1到+1之间。
显著性水平可以告诉我们这个自变量对因变量的解释力是否显著。
通常,显著性水平小于0.05表示相关关系是显著的。
在这个案例中,回归分析的结果显示饮食习惯与血糖水平之间存在显著相关性(相关系数为0.4,显著性水平为0.01)。
这意味着饮食习惯对于解释血糖水平的变异有统计学意义。
我们可以通过这一结果来推测具体的饮食习惯与血糖水平之间的关系,进一步指导实际生活中的健康饮食选择。
此外,在SPSS软件中,我们还可以进行其他的回归分析,如逐步回归和多重回归。
这些方法可以帮助我们确定最佳的自变量组合,以及对因变量的解释力。
逐步回归可用于选择最有意义的自变量,而多重回归可以进一步探索多个自变量对因变量的解释力。
总结起来,回归分析是一种实用的统计方法,可以用来研究和预测变量之间的关系。
使用SPSS软件进行回归分析,可以对实验结果进行详细的解释和推断,从而指导实际生活中的决策和行动。
基于SPSS的多元回归分析模型选取的应用毕业论文
毕业论文题目基于SPSS的多元回归分析模型选取的应用基于SPSS的多元回归分析模型选取的应用摘要本文不仅对于复杂的统计计算通过常用的计算机应用软件SPSS来实现,同时通过对两组数据的实证分析,来研究统计学中多元回归分析中的变量选取,让大家对统计学中的多元回归分析中模型的选取以及变量的选取和操作方法有更深层次的了解. 一组数据是对于淘宝交易额的未来发展趋势的研究,一组数据时对于我国财政收入的研究. 本文通过两个实证即淘宝交易额研究和财政收入研究从不同程度上对非线性回归模型和变量选取的研究运用通俗的语言和浅显的描述将SPSS在多元回归分析中的统计分析方法呈现在大家面前,让大家对多元回归分析以及SPSS软件都可以有更深一步的了解. 通过SPSS软件对数据进行分析,对数据进行处理的方法进行总结,找出SPSS对于数据处理和分析的优缺点,最后得在对变量的选取和软件的操作提出建议.关键词:统计学,SPSS,变量选取,多元回归分析AbstractThis article not only for complex statistical calculations done by the commonly used computer application software of SPSS, through the empirical analysis of the two groups of data at the same time, to study the statistics of the variables in the multivariate regression analysis, let everybody in the multiple regression analysis of statistical model selection as well as the selection of variables and operation methods have a deeper understanding. Is a set of data for the future development trend of research taobao transactions, a set of data for the research of our country's fiscal revenue. In this paper, through two empirical taobao transactions and fiscal revenue research from different degree of the study of nonlinear regression model and variable selection using a common language and plain the SPSS statistical analysis method in multiple regression analysis of present in front of everyone, let everyone to multiple regression analysis and SPSS software can have a deeper understanding. Through SPSS software to analyze data, and summarizes method of data processing, find out the advantages and disadvantages of SPSS for data processing and analysis, finally had to put forward the proposal to the operation of the selection of variables and software.Keywords: Statistical, SPSS, The selection of variables, multiple regressionanalysis目录第一章引言 (3)第二章多元回归模型的选取 (4)2.1 多元回归分析概述 (4)2.2 相关系数概述 (5)2.3 非线性回归模型概述 (5)2.4 多元线性回归模型自变量的选取 (6)第三章非线性回归模型案例:淘宝交易额模型的研究 (7)3.1 回归模型变量的确定 (7)3.1.1 数据来源 (7)3.1.2 复相关系数 (8)3.1.3 散点图看线性关系 (9)3.1.4 回归分析看拟合度 (11)3.1.5 确定回归模型变量 (11)3.2 调整后的变量的相关分析 (12)3.2.1 散点图 (12)3.2.2 计算相关系数 (14)3.3 多元线性回归分析 (16)3.4 小结 (18)第四章线性回归分析变量选取案例:财政收入模型的研究 (18)4.1 数据来源及变量选取 (18)4.2 相关分析 (20)4.2.1 散点图 (20)4.2.2 计算相关系数 (21)4.3 线性回归分析 (24)4.4 逐步回归 (26)4.5 小结 (27)第五章总结 (28)参考文献 (30)第一章引言随着社会的发展,统计的运用围越来越广泛,统计学作为高等院校经济类专业和工商管理类专业的核心课程,不管是在经济管理领域,或是在军事、医学等领域的研究中对于数量分析与统计分析都需要更高的要求,需要用到的数学知识较多,应用方面的灵活性也较强,计算量大且复杂.然而科学研究的深入,研究的对象也日益变得复杂,复杂系统的研究问题更是成为当今研究的热点. 为了更好的描述一个复杂的现象,就需要大量的数据和信息,如何高效、准确地利用已知的信息便成为当今社会研究的一项重要课题.在科学技术飞速发展的今天,统计学通过不断吸收和融合相关学科的新理论,开发应用新技术和新方法,拓展新的领域的同时不断深化和丰富了统计学传统领域的理论与方法. 在我国,社会主义市场经济体制的逐步建立,实践发展的需要对统计学提出了新的更多、更高的要求. 随着我国社会主义市场经济的成长和不断完善,统计学的潜在功能将得到更充分更完满的开掘. 从20世纪60年代开始,关于回归自变量的选择成为统计学中研究的热点问题,统计学家提出了许多回归选元的准则,并提出了许多行之有效的选元方法. 在应用回归分析去处理实际问题时,回归自变量选择是首先要解决的重要问题. 通常在做回归分析时,人们根据所研究问题的目的,结合经济理论罗列出对因变量可能有影响的的一些因素作为自变量引进回归模型,把一些对因变量影响很小的,有些甚至是没有影响的自变量,不但使得计算量变大,估计和预测的精度也下降了. 此外,如果遗漏了某些重要变量,回归方程的效果肯定不好. SPSS软件作为当今国际上运用广泛的统计分析软件,其功能齐全带有各种特点,在各个领域都得到了迅速普及,并成为各个行业提高管理水平、形成科学决策的重要手段. 然而,我国对于该软件的运用和理解始终处于早期应用阶段,无论是在功能的研究开发还是实际生活当中的运用都与西方发达国家相差甚远. 尤其是在管理决策方面,都因为没有进行深度分析而造成了浪费,要么就是利用SPSS软件进行简单分析而未进行深度开发,导致所得的信息有限、各信息间的关系不明确,最终导致管理者的判断出现偏差.基于以上背景,本文通过总结和吸取其他国外学者对统计学研究的,并结合我国的实际情况,本文采用了案例一对于网络购物这块的的研究,通过对2005年到2012年的居民消费水平,以及我国网络普及度,我国人人均纯收入以及我国的居民消费水平对淘宝网的未来发展趋势进行非线性回归模型的研究以及案例二对于我国财政收入的进行变量选取研究,通过对1992年到2012年的人均国生产总值,城镇居民家庭人均可支配收入,全社会固定投资,进出口总额,居民消费价格水平对我国财政收入的影响进行定量数据的研究. 通过对数据的选取,回归模型的确定以及软件的操作方法来告知读者如何在SPSS的操作中变量选取的原则、要求和方法.第二章多元回归模型的选取2.1 多元回归分析概述回归分析是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法(即寻找具有相关关系的变量减的数学表达式并进行统计推断的一种统计方法). 按照其所涉及的自变量,可分为一元回归分析和多元回归分析;线性回归分析和非线性回归分析是按照自变量和因变量之间的关系划分的.而本文运用了多元线性回归分析中的方法,多元线性回归分析就是指回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系. 多元回归分析的主要容有以下几点:(1)从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数. 估计参数的常用方法是最小二乘法;(2)对这些关系式的可信程度进行检验;(3)在许多自变量共同影响着一个因变量的关系中,判断哪些自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量选入模型中,而剔除影响不显著的变量,通常用逐步回归等方法;(4)利用所求的关系式对某一生产过程进行预测或控制.回归分析研究的主要问题是确定Y与X间的定量关系表达式,这种表达式称为回归方程;对求得的回归方程的可信度进行检验;判断自变量X对因变量Y有无影响;利用所求得的回归方程进行预测和控制. 回归分析主要应用于研究两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,通过分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好的拟合,则可以根据自变量作进一步预测.2.2 相关系数概述相关关系是一种非确定性的关系,相关系数是研究变量之间线性相关程度的量. 相关关系是现象间客观存在的,但数值又是不严格及不完全确定的相互依存关系.1)复相关系数在一元回归分析中我们用相关系数r 来说明两变量之间线性相关的程度,在多元回归分析中,仍用它来表示y 与其他自变量之间的线性密切程度,此为复相关系数. 复相关是指因变量与多个自变量之间的相关关系. 复相关系数只是反映变量间表面的非本质的联系,因为变量很有可能受到其他变量的影响.2)偏相关系数在多变量的情况下,变量之间的相关系数是相当复杂的. 任意两个变量之间都有可能存在着相关关系,因此,只知道被解释变量与解释变量的总的相关程度是不够的. 如果需要了解某两个变量间的相关程度,就应在消除其他变量影响的情况下来计算他们的相关系数,这就是偏相关系数. 偏相关系数与复相关系数不同,复相关系数的取值在0-1之间,而偏相关系数则是有正有负,所以复相关系数与偏相关系数之间也有可能相差很大. 变量之间本存在错综复杂的关系,甚至可能使得符号也相反,但是偏相关系数才是变现变量之间的本质联系的.偏相关的主要用途:偏相关主要是用来研究自变量与因变量之间的关系的,其通过得到的自变量与因变量数据来进行计算,通过偏相关系数可以看出哪些自变量对因变量的影响更大一些,同时对于偏相关系数较小的变量,可以剔除.2.3 非线性回归模型概述非线性回归模型是指在众多的现象中,分析变量之间的关系时不符合解释变量线性和参数线性的一种模型. 在实际的经济活动中,经济变量的关系是相当复杂的,直接表示为线性关系的情况也并不多见. 但大多数的非线性关系是可以通过一些简单的数学处理,使之转化为线性关系,从而通过线性回归来进行计算. 而非线性回归模型又分为可化为线性模型的非线性回归模型和不可化为线性模型的非线性回归模型.本文研究的是可转化为线性模型的非线性回归模型,而可转化为线性模型的非线性回归模型又有好几种方法可以对变量进行转换.其有以下几种模型:1)多项式函数模型对于形如:k k x x x y ββββ+⋅⋅⋅+++=22110 ,的模型为多项式模型.令21122,,,k k k z x z x z x === ,原模型可化为线性形式k k z z z y ββββ+⋅⋅⋅+++=22110 ,那么就可以用多元线性回归分析的方法进行处理了.2)指数函数模型对于形如:k x k x x e e e y ββββ+⋅⋅⋅+++=21210 ,的模型为指数函数模型. 令k x k x x e z e z e z =⋅⋅⋅==,,,2121 ,原模型可化为线性形式k k z z z y ββββ+⋅⋅⋅+++=22110 ,那么就可以用多元线性回归分析的方法进行处理了.3)双曲线模型;4)半对数模型和双对数模型等.本文将对指数函数型非线性模型进行案例说明,所以对于其他类型的非线性回归模型的道理是一致的,在这里就不进行一一解释.2.4 多元线性回归模型自变量的选择在多元线性回归模型中自变量的选择实质上就是模型的选择. 现设一切可供选择的变量是t 个 ,它们组成的回归模型称为全模型(记:1+=t m ),在获得n 组观测数据后,我们有模型:⎩⎨⎧+=),0(~2n n I N X Y σεεβ , 其中:Y 是1⨯n 的观测值,β是1⨯m 未知参数向量,X 是m n ⨯结构矩阵,并假定X 的秩为m .现从t x x x ,,,21 这t 个变量中选t '变量,不妨设t x x x ',,,21 ,那么对全模型中的参数β和结构矩阵X 可作如下的分块(记:1+'=t p ):()'=q p βββ, , ()q p X X X = .我们称下面的回归模型为选模型:⎩⎨⎧+=),0(~2n p p I N X Y σεεβ ,其中:Y 是1⨯n 的观测值,p β是1⨯p 未知参数向量, p X 是p n ⨯结构矩阵,并假定p X 的秩为p .自变量的选择可以看成是这样的两个问题,一是究竟是用全模型还是用选模型,二是若用选模型,则究竟应包含多少变量最适合. 然而自变量的选择与相关系数,回归分析都有密切的关系,自变量的选择需要通过一系列的验证,剔除之后才能得到最好的变量从而得到最好的回归模型. 下面我们用两个案例来对多元回归模型的选取来进行解释和探讨.第三章 非线性回归模型案例:淘宝交易额研究3.1 回归模型变量的确定3.1.1数据来源为研究淘宝网未来发展趋势,从新浪官方微博淘宝数据魔方中获得淘宝2009年聚划算中购物群众的年龄比例作为定性数据,进行研究年龄对淘宝购物的影响. 并在新浪财经网上获得淘宝网自2003年到2012年的淘宝交易额以及淘宝注册人数的数据. 在中商情报局里获得我国近网络普及度等数据并从国家统计年鉴中选取统计指标居民消费水平.淘宝注册人数(1x )在一定程度上反应了网络购物的群众的人数,反应了当今社会网络购物的普遍性. 同时淘宝的注册人数也展现了人们对网络购物的认可度,换言之也就是说接受了网络购物并会在网上进行消费,是对网络购物很大程度上的支持. 我国网络普及度(2x )是指我国近几年网络在我国普及的围,这一块更好的反映了网络对居民网络消费的影响,因为网络是网络消费的必要条件. 我国网络普及度反映的是在我国日趋发展的经济下,人们对网络的接受程以及信任程度也是直接影响到淘宝的网络购物.居民消费水平(3x )主要通过消费的物质产品和劳务的数量和质量来反映. 居民消费水平的提高也能很好的展现在网络消费上作出的贡献.第二产业增加值(4x )是指采矿业,制造业,电力、煤气及水的生产和供应业,建筑业. 而制造业的发展也相继影响着产品的销售,所以在这里采用第二产业对淘宝交易额的影响. 通过对以上这三个定量数据的研究来其与淘宝交易额的关系,从而研究淘宝未来的发展趋势以及优劣态. 原始数据如下:表3.1为消除数据之间因单位不同产生的量纲的影响,对数据进行标准化得如下数据得到表3.23.1.2 复相关系数对表3.2 的数据进行复相关系数的研究,看变量之间的复相关关系,得到如下表3.3的复相关系数表:表3.3表3.3中有带“**”号的结果表明有关的两变量在0.01的显著性水平下显著相关,由上图可知,y 与1x 的相关系数为0.987>0,表示变量之间存在线性关系,其相关系数检验对应的概率P 值为0.000,低于显著性水平0.05,说明淘宝交易额与淘宝注册人数之间相关性显著. y 与2x e 的相关系数为0.923>0,表示变量之间存在线性关系,其对应P 值为0.000,小于显著性水平0.05,说明淘宝交易额与我国网络普及度之间相关性显著.y 与3x 的相关系数为0.963>0,表示变量之间存在线性关系,其对应P 值为0.000,小于显著性水平0.05,说明淘宝交易额与居民消费水平之间相关性显著. y 与4x e 的相关系数为0.919>0,表示变量之间存在线性关系,其对应P 值为0.000,小于显著性水平0.05,说明我国第二产业增加值与居民消费水平之间相关性显著.综上所述通过SPSS 得出的相关系数的矩阵得到为:=1yx r 0.987 ,=2yx r 0.923 ,=3yx r 0.963 ,=4yx r 0.919 .虽然变量都通过了检验,但是可以看到2yx r 和4yx r 较另外两个复相关系数较低,因此对变量进行散点图的分析来了解自变量与因变量的相关关系.3.1.3 散点图看线性关系对y 与各个变量作出散点图(1)淘宝注册人数1x 与淘宝网交易总额y 的相关性散点图:图3.1(2)网络普及度2x 与淘宝网交易总额y 的散点图:图3.2(3)我国居民消费水平3x 与淘宝交易额y 的散点图:图3.3(4)第二产业增加值4x 对淘宝交易额y 的散点图:图3.4图3.2和3.4分别是自变量2x 和4x 与因变量的相关系数图,可以看出自变量2x 和因变量y 之间呈明显的指数线性关系,而变量4x 也是同样与因变量y 之间呈明显的指数线性关系.他们之间是非线性回归模型的关系. 所拟合的效果不理想所以我们还需要对数据进行进一步的处理和分析,得到确切的答案.3.1.4 回归分析看拟合度对数据进行回归分析:表3.4表3.4是自变量与因变量得到的回归分析,可知,因变量y 与常数项和自变量1x ,2x ,3x ,4x 的回归的标准化回归系数分别为0.01,0.660,-0.229,1.439,-0.899.而通过P 检验可以看到由上表 2.4可以看出常数项以及各自变量的P 值分别为:0.906,0.000,0.018,0.000及0.000. 可以看出原始变量所得到的P 值并没有全部通过检验. 说明常数项对因变量影响不显著. 对数据进行t 值检验,在给定的05.0=α,自由度9211=-=n 的临界值时,查表得=9025.0t 2.262,其常数项的t 值为0.123小于2.262,说明常数项不显著. 综上所述,可以初步得到一个模型为:4321899.0439.1229.0660.001.0x x x x y -+-+= .3.1.5确定回归模型变量综上通过散点图、复相关系数以及回归分析可以知道由于自变量2x 和4x 与因变量y 之间是非线性关系,是呈指数线性关系为研究之间线性关系,所以得到的模型的拟合程度并不是很理想.因此对自变量2x 和4x 进行取e 的对数即2x e 和4x e 来对变量进行研究看拟合效果得到下表.表3.5下面对表3.5进行变量分析与研究,通过对非线性模型中的变量的研究来了解多元回归分析中变量的选取与使用,同时对自变量进一步进行分析.3.2 调整后变量的相关分析3.2.1 散点图对y与各个变量作出散点图x与淘宝网交易总额y的相关性散点图:(1)淘宝注册人数1图3.5(2)e的网络普及度次方2x e与淘宝网交易总额y的相关性检验:图3.6x与淘宝交易额y的相关性检验:(3)我国居民消费水平3图3.7(4)e的第二产业增加值的次方4x e对淘宝交易额y的影响:图3.8由以上四个散点图可知,其所有的点均落在了左上至右下的一条直线上,表明了数据之间存在显著相关关系. 所以我们还需要对数据进行进一步的分析,得到确切的答案.3.2.2 计算相关系数(1)复相关系数r 是用来衡量回归直线对于观察值配合的密切程度,即用来衡量因变量y 与自变量1x ,2x e ,3x ,4x e 之间相关的密切程度. 以下是用SPSS 对数据进行相关性分析,得到如下的相关系数图表3.6图中有带“**”号的结果表明有关的两变量在0.01的显著性水平下显著相关,由上图可知,y 与1x 的相关系数为0.987>0,表示变量之间存在线性关系,其相关系数检验对应的概率P 值为0.000,低于显著性水平0.05,说明淘宝交易额与淘宝注册人数之间相关性显著. y 与2x e 的相关系数为0.979>0,表示变量之间存在线性关系,其对应P 值为0.000,小于显著性水平0.05,说明淘宝交易额与我国网络普及度之间相关性显著.y 与3x 的相关系数为0.963>0,表示变量之间存在线性关系,其对应P 值为0.000,小于显著性水平0.05,说明淘宝交易额与居民消费水平之间相关性显著. y 与4x e 的相关系数为0.997>0,表示变量之间存在线性关系,其对应P 值为0.000,小于显著性水平0.05,说明我国第二产业增加值与居民消费水平之间相关性显著.综上所述通过SPSS 得出的相关系数的矩阵得到为:=1yx r 0.987 ,=2yx r 0.979 ,=3yx r 0.963 ,=4yx r 0.997 .由以上数据可以看出,各列之间存在正相关关系. 即淘宝网注册人数1x 、e 的我国网络普及度2x e 、我国居民消费水平3x 、e 的我国第二产业增加值次方4x e 与淘宝交易总额y 存在显著的相关关系.(2)计算偏相关系数:下面是用SPSS 作出的偏相关系数:① 消除我国网络普及度、第二产业增加值和居民消费水平的影响后,计算淘宝注册人数与淘宝交易额的偏相关系数为:表3.7由上可知,淘宝注册人数与淘宝交易额的偏相关系数为0.795.②消除淘宝交易额、第二产业增加值和居民消费水平的影响后,我国网络普及度和淘宝交易额的偏相关系数为:表3.8由上可知我国网络普及度与淘宝交易额的偏相关系数为0.733.③消除淘宝注册人数、第二产业增加值和我国网络普及度的影响后,我国居民消费水平和淘宝交易额的偏相关系数:表3.9由上可知,我国居民消费水平和淘宝交易额的偏相关系数为-0.932.④消除淘宝注册人数、我国网络普及度和居民消费水平的影响后,计算第二产业增加值与淘宝交易额的偏相关系数:表3.10由上可知,e的第二产业增加值次方与淘宝交易额的偏相关系数为0.946.⑤下表为各个变量之间的偏相关系数表,为方便,这里直接变各变量之间的偏相关系数:r y 1x 2x e3x 4x e y 0.795 0.773 -0.9320.946 1x 0.795 -0.611 0.758 -0.592x e0.773 -0.611 0.702 -0.521 3x-0.932 0.758 0.702 0.818 4x e 0.946 -0.59 -0.521 0.818表3.11这里我们对变量2x 和4x 采用的是其指数幂,是因为在对变量的相关性进行检验时,通过散点图可以看出2x 和4x 与因变量之间呈的是指数线性关系,是非线性关系所以对数据进行了处理,因为原始变量之间存在的非线性关系得出的结果不具有代表性. 可以通过散点图看到从以上的偏相关系数来看,如果2x e ,3x 和4x e 保持不变,y 与1x 之间存在相关关系,当1x ,3x 和4x e 的保持不变时,2x e 和y 之间存在相关关系,其他关系同上,在这里就不进行一一解释.我们也可以通过以上的偏相关系数表可以看出各个自变量之间也存在一定的偏相关关系,但是相对于自变量与因变量之间的偏相关关系较小,说明这些变量之间的选择比较显著.但是其关系强度较前者略低,所以经过以上系数得到的偏相关系数可以看出,其相关程度较原关系的强度低,应采用原数据的自变量和因变量. 即所采用的自变量和因变量保持不变.通过复相关系数的计算和偏相关系数的计算结果可以看出,复相关系数的取值在0-1之间,偏相关系数的取值在-1到1之间,由上数据便可看出偏相关系数与复相关系数之间的差距相差甚大,有的甚至改变了符号. 从上可以看出通过复相关系数不能很好的确定变量之间的相关关系,不能明确的解释变量,而偏回归系数可以看出变量是否符合要求. 从下面的回归分析中继续对变量进行研究.3.3 多元线性回归分析对数据进行回归分析,得到如下结果:表3.12复相关系数为1,判定系数为0.999,调整系数为0.999,估计值的标准误差为0.03296.表3.13由上面结果的看其显著性检验结果为,回归平方和为9.993,残差平方和0.007,总平方和10.000, F 统计量的值为2.299E3,对应的概率P 值为0.000,小于显著性水平0.05,即:淘宝交易总额y 与淘宝网注册人数1x 、e 的我国网络普及度次方2x e 、我国居民消费水平3x 和e 的我国第二产业增加值次方4x e 之间存在线性关系,所以可认为所建立的回归方程有效.表3.14由上表可知,因变量y 与常数项和自变量1x ,2x e ,3x ,4x e 的回归的标准化回归系数分别为-1.119,0.244,0.107,-0.321,0.615. 3个回归系数B 的显著性水平均小于0.05,这里可以认为自变量1x ,2x e ,3x ,4x e 对因变量y 有显著性影响. 于是得到回归方程为:42615.0321.0107.0244.0119.131x x e x e x y +-++-= , 由上图可知对数据进行t 值检验,在给定的05.0=α,自由度9211=-=n 的临界值时,查表得=9025.0t 2.262,因为1x ,2x e ,3x ,4x e 的参数对应的t 统计量的绝对值均大于2.262,这说明%5的显著性水平下,斜率系数均显著不为0,表明淘宝网注册人数1x ,e 的我国网络普及度次方2x e ,我国居民消费水平3x ,e 的我国第二产业增加值次方4x e 等变量联合起来对该商品的消费支出有显著的影响.P 检验:由上表可以看出各自变量以及常数项的P 值分别为:0.00,0.018,0.039,0.001及0.000,可以看出其P 值均小于0.05,均通过检验综上所述,四个自变量对因变量都有显著性影响,并都通过了检验可以得到最优方程式为:。
回归分析在公司财务分析与预测中的应用论文
回归分析在公司财务分析与预测中的应用论文回归分析在公司财务分析与预测中的应用摘要:公司财务分析与预测是评估公司经营状况和预测未来经营绩效的重要工具。
回归分析作为统计学中的一种重要方法,广泛应用于公司财务分析与预测中,能够帮助分析人员从大量的财务数据中找到关键的影响因素,并建立相应的预测模型。
本文将通过回顾过去二十年来相关研究的发展成果,从回归模型的建立、评估与解释以及模型在财务分析与预测中的应用等方面,详细探讨回归分析在公司财务分析与预测中的应用。
一、引言回归分析是一种用来研究两个或多个变量之间关系的方法,其主要目的是构建一个能够解释自变量和因变量之间关系的数学模型,并利用该模型进行预测。
在公司财务分析与预测中,回归分析被广泛应用于研究各种财务指标之间的关系,如财务报表数据与公司盈利能力、债务水平、市场价值等的关系。
通过回归分析,可以找到对公司经营绩效具有显著影响的因素,并建立相应的预测模型,从而为公司管理者提供科学的决策依据。
二、回归模型的建立回归模型的建立是回归分析的关键步骤之一。
在公司财务分析中,一般使用多元线性回归模型来探索财务指标之间的关系。
多元线性回归模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y为因变量,X1、X2、...、Xn为自变量,β0、β1、β2、...、βn为模型的参数,ε为误差项。
模型参数的估计一般采用最小二乘法进行。
三、回归模型的评估与解释在建立回归模型后,需要对模型进行评估和解释。
常用的评估指标包括R方值、调整R方值、F统计量和回归系数的t统计量等。
R方值反映了回归模型对观测值的解释程度,其范围在0到1之间,值越接近1表示模型拟合得越好。
调整R方值除了考虑拟合度外,还考虑样本量和自变量的个数,能够较好地反映模型的预测能力。
F统计量用于检验回归模型的整体显著性,而各个回归系数的t统计量则用于检验相应自变量的显著性。
回归系数的解释是回归分析的另一个重要内容。
实用回归分析论文(SPSS实验结果)
实用回归分析论文(SPSS实验结果)由于没有具体的数据或研究题目,以下仅为回归分析论文的一般模板。
1. 研究背景和目的:介绍本次研究的背景和目的。
描述相关文献对该领域的研究情况,指出知识空白和研究的必要性。
例如:本研究旨在探讨X变量与Y变量之间的关系,并研究其他可能因素对此关系的影响。
回归分析被广泛应用于社会科学、经济学和医学等领域,但在某些情况下,该方法可能被错误地应用或解读。
因此,本研究旨在提供更多有关回归分析的实用性信息,以便更好地应用于实际研究中。
2. 变量选择和数据收集:介绍所选的独立变量、因变量以及可能的干扰因素。
描述数据收集的方法和样本的特点,阐述数据的统计学特征。
例如:本研究选择了X1、X2和X3作为独立变量,Y作为因变量。
在探究X和Y之间的关系时,本研究考虑了干扰因素A和B。
数据收集采用了问卷调查的方法,样本为100位大学生。
调查数据的统计学特征如下:均值、标准差、最大值和最小值。
3. 回归模型:描述所使用的回归模型及其假设。
根据假设,说明如何进行统计分析。
例如:本研究选择了多元线性回归模型。
假设独立变量与因变量之间存在线性关系,且同时考虑了干扰因素的影响。
在此假设下,通过进行多元线性回归分析,得出具体的回归方程。
使用SPSS软件进行统计分析,通过显著性检验和模型拟合程度来验证上述假设。
4. 实验结果:解释回归分析结果,如拟合程度、系数的显著性、变量的解释等。
根据结果,提供对研究目的的回答,对假说进行证明或推翻。
例如:本研究得到的回归方程为Y = a + b1*X1 + b2*X2 + b3*X3 +c1*A + c2*B。
通过F检验,得出回归模型的显著性水平P<0.01,表明回归模型解释了数据的一定程度。
通过系数显著性检验,得出X1、X3和B对Y变量具有显著影响,而其余变量影响不显著。
对于X1、X3和B,本研究解释了其对Y变量的具体贡献,分析了研究问题的深层含义。
5. 结论和建议:总结研究结论,说明其对实践和理论的贡献,并提出未来研究的方向。
应用回归分析课程论文
逐步回归分析——中国房地产与宏观经济关键词:宏观经济指标;房地产;新增固定资产摘要:本文旨在通过数据初步说明中国的房地产行业是否对宏观经济产生影响。
通过对房地产指数、房地产开发新增固定资产和宏观经济的关系进行研究。
方法上采用逐步回归分析研究它们的相关性,最终确定中国房地产行业是否和宏观经济有着一定的相关性。
一、引言房地产是指土地、建筑物及固着在土地、建筑物上不可分离的部分及其附带的各种权益。
它的特点是位置的固定性和不可移动性;三种存在形态是土地、建筑物、房地合一。
随着个人财产所有权的发展,房地产已经成为商业交易的主要组成部分同时房地产行业上涨非常迅猛,购买房地产成为了一种重要的投资方式。
从宏观经济的角度看,房地产需求是社会对房地产市场的总需求,而在某一时期内全社会或某一地区内房地产需求总量。
那么中国房地产行业能否对宏观经济产生影响?下面我们对相关数据做一些分析研究。
二、数据分析1、数据从国家统计局和搜狐网站搜集月度本年房地产开发新增固定资产统计和房地产指数,对数据进行处理。
最终我选取了从2003年3月到2007年12月共计53个月份的房地产指数、房地产发展情况统计指标和11个反映宏观经济的统计指标的数据。
2、回归分析(1)多元回归分析对整理的数据通过SPSS进行回归分析,结果如表:使用95%置信区间做检验,显著性水平sig均大于0.05拒绝原假设,显著性效果不明显。
各回归系数都未通过T检验。
房地产平均收盘价格与同期的宏观经济变量之间不存在相关性。
(2)逐步回归分析对样本进行逐步回归分析,剔除回归效果不显著的自变量,进一步考虑回归相关性。
得出结果如下表。
R=-15301.755+2588.602F11+20807.199F8-10854.906F7-136.778F10-0.140F12逐步回归剔除了不显著自变量,结果表明 F11,F8,F7,F10,F12回归方程和回归系数通过显著性检验, 可以证明房地产业与宏观经济变量总体上具有相关性。
采用逐步回归分析的论文
46.5167
31.3870
34.7970
标准差
35.45868
40.67030
29.53181
39.89000
40.63523
47.84835
47.55669
极小值
75.84
33.30
-9.91
-9.91
25.85
-7.55
-7.55
极大值
209.73
209.73
151.93
209.73
本文所用的数据来自证券之星()、和讯网(/)以及光大证券阳光版。
(二)变量的选择和假设
1.因变量
本文研究的因变量为IPO抑价率,以UPR表示。根据IPO抑价率的一般定义,即发行抑价率为新股上市后首日收盘价和其一级市场发行价之间的差别,可以将发行抑价率表示为:
206.93
275.33
275.33
首先对其进行横向比较,从表1中的均值和中值可以看出,不管是中小板市场还是创业板市场,其IPO抑价率是不断的呈下降趋势的。创业板市场的抑价率的极大值和极小值都有所下降,而中小板市场的抑价率的极大值又创高峰。
从纵向看,创业板市场2009年的IPO抑价率远高于中小板市场,尤其是创业板首发的28只股票的IPO抑价率均值高达106.23,而2010年创业板的IPO抑价率有大幅度的下降,其均值较中小板市场还要低约7.3个百分点。
关键词:创业板;中小板;抑价率;回归分析
一、研究动机和IPO抑价理论综述
首次公开发行股票(Initial Public Offerings,IPO)是企业在证券交易所上首次公开向投资者发行股票并上市来筹集企业发展资金的过程。IPO抑价是指新股发行抑价(Initial Public Offering Underpricing),是指股票首次公开发行时定价较低,而股票在首日上市交易时价格较高,投资者认购新股能够获得超额投资报酬的一种现象。这种现象背离了有效市场假说,所以被称为“IPO抑价之谜”。
论文经典方法:Logistic回归分析及其应用
3输0 出结果的解释
2019/10/20
• 模型的预测结果的评价
• 敏感度、特异度和阳性预测值
正确选择预测概率界值,简单地以 0.5为界值,但并不是最好的。
• C指数
预测结果与观察结果的一致性的度 量。C值越大(最大为1),模型预 测结果的能力越强。
3非1条件LOGISTIC回归
2019/10/20
• 多分类自变量 以第i类作参照,比较相邻或相隔的两个类别。
• 连续型自变量 当自变量改变一个单位时,比数比为eb
2输9 出结果的解释
2019/10/20
• 模型拟合的优劣
自变量与结果变量(因变量)有无关系
• 确认因变量与自变量的编码 • 模型包含的各个自变量的临床意义 • 由模型回归系数计算得到的各个自变量的比数比的临床意义
1 '有' 0 '无'
/addx
0 '无' 1 '危险性' 2 '可能' 3 '很可能'
/edu
0 ‘文盲’ 1 ‘小学程度’ 2 ‘初中及以上'
126.哑变量的设置和引入
2019/10/20
• 哑变量,又称指示变量或设计矩阵 。
• 有利于检验等级变量各个等级间的 变化是否相同。
• 一个k分类的分类变量,可以用k-1 个哑变量来表示。
• logistic回归不要求在因变量 正态假设的前提下进行预测。
3疾7 病诊断
2019/10/20
• 疾病诊断的判别
• 诊断性试验研究中,敏感度和特异 度的估计
• logistic回归模型综合校正协变量的 影响
• 充分利用数据提供的信息 • 可进行95%可他问题
毕业论文中的回归分析方法
毕业论文中的回归分析方法回归分析方法在毕业论文中的应用回归分析是一种常用的统计方法,广泛应用于各个学科领域中。
在毕业论文中,回归分析方法常常被用于探究变量之间的关系,解释影响因素,并进行预测。
本文将介绍回归分析方法在毕业论文中的应用,并探讨其优势和限制。
一、回归分析方法概述回归分析是一种用于建立变量之间关系的统计方法。
它主要通过建立数学模型来描述因变量与自变量之间的关系,并通过拟合模型来获得最佳的解释性和预测性。
回归分析中常用的模型包括线性回归、多元回归、逻辑回归等。
二、回归分析方法在毕业论文中的应用1. 探究变量之间的关系回归分析方法在毕业论文中经常被用来探究变量之间的关系。
通过建立合适的回归模型,研究者可以揭示自变量对因变量的影响程度,并分析这种关系的稳定性和显著性。
例如,在教育领域的毕业论文中,可以运用回归分析方法来研究学生的学习成绩与家庭背景、教育资源等因素之间的关系。
2. 解释影响因素回归分析方法还可用于解释影响因素。
通过回归分析,研究者可以量化不同自变量对因变量的影响程度,并识别出对因变量影响最大的因素。
这种分析有助于深入理解变量间的关系,并提供有关影响因素的实证依据。
以医学领域为例,回归分析可用于研究各种疾病的风险因素,以及身体指标与疾病之间的关系。
3. 进行预测回归分析方法还可用于进行预测。
通过建立回归模型,根据已有的数据进行参数估计,可以预测未来或未知情况下的因变量数值。
这对于市场预测、经济预测、人口统计等领域的毕业论文具有重要意义。
例如,在金融领域,通过回归分析可以预测股票价格的走势,分析市场因素对股票价格的影响。
三、回归分析方法的优势和限制1. 优势回归分析方法具有许多优势。
首先,它可以提供一种可量化的方法来研究变量之间的关系。
其次,回归分析可以通过统计检验来检验变量之间的关系是否显著,从而确定得出的结论是否可信。
此外,回归分析方法还可以对模型进行适应性检验,判断模型的拟合优度。
回归分析论文
《应用回归分析》课程设计题目大学生在校人数的多元回归分析姓名唐家彬乔利飞文韬学号 10801020120 10801020119 10801020121 指导教师胡爱萍高红霞康新梅成绩大学生在校人数的多元回归分析摘要:自从1978年恢复高考以来,我国高等教育在快速发展,尤其在近十几年发展速度惊人。
由以前千军万马挤独木桥演变成满城尽是大学生。
我们将研究以普通高等学校在校人数为因变量做回归分析。
研究其受那些因素的影响。
最终我们选者了x3、x4、x6这几个变量进行回归,分别对应了普通高等学校招生人数、国家财政教育经费、人均可支配收入这几个变量。
得出标准化回归方程为:普通高等学校在校人数=0.241*普通高等学校招生人数+0.219*国家财政教育经费+0.216*人均可支配收入。
关键词:强制回归逐步回归岭回归一、问题的提出自从1978年恢复高考以来,我国高等教育在快速发展,尤其在近十几年发展速度惊人。
由以前千军万马挤独木桥演变成满城尽是大学生。
数据显示,从2000年到2005年,高等教育阶段在校生人数一路攀升:从1230万人,增长到1300万人、1500 万人、1900 万人和2000 万人,至2009年增长到2300万人。
大学教育越来越普及,在校大学生人数也是剧增。
我们将研究以普通高等学校在校人数为因变量做回归分析。
研究其受那些因素的影响。
二、模型的建立普通高等学校在校人数应该从学校和学生两方面来分析。
学校方面因素应该有:普通高等学校学校数(下文称学校数)、普通高等学校专职教师数(教师数)、普通高等学校招生人数(招生数)、国家财政教育经费(教育经费)。
学生方面因素应该包括:高中升学率(升学率)、人均可支配收入(可支配收入)。
可建立多元回归模型:y=β0+β1*1+β2*x2+β3*x3+β4*x4+β5*x5+β6*x6+ε其中:y 普通高等学校在校人数(万人)x1普通高等学校学校数(所)x2普通高等学校专职教师数(万人)x3普通高等学校招生人数(万人)x4国家财政教育经费(亿元)x5高中升学率x6 人均可支配收入(元))ε~N(0, 21通过查找《中国统计年鉴》找出了因变量y和自变量x1、x2、x3、x4、x5、x6从1990-2008年的数据。
论文写作中的回归分析
论文写作中的回归分析在论文写作中的回归分析回归分析是一种常用的统计分析方法,它在论文写作中扮演着重要的角色。
回归分析可以帮助研究者探究变量之间的关系,并从中获取有价值的信息。
本文将从回归分析的基本概念、方法和应用等方面展开论述。
一、回归分析的概念回归分析是一种统计学方法,用于研究一个或多个自变量与一个因变量之间的关系。
其中,自变量是独立变量,即我们希望通过它来预测或解释因变量的变化,而因变量是依赖变量,它是我们感兴趣的研究对象。
回归分析的目标是建立一个数学模型,尽量准确地描述自变量与因变量之间的关系。
二、回归分析的方法在进行回归分析时,我们需要首先选择适当的回归模型。
常见的回归模型有线性回归模型、多项式回归模型、对数回归模型等。
选择回归模型需要根据研究问题和数据特点来决定,合适的模型能更好地解释变量之间的关系。
接下来,我们需要对回归模型进行参数估计。
最常用的方法是最小二乘法,通过最小化观测值与模型预测值的差异来估计模型的参数。
在参数估计的同时,还需进行检验以评估模型的拟合度和参数的显著性。
常见的检验方法包括拟合优度检验和显著性检验等。
最后,我们可以通过回归系数对自变量与因变量之间的关系进行解释和预测。
回归系数代表了因变量在自变量变化时的相对变化程度,通过对回归系数的分析,我们可以判断哪些自变量对因变量有显著影响,并对未来变化进行预测。
三、回归分析的应用回归分析在各个学科领域都有广泛的应用。
在社会科学领域,回归分析可以用于研究社会经济因素对人口、收入、就业等的影响;在自然科学领域,回归分析可以用于研究物理、化学、生物等变量之间的关系;在工程领域,回归分析可以用于预测和优化工程系统的性能等。
此外,回归分析还可以与其他统计方法相结合,例如因子分析、路径分析等,共同用于研究更加复杂的问题。
回归分析的应用已经渗透到各个研究领域,为学术研究和实践应用提供了重要的工具和方法。
四、回归分析的局限性回归分析虽然在许多领域都有广泛应用,但也存在一些局限性。
多元回归分析论文
多元回归分析论文摘要:本论文使用多元回归分析方法,研究了一些城市的房价与多个因素之间的关系。
通过收集了该城市的房价数据以及各个因素的数据,进行了数据预处理和分析。
然后,建立了一个多元回归模型,以探索这些因素对房价的影响程度。
通过实证分析,发现地理位置、建筑面积和周边设施等因素对房价具有显著影响,同时,其他因素的影响程度较小。
最后,分析了结果的实际意义,并提出了一些建议。
关键词:多元回归分析,房价,因素,影响程度,建议1.引言在现代城市发展中,房价是一个重要的指标,不仅反映了城市的经济发展水平,也对居民的生活质量产生影响。
因此,研究房价与多个因素之间的关系,对于城市规划和政府决策具有重要意义。
2.数据与方法收集了城市的房价数据以及多个可能影响房价的因素,包括地理位置、建筑面积、周边设施、交通状况、城市发展水平等。
根据数据的性质,进行了数据预处理和分析,包括数据清洗、缺失值处理和变量相关性分析。
然后,使用多元回归分析方法建立了一个模型,以探索这些因素对房价的影响程度。
3.分析结果通过多元回归分析,确定了房价与地理位置、建筑面积和周边设施之间的显著关系。
具体而言,地理位置越好、建筑面积越大以及周边设施越完善,房价就越高。
此外,其他因素(如交通状况、城市发展水平)对房价的影响较小,甚至没有显著影响。
这些结果与研究假设相符合,也符合该城市的实际情况。
4.结果讨论这些分析结果对于该城市的房地产开发和政府规划具有实际意义。
首先,政府可以重点发展地理位置好的地区,以吸引更多的投资和提高房价水平。
其次,政府可以注重改善周边设施,例如建设公园、商场和教育设施,以提高房价和居民生活质量。
最后,政府还可以通过控制建筑用地规模,控制房价的波动和过度增长,以维护市场稳定。
5.结论与建议本研究使用多元回归分析方法,研究了城市房价与多个因素之间的关系。
通过实证分析,发现了地理位置、建筑面积和周边设施对房价的显著影响。
同时,提出了几点建议:政府应该注重发展地理位置好的地区,改善周边设施,并控制建筑用地规模,以维护市场稳定。
应用回归分析论文关于影响GDP的回归分析
关于影响GDP 的回归分析摘要:GDP 是体现国民经济增长状况和人民群众客观生活质量的重要指标。
为了研究影响GDP 的潜在因素,通过收集到的样本数据运用课本学过的回归分析知识,建立与GDP 有影响的自变量与因变量间的多元线性回归模型,借助统计软件SPSS 对样本作初等模型,同时结合统计专业知识对初等模型作F 检验、回归系数检验、异方差性检验、假设检验等,确立最终的经验回归方程,回归方程对样本的是拟合度最好的。
最后通过对做出来的模型分析得出GDP 的主要影响因素,对提高GDP 具有一定得现实意义。
引言:在当今欧美主导的经济发展理论下,衡量一个国家的综合实力看的不仅是国家的军事实力、国家影响力,而更看重国家的经济实力,而GDP 代表一国或一个地区所有常住单位和个人在一定时期内全部生产活动的最终成果,是当期新创造财富的价值总量,它是一个国家经济实力的最好体现,具有国际可比性,是联合国国民经济核算体系(SNA)中最重要的总量指标,为世界各国广泛使用并用于国际比较。
众所周知2008年我国GDP 跃居世界第三位,是仅次于美国、日本的第三大经济国,而2009年在金融危机的影响下我国GDP 稳中求进,依然保持着9.0%的增长态势。
提高GDP 已经成为经济发展的潮流,利用国家的各种有限资源,在最大程度上发挥资源的利用率,推动经济的发展是势在必行的,因为资源一直在减少,而人口一直在增加,要保持经济的增长就必要抓住主要因素,提高GDP 。
一、多元线性回归模型的基本理论首先是对线性回归模型基本知识介绍:随机变量y 与一般变量x1,x2,x3...xp 的理论线性回归模型为:01122...p p y x x x ββββε=+++++其中0β,1β,...,p β 是P+1个未知参数,0β称为回归常数,1β,...,p β称为回归系数。
y 称为被解释变量(因变量),而x1,x2,...,xp 是P 个可以精确测量并可控制的一般变量,称为解释变量(自变量)。
回归分析毕业论文
回归分析毕业论文回归分析毕业论文在大学生活的最后一年,每个学生都面临着一个重要的任务——撰写毕业论文。
而对于经济学、统计学等专业的学生来说,回归分析是一个常见的研究方法。
回归分析是一种通过建立数学模型来研究变量之间关系的方法,它可以帮助我们理解和预测现实世界中的复杂问题。
在毕业论文中运用回归分析,不仅可以展示我们的研究能力,还可以为未来的学术研究或职业发展打下坚实的基础。
首先,我们需要选择一个合适的研究主题。
在选择研究主题时,我们可以从自己感兴趣的领域出发,或者从社会热点问题中选择一个有挑战性的主题。
无论选择哪种方式,都需要确保研究主题的可行性和独特性。
例如,我们可以选择研究消费者购买行为与广告宣传的关系,或者研究教育投入与学生成绩之间的关系。
无论选择哪个主题,都需要明确研究的目的和假设,以及所需的数据和变量。
接下来,我们需要收集和整理相关的数据。
数据的质量和数量对于回归分析的结果至关重要。
我们可以通过问卷调查、实地观察、文献研究等方式收集数据。
在收集数据时,我们需要注意数据的可靠性和有效性。
如果数据不完整或存在错误,我们需要进行数据清洗和处理,以确保数据的准确性和一致性。
在数据准备完成后,我们可以开始进行回归分析。
回归分析通常包括两个主要步骤:建立回归模型和评估模型的拟合度。
建立回归模型时,我们需要选择适当的回归方程和变量。
回归方程可以是线性的、非线性的、单变量的或多变量的,具体选择取决于研究的目的和数据的特点。
在选择变量时,我们需要考虑变量之间的相关性和影响程度,以及避免多重共线性等问题。
建立回归模型后,我们需要评估模型的拟合度。
常用的评估指标包括决定系数(R-squared)、调整决定系数(Adjusted R-squared)、残差分析等。
这些指标可以帮助我们判断回归模型的解释能力和预测能力。
如果模型的拟合度较低,我们可以尝试添加更多的变量或者改变回归方程,以提高模型的准确性和可靠性。
最后,我们需要解释和讨论回归结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江财经学院东方学院《应用回归分析》课程论文论文题目:我国民航客运量的因素分析学生姓名徐妙学期 2012-2013学年第一学期分院信息专业统计学班级10统计1班学号 1020430112教师彭武珍成绩2013年 1 月 1 日我国民航客运量的因素分析摘要:随着人们生活水平的提高,对交通工具的选择也逐渐发生变化。
从最开始单调的汽车、轮船,到现在的动车、火车、飞机、地铁,存在多种选择,在与家人出门游玩时也更加方便。
在此主要研究民航的客运量,从过去到现在他的发展趋势如何,主要存在哪些客观因素对他造成影响,今后的预测走势又如何等一系列问题将一一分析。
其中所用数据均来自《中华人民共和国统计年鉴》,所做的检验结果均由统计软件spss17.0提供。
关键字:回归、相关性、显著性、检验。
1引言伴随着经济的发展,人们的生活水平也随之增加了,同时带来了消费水平和消费观念的改变;与此同时也促进了经济的增加。
为了研究我国民航客运量的变化趋势及其成因,我们以民航客运量作为因变量y ,以国民收入、消费额、铁路客运量、民航航线里程、来华旅游入境人数为影响民航客运量的主要因素。
y 表示民航客运量(万人),x1表示国民收入(亿元),x2表示消费额(亿元),x3表示民航航线里程(万公里),x4来华旅游入境人数(万人)。
我们可以对此作一些猜测:我国民航客运量可能随着国民收入的增加而增加,随着铁路客运量的增加而减少,随着民航航线里程的增加而增加,随着来华旅游入境人数的增加而增加。
根据《中华人民共和国年鉴》获得1978—2005年的统计数据(见附录)。
利用spss17.0软件通过建立回归模型分析我国民航客运量主要受到哪些因素的影响,通过回归模型的建立反映我国经济水平发生的变化。
2预备知识2.1多元线性回归模型2.1.1多元线性回归模型的一般形式 设随机变量y 与一般变量px x x ,...,,21的线性回归模型为εββββ+++++=p p x x x y ...22110,其中:p 为解释变量的数目,0β为回归常数,p ββ...,1称为回归系数,ε是随机误差。
2.2多元线性回归参数的估计2.2.1回归参数的普通最小二乘估计所谓最小二乘法,就是寻找参数p βββ,...,,10的估计值p βββˆ,....,ˆ,ˆ10,使离差平方和()(2110110)....,...,,ip p i ni i p x x y Q ββββββ----=∑=达到极小。
2.3多元线性回归分析的检验2.3.1方差分析方差分析是对整个方程的显著性检验。
检验假设:总体的回归系数为0或不都为非0.使用统计量F 进行检验:检验的零假设为:0...:100====p H βββ 检验统计量:F=)1/(/--p n SSE pSSR 它服从于自由度为(p ,n-p-1)的F 分布。
若F 大于临界值,则拒绝零假设,认为在显著水平下,y 对自变量有显著的线性关系,回归方程是显著的;反之则不能拒绝原假设,认为回归方程是不显著的。
2.4共线性问题回归方程中,各自变量对因变量虽然都是有意义的,但某些自变量彼此相关,即存在共线性的问题。
此时给评价自变量的贡献率带来困难。
因此,需要对回归方程中的变量进行共线性诊断,并且确定它们对参数估计的影响。
2.5自相关性的问题(1)参数的估计值不再具有最小方差线性无偏性; (2)均方误差可能严重低估误差项的方差;(3)容易导致对t 值评价过高,常用的F 检验和t 检验失效。
如果忽视这一点,可能导致得出回归参数统计检验为显著,但实际上并不显著的严重错误结论;(4)当存在序列相关时,βˆ仍然是β的无偏估计,但是在任一特定的样本中,βˆ可能严重歪曲β的真实情况,即最小二乘估计量对抽样波动变得非常敏感; (5)如果不加以处理地运用普通最小二乘法估计模型能够参数,用此模型进行预测和结构分析将会带来较大的方差甚至错误的解释。
自相关的检验方法:D-W 检验:在对回归模型诊断中,需要诊断回归模型中误差项的独立性。
如果误差项不成立,那么对回归模型的任何估计与假设所作出的结论是不可靠的。
3模型的建立和分析3.1绘制散点图图1 时间与y、x1、x2、x3、x4之间的散点图由时间与y、x1、x2、x3、x4之间的散点图可以看出四个自变量都呈现明显的线性相关,都随着时间的增长而增长。
3.2简单相关系数表1spss 相关分析结果从相关阵看出,y 与x1,x2,x3,x4的相关系数都在0.9以上,说明所选的自变量与y 具有高度相关性,用y 与自变量作多元线性回归是非常合适的。
3.3多元线性回归分析表2用spss 软件对原始数据作回归分析输出结果模型汇总b模型 R R 方 调整 R 方标准 估计的误差 Durbin-Watson1.993a.986 .984420.0731.889a. 预测变量: (常量), x4, x2, x3, x1。
b. 因变量: yAnova b模型平方和df 均方 F Sig.1 回归 2.757E8 4 6.891E7 390.525 .000a残差3882149.925 22 176461.360总计 2.795E8 26系数a模型非标准化系数标准系数t Sig.B 标准误差试用版1 (常量) -56.288 200.864 -.280 .782x1 .102 .018 1.456 5.683 .000x2 -2.806 .908 -1.267 -3.092 .005x3 30.802 9.980 .518 3.086 .005x4 .328 .134 .302 2.454 .022a. 因变量: y由回归分析得:(1)回归方程:y=—56.288+0.102x1—2.806x2—30.802x3+0.328x4(2)决定系数由决定系数R方=0.989看回归方程高度显著,回归方程的拟合效果很好。
(3)回归系数的显著性检验(t检验)回归系数的显著性检验Sig.一列看出自变量的回归系数都通过t检验(即收尾概率小于规定的显著水平0.05),说明5个自变量对y的影响显著。
(4)回归方程的显著性检验(F检验)F值等于514.829,说明方程通过F检验。
(5)检验残差序列的自相关(D-W检验)D-W=1.899,查表后由于DW值很接近2,所以可以判断模型不具有自相关性。
(6)回归系数x2的回归系数:—2.806是负的,x2是消费额,负的显然不合理,其原因可能是自变量之间的共线性,因而回归方程还要在多重共线性部分进行修改3.4模型异方差检验图2 年份-残差分布图从散点图看,既无明显的喇叭形分布,分布似乎又有点随机,那么我们需要运用更精确的方法进一步分析。
利用spss进行等级相关系数法即斯皮尔曼检验对每个自变量的等级相关系数与残差等级相关系数进行分析,得到如下结果。
表3spss斯皮尔曼检验最显著结果相关系数eidj x1djSpearman 的 rho eidj 相关系数 1.000 .674**Sig.(双侧). .000N 28 28x1dj 相关系数.674** 1.000Sig.(双侧).000 .N 28 28相关系数eidj x1djSpearman 的 rho eidj 相关系数 1.000 .674**Sig.(双侧). .000N 28 28x1dj 相关系数.674** 1.000Sig.(双侧).000 .N 28 28**. 在置信度(双测)为 0.01 时,相关性是显著的。
说明x1的相关性比较显著,所以我们用x1作为权重,对各个自变量作回归分析。
表4spss以x1作为权重作权重估计结果系数未标准化系数标准化系数B 标准误试用版标准误t Sig.(常数)638.507 143.397 4.453 .000x1 .023 .005 .234 .047 4.968 .000x2 -.010 .002 -.219 .034 -6.476 .000x3 19.892 2.860 .452 .065 6.954 .000x4 .294 .040 .474 .064 7.394 .000从结果看全部通过t检验,说明异方差消除,得到y与x的回归方程为:y=638.507+0.023x1—0.01x2+19.892x3+0.294x43.5多重共线性分析表5spss共线性诊断系数a模型非标准化系数标准系数t Sig.共线性统计量B 标准误差试用版容差VIF1 (常量) -56.288 200.864 -.280 .782x1 .102 .018 1.456 5.683 .000 .007 136.638 x2 -2.806 .908 -1.267 -3.092 .005 .003 349.652 x3 30.802 9.980 .518 3.086 .005 .017 58.759 x4 .328 .134 .302 2.454 .022 .032 31.482 a. 因变量: y可以看出个变量的方差扩大因子VIF,显然,变量都与别的变量存在程度不同的共线性,其中x2的共线性最严重。
3.6消除多重共线性当回归自变量之间的相关程度越高,多重共线性就越严重,那么回归系数的估计值方差就越大,回归系数的置信区间就变得很宽,估计得精确性就大幅度的降低,使估计值稳定性变得很差,进一步致使在回归方程整体高度显著时,一些回归系数则通不过显著性检验,回归系数的正负号也可能出现倒置,使得无法对回归方程得到合理的解释,直接影响到最小二乘法的应用效果,降低回归方程的应用价值,所以我们多多重相关性检验就是为了剔除一些不重要的解释变量。
表6spss作共线性诊断初步结果系数a模型非标准化系数标准系数t Sig.共线性统计量B 标准误差试用版容差VIF1 (常量) -56.288 200.864 -.280 .782x1 .102 .018 1.456 5.683 .000 .007 136.638 x2 -2.806 .908 -1.267 -3.092 .005 .003 349.652 x3 30.802 9.980 .518 3.086 .005 .017 58.759 x4 .328 .134 .302 2.454 .022 .032 31.482 a. 因变量: y由结果可得x2的方差扩大因子VIF最大,所以应该剔除,留下x1,x3,x4再作一次回归分析。
表7spss剔除再作回归分析结果系数a模型非标准化系数标准系数t Sig.共线性统计量B 标准误差试用版容差VIF1 (常量) 21.184 232.134 .091 .928x1 .051 .008 .731 6.069 .000 .045 2.272 x3 5.257 6.521 .088 .806 .428 .054 8.491 x4 .194 .147 .179 1.319 .200 .035 8.188 a. 因变量: y由结果可得x1,x3,x4的VIF均小于10,多重共线性已经消除,所以我们可以得回归方程:y=21.184+0.051x1+5.257x3+0.194x43.7逐步回归分析表8spss逐步回归分析结果模型汇总模型R R 方调整 R 方标准估计的误差1 .991a.981 .980 526.0432 .991b.981 .980 533.4953 .992c.984 .982 498.883a. 预测变量: (常量), x1。