八年级数学认识函数测试题

合集下载

八年级下数学函数练习题及答案

八年级下数学函数练习题及答案

1.如果x 、y 之间的关系是10(0)ax y a -+=≠,那么y 是x 的 ( ) A .正比例函数 B .反比例函数 C .一次函数 D .二次函数2.函数y =-4x的图象与x 轴的交点的个数是( ) A .零个 B .一个 C .两个 D .不能确定 3.反比例函数y =-4x的图象在( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限4.已知关于x 的函数y =k (x +1)和y =-kx(k ≠0)它们在同一坐标系中的大致图象是(• )5.已知反比例函数y =xk的图象经过点(m ,3m ),则此反比例函数的图象在 ( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球发将爆炸.为了安全起见,气球的体积应 ( )A .不小于54m 3 B .小于54m 3 C .不小于45m 3 D .小于45m 33)第6题7.如果点P 为反比例函数xy 4=的图象上一点,PQ ⊥x 轴,垂足为Q ,那么△POQ 的面积为( )A .2B . 4C .6D . 8 8.已知:反比例函数xmy 21-=的图象上两点A (x 1,y 1),B (x 2, y 2)当x 1<0<x 2时,y 1<y 2,则m 的取值范围( )A .m <0B .m >0C .m <21 D .m >21二、填空题(每小题2分,共20分)9.有m 台完全相同的机器一起工作,需m 小时完成一项工作,当由x 台机器(x 为不大于m 的正整数)完成同一项工作时,所需的时间y 与机器台数x 的函数关系式是____.10.已知y 与x 成反比例,且当x 32=-时,y =5,则y 与x 的函数关系式为__________. 11.反比例函数xy 3=的图象在第一象限与第 象限. 12.某食堂现有煤炭500吨,这些煤炭能烧的天数y 与平均每天烧煤的吨数x 之间的函数关系式是 .13.若n x m y ++=2)5(是反比例函数,则m 、n 的取值是 .14.两位同学在描述同一反比例函数的图象时,甲同学说:这个反比例函数图象上任意一点到两坐标轴的距离的积都是3;乙同学说:这个反比例函数的图象与直线y =x 有两个交点,你认为这两位同学所描述的反比例函数的解析式是 .15.在ABC △的三个顶点A (2,-3)、B (-4,-5)、C (-3,2)中,可能在反比例函数(0)ky k x=>的图象上的点是 . 16.如果反比例函数4ny x-=的图象位于第二、四象限,则n 的取值范围是_______;如果图象在每个象限内,y 随x 的增大而减小,则n 的取值范围是 .17.如图,△P 1OA 1、△P 2A 1 A 2是等腰直角三角形,点P 1、P 2在函数4(0)y x x=>的图象上,斜边OA 1、A 1 A 2都在x 轴上,则点A 2的坐标是 . 18.两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x=的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,当点P 在ky x=的图象上运动时,以下结论: ①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等; ④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分). 三、解答题(共56分) 19.(4分)反比例函数xky =的图象经过点A (2 ,3). (1)求这个函数的解析式;(2)请判断点B (1 ,6)是否在这个反比例函数的图象上,并说明理由.20.(4分)已知三角形的一边为x ,这条边上的高为y ,三角形的面积为3,写出y 与x 的函数表达式,并画出函数的图象.21.(4分)如图,一次函数y =kx +b 的图像与反比例函数xmy =的图像相交于A 、B 两点,12第17题(1)利用图中条件,求反比例函数和一次函数的解析式(2)根据图像写出使一次函数的值大于反比例函数的值的x 的取值范围.22.(6分)某蓄水池的排水管每时排水8 m 3,6h 可将满池水全部排空. (1)蓄水池的容积是多少?(2)如果增加排水管,使每时排水量达到Q (m 3),那么将满池水排空所需的时间t (h )将如何变化?(3)写出t 与Q 之间的函数关系式.(4)如果准备在5小时之内将满水池排空,那么每时的排水量至少为多少? (5)已知排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?23.(6分)双曲线5y x在第一象限的一支上有一点C (1,5),过点C 的直线y =kx +b (k >0)与x 轴交于点A (a ,0). (1)求点A 的横坐标a 与k 之间的函数关系式;第21题图(2)当该直线与双曲线在第一象限内的另一交点D 的横坐标是9时,求△COA 的面积.24.(6分)已知反比例函数xmy 3-=和一次函数1-=kx y 的图象都经过点m P (,)3m -(1)求点P 的坐标和这个一次函数的解析式;(2)若点M (a ,1y )和点N (1+a ,2y )都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明1y 大于2y25.(6分)近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知800度近视眼镜镜片的焦距为0.125米, (1)求y 与x 的函数关系;(2)若张华同学近视眼镜镜片的焦距为0.25米,你知道他的眼睛近视多少度吗?26.(6分)对于取消市场上使用的杆秤的呼声越来越高,原因在于一些不法商贩在卖货时将秤砣挖空,或更换较小称砣,使砣较轻,从而欺骗顾客.第23题图(1)如图,对于同一物体,哪个图用的是标准秤砣,哪个用的是较轻的秤砣? (2)在称同一物体时,所称得的物体质量y (千克)与所用秤砣质量x (千克)之间满足 关系.(3)当砣较轻时,称得的物体变重,这正好符合哪个函数的哪些性质?27.(6分)联想电脑公司新春期间搞活动,规定每台电脑0.7万元,交首付后剩余的钱数y 与时间t 的关系如图所示: (1)根据图象写出y 与t 的函数关系式. (2)求出首付的钱数.(3)如果要求每月支付的钱数不少于400元,那么还至少几个才能将所有的钱全部还清?28.(8分)如图,直线b kx y +=与反比例函数xk y '=(x<0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4. (1)试确定反比例函数的关系式; (2)求△AOC 的面积.1.下列关系中的两个量成正比例的是( )A .从甲地到乙地,所用的时间和速度;B .正方形的面积与边长C .买同样的作业本所要的钱数和作业本的数量;D .人的体重与身高 2.下列函数中,y 是x 的正比例函数的是( )A .y=4x+1B .y=2x 2C ..图1图2月)y ()3.下列说法中不成立的是( )A .在y=3x-1中y+1与x 成正比例;B .在y=-2x中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例 4.若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( ) A .m=-3 B .m=1 C .m=3 D .m>-35.已知(x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1与y 2•的大小关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .以上都有可能 6.形如___________的函数是正比例函数.7.若x 、y 是变量,且函数y=(k+1)x k2是正比例函数,则k=_________. 8.正比例函数y=kx (k 为常数,k<0)的图象依次经过第________象限,函数值随自变量的增大而_________.9.已知y 与x 成正比例,且x=2时y=-6,则y=9时x=________.10.写出下列各题中x 与y 的关系式,并判断y 是否是x 的正比例函数?(1)电报收费标准是每个字0.1元,电报费y (元)与字数x (个)之间的函数关系;(2)地面气温是28℃,如果每升高1km ,气温下降5℃,则气温x (•℃)•与高度y (km )的关系;(3)圆面积y (cm 2)与半径x (cm )的关系.探究园11.在函数y=-3x 的图象上取一点P ,过P 点作PA ⊥x 轴,已知P 点的横坐标为-•2,求△POA 的面积(O 为坐标原点).学习必备 欢迎下载答案:1.C 2.C 3.D 4.A 5.B 6.y=kx (k 是常数,k ≠0) 7.+1 8.三、一;增大 9.-310.①y=0.1x ,y 是x 的正比例函数; ②y=28-5x ,y 不是x 的正比例函数; ③y=πx 2,y 不是x 的正比例函数. 11.6. 新人教八年级(下)第17章《反比例函数》答案一、选择题1.B ;2. A ;3. B ;4. A ;5. B ;6. C ;7.A ;8. C . 二、填空题9.y =x m 210.152y x=- 11.三 12.y =x 500 13.m ≠-5 n =-3 14.y=x315.B 16.n >4,n <4 17.(0) 18.①②④ 三、解答题 19.(1)y =x 6;(2)在 20. y =6x ,图像略 21.(1)2y x=-,1y x =--;(2) 2x <-或0x <<1 22.(1)348m ;(2)t 将减小;(3)48t Q=;(4)4859.6Q Q==,;(5)48412t ==23.(1)51a k=-+, (2) 25 24.(1)12--=x y ;(2)略 25.(1)100y x=,(2)400度 26.(1)图②是用与秤配套的秤砣,图①则使用较轻的秤砣.(2)反比例. (3)函数y =xk(k >0),当x 变小时,y 增大 27.(1)y =t 6000 ;(2)7000-6000=1000(元);(3)400=t 6000,t =15 28.(1)8xy =-;(2)126。

新沪科版八年级数学上册《函数》练习题(附答案)

新沪科版八年级数学上册《函数》练习题(附答案)

《函数》练习题1. 某风景区集体门票的收费标准是25人以内(含25人),每人10元,超过25人的,超过的部分每人5元,写出应收门票费y(元)与浏览人数x(人)之间的函数关系式.2. 有一水箱,它的容积为500L,水箱内原有水200L,现往水箱中注水,已知每分钟注水10L.(1)写出水箱内水量Q(L)与注水时间t(min)的函数关系.(2)求注水12min时水箱内的水量?(3)需多长时间把水箱注满?3. 函数3xyx+=的自变量x的取值范围是()A.3x-≥B.3x>-C.0x≠且3x≠-D.3x-≥且0x≠4. 已知信件质量m(g)和邮费y(元)之间的关系如下表:信件质量m(g) 020m<≤2040m<≤4060m<≤邮费y(元)0.80 1.20 1.60你能将其中一个变量看成另一个变量的函数吗?5. 小明骑自行车去学校,最初以某一速度匀速行驶,中途自行车发生故障,停下来修车耽误了几分钟,为了按时到校,他加快了速度,仍保持匀速行驶,结果准时到校,到校后,小明画了自行车行进路程s (km)与行进时间t (h)的图象,如图所示,请回答:(1)这个图象反映了哪两个变量之间的关系? (2)根据图象填表: 时间t /h 0 0.2 0.3 0.4 路程s /km(3)路程s 可以看成时间t 的函数吗?6. 下列各图中,y 不是x 的函数的是( )7. 已知菱形的面积为8,两条对角线分别为22x y 、,则y 与x 的函数关系式为( )8. 矩形的周长为50,宽是x ,长是y ,则y = .9. 已知x y 、满足关系式341x y +=,用含x 的代数式表示y ,则y = . 10. 为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,1 2 3 4 0.1 0.2 0.3 0.4t (h)s (km)OOxyAOx yOxyOxyBCDxy A 4.=xB 8y .=xC 1y .=2y .x D =9000 2030 50y x900 0yx30 40 y 90020 40 0x20 40 60 900y x A .B .C.D.该市某户居民5月份用水x 吨(10)x ,应缴水费y 元.(1)写出y 与x 之间的关系式;(2)某户居民若5月份用水16吨,应缴水费多少元?11.销售员向某企业推销一种该企业生产必需的物品,若企业要40件,则销售员每件可获利40元,销售员(在不亏本的前提下)为扩大销售量,而企业为了降低生产成本,经协商达成协议,如果企业购买40件以上时,每多要1件,则每件降低1元.(1)设每件降低x (元)时,销售员获利为y (元),试写出y 关于x 的函数关系式.(2)当每件降低20元时,问此时企业需购进物品多少件?此时销售员的利润是多少?12 小王常去散步,从家走了20分钟,到一离家900米的报亭,看了10分钟报纸后,用了20分钟返回家中,图中哪一个表示了小王离家距离与时间的关系( )13 某工厂现在年产值为150万元,计划今后每年增长10万元,年产值y (万元)与年数x 的函数关系式是 .14.ABC Rt △中,9068C AC BC ∠=== ,,,设P 是BC 上任一点,P 点与B C 、不重合,且CP x =,若ABP y S =△,则y 与x 之间的函数关系式是 ,自变量取值范围为 .15 某礼堂共有25排座位,第一排有20个座位,后面每排比前一排多一个座位,写出每排位数m 与这排的排数n 的函数关系式是 ,自变量的取值范围是 . 答案:1、25x ≤时,10y x =;当25x >时,25105(25)12y x x =+-=+×.10(025)1255(25)x x y x x ⎧∴=⎨+>⎩ ≤≤ 且x 为整数.2、20010Q t =+;(030)t ≤≤.(2)当12t =min 时,2001012320Q =+=×L,即注水12min 时水箱内的水量为320L .(3)当500Q =L 时,即50020010t =+,30t ∴=min ,即30min 可把水箱注满. 3、D 4、可将y 看成m 的函数,但m 不是y 的函数.5、(1)这个图象反映了变量s 与t 的关系. (2)0t =时,0s =;0.2t =时,2s =;0.3t =时,2s =;0.4t =时,4x =. (3)路程s 可以看做时间t 的函数.6、D7、A8、25y x =-9、134xy -=10、解:(1) 1.86(10)y x x =->.(2)当16x =时, 1.816622.8y =-=×(元).11、(1)2(40)(40)1600y x x x =+-=-,(2)当降低20元时,需购进402060+=(件),此时的利润21600201200y =-= (元)12、D1315010y x=+14、243(08)y x x=-<<15、20(1)19m n n=+-=+(125n≤≤且n为整数)。

八年级数学上册《第四章 函数》练习题-含答案(北师大版)

八年级数学上册《第四章 函数》练习题-含答案(北师大版)

八年级数学上册《第四章 函数》练习题-含答案(北师大版)一、选择题1.在圆的面积计算公式S=πR 2中,变量是( ) A.S B.R C.π,R D.S ,R2.下表是某报纸公布的世界人口数情况: 年份 19571974198719992010人口数30亿 40亿 50亿 60亿 70亿上表中的变量是( ) A.仅有一个,是年份 B.仅有一个,是人口数C.有两个变量,一个是人口数,另一个是年份D.一个变量也没有3.下列各图象分别给出了x 与y 的对应关系,其中y 是x 的函数的是( ).4.在函数中,自变量x 的取值范围是( )A.x <13B.x ≠﹣13C.x ≠13D.x >13 5.在函数11y x =-x 的取值范围是( ) A.x ≤1 B.x ≥1 C.x<1 D.x>16.若等腰三角形的周长为60 cm ,底边长为x cm ,一腰长为y cm ,则y 关于x 的函数解析式及自变量x 的取值范围是( )A.y =60-2x(0<x<60)B.y =60-2x(0<x<30)C.y =12(60-x)(0<x<60)D.y =12(60-x)(0<x<30)7.如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没在水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是( )8.如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数( )A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小二、填空题9.已知3x﹣y=7中,变量是,常量是 .把它写成用x的式子表示y的形式是 .10.函数中,自变量x的取值范围是 .11.汽车行驶前,油箱中有油55升,已知每百千米汽车耗油10升,油箱中的余油量Q(升)与它行驶的距离s(百千米)之间的函数关系式为;为了保证行车安全,油箱中至少存油5升,则汽车最多可行驶__________千米.12.根据如图的程序,计算当输入x=3时,输出的结果y= .13.A、B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发,途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地,甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有________千米.三、解答题14.某种蔬菜的价格随季节变化如下表:单位:元/千克月份 1 2 3 4 5 6 7 8 9 10 11 12价格5.05.55.04.82.01.51.00.91.52.03.03.5(1)观察表说出变量、自变量、因变量;(2)哪个月这种蔬菜价格最高,哪个月这种蔬菜的价格最低;(3)计算一下这种蔬菜的年平均价.15.一种手机卡的缴费方式为:每月必须缴纳月租费20元,另外每通话1 min要缴费0.2元.(1)如果每月通话时间为x(min),每月缴费y(元),请用含x的代数式表示y.(2)在这个问题中,哪些是常量?哪些是变量?(3)当一个月通话时间为200 min时,应缴费多少元?(4)当某月缴费56元时,此人该月通话时间为多少分钟?16.一根合金棒在不同的温度下,其长度也不同,合金棒的长度和温度之间有如下关系:温度℃…﹣5 0 5 10 15 …长度cm …9.995 10 10.005 10.01 10.015 …(1)上表反映了温度与长度两个变量之间的关系,其中_______是自变量,_______是函数.(2)当温度是10℃时,合金棒的长度是_______cm.(3)如果合金棒的长度大于10.05cm小于10.15cm,根据表中的数据推测,此时的温度应在______℃~_______℃的范围内.(4)假设温度为x℃时,合金棒的长度为ycm,根据表中数据写出y与x之间的关系式________.(5)当温度为﹣20℃或100℃,合金棒的长度分别为______cm或______cm.17.我们知道,海拔高度每上升1千米,温度下降6 ℃.某时刻,益阳地面温度为20 ℃,设高出地面x千米处的温度为y ℃.(1)写出y与x之间的函数关系式.(2)已知碧云峰高出地面约500米,求这时山顶的温度大约是多少度?(3)此刻,有一架飞机飞过上空,若机舱内仪表显示飞机外面的温度为﹣34 ℃,求飞机离地面的高度为多少千米?18.某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(L)与时间x(min)之间的关系如折线图所示,根据图像解答下列问题:(1)洗衣机进水时间是多少分钟?清洗衣物时洗衣机中的水是多少升?(2)已知洗衣机的排水速度为每分钟19升①求排水时y与x的函数关系式。

八年级数学第十四章一次函数单元测试题(含答案)

八年级数学第十四章一次函数单元测试题(含答案)

第十四章 一次函数测试题一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A ...D .2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y=kx+b 的图象如图所示:(1)求出该一次函数的表达式; (2)当x=10时,y 的值是多少? (3)当y=12时,•x 的值是多少?23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?。

八年级下册数学第17章 函数及其图象测试题(二)

八年级下册数学第17章 函数及其图象测试题(二)

第17章函数及其图象测试题(二)(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 若y=mx+m-1是正比例函数,则m的值为()A.0 B.1 C.1-D.2 2. 关于正比例函数y=-3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=13时,y=13.对于双曲线2kyx-=,当x>0时,y随x的增大而增大,则k的取值范围为()A.k<2 B.k≤2 C.k>2 D.k≥24. 正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A B C D5. 把函数y=x的图象向上平移3个单位,则下列各坐标所表示的点中,在平移后的直线上的是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)6. 已知函数y=ax-3和y=kx的图象交于点P(2,-1),则关于x,y的二元一次方程组3y axy kx=-⎧⎨=⎩,的解是()A.21xy=-⎧⎨=-⎩,B.21xy=⎧⎨=-⎩,C.21xy=⎧⎨=⎩,D.21xy=-⎧⎨=⎩,7. 若点(-1,m)和(2,n)在直线y=-x+b上,则m,n,b的大小关系是()A.m>n>b B.m<n<b C.m>b>n D.b<m<n8. 设min(x,y)表示x,y中的最小值.例如min{0,2}=0,min{12,8}=8,则关于x的函数y=min{3x,-x+4}可以表示为()A.y=()(3141)y x xx x=⎧-+≥⎪⎨⎪⎩,<B.y=()413()1x xx x-+≥⎧⎪⎨⎪⎩<,C.y=3x D.y=-x+49. 如图1,在平面直角坐标系中,点A(m,6),B(3,n)均在反比例函数(0)ky kx=>的图象上,若三角形AOB的面积为8,则k的值为()A.3 B.6 C.9 D.12图1 图210. 如图2,直线142yx=+与x轴,y轴分别交于点A和点B,点C(-4,2),点D为线段OB的中点,点P为OA上一动点,当PC+PD的值最小时,点P的坐标为()A.(-1,0)B.(-2,0)C.(-3,0)D.(-4,0)二、填空题(本大题共6小题,每小题3分,共18分)11. 若点P的坐标是(2a+1,a-4),且P点到两坐标轴的距离相等,则P点的坐标是.12. 若点A(a,2a+3)在第二、四象限两坐标轴夹角的平分线上,则a= .13. 如图3,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n的解集是.图3 图414. 某商场对一款运动鞋五天中的售价与销量关系的调查显示,售价是销量的反比例函数(统计数据见下表).已知该运动鞋的进价为180元/双,要使该款运动鞋每天的销售利润达到2400元,则其售价应定为元/双.15. 已知关于x的一次函数y=(m-3)x+m+2的图象经过第一、二、四象限,则关于x的一次函数y=(m+2)x-m+3必经过第象限.16. 如图4,三角形OAB的顶点A在双曲线6(0)y xx=>上,顶点B在双曲线4(0)y xx=-<上,AB中点P恰好落在y轴上,则三角形OAB的面积为.三、解答题(本大题共7小题,共52分)17.(6分)已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.18.(6分)已知一次函数y=(3-m)x+2m-9的图象与y轴的负半轴相交,y随x的增大而减小,且m为整数.(1)求m的值.(2)当-1≤x≤2时,求y的取值范围.19.(6分)已知y=y1+y2,y1与(x-1)成反比例,y2与x成正比例,且当x=2时,y1=4,y=2.求y关于x的函数表达式.20.(8分)如图5所示,在平面直角坐标系中,直线AC与x轴交于点A,与y轴交于点B(0,52),且与反比例函数10(0)y xx=>的图象交于点C,CD⊥y轴于点D,CD=2.(1)求直线AC的表达式;(2)根据函数图象,直接写出当反比例函数10(0)y xx=>的函数值y≥5时,自变量x的取值范围;(3)设点P是x轴上的点,若三角形PAC的面积等于10,直接写出点P的坐标.售价x(元/双)200 240 250 400销售量y(双)30 25 24 15图521.(8分)如图6,已知A (a ,-2a ),B (-2,a )两点是反比例函数my x=与一次函数y=kx+b 图象的两个交点.(1)求一次函数和反比例函数的表达式; (2)求三角形BAO 的面积;(3)观察图象,直接写出不等式0mkx b x+->的解集.图622.(8分)某小学为每个班级配备了一种可加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y (℃)与通电时间x (分)的关系如图7所示,回答下列问题:(1)当0≤x ≤8时,求y 与x 之间的函数表达式; (2)求出图中a 的值;(3)某天早上7∶20,李老师将放满水后的饮水机电源打开,若他想在8∶00上课前能喝到不超过40℃的温开水,问:他应在什么时间段内接水?图723.(10分)甲、乙两人同时登山,两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图8所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是 米/分钟,乙在A 地提速时距地面的高度b 为 米;(2)若乙提速后,乙的速度是甲登山速度的3倍,请求甲和乙提速后y 和x 之间的函数关系式; (3)登山多长时间时,乙追上了甲,此时乙距A 地的高度为多少米?图8附加题(20分,不计入总分)24. 近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4 mg/L,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图9所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应自变量的取值范围;(2)当空气中的CO浓度达到34 mg/L时,井下3 km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?图9(山东于秀坤)第17章 函数及其图象测试题(二)一、1. B 2. C 3. A 4. A 5. D 6. B 7. C 8. A 9. B 10. B二、11. (-9,-9)或(3,-3) 12. -1 13. x<-2 14. 300 15. 一、二、三 16. 5 三、17. (1)P (0,-3). (2)P (-12,-9). (3)P (2,-2).18. 解:(1)因为一次函数y=(3-m )x+2m-9的图象与y 轴的负半轴相交,y 随x 的增大而减小, 所以3−m <0,2m−9<0,解得3<m <4.5.因为m 为整数,所以m=4.(2)由(1)知,m=4,则该一次函数表达式为y=-x-1. 因为-1≤x≤2,所以-3≤-x-1≤0,即y 的取值范围是-3≤y≤0.19. 解:根据题意,设111k y x =-,y 2=k 2x (k 1,k 2≠0). 因为y=y 1+y 2,所以121k y k x x =+-. 因为当x=2时,y 1=4,y=2,所以11242 2.k k k =⎧⎨+=⎩,.所以k 1=4,k 2=-1.所以41y x x =--. 20. 解:(1)因为CD ⊥y 轴于点D ,CD=2,所以点C 的横坐标为2.把x=2代入反比例函数10(0)y x x =>得,1052y ==.所以C (2,5). 设直线AC 的表达式为y=kx+b ,把B (0,52),C (2,5)代入得522 5.b k b ⎧=⎪⎨⎪+=⎩,解得545.2k b ⎧=⎪⎪⎨⎪=⎪⎩, 所以直线AC 的表达式为5542y x =+. (2)由图象可知,当反比例函数10(0)y x x=>的函数值y ≥5时,自变量x 的取值范围是0<x ≤2. (3)P (-6,0)或(2,0).21. 解:(1)因为A (a ,-2a ),B (-2,a )两点在反比例函数my x=的图象上,所以m=-2a ·a=-2a ,解得a=1,m=-2.所以A (1,-2),B (-2,1),反比例函数的表达式为2y x=-.将点A (1,-2),点B (-2,1)代入y=kx+b 中,得221k b k b +=-⎧⎨-+=⎩,,解得11.k b =-⎧⎨=-⎩,所以一次函数的表达式为y=-x-1.(2)在直线y=-x-1中,令y=0,则-x-1=0,解得x=-1,所以C (-1,0). 所以S △AOB =S △AOC +S △BOC =12×1×2+12×1×1=32. (3)x<-2或0<x<1.22. 解:(1)当0≤x ≤8时,设y 与x 之间的函数表达式为y=kx+b (k ≠0).将(0,20),(8,100)代入y=kx+b ,得208100b k b =⎧⎨+=⎩,,解得1020.k b =⎧⎨=⎩,所以当0≤x ≤8时,y 与x 之间的函数表达式为y=10x+20. (2)当8≤x ≤a 时,设y 与x 之间的函数表达式为22(0)k y k x=≠. 将(8,100)代入2k y x =,得2100kx=,解得k 2=800. 所以当8≤x ≤a 时,y 与x 之间的函数表达式为800y x=. 将(a ,20)代入800y x=,解得a=40. (3)依题意,得800x≤40,解得x ≥20. 因为x ≤40,所以20≤x ≤40.所以他应在7∶40~8∶00时间段内接水. 23. 解:(1)10 30(2)设甲的函数关系式为y=kx+b.由题意,得10020300b k b +⎧⎨⎩=,=,解得10=100.k b ⎧⎨⎩=,所以甲的关系式为y=10x+100.设乙提速后的函数关系式为y=mx+n.由于m=30,且图象经过(2,30),所以30=2×30+n ,解得n=-30. 所以乙提速后的关系式为y=30x-30.(3)由题意,得10x+100=30x-30 ,解得x=6.5. 把x=6.5代入y=10x+100,得y=165.所以相遇时乙距A 地的高度为165-30=135(米)答:登山6.5分钟,乙追上了甲,此时乙距A 地的高度为135米.24. 解:(1)因为爆炸前浓度呈直线型增加,所以可设y 与x 的函数关系式为y=k 1x+b (k 1≠0),由图象知y=k 1x+b 过点(0,4)与(7,46),则b =4,7k 1+b =46,解得k 1=6,b =4.则y=6x+4,此时自变量x 的取值范围是0≤x≤7.(不取x=0不扣分,x=7可放在第二段函数中)因为爆炸后浓度成反比例下降,所以可设y 与x 的函数关系式为y =2k x(k 2≠0). 由图象知y =2k x 过点(7,46),所以27k =46.所以k 2=322.所以y =322x.此时自变量x 的取值范围是x >7. (2)当y=34时,由y=6x+4,得6x+4=34,x=5.所以撤离的最长时间为7-5=2(小时).所以撤离的最小速度为3÷2=1.5(km/h ).(3)当y=4时,由y=322x,得x=80.5. 80.5-7=73.5(小时).所以矿工至少在爆炸后73.5小时才能下井.。

八年级上册数学一次函数测试题及答案

八年级上册数学一次函数测试题及答案

八年级上册数学一次函数测试题及答案填空题.
(1)点A在y轴右侧,距y轴6个单位长度,距x轴8个单位长度,则A点的坐标是,A点离开原点的距离是.
(2)点(-3,2),(a,a+1)在函数y=kx-1的图像上,则k=a= (3)正比例函数的图像经过点(-3,5),则函数的关系式是.
(4)函数y=-5x+2与x轴的交点是,与y轴的交点是,与两坐标轴围成的三角形面积是.
(5)已知y与4x-1成正比例,且当x=3时,y=6,写出y与x的函数关系式.
(6)写出下列函数关系式
①速度60千米的匀速运动中,路程S与时间t的关系
②等腰三角形顶角y与底角x之间的关系
③汽车油箱中原有油100升,汽车每行驶50千米耗油9升,油箱剩余油量y(升)与汽车行驶路程x(千米)之间的关系
④矩形周长30,则面积y与一条边长x之间的关系
在上述各式中,是一次函数,是正比例函数(只填序号)
(7)正比例函数的图像一定经过点.
(8)若点(3,a)在一次函数y=3x+1的图像上,则.
(9)一次函数y=kx-1的图像经过点(-3,0),则k=.
(10)已知y与2x+1成正比例,且当x=3时,y=6,写出y与x的函数关系式.
(11)函数y=-x+m^2与y=4x-1的图像交于轴,则m=.
答案:
(1)、(6,+8)和(6,-8)、10(2)、-1、-1(3)、y=-x
(4)、(0.4,0)、(0,2)、0.4(5)、y=(4x-1)
(6)、s=60t、y=180-2x、y=100-0.18x、y=x(x-15)、①②③、①
(7)、(0,0)(8)、10(9)、-(10)、y=(2x+1)
(11)、正负。

八年级数学上册 第12章 一次函数 单元测试卷(沪科版 2024年秋)

八年级数学上册 第12章 一次函数 单元测试卷(沪科版 2024年秋)

八年级数学上册第12章一次函数单元测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1. 司机王师傅到加油站加油,如图是所用的加油机上的数据显示牌,其中的常量是()(第1题)A.金额B.数量C.单价D.金额和数量2.下列不能表示y是x的函数的是()A. B.C.D.y=2x+13.函数y=x+1x中的自变量x的取值范围是()A.x>0 B.x≥-1C.x>0且x≠-1 D.x≥-1且x≠04.某登山队大本营所在地的气温为5 ℃,海拔每升高1 km气温下降6 ℃,登山队员由大本营向上登高x km时,他们所在位置的气温为y℃,则y与x的函数关系式为()A.y=5+6x B.y=5-6x C.y=5-x6D.y=5-6 x5.要得到函数y=3x+5的图象,只需将函数y=3x的图象() A.向左平移5个单位B.向右平移5个单位C.向下平移5个单位D.向上平移5个单位6.点A(-2,y1),B(-1,y2)都在直线y=-x+b上,则y1与y2的大小关系为()A.y1=y2B.y1>y2 C.y1<y2D.不能确定7.下列关于一次函数y=-4x-8的说法中,正确的是()A.该函数图象不经过第三象限B.该函数图象经过点(2,0)C.该函数值y随x的增大而增大D.该函数图象与坐标轴围成的三角形面积为88.已知直线y=kx+b不经过第二象限,那么k,b的取值范围分别是() A.k>0,b<0 B.k<0,b<0 C.k>0,b≤0 D.k<0,b≤0 9.若直线y=-x+m与直线y=2x+4的交点在第二象限,则m的取值范围是()A.-2<m<4 B.-2<m<3 C.-1<m<3 D.1<m<4 10.如图,在长方形OABC中,已知B(8,6), 动点P从点A出发,沿A-B -C-O的路线匀速运动,设动点P的运动时间为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()(第10题) (第12题) (第13题) 二、填空题(本大题共4小题,每小题5分,满分20分)11.若正比例函数y=(m-1)x的图象从左到右逐渐上升,则m的取值范围是______________.12.如图,一次函数y=kx+b与y=-x+4的图象相交于点P(m,1),则关于x,y的二元一次方程组{x+y=4,kx-y+b=0的解是____________.13.李老师开车从甲地到相距240 km的乙地,如果油箱剩余油量y(L)与行驶里程x(km)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是________L.14.已知一次函数y=ax+8-2a(a为常数,且a≠0).(1)若该一次函数图象经过点(-1,2),则a=________;(2)当-2≤x≤5时,y有最大值11,则a的值为________.三、(本大题共2小题,每小题8分,满分16分)15.小明从家出发骑单车去上学,他骑了一段路时想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校,如图是他本次上学离家距离s(m)与所用的时间t(min)的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是________m,本次上学途中,小明一共行驶了________m.(2)小明在书店停留了________min,本次上学,小明一共用了________min.(3)在整个上学的途中哪个时间段小明骑车速度最快?最快的速度是多少?(第15题)16.已知y与3x-2成正比例,且当x=2时,y=8.(1)求y与x的函数关系式;(2)求当x=-2时,y的值.四、(本大题共2小题,每小题8分,满分16分)17.已知一次函数y=2kx+b的图象与直线y=-3x-7平行,且经过点(2,-11).(1)求一次函数y=2kx+b的表达式;(2)判断点A ⎝ ⎛⎭⎪⎫16,-112是否在一次函数y =2kx +b 的图象上.18.水是生命之源,节约用水是每位公民应尽的义务.水龙头关闭不严会造成滴水,为了调查漏水量V (mL)与漏水时间t (min)的关系,某同学在滴水的水龙头下放置了一个能显示水量的容器,每5 min 记录一次容器中的水量,如下表:漏水时间t /min 0 5 10 15 20 … 漏水量V /mL255075100…(1)请在图中描出以表中数据为坐标的各点;(2)根据(1)中各点的分布规律,求出V 关于t 的函数表达式; (3)请估算这种漏水状态下一天的漏水量.(第18题)五、(本大题共2小题,每小题10分,满分20分)19.如图,直线l 2:y =kx +b 与x 轴交于点A ,且经过点B (3,1),直线l 1:y =2x -2与l 2交于点C (m ,2). (1)求m 的值;(2)求直线l2的表达式;(3)根据图象,直接写出关于x的不等式组1<kx+b<2x-2的解集.(第19题)20.某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮一年内来此游泳馆游泳的次数为x,选择方式一的总费用为y1元,选择方式二的总费用为y2元.(1)请分别写出y1,y2与x之间的函数表达式;(2)请根据小亮一年内的游泳次数确定选择哪种方式比较划算;(3)若小亮计划拿出1 400元用于一年内在此游泳馆游泳,采用哪种方式比较划算?六、(本题满分12分)21.如图,直线l 1的表达式为y =-3x +3,且l 1与x 轴交于点D ,直线l 2经过点A (4,0),B ⎝ ⎛⎭⎪⎫3,-32,直线l 1,l 2交于点C .(1)点D的坐标为________,直线l 2的表达式为_____________________________________________; (2)求三角形ADC 的面积;(3)在直线l 2上存在异于点C 的另一点P ,使得三角形ADP 与三角形ADC 的面积相等,请直接写出点P 的坐标.(第21题)七、(本题满分12分)22.某商店购进A ,B 两种礼盒进行销售.A 种礼盒每个进价160元,售价220元;B 种礼盒每个进价120元,售价160元.现计划购进两种礼盒共100个,其中A 种礼盒不少于60个.设购进A 种礼盒x 个,两种礼盒全部售完,该商店获利y 元.(1)求y 与x 之间的函数关系式;(2)若购进100个礼盒的总费用不超过15 000元,求最大利润;(3)在(2)的条件下,该商店对A 种礼盒以每个优惠m (0<m <20)元的价格进行优惠促销活动,B 种礼盒每个进价减少n 元,售价不变,且m -n =4,若最大利润为4 900元,请直接..写出m 的值.八、(本题满分14分)23.甲、乙两车分别从相距480 km的A,B两地相向而行,乙车比甲车先出发1 h,并以各自的速度匀速行驶,途经C地,甲车到达C地后停留1 h,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车到各自出发地的距离y(km)与甲车出发后所用的时间x(h)之间的关系如图,结合图象信息解答下列问题.(1)乙车的速度是________km/h,t=________,a=________;(2)求甲车到它出发地的距离y(km)与它出发后所用的时间x(h)之间的函数表达式,并写出自变量x的取值范围;(3)求乙车出发多久后两车相距120 km.(第23题)答案一、1.C 2.A 3.D 4.B 5.D 6.B 7.D 8.C 9.A 10.C二、11.m >1 12.⎩⎨⎧x =3,y =113.2014.(1)2 (2)1或-34 点拨:当a >0时,y 随x 增大而增大,则当x =5时,y有最大值,所以5a +8-2a =11,解得a =1;当a <0时,y 随x 增大而减小,则当x =-2时,y 有最大值,所以-2a +8-2a =11,解得a =-34.综上所述,a 的值为1或-34.三、15.解:(1)1 500;2 700 (2)4;14(3)折回之前的速度为1 200÷6=200(m/min),折回去书店时的速度为(1 200-600)÷(8-6)=300(m/min),买书后从书店到学校的速度为(1 500-600)÷(14-12)=450(m/min),经过比较可知,小明在买书后从书店到学校的时间段速度最快,最快的速度是450 m/min.16.解:(1)由题意知,y 与3x -2成正比例,则设出关系式为y =k (3x -2)(k ≠0),把x =2,y =8代入,得8=k (3×2-2),所以k =2.所以y 与x 之间的函数关系式为y =2(3x -2)=6x -4.(2)把x =-2代入y =6x -4,得y =6×(-2)-4=-16. 四、17.解:(1)由题意可知⎩⎨⎧2k =-3,4k +b =-11,所以⎩⎨⎧2k =-3,b =-5.所以所求一次函数的表达式为y =-3x -5. (2)当x =16时,y =-3x -5=-112.所以点A ⎝ ⎛⎭⎪⎫16,-112在此一次函数的图象上.18.解:(1)如图所示.(第18题)(2)根据(1)中各点的分布规律,可知V 是关于t 的正比例函数,设所求函数表达式为V =kt (k ≠0).因为当t =5时,V =25,所以5k =25,解得k =5.所以V 关于t 的函数表达式为V =5t .(3)由(2)可知,在这种状态下一天的漏水量为5×60×24=7 200(mL). 五、19.解:(1)把C (m ,2)的坐标代入y =2x -2,得2m -2=2,解得m =2.(2)把C (2,2),B (3,1)的坐标代入y =kx +b ,得⎩⎨⎧2k +b =2,3k +b =1,解得⎩⎨⎧k =-1,b =4,所以直线l 2的表达式为y =-x +4. (3)解集是2<x <3.20.解:(1)y 1=30x +200,y 2=40x .(2)当y 1<y 2,即30x +200<40x 时,解得x >20,所以当小亮一年内的游泳次数大于20时,选择方式一比较划算;当y 1=y 2,即30x +200=40x 时,解得x =20,所以当小亮一年内的游泳次数等于20时,选择两种方式的总费用相同;当y 1>y 2,即30x +200>40x 时,解得x <20,所以当小亮一年内的游泳次数小于20时,选择方式二比较划算.(3)当y 1=1 400时,1 400=30x +200,解得x =40;当y 2=1 400时,1 400=40x ,解得x =35,40>35,故采用方式一比较划算. 六、21.解:(1)(1,0);y =32x -6(2)解⎩⎪⎨⎪⎧y =-3x +3,y =32x -6,得⎩⎨⎧x =2,y =-3,所以C (2,-3).因为AD =4-1=3,所以S 三角形ADC =12×3×|-3|=92. (3)P (6,3).七、22.解:(1)根据题意得,购进A 种礼盒x 个,且x ≥60,则购进B 种礼盒(100-x )个,且100-x >0,故y =(220-160)x +(160-120)(100-x ),整理得,y =20x +4 000.故y 与x 之间的函数关系式为y =20x +4 000(60≤x <100).(2)根据题意得,160x +120(100-x )≤15 000,整理得,x ≤75,故60≤x ≤75,因为y =20x +4 000,且20>0,所以y 随着x 的增大而增大,所以当x =75时,y 取得最大值,此时y =20×75+4 000=5 500.所以最大利润为5 500元. (3)m =10.八、23.解:(1)60;3;7(2)①当0≤x ≤3时,设y =k 1x ,把点(3,360)的坐标代入,可得3k 1=360,解得k 1=120,所以y =120x . ②当3<x ≤4时,y =360.③当4<x ≤7时,设y =k 2x +b ,把点(4,360)和(7,0)的坐标分别代入,可得⎩⎨⎧4k 2+b =360,7k 2+b =0,解得⎩⎨⎧k 2=-120,b =840, 所以y =-120x +840.综上可得,y =⎩⎨⎧120x (0≤x ≤3),360(3<x ≤4),-120x +840(4<x ≤7).(3)①当甲车朝B 地,乙车朝A 地行驶时,(480-60-120)÷(120+60)+1=300÷180+1=53+1=83(h).②当甲车停留在C 地时,(480-360+120)÷60=240÷60=4(h).③两车都朝A 地行驶时,设乙车出发m h 后两车相距120 km ,则60m -{480-[-120(m -1)+840]}=120, 解得m =6.综上可得,乙车出发83h ,4 h ,6 h 后两车相距120 km.。

新人教版八年级下数学《函数》练习题

新人教版八年级下数学《函数》练习题

新人教版八年级下数学《函数》练习题新人教版八年级下数学《函数》练题19.1 函数19.1.1 变量与函数课前预要点感知1:在一个变化过程中,数值发生的量叫做变量,数值始终不变的量叫做常量。

预练1-1:如果直角三角形两锐角的度数分别为x、y,其关系式为y=90-x,其中变量为x,常量为90.要点感知2:在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们就说x是自变量,y是x的函数。

如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

预练2-1:如果球的体积为V,半径为R,则V=πR^3.其中自变量是R,函数是V。

要点感知3:函数自变量的取值范围既要满足函数关系式,又要满足实际问题。

预练3-1:甲乙两地相距100km,一辆汽车以每小时40km的速度从甲地开往乙地,t小时与乙地相距s km,s与t的函数解析式是s=40t,自变量t的取值范围是0≤t≤2.5.当堂训练知识点1:变量与常量1.圆周长公式C=2πR中,下列说法正确的是(B)R是变量,2、π、C为常量。

2.写出下列各问题中的数量关系,并指出各个关系式中,哪些是常量?哪些是变量?1)购买单价为5元的钢笔n支,共花去y元;变量是n,常量是5.2)全班50名同学,有a名男同学,b名女同学;变量是a、b,常量是50.3)汽车以60km/h的速度行驶了t h,所走过的路程为s km;变量是t,常量是60.知识点2:函数的有关概念3.下列关系式中,一定能称y是x的函数的是(B)y=3x-1.4.若93号汽油售价7.85元/升,则付款金额y(元)与购买数量x(升)之间的函数关系式为y=7.85x,其中x是自变量,y是的函数。

5.当x=2和x=-3时,分别求下列函数的函数值。

1)y=(x+1)(x-2);当x=2时,y=0;当x=-3时,y=20.2)y=2x^2-3x+2;当x=2时,y=8;当x=-3时,y=29.知识点3:函数的解析式及自变量的取值范围6.(云南中考)函数y=(x-2)/x的自变量x的取值范围为(x≠2)。

八年级下数学函数练习题及答案

八年级下数学函数练习题及答案

1.如果x、y之间的关系是10(0)ax y a-+=≠,那么y是x的() A.正比例函数 B.反比例函数 C.一次函数D.二次函数2.函数y=-4x的图象与x轴的交点的个数是()A.零个 B.一个 C.两个D.不能确定3.反比例函数y=-4x的图象在()A.第一、三象限 B.第二、四象限C.第一、二象限 D.第三、四象限4.已知关于x的函数y=k(x+1)和y=-kx(k≠0)它们在同一坐标系中的大致图象是(• )5.已知反比例函数y=xk的图象经过点(m,3m),则此反比例函数的图象在()A.第一、二象限 B.第一、三象限C.第二、四象限 D.第三、四象限6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P( kPa )是气体体积V( m3 )的反比例函数,其图象如图所示.当气球内的气压大于120 kPa时,气球发将爆炸.为了安全起见,气球的体积应()A.不小于54m3 B.小于54m3 C.不小于45m3 D.小于45m31.660O V (m3)P (kPa)(1.6,60)第6题7.如果点P 为反比例函数xy 4=的图象上一点,PQ ⊥x 轴,垂足为Q ,那么△POQ 的面积为( )A .2B . 4C .6D . 8 8.已知:反比例函数xmy 21-=的图象上两点A (x 1,y 1),B (x 2, y 2)当x 1<0<x 2时,y 1<y 2,则m 的取值范围( )A .m <0B .m >0C .m <21 D .m >21二、填空题(每小题2分,共20分)9.有m 台完全相同的机器一起工作,需m 小时完成一项工作,当由x 台机器(x 为不大于m 的正整数)完成同一项工作时,所需的时间y 与机器台数x 的函数关系式是____.10.已知y 与x 成反比例,且当x 32=-时,y =5,则y 与x 的函数关系式为__________. 11.反比例函数xy 3=的图象在第一象限与第 象限. 12.某食堂现有煤炭500吨,这些煤炭能烧的天数y 与平均每天烧煤的吨数x 之间的函数关系式是 .13.若n x m y ++=2)5(是反比例函数,则m 、n 的取值是 .14.两位同学在描述同一反比例函数的图象时,甲同学说:这个反比例函数图象上任意一点到两坐标轴的距离的积都是3;乙同学说:这个反比例函数的图象与直线y =x 有两个交点,你认为这两位同学所描述的反比例函数的解析式是 .15.在ABC △的三个顶点A (2,-3)、B (-4,-5)、C (-3,2)中,可能在反比例函数(0)ky k x=>的图象上的点是 . 16.如果反比例函数4ny x-=的图象位于第二、四象限,则n 的取值范围是_______;如果图象在每个象限内,y 随x 的增大而减小,则n 的取值范围是 .17.如图,△P 1OA 1、△P 2A 1 A 2是等腰直角三角形,点P 1、P 2在函数4(0)y x x=>的图象上,斜边OA 1、A 1 A 2都在x 轴上,则点A 2的坐标是 . 18.两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x=的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,当点P 在ky x=的图象上运动时,以下结论: ①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等; ④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分). 三、解答题(共56分) 19.(4分)反比例函数xky =的图象经过点A (2 ,3). (1)求这个函数的解析式;(2)请判断点B (1 ,6)是否在这个反比例函数的图象上,并说明理由.20.(4分)已知三角形的一边为x ,这条边上的高为y ,三角形的面积为3,写出y 与x 的函数表达式,并画出函数的图象.O A 1A 2第17题21.(4分)如图,一次函数y =kx +b 的图像与反比例函数xmy的图像相交于A 、B 两点,(1)利用图中条件,求反比例函数和一次函数的解析式(2)根据图像写出使一次函数的值大于反比例函数的值的x 的取值范围.22.(6分)某蓄水池的排水管每时排水8 m 3,6h 可将满池水全部排空. (1)蓄水池的容积是多少?(2)如果增加排水管,使每时排水量达到Q (m 3),那么将满池水排空所需的时间t (h )将如何变化?(3)写出t 与Q 之间的函数关系式.(4)如果准备在5小时之内将满水池排空,那么每时的排水量至少为多少? (5)已知排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?第21题图23.(6分)双曲线5y x=在第一象限的一支上有一点C (1,5),过点C 的直线y =kx +b (k >0)与x 轴交于点A (a ,0). (1)求点A 的横坐标a 与k 之间的函数关系式;(2)当该直线与双曲线在第一象限内的另一交点D 的横坐标是9时,求△COA 的面积.24.(6分)已知反比例函数xmy 3-=和一次函数1-=kx y 的图象都经过点m P (,)3m -(1)求点P 的坐标和这个一次函数的解析式;(2)若点M (a ,1y )和点N (1+a ,2y )都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明1y 大于2y25.(6分)近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知800度近视眼镜镜片的焦距为0.125米, (1)求y 与x 的函数关系;(2)若张华同学近视眼镜镜片的焦距为0.25米,你知道他的眼睛近视多少度吗?第23题图26.(6分)对于取消市场上使用的杆秤的呼声越来越高,原因在于一些不法商贩在卖货时将秤砣挖空,或更换较小称砣,使砣较轻,从而欺骗顾客.(1)如图,对于同一物体,哪个图用的是标准秤砣,哪个用的是较轻的秤砣?(2)在称同一物体时,所称得的物体质量y(千克)与所用秤砣质量x(千克)之间满足关系.(3)当砣较轻时,称得的物体变重,这正好符合哪个函数的哪些性质?27.(6分)联想电脑公司新春期间搞活动,规定每台电脑0.7万元,交首付后剩余的钱数y 与时间t的关系如图所示:(1)根据图象写出y与t的函数关系式.(2)求出首付的钱数.(3)如果要求每月支付的钱数不少于400元,那么还至少几个才能将所有的钱全部还清?28.(8分)如图,直线bkxy+=与反比例函数xky'=(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(-2,4),点B的横坐标为-4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.图1图2600月)y()(10,600)1.下列关系中的两个量成正比例的是( )A .从甲地到乙地,所用的时间和速度;B .正方形的面积与边长C .买同样的作业本所要的钱数和作业本的数量;D .人的体重与身高 2.下列函数中,y 是x 的正比例函数的是( )A .y=4x+1B .y=2x 2C .. 3.下列说法中不成立的是( )A .在y=3x-1中y+1与x 成正比例;B .在y=-2x中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例 4.若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( ) A .m=-3 B .m=1 C .m=3 D .m>-35.已知(x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1与y 2•的大小关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .以上都有可能 6.形如___________的函数是正比例函数.7.若x 、y 是变量,且函数y=(k+1)x k2是正比例函数,则k=_________. 8.正比例函数y=kx (k 为常数,k<0)的图象依次经过第________象限,函数值随自变量的增大而_________.9.已知y 与x 成正比例,且x=2时y=-6,则y=9时x=________.10.写出下列各题中x 与y 的关系式,并判断y 是否是x 的正比例函数?(1)电报收费标准是每个字0.1元,电报费y (元)与字数x (个)之间的函数关系;(2)地面气温是28℃,如果每升高1km ,气温下降5℃,则气温x (•℃)•与高度y (km )的关系;(3)圆面积y (cm 2)与半径x (cm )的关系.探究园11.在函数y=-3x 的图象上取一点P ,过P 点作PA ⊥x 轴,已知P 点的横坐标为-•2,求△POA 的面积(O 为坐标原点).答案:1.C 2.C 3.D 4.A 5.B 6.y=kx (k 是常数,k ≠0) 7.+1 8.三、一;增大 9.-310.①y=0.1x ,y 是x 的正比例函数; ②y=28-5x ,y 不是x 的正比例函数; ③y=πx 2,y 不是x 的正比例函数. 11.6. 新人教八年级(下)第17章《反比例函数》答案一、选择题1.B ;2. A ;3. B ;4. A ;5. B ;6. C ;7.A ;8. C . 二、填空题9.y =x m 210.152y x=- 11.三 12.y =x 500 13.m ≠-5 n =-3 14.y=x315.B 16.n >4,n <4 17.(42,0) 18.①②④ 三、解答题 19.(1)y =x 6;(2)在 20. y =6x ,图像略 21.(1)2y x=-,1y x =--;(2) 2x <-或0x <<1 22.(1)348m ;(2)t 将减小;(3)48t Q=;(4)4859.6Q Q==,;(5)48412t ==23.(1)51a k=-+, (2) 25 24.(1)12--=x y ;(2)略 25.(1)100y x=,(2)400度 26.(1)图②是用与秤配套的秤砣,图①则使用较轻的秤砣.(2)反比例. (3)函数y =xk(k >0),当x 变小时,y 增大 27.(1)y =t 6000 ;(2)7000-6000=1000(元);(3)400=t 6000,t =15 28.(1)8xy =-;(2)126。

【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)

【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)

【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间2.【2022·恩施州】函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3 D.x ≥-13.【教材P 82习题T 7变式】下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.【2022·邵阳】在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝⎛⎭⎪⎪⎫72,n 是直线y =kx+b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.【2021·海南】李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是( )9.【2021·安徽】某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为( )A.23 cm B.24 cm C.25 cm D.26 cm10.【传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是( )A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________. 12.【开放题】【2022·上海】已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题) (第17题) (第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.【教材P97图19.2-8变式】如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t.18.【2022·天津四十三中模拟】日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.【立德树人】【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.【数学建模】【2022·云南】某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.。

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。

八年级数学(下)第十九章《一次函数》测试题含答案

八年级数学(下)第十九章《一次函数》测试题含答案

八年级数学(下)第十九章《一次函数》测试题(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥3的是( ) A .y=13x - B .y=13x - C .y=x ﹣3 D .y=3x - 2.用固定的速度如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( )3.在圆的周长公式2C r =π中,下列说法错误的是( ) A .C r π,,是变量,2是常量 B .C r ,是变量,2π是常量 C .r 是自变量,C 是r 的函数 D .将2C r =π写成2Cr =π,则可看作C 是自变量,r 是C 的函数 4.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加 1分钟加收 1元,则表示电话费y (元)与通话时间(分)之间的关系的图象如下图所示,正确的是( )5.已知函数y=ax+b 经过(1,3),(0,﹣2),则a ﹣b=( ) A .﹣1 B .﹣3 C .3 D .76.一次函数y=kx+b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+1图象上的两点,则a 与b 的大小关系是( ) A .a >b B .a=b C .a <b D .以上都不对8.已知正比例函数y=kx (k ≠0)的图象经过点(1,-2),则此正比例函数的关系式为 ( ) A .y=2x B .y=-2x C .12y x =D .12y x =-9.已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是( )xyxyxyxyOOOOA. B. C. D.10.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为( )A .x ≥32 B .x ≤3 C .x ≤32D .x ≥3 二、填空题(共10小题,每题3分,共30分)11.在女子3000米的长跑中,运动员的平均速度v=t3000,则这个关系式中自变量是.12.根据图示的程序计算函数值,若输入的x 的值为32,则输出的结果为13.当m = 时,一次函数2(2)4y m x m =-+-是正比例函数.14.若一次函数y x m =-+的图象经过点(-l ,5),这个函数的表达式为 .15.已知点A(-3,a),B(1,b)都在一次函数y=kx+2的图象上,则a与b的数量关系为16.直线y=ax+b与直线y=cx+d (a、b、c、d为非零常数)在直角坐标系中的位置如图所示,不等式ax +b<cx+d的解集是.17.把直线y=- x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围____. 18.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为.19.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是(填序号)A.①②③ B.仅有① C.仅有①③ D.仅有②③20.如图,在平面直角坐标系中,已知(1,1)A 、(3,5)B ,要在坐标轴上找一点P ,使得PAB 的周长最小,则点P 的坐标为A .(0,1)B .(0,2)C .4(,0)3D .(0,2)或4(,0)3三、解答题(共60分)21.(6分)如图是某地区一天的气温随时间变化的图象,根据图象回答:在这一天中:(1)气温T (℃) (填“是”或“不是”)时间t (时)的函数. (2)温差是 ℃.(3)10时的气温是 ℃. (4) 时气温是4℃.(5) 时间内,气温不断上升. (6) 时间内,气温持续不变.22.(6分)已知水池中有800立方米的水,每小时抽50立方米. (1)写出剩余水的体积Q 立方米与时间t (时)之间的函数关系式. (2)写出自变量t 的取值范围.(3)10小时后,池中还有多少水? (4)几小时后,池中还有100立方米的水?23.(8分)如图,直线y = 2x + 3与x 轴相交于点A ,与y 轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴的正半轴相交于P,且使OP = 2OA,求ΔABP的面积.24.(6分)在平面直角坐标系中,直线y=kx-2经过点A(-2,0),求不等式4kx+3≤0的解集.25.(8分)点P(x,y)在直线x+y=8上,且x>0,y>0,点A的坐标为(6,0),设△OPA的面积为S.(1)求S与x的函数关系式,并直接写出x的取值范围;(2)当S=12时,求点P的坐标.26.(9分)已知A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?27.(8分)已知某市2014年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2014年10月份的水费为620元,求该企业2014年10月份的用水量;28.(9分)小明购买了一部新手机,到某通讯公司咨询移动电话资费情况,准备办理入网手续,该通讯公司工作人员向他介绍两种不同的资费方案:方案代号月租费(元)免费时间(分)超过免费时间的通话费(元/分)一10 00.20二30 80 0.15(1)分别写出方案一,二中,月话费(月租费与通话费的总和)y(单位:元)与通话时间x(单位:分)的函数关系式;(2)画出(1)中两个函数的图象;(3)若小明通话时间为200分钟左右,他应该选择哪种资费方案最省钱.答案(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥3的是( ) A .y=13x - B .y=13x - C .y=x ﹣3 D .y=3x - 【答案】D . 【解析】考点:1.函数自变量的取值范围;2.分式有意义的条件;3.二次根式有意义的条件.2.用固定的速度如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( )【答案】C. 【解析】试题分析:函数图像中图形表示了自变量和函数之间的对应关系,由题,因瓶子下面窄上面宽,且相同的时间内注入的水量相同,所以下面的高度增加的快,上面增加的慢,即图象应越来越缓,分析四个图象只有C 符合要求,故选C .考点:函数图像.3.在圆的周长公式2C r =π中,下列说法错误的是( ) A .C r π,,是变量,2是常量 B .C r ,是变量,2π是常量 C .r 是自变量,C 是r 的函数 D .将2C r =π写成2Cr =π,则可看作C 是自变量,r 是C 的函数 【答案】【解析】试题分析:在圆的周长公式2C r =π中,C 是r 的函数,C ,r 是变量,2π是常量,将C=2πr 写成2Cr =π,则可看作C 是自变量,r 是C 的函数,故说法错误的是A . 故选A .考点:函数的概念.4.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加 1分钟加收 1元,则表示电话费y (元)与通话时间(分)之间的关系的图象如下图所示,正确的是( )【答案】C . 【解析】考点:函数的图象.5.已知函数y=ax+b 经过(1,3),(0,﹣2),则a ﹣b=( ) A .﹣1 B .﹣3 C .3 D .7 【答案】D . 【解析】试题分析:∵函数y=ax+b 经过(1,3),(0,﹣2),∴a b 3b 2+=⎧⎨=-⎩,解得a 5b 2=⎧⎨=-⎩.∴a ﹣b=5+2=7.故选D .考点:1.直线上点的坐标与方程的关系;2.求代数式的值.6.一次函数y=kx+b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过( ) A.第一象限 B.第二象限C.第三象限D.第四象限 【答案】A 【解析】考点:一次函数的性质.7.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+1图象上的两点,则a 与b 的大小关系是( ) A .a >b B .a=b C .a <b D .以上都不对 【答案】A . 【解析】试题分析:∵k=-2<0,∴y 随x 的增大而减小,∵1<2,∴a >b . 故选A .考点:一次函数图象上点的坐标特征.8.已知正比例函数y =kx (k ≠0)的图象经过点(1,-2),则此正比例函数的关系式为 ( ) A .y=2x B .y=-2x C .12y x = D .12y x =- 【答案】B. 【解析】试题分析:∵正比例函数y=kx (k ≠0)的图象经过点(1,-2),∴1×k=-2,解得:k=-2.则此正比例函数的关系式为y=-2x. 故选B.考点:待定系数法求正比例函数解析式.9.已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是( )xyxyxyxyOOOOA. B. C. D.【答案】A . 【解析】考点:一次函数的图象及性质.10.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为( )A .x ≥32 B .x ≤3 C .x ≤32D .x ≥3 【答案】A . 【解析】试题分析:将点A (m ,3)代入y=2x 得,2m=3,解得,m=32,∴点A 的坐标为(32,3),∴由图可知,不等式2x ≥ax+4的解集为x ≥32. 故选A .考点:一次函数与一元一次不等式.二、填空题(共10小题,每题3分,共30分) 11.在女子3000米的长跑中,运动员的平均速度v=t3000,则这个关系式中自变量是 .【答案】t 【解析】试题分析:根据函数的定义即可判断出自变量是t ,因变量是v. 考点:函数的定义12.根据图示的程序计算函数值,若输入的x 的值为32,则输出的结果为【答案】12. 【解析】 试题分析:因为x=32,所以1<x ≤2,所以y=-32+2=12. 考点:函数值.13.当m = 时,一次函数2(2)4y m x m =-+-是正比例函数. 【答案】-2. 【解析】试题分析:由正比例函数的定义可得:4-m 2=0,且m-2≠0,解得,m=-2. 考点:正比例函数的定义.14.若一次函数y x m =-+的图象经过点(-l ,5),这个函数的表达式为 . 【答案】y=-x+4. 【解析】试题分析:∵一次函数y=-x+m 的图象经过(﹣1,5),∴5=-(-1)+m ,解得:m=4.则该一次函数解析式为y=-x+4.考点:待定系数法求一次函数解析式.15.已知点A (-3,a ),B (1,b )都在一次函数y=kx+2的图象上,则a 与b 的数量关系为 【答案】a=8-3b . 【解析】试题分析:∵点A (-3,a ),B (1,b )都在一次函数y=kx+2的图象上,∴322a k b k =-+=+⎧⎨⎩①②,①+②×3得,a+3b=8,即a=8-3b . 考点:一次函数图象上点的坐标特征.16.直线y=ax+b与直线y=cx+d (a、b、c、d为非零常数)在直角坐标系中的位置如图所示,不等式ax +b<cx+d的解集是.【答案】x<1【解析】考点:一次函数与一元一次不等式.17.把直线y=- x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围____. 【答案】m>1.【解析】试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,联立两直线解析式得:324y x my x=-++=+⎧⎨⎩,解得:132103mxmy-⎧=⎪⎪⎨+⎪=⎪⎩,即交点坐标为(13m-,2103m+),∵交点在第一象限,∴132103mm-⎧⎪⎪⎨+⎪⎪⎩>>,解得:m>1.学¥科网考点:一次函数图象与几何变换.18.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为.【答案】y=﹣21x+23 【解析】考点:1、翻折变换(折叠问题);2、勾股定理;3、待定系数法19.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是 (填序号)A .①②③B .仅有①C .仅有①③D .仅有②③【答案】①②③. 【解析】考点:一次函数的图象分析.20.如图,在平面直角坐标系中,已知(1,1)A 、(3,5)B ,要在坐标轴上找一点P ,使得PAB ∆的周长最小,则点P 的坐标为A .(0,1)B .(0,2)C .4(,0)3D .(0,2)或4(,0)3【答案】(0,2). 【解析】试题分析:∵线段AB 的长度是确定的,∴△PAB 的周长最小就是PA+PB 的值最小,∵3>5,∴点P 在y 轴上,作点A 关于y 轴的对称点A ′,连接A ′B 交y 轴于点P ,∵A (1,1),∴A ′(-1,1),设直线A ′B 的解析式为y=kx+b (k ≠0),∴351k b k b +=-+=⎧⎨⎩,解得12k b =⎧⎨=⎩,∴直线A ′B 的解析式为y=x+2,当x=0时,y=2,∴P (0,2). 学科#网考点:1.轴对称-最短路线问题;2.坐标与图形性质.三、解答题(共60分)21.(6分)如图是某地区一天的气温随时间变化的图象,根据图象回答:在这一天中:(1)气温T(℃)(填“是”或“不是”)时间t(时)的函数.(2)温差是℃.(3)10时的气温是℃.(4)时气温是4℃.(5)时间内,气温不断上升.(6)时间内,气温持续不变.【答案】(1)是;(2)12;(3)5;(4)9时和22时;(5)2时至12时;(6)14时到16时.【解析】;(3)5;(4)9时和22时;(5)2时至12时及14时到16时.故答案为:(1)是;(2)16,2,10,2考点:函数的图象.22.(6分)已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q立方米与时间t(时)之间的函数关系式.(2)写出自变量t的取值范围.(3)10小时后,池中还有多少水?(4)几小时后,池中还有100立方米的水?【答案】(1)Q=800-50t;(2)0≤t≤16;(3)300立方米;(4)14小时后学#科网【解析】考点:函数的应用.23.(8分)如图,直线y = 2x + 3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴的正半轴相交于P,且使OP = 2OA,求ΔABP的面积.【答案】(1)A(-32,0) B(0,3);(2)274.【解析】考点:一次函数图象上点的坐标特征.24.(6分)在平面直角坐标系中,直线y=kx-2经过点A(-2,0),求不等式4kx+3≤0的解集.【答案】x≥34.【解析】试题分析:首先将已知点的坐标代入到直线y=kx-2中求得k值,然后代入不等式即可求得x的取值范围.试题解析:∵将点A(-2,0)代入直线y=kx-2,得:-2k-2=0,即k=-1,∴-4x+3≤0,解得x≥34.考点:一次函数与一元一次不等式.学@科网25.(8分)点P(x,y)在直线x+y=8上,且x>0,y>0,点A的坐标为(6,0),设△OPA的面积为S.(1)求S与x的函数关系式,并直接写出x的取值范围;(2)当S=12时,求点P的坐标.【答案】(1)S=24-3x,(0<x<8);(2)(4,4).【解析】试题分析:(1)根据题意画出图形,根据三角形的面积公式即可得出结论;(2)把S=12代入(1)中的关系式即可.试题解析:(1)如图所示:考点:一次函数图象上点的坐标特征.26.(9分)已知A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?【答案】(1)60千米/小时,96千米/小时,C(19806,);(2))4619(38496≤≤+-=xxy;(3)613.【解析】试题分析:(1)由甲车行驶2小时在M地且M地距A市80千米,由此求得甲车原来的速度80÷2=40千米/考点:一次函数的应用.27.(8分)已知某市2014年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2014年10月份的水费为620元,求该企业2014年10月份的用水量;【答案】(1)y=6x﹣100;(2)120吨;(3)100吨.【解析】试题分析:(1)设y关于x的函数关系式y=kx+b,代入(50,200)、(60,260)两点求得解析式即可.考点:1.一次函数、一元二次方程和一元一次方程的应用;2.待定系数法;3.分类思想.28.(9分)小明购买了一部新手机,到某通讯公司咨询移动电话资费情况,准备办理入网手续,该通讯公司工作人员向他介绍两种不同的资费方案:方案代号月租费(元)免费时间(分)超过免费时间的通话费(元/分)一10 0 0.20二30 80 0.15(1)分别写出方案一,二中,月话费(月租费与通话费的总和)y(单位:元)与通话时间x(单位:分)的函数关系式;学@科网(2)画出(1)中两个函数的图象;(3)若小明通话时间为200分钟左右,他应该选择哪种资费方案最省钱.【答案】(1)方案一:y=0.2x+10;方案二:()()300x80y0.15x18x>80⎧≤≤⎪=⎨+⎪⎩;(2)作图见解析;(3)方案二.【解析】试题分析:(1)根据月话费=月租费+通话费分别列式. (2)根据(1)的函数关系式作图.(3)分别求出两种方案的月话费作出比较即可.试题解析:(1)方案一:y=0.2x+10;方案二:()()300x80y0.15x18x>80⎧≤≤⎪=⎨+⎪⎩.(2)作图如下:(实线部分)考点:1.一次函数的应用;2.由实际问题列函数关系式;3.分类思想的应用.21。

人教版初中八年级数学下册第十九章《一次函数》测试(含答案解析)

人教版初中八年级数学下册第十九章《一次函数》测试(含答案解析)

一、选择题1.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m >0B .m <0C .m >2D .m <22.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1/cm s .现P ,Q 两点同时出发,设运动时间为()x s ,BPQ 的面积为2()y cm ,若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .296cmB .284cmC .272cmD .256cm 3.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D . 4.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D .5.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =6.如图,已知在平面直角坐标系xOy 中.以(О为圆心,适当长为半径作圆弧,与x 轴交于点A ,与y 轴交于点,B 再分别以A B 、为圆心.大于12AB 长为半径作圆弧,两条圆弧在第四象限交于点C .以下四组x 与y 的对应值中,能够使得点(),1P x y -在射线OC 上的是( )A .2和1-B .2和2-C .2和2D .2和37.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .8.如图,在四边形ABCD 中,AD ∥BC ,∠B =60°,∠D =90°,AB =4,AD =2,点P 从点B 出发,沿B→A→D→C 的路线运动到点C ,过点P 作PQ ⊥BC ,垂足为Q .若点P 运动的路程为x ,△BPQ 的面积为y ,则表示y 与x 之间的函数关系图象大致是( )A .B .C .D .9.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9 B .11 C .15 D .1810.下列关于一次函数25y x =-+的说法,错误的是( )A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限 11.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A .2,03⎛⎫ ⎪⎝⎭B .2,0⎛⎫ ⎪ ⎪⎝⎭C .10,0⎛⎫ ⎪ ⎪⎝⎭D .1,010⎛⎫ ⎪⎝⎭ 12.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <- 13.港口,,A B C 依次在同一条直线上,甲、乙两艘船同时分别从,A B 两港出发,匀速驶向C 港,甲、乙两船与B 港的距离y (海里)与行驶时间x (小时)之间的函数关系如图所示,则下列说法正确的有( )①,B C 两港之间的距离为60海里②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时④甲船到达C 港时,乙船还需要一个小时才到达C 港⑤点P 的坐标为()1,30A .1个B .2个C .3个D .4个14.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( )A .32m >B .32m >-C .32m <D .32m <- 15.若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则( )A .k≠3B .k =±3C .k =3D .k =﹣3二、填空题16.如图,两个一次函数y =kx+b 与y =mx+n 的图象分别为直线l 1和l 2,l 1与l 2交于点A (1,p ),l 1与x 轴交于点B (-2,0),l 2与x 轴交于点C (4,0),则不等式组0<mx+n <kx+b 的解集为_____.17.已知A 、B 两地相距200千米,货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资,货车乙遇到货车甲后,用了30分钟将物资从货车甲搬运到货车乙上,随后以原速开往B 地,货车甲以原速的25返回A 地.两辆货车之间的路程()km y 与货车甲出发的时间()h x 的函数关系如图所示(通话等其他时间忽略不计).若点C 的坐标是()1.6,120,点D 的坐标是()3.6,0,则点E 的坐标是______.18.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.19.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.20.函数1y x =-中自变量x 的取值范围是________. 21.已知 12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-1,当x=3时,y=5,求y 与x 之间的函数关系式_______________.22.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a b y x c c =+的一次函数称为“勾股一次函数”;若点351,P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.23.函数1y x=-的定义域是______. 24.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.25.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.26.已知正比例函数y kx =的图像经过点)(2,5A -,点M 在正比例函数y kx =的图像上,点)(3,0B ,且10ABM S =△,则点M 的坐标为______. 三、解答题27.如图直线27y x =-+与x 轴、y 轴分别相交于点C 、B ,与直线32y x =相交于点A .(1)求A 点坐标;(2)求OAC 的面积;(3)如果在y 轴上存在一点P ,使OAP △是等腰三角形,请直接写出P 点坐标;(4)在直线27y x =-+上是否存在点Q ,使OAQ 的面积等于6?若存在,请求出Q 点的坐标,若不存在,请说明理由.28.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 29.慧慧和甜甜上山游玩,慧慧乘坐缆车,甜甜步行,两人相约在山顶的缆车终点会合,已知甜甜行走到缆车终点的路程是缆车到山顶的线路长的2倍,慧慧在甜甜出发后50分才乘上缆车,缆车的平均速度为180米/分.设甜甜出发x 分后行走的路程为y 米.图中的折线表示甜甜在整个行走过程中y 随x 的变化关系.(1)甜甜行走的总路程是______米,她途中休息了______分.(2)分别求出甜甜在休息前和休息后所走的路程段上的步行速度.(3)当慧慧到达缆车终点时,甜甜离缆车终点的路程是多少.30.快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留0.5h ,然后按原路原速返回,快车比慢车晚0.5h 到达甲地.快慢两车距各自出发地的路程()km y 与所用的时间()h x 的关系如图所示.(1)甲乙两地之间的路程为________km ;快车的速度为________km/h ;慢车的速度为_________km/h ;(2)出发________h ,快慢两车距各自出发地的路程相等;(3)快慢两车出发________h 相距250km .。

八年级函数练习题及答案

八年级函数练习题及答案

八年级函数练习题及答案在八年级数学学习中,函数是一个非常重要的概念。

通过函数的学习,学生可以更好地理解数学中的关系和变化。

为了帮助同学们更好地掌握函数的知识,下面将给大家提供一些八年级函数练习题及答案。

1. 练习题一:已知函数 f(x) = 2x + 3,求 f(4) 的值。

解答:将 x 替换为 4,得到 f(4) = 2(4) + 3 = 11。

2. 练习题二:已知函数 g(x) = 3x^2 - 2x + 1,求 g(-1) 的值。

解答:将 x 替换为 -1,得到 g(-1) = 3(-1)^2 - 2(-1) + 1 = 6。

3. 练习题三:已知函数 h(x) = 5x - 2,求 h(0) 的值。

解答:将 x 替换为 0,得到 h(0) = 5(0) - 2 = -2。

通过以上三个练习题,我们可以看到函数的计算过程其实并不复杂。

只需要将给定的 x 值代入函数中,按照运算规则进行计算即可。

除了计算函数的值,我们也可以通过函数的图像来更好地理解函数。

下面是一个练习题,要求根据函数的图像进行分析。

4. 练习题四:已知函数 y = f(x) 的图像如下所示:```|4 | ●| ●2 | ●|______________-2 -1 0 1 2```根据图像,回答以下问题:a) 函数 f(x) 在 x = 1 处的值是多少?b) 函数 f(x) 在 x = -1 处的值是多少?c) 函数 f(x) 的最大值是多少?解答:a) 从图中可以看出,在 x = 1 处的函数值为 2。

b) 同样地,在 x = -1 处的函数值为 -2。

c) 函数 f(x) 的最大值为 4。

通过观察函数的图像,我们可以更直观地了解函数的性质和变化规律。

除了以上的练习题,还有许多关于函数的习题可以帮助同学们巩固知识。

在解答这些习题时,同学们可以结合课本上的理论知识,灵活运用函数的定义和运算规则。

函数作为数学中的一个基础概念,不仅在八年级数学中有所涉及,而且在高中和大学的数学学习中也会进一步深入。

八年级数学(下)第十九章《一次函数》测试卷含答案

八年级数学(下)第十九章《一次函数》测试卷含答案

八年级数学(下)第十九章《一次函数》测试卷(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2 2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.4.在关于的正比例函数中,随的增大而减小,则的取值范围是( ) A.B.C.D.5.已知两点M (4,2),N (1,1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为( ) A. (2,0) B. (2.5,0) C. (3,0) D. (4,0)6.如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx+b >mx ﹣2的解集是( )A. 1<x <2B. 0<x <2C. 0<x <1D. 1<x7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 58.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N →P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )A. B.C. D.10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y 1(km )和y 2(km )分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t (h )之间的关系,如图所示.下列说法:①折线段OAB 是表示小聪的函数图象y 1,线段OC 是表示小明的函数图象y 2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h ,其中不正确的个数为( )A. 0个B. 1个C. 2个D. 3个二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.12.如果点在直线上,则的值是__________.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.18.小明和小亮分别从同一直线跑道A、B两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B 端,且小明到达B 端后停止运动,小亮匀速跑步到达A 端后,立即按原速返回B 端(忽略调头时间),回到B 端后停止运动,已知两人相距的路程S (千米)与小亮出发时间t (秒)之间的关系如图所示,则当小明到达B 端后,经过_________秒,小亮回到B 端.19.在全民健身环城越野赛中,甲、乙两名选手的行程y (千米)随时间x (时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k为何值时,y随x的增大而减小?(2)k为何值时,它的图象经过原点?22.(7分)已知y+3与x+2成正比例,且当x=3时,y=7.(1)写出y与x之间的函数关系式;(2)当x=-1时,求y的值;(3)当y=0时,求x的值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.答案(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2【答案】A【解析】二次根式有意义的条件是根号下被开方数非负,所以x +2≥0,即x ≥2, 故选A.2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限 C. 第一、三、四象限 D. 第二、三、四象限 【答案】A故选A.3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.【答案】A【解析】由图知蓄水池上宽下窄,深度h 和放水时间t 的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A 正确.B 斜率一样,C 前者斜率大,后者小,D 也是前者斜率大,后者小,因此B 、C 、D 排除.故选A . 4.在关于的正比例函数中,随的增大而减小,则的取值范围是( )A. B. C. D.【答案】A【解析】∵随的增大而减小,∴∴.故选A. 学科#网5.已知两点M(4,2),N(1,1),点P是x轴上一动点,若使PM+PN最短,则点P为()A. (2,0)B. (2.5,0)C. (3,0)D. (4,0)【答案】A6.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A. 1<x<2B. 0<x<2C. 0<x<1D. 1<x【答案】A【解析】由于直线y1=kx+b过点A(0,2),P(1,m),故选A .7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 5 【答案】A【解析】∵x=3>1, ∴y=-x+5=-3+5=2. 故选A. 学!科网8.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N→P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处 【答案】D【解析】观察图象可得:当R 在PN 上运动时,面积不断在增大,当点R 运动到PQ 上时,△MNR 的面积y 达到最大,且保持一段时间不变;到Q 点以后,面积y 开始减小;故当x=9时,点R 应运动到Q 处.故选D . 9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M→→→运动,则APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的( )A. B.C. D.【答案】A10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y1(km)和y2(km)分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t(h)之间的关系,如图所示.下列说法:①折线段OAB是表示小聪的函数图象y1,线段OC是表示小明的函数图象y2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h,其中不正确的个数为()A. 0个B. 1个C. 2个D. 3个【答案】B【解析】①小聪离甲地的距离先增加至最大然后减小直至为0,小明离乙地的距离逐渐增大直至最大30千故选B.二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.【答案】<<【解析】∵经过二、三、四象限,∴且12.如果点在直线上,则的值是__________.【答案】-3【解析】∵点在直线上,∴,解得.故答案为:-3.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.【答案】【解析】∵在中,当x=0时,y=4;当时,,∴的图象与x轴的交点坐标为,与y轴的交点坐标为(0,4),由题意可得:,解得:.故答案为:.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.【答案】【解析】设一次函数解析式∵与平行,∴,∴.∵一次函数经过,∴,,∴.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.【答案】4 {2 xy=-=-16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.【答案】6.【解析】小红家与学校的距离为6km,从图象可知她从学校到家用时为3-2=1小时,故从学校到家的平均速度等于6÷1=6 km/h,故答案为:6.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.【答案】≠-2 =218.小明和小亮分别从同一直线跑道A、B 两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B端,且小明到达B端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过_________秒,小亮回到B端.【答案】45【解析】由题意得:设小明的速度为xm/s,小亮的速度为ym/s,则85 {{53103x yxyx y+==⇒= +=小明到达B端,所需时间为36072s 5=()小亮往返需要的总时间为7204531175-⨯=,则117-72=45(s)故答案:45.19.在全民健身环城越野赛中,甲、乙两名选手的行程y(千米)随时间x(时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).【答案】①③④⑤20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.【答案】)3,0 11333,2n n --⎫⎪⎪⎝⎭【解析】根据等腰三角形的三线合一的性质和30°角直角三角形的性质可求得131,22A ⎛⎫⎪ ⎪⎝⎭,)23,0A ,再由等腰三角形的三线合一的性质和30°角直角三角形的性质可求得3333,22A ⎛⎫⎪ ⎪⎝⎭, 5939,22A ⎛⎫⎪ ⎪⎝⎭,由此可得A 2n-1的坐标11333,22n n --⎛⎫⋅ ⎪ ⎪⎝⎭.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k 为何值时,y 随x 的增大而减小? (2)k 为何值时,它的图象经过原点? 【答案】(1)k >4;(2)k=-4. 【解析】考点:一次函数图象与系数的关系.22.(7分)已知y+3与x+2成正比例,且当x =3时,y =7. (1)写出y 与x 之间的函数关系式; (2)当x =-1时,求y 的值; (3)当y =0时,求x 的值. 【答案】(1)y=2x+1;(2)-1;(3)12-. 【解析】试题分析:(1)已知y+3与x+2成正比例,所以,设y+3=k( x+2),把x =3,y =7代入求出k 的值,即可写出y 与x 之间的函数关系式,(2)把x =-1代入y 与x 之间的函数关系式,求出y 的值. (3)把y =0代入y 与x 之间的函数关系式,求出x 的值.试题解析:(1)设y+3=k( x+2),把x =3,y =7代入得:7+3=(3+2)k,解得k=2,∴y+3=2(x+2),∴y=2x+1; (2)当x=-1时,y=2x+1=2×(-1)+1=-1;(3)当y=0时,有0=2x+1,解得x=12 .考点:1.正比例函数关系式.2.函数值和自变量值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.【答案】(1)m=2,一次函数解析式为y=2x﹣2;(2)S△AOB=2;(3)自变量x的取值范围是x>2.学科&网【解析】(3)自变量x的取值范围是x>2.考点:两条直线相交或平行问题24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.【答案】见解析【解析】考点:1、一次函数性质的应用;2、分类思想.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?【答案】(1)1000;(2)y=300x-5000;(3)40.【解析】试题分析::(1)由图可知第20天的总用水量为1000m3;(2)设y=kx+b.把已知坐标代入解析式可求解;(3)令y=7000代入方程可得.试题解析:(1)第20天的总用水量为1000米3(2)当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)∴100020400030k bk b+⎨⎩+⎧==,解得,3005000kb-⎧⎨⎩==,∴y与x之间的函数关系式为:y=300x-5000(3)当y=7000时,有7000=300x-5000,解得x=40;种植时间为40天时,总用水量达到7000米3考点:一次函数的应用.26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B 出发后几小时,两人相遇?【答案】(1)1,10 km/h;(2)1.8.【解析】考点:1.一次函数的应用;2. 待定系数法的应用;3.直线上点的坐标与方程的关系.27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.【答案】当学生人数少于40时,选择远航旅行社更优惠,当学生人数等于40时,选择两家旅行社都一样,当学生人数大于40时,选择吉祥旅行社更优惠.【解析】考点:一次函数的应用.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段C D所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.【答案】(1)900;(2)y=75x(6≤x≤12);(3)0.75,6.75.【解析】考点:1、待定系数法;2、一次函数的应用.21。

八年级上册数学试卷题函数

八年级上册数学试卷题函数

一、选择题(每题4分,共40分)1. 下列函数中,不是一次函数的是()A. y = 2x - 3B. y = 3x^2 + 4C. y = -5x + 2D. y = 0.5x + 12. 若函数y = kx + b的图像经过点(2,5),则k的值为()A. 2B. 5C. 0.5D. 13. 函数y = 2x - 3的图像与x轴、y轴分别交于点A、B,则AB的长度为()A. 3B. 5C. 6D. 94. 下列函数中,自变量x的取值范围最小的是()A. y = √(x - 1)B. y = 1/xC. y = x^2D. y = |x|5. 函数y = -3x + 4的图像是()A. 上升的直线B. 下降的直线C. 平行于x轴的直线D. 平行于y轴的直线6. 若函数y = kx + b的图像经过第二、三、四象限,则k和b的符号分别是()A. k > 0, b > 0B. k < 0, b < 0C. k > 0, b < 0D. k < 0, b > 07. 函数y = 3x - 2的图像与x轴、y轴分别交于点A、B,若OA = 2,则OB的长度为()A. 2B. 3C. 4D. 58. 下列函数中,图像是正比例函数的是()A. y = 2x + 1B. y = -3xC. y = 0.5x^2D. y = x^39. 函数y = 4x - 3的图像是()A. 上升的直线B. 下降的直线C. 平行于x轴的直线D. 平行于y轴的直线10. 若函数y = kx + b的图像经过点(-2,1),则k的值为()A. -1B. 1C. -0.5D. 0.5二、填空题(每题4分,共40分)11. 函数y = -2x + 5的图像与x轴、y轴分别交于点A、B,则AB的长度为______。

12. 若函数y = kx + b的图像经过点(1,2),则k的值为______。

八年级数学:函数的单元测试题(含解析)

八年级数学:函数的单元测试题(含解析)

八年级数学:函数的单元测试题(含解析)(时间:90分钟 分值:100分)一、选择题(每小题3分,共36分)1.函数y =x 2-x 中自变量x 的取值范围是( A )A .x ≠2 B.x ≥2 C.x ≤2 D.x >2解析:根据题意得:2-x ≠0,解得:x ≠2.故函数y =x 2-x 中自变量x 的取值范围是x ≠2.故选A.2.下列函数自变量x 的取值范围错误的是( D )A .y =-2x 2+1中,x 取全体实数B .y =1x +1中,x 取不等于-1的实数 C .y =x -2中,x 取大于或等于2的实数D .y =1x +3中,x 取大于或等于-3的实数 解析:由⎩⎨⎧ x +3≥0,x +3≠0,得x >-3.故选D.3.一辆汽车由北京驶往相距120 km 的天津,平均速度是30 km/h ,则汽车距天津的路程s (km)与行驶时间t (h)的函数关系式及自变量t 的取值范围是( A )A .s =120-30t (0≤t ≤4)B .s =30t (0≤t ≤4)C .s =120-30t (t >0)D .s =30t (t =4)解析:s 表示剩余距离,剩余距离=总的距离-已经行驶的距离.故选A.4.已知y 关于x 的函数图像如图所示,则当y <0时,自变量x 的取值范围是( D )A .x <-1B .-1<x <1C.1<x<2 D.-1<x<1或x>2解析:观察图像可以看出,当函数图像位于x轴的下方,即y<0时,对应的x的值为-1<x<1或x>2.故选D.5.向高为h的圆柱形空水杯内注水,已知水杯底面半径为2,那么表示水深y与注水量x 之间关系的图像是图中的( A )解析:h从0开始随x的增大而增大.故选A.6.当实数x的取值使得x-2有意义时,函数y=4x+1中y的取值范围是( B )A.y≥-7 B.y≥9 C.y>9 D.y≤9解析:由x-2≥0,得x≥2.∴4x+1≥9,∴y≥9.故选B.7.如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会儿后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.在这则乌鸦喝水的故事中,从乌鸦看到瓶的那刻起开始计时并设时间为x,瓶中水位的高度为y,下列图像中最符合故事情景的是( D )解析:因为乌鸦在沉思的这段时间内水位没有变化,所以排除C,因为乌鸦衔来一个个小石子放入瓶中,水位将会上升,所以排除A,因为乌鸦喝水后的水位应不低于一开始的水位,所以排除B,所以D正确.故选D.8.小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴表示父亲与儿子行进中离家的距离,用横轴表示父亲离家的时间,那么下面的图像与上述诗的含义大致吻合的是( C )解析:题目中的四句诗反映了四个运动过程.“儿子学成今日返”指儿子离家的距离越来越近,反映在图像上,是一条具有向下趋势的线段;“老父早早到车站”指父亲离家的距离越来越大,且父亲比儿子先到达车站,反映在图像上,是一条过原点的有向上趋势的线段;“儿子到后细端详”反映在图像上,是一条平行于x轴的线段;“父子高兴把家还”反映在图像上,是一条有向下趋势的线段.故选C.9.均匀地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个容器的形状是( B )解析:由函数图像可知:水面高度h由缓慢上升到快速上升,故可选B.10.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180 km,货车的速度为60 km/h,小汽车的速度为90 km/h,则下图中能分别反映货车、小汽车离乙地的距离y(km)与各自行驶时间t(h)之间的函数图像是( C )解析:由题意得出发前货车和小汽车距离乙地180 km,出发2 h小汽车到达乙地距离变为0,再经过2 h小汽车又返回甲地距离又为180 km,经过3 h,货车到达乙地距离变为0,故C符合题意.故选C.11.三峡水库水位由106 m升至135 m时,高峡平湖初现人间.假设水库水位是匀速上升的,那么下列图像中,能正确反映这10天水位h(m)随时间t(天)变化的是( B )解析:根据题意,得图像过(0,106),(10,135),且h随t的增大而增大.故选B.12.(2017·凉山州)小明和哥哥从家里出发去买书,从家出发走了20分钟到一个离家1 000米的书店.小明买了书后随即按原路返回;哥哥看了20分钟书后,用15分钟返家.下面的图像中哪一个表示哥哥离家时间与距离之间的关系( D )解析:根据题意,从20分钟到40分钟哥哥在书店里看书,离家距离没有变化,是一条平行于x轴的线段.故选D.二、填空题(每小题3分,共18分)13.当x=-4时,函数y=2x+1和y=kx-2的值相等,则k=5 4 .解析:由2×(-4)+1=-4k-2,得k=5 4 .14.根据如图所示的运算程序,当输入的自变量的值为x=2时,输出的函数值为y=2.解析:因为x=2>1,所以把x=2代入y=-x+4,得y=-2+4=2.15.小明的家距离学校5 km,他骑车的速度为13 km/h.设他骑车从家出发x h后与学校的距离为y km,则y与x之间的关系式为y=5-13x.解析:y=总路程-行驶路程=5-13x.16.在百米跑道上,小亮正以8 m/s的速度向前奔跑,则他距终点的路程s(米)与他起跑时间t(秒)之间的函数关系式为s=100-8t,自变量t的取值范围是0≤t≤12.5.解析:自变量的取值范围除了受式子本身的限制外,还受实际问题的限制.17.(2017·锦州)已知A,B两地相距10千米,上午9:00甲骑电动车从A地出发到B 地,9:10乙开车从B地出发到A地,甲、乙两人距A地的距离y(千米)与甲所用的时间x(分)之间的关系如图所示,则乙到达A地的时间为9:20.解析:因为甲30分走完全程10千米,所以甲的速度是13千米/分,由图中看出两人在走了5千米时相遇,那么甲此时用了15分钟,则乙用了(15-10)分钟,所以乙的速度为:5÷5=1(千米/分),所以乙走完全程需要时间为:10÷1=10(分),此时的时间应加上乙先前迟出发的10分,现在的时间为9点20分.18.一辆货车从甲地匀速驶往乙地,到达乙地后用了半小时卸货,随即匀速返回,已知货车返回时的速度是它从甲地驶往乙地的速度的 1.5倍,货车离甲地的距离y(千米)关于时间x(小时)的函数图像如图所示,则a=5小时.解析:由题意可知,货车从甲地到乙地所用的时间为3.2-0.5=2.7(小时),所以货车从乙地返回到甲地所用的时间为2.71.5=1.8(小时),所以a=3.2+1.8=5(小时).三、解答题(共46分)19.(6分)商场购进一批衬衣,定价200元/件,每天可出售50件,根据销售规律知,价格每上调10元,每天销售数量减少5件.请写出日销售量y(件)与定价x(元/件)的函数关系式,并指出如果日销售量不低于30件,定价不能超过多少元?解:y=50-x-20010×5=50-12(x-200)=-12x+150.-12x+150≥30,-12x≥-120,x≤240.答:定价不能超过240元.20.(6分)汽车由北京驶往相距840千米的沈阳,汽车的速度是每小时70千米,t小时后,汽车距沈阳s千米.(1)求s与t的函数关系式,并写出自变量t的取值范围;(2)经过2小时后,汽车离沈阳多少千米?(3)经过多少小时后,汽车离沈阳还有140千米?解:(1)s=840-70t.当s=0时,t=12,所以0≤t≤12.(2)当t=2时,s=840-70×2=700.答:经过2小时后,汽车离沈阳700千米.(3)当s=140时,140=840-70t,解得t=10.答:经过10小时后,汽车离沈阳还有140千米.21.(6分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图像解答下列问题.(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售价格是多少?(3)降价后他按每千克0.4 元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问:他一共带了多少千克土豆?解:(1)农民自带的零钱为5元.(2)设降价前每千克售价的价格为k元,根据题意,得k=20-530=0.5(元/kg).(3)设他一共带了x kg土豆,根据题意,得x-30=26-200.4,解得x=45.答:他一共带了45 kg的土豆.22.(9分)圆柱的底面半径为10 cm,当圆柱的高变化时,圆柱的体积也随之变化.(1)在这个变化过程中,常量是哪个?变量是哪个?自变量是哪个?(2)设圆柱的体积为V cm3,圆柱的高为h cm,请写出V与h之间的函数关系式,并说明自变量的取值范围;(3)当圆柱的高每增加2 cm时,圆柱的体积如何变化?解:(1)常量是圆柱的底面半径,变量是圆柱的高和圆柱的体积,自变量是圆柱的高.(2)V=π·102·h=100πh(h>0).(3)当圆柱的高每增加2 cm时,V变化=100(h+2)π-100hπ=200π,即圆柱的体积增加200π cm3.23.(10分)某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多长时间?(2)王老师吃早餐用了多长时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?解:(1)依题意得:学校离王老师家有10千米,从出发到学校王老师用了25分钟.(2)依题意得:王老师吃早餐用了10分钟.(3)吃早餐以前的速度为:5÷10=0.5(千米/分钟),吃完早餐以后的速度为:(10-5)÷(25-20)=1(千米/分钟)=60(千米/小时),∴王老师吃完早餐以后速度快,最快时速达到60千米/小时.24.(9分)苏州市于2012年7月1日开始实行阶梯电价.居民月用电量分为三个档次,第一档为230千瓦时及以内的部分,第二档为超过230千瓦时但不超过400千瓦时的部分,第三档为高于400千瓦时的部分.第一档维持现行电价标准,即每千瓦时按0.53元收取;第二档每千瓦时加价0.05元,即每个月用电量超出230千瓦时不超过400千瓦时的部分,按照每千瓦时0.58元收取;第三档每千瓦时加价0.3元,即超出400千瓦时的部分,按照每千瓦时0.83元收取,请完成下列问题:(1)如果该地区某户居民2012年8月用电310千瓦时,则该居民8月应付电费为168.3元;(2)实行阶梯电价后,如果月用电量用x(千瓦时)表示,月支出电费用y(元)表示,小红、小明和小丽三人绘制了如图所示的大致图像,你认为正确的是小丽绘制的图像;(3)小明同学家2012年11月份和12月份两个月共用电460千瓦时,且11月份用电量少于12月份,他通过计算发现,这两个月的电费比实行阶梯电价前多出了2.5元.你能求出他家11月份和12月份的月用电量分别是多少吗?解:设小明家11月份和12月份的月用电量分别为m 千瓦时和n 千瓦时.由题意得m <230,n >230,当230<n <400时,有⎩⎨⎧ m +n =460,0.53m +0.53×230+0.58n -230-0.53×460=2.5,解得⎩⎨⎧ m =180,n =280.当n >400时,⎩⎨⎧ m +n =460,0.53m +0.53×230+0.58×170+0.83n -400-0.53×460=2.5,解得⎩⎨⎧ m =80,n =380.n =380与n >400矛盾,故舍去.答:小明家11月份和12月份的月用电量分别为180千瓦时和280千瓦时.。

苏教版八年级数学上册单元测试《第6章 一次函数》(含答案)

苏教版八年级数学上册单元测试《第6章 一次函数》(含答案)

《第6章一次函数》一、填空1.已知函数y=x﹣2,则当x=3时,y= .2.若函数y=(m﹣2)x+5﹣m是x的正比例函数,则m= .3.函数y=x+3的图象与x轴的交点坐标为.4.一次函数y=kx+b的图象是由函数y=3x的图象向上平移2个单位而得到的,则该一次函数的解析式为.5.已知函数y=(m﹣3)x﹣4中,y值随x的增加而减小,则m的取值范围为.6.已知一次函数的图象与坐标轴的交点为(﹣2,0)、(0,2),则一次函数的解析式为.7.已知点P既在直线y=﹣3x﹣2上,又在直线y=2x+8上,则P点的坐标为.8.某一次函数的图象经过点(﹣1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:.二、选择题9.一次函数y=﹣3x+1的图象一定经过点()A.(2,﹣5)B.(1,0) C.(﹣2,3)D.(0,﹣1)10.函数y=中自变量x的取值范围()A.x≤B.x≥C.x>D.x<11.已知函数y=x+m与y=mx﹣1,当x=3时,y值相等,那么m的值是()A.1 B.2 C.3 D.412.一次函数y=x+3的图象与两坐标轴所围成的三角形面积为()A.6 B.3 C.9 D.4.513.当k>0,b<0时,函数y=kx+b的图象大致是()A.B.C.D.14.把函数y=3x+2的图象沿着y轴向下平移一个单位,得到的函数关系式是()A.y=3x+1 B.y=3x﹣1 C.y=3x+3 D.y=3x+515.已知点A (﹣5,y 1)和点B (﹣4,y 2)都在直线y=﹣7x+b 上,则y 1与y 2的大小关系为( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定16.邮购一种图书,每册定价20元,另加书价的5%作邮资,购书x 册,需付款y (元)与x 的函数解析式为( )A .y=20x+5%xB .y=20.05xC .y=20(1+5%)xD .y=19.95x17.如图,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是( )A .甲比乙快B .乙比甲快C .甲、乙同速D .不一定18.在y=kx 中,当x=2时,y=﹣1,则当x=﹣1时,y=( )A .﹣2B .C .D .2三、解答题19.拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:(1)油箱中的余油量Q (升)与工作时间t (时)的函数关系式及自变量的取值范围;(2)当工作5小时时油箱的余油量20.已知一次函数y=x+6﹣m ,求:(1)m 为何值时,函数图象交y 轴于正半轴?(2)m 为何值时,函数图象与y 轴的交点在x 轴的下方?(3)m 为何值时,图象经过原点?21.用图象法求下面二元一次方程组的近似解.22.已知一次函数的图象经过A(2,4),B(0,2)两点,且与x轴交于点C,求:(1)一次函数的解析式;(2)△AOC的面积.《第6章一次函数》参考答案与试题解析一、填空1.已知函数y=x﹣2,则当x=3时,y= 1 .【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把x=3代入方程,即可求得y的坐标.【解答】解:根据题意,把x=3代入方程,可得y=3﹣2=1.故填1.【点评】本题考查了一次函数图象上点的坐标特征,是基础题型.2.若函数y=(m﹣2)x+5﹣m是x的正比例函数,则m= 5 .【考点】正比例函数的定义.【分析】根据正比例函数的定义列出关于m的方程组,求出m的值即可.【解答】解:∵函数y=(m﹣2)x+5﹣m是x的正比例函数,∴,解得m=5.故答案为:5.【点评】本题考查的是正比例函数的定义,即一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数.3.函数y=x+3的图象与x轴的交点坐标为(﹣3,0).【考点】一次函数图象上点的坐标特征.【分析】令y=0,即可得函数与x轴交点坐标.【解答】解:根据题意,把y=0代入y=x+3得:0=x+3,解得x=﹣3,∴图象与x轴的交点坐标为(﹣3,0).【点评】本题考查了一次函数图象上点的坐标特征,是基础题型.4.一次函数y=kx+b的图象是由函数y=3x的图象向上平移2个单位而得到的,则该一次函数的解析式为y=3x+2 .【考点】一次函数图象与几何变换.【分析】由题意得y=3x过点(0,0),故平移过后一次函数过点(0,2),再根据平移之后k值不变,故可得出该一次函数解析式.【解答】解:由题意得:∵y=3x过点(0,0)∴y=3x平移过后过点(0,2)又∵平移不影响k的值,故可得出y=3x+b过点(0,2)代入得:2=b∴可得出该一次函数解析式为:y=3x+2.【点评】本题考查待定系数法求一次函数解析式,注意平移不影响k的值是关键.5.已知函数y=(m﹣3)x﹣4中,y值随x的增加而减小,则m的取值范围为m<3 .【考点】一次函数图象与系数的关系.【专题】计算题.【分析】利用一次函数的性质得到关于m的不等式.【解答】解:∵y值随x的增加而减小∴m﹣3<0,即m<3.故填m<3.【点评】熟练掌握一次函数y=kx+b的性质.当k>0,y随x的增大而增大;当k<0,y值随x的增加而减小.6.已知一次函数的图象与坐标轴的交点为(﹣2,0)、(0,2),则一次函数的解析式为y=x+2 .【考点】待定系数法求一次函数解析式.【专题】计算题.【分析】先设一次函数的解析式为y=kx+b,然后把两个点的坐标代入得到关于k、b的方程组,然后解方程组即可.【解答】解:设一次函数的解析式为y=kx+b,把(﹣2,0)、(0,2)代入得,解得,所以一次函数的解析式为y=x+2.故答案为y=x+2.【点评】本题考查了待定系数法求一次函数解析式:设一次函数的解析式为y=kx+b,再把直线上两个点的坐标代入得到关于k、b的方程组,然后解方程组求出k与b的值即可.7.已知点P既在直线y=﹣3x﹣2上,又在直线y=2x+8上,则P点的坐标为(﹣2,4).【考点】两条直线相交或平行问题.【专题】计算题.【分析】可设此点的坐标为(a,b)分别代入解析式求解方程组即可.【解答】解:根据题意,设点P的坐标为(a,b),代入两个解析式可得,b=﹣3a﹣2①,b=2a+8②,由①②可解得:a=﹣2,b=4,∴P点的坐标为(﹣2,4).【点评】本题考查了一次函数图象上的点的坐标特征,是基础题型.8.某一次函数的图象经过点(﹣1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:y=﹣x+1(答案不唯一).【考点】一次函数的性质.【专题】开放型.【分析】设一次函数的解释为y=kx+b(k<0),再把点(﹣1,2)代入得出k、b的关系,找出符合条件的k、b的值即可.【解答】解:∵一次函数y的值随x的增大而减小,∴设一次函数的解释为y=kx+b(k<0),∵函数的图象经过点(﹣1,2),∴﹣k+b=2,∴当k=﹣1时,b=1,∴符合条件的函数解析式可以为:y=﹣x+1.故答案为:y=﹣x+1(答案不唯一).【点评】本题考查的是一次函数的性质,此题属开放性题目,答案不唯一.二、选择题9.一次函数y=﹣3x+1的图象一定经过点()A.(2,﹣5)B.(1,0) C.(﹣2,3)D.(0,﹣1)【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把四个点的坐标分别代入y=﹣3x+1,若满足解析式,则可判断此点在直线y=﹣3x+1上.【解答】解:A、当x=2时,y=﹣3×2+1=﹣5,则点(2,﹣5)在直线y=﹣3x+1上,所以A选项正确;B、当x=1时,y=﹣3×1+1=﹣2,则点(1,0)不在直线y=﹣3x+1上,所以B选项错误;C、当x=﹣2时,y=﹣3×(﹣2)+1=7,则点(﹣2,3)不在直线y=﹣3x+1上,所以C选项错误;D、当x=0时,y=﹣3×0+1=1,则点(0,﹣1)不在直线y=﹣3x+1上,所以D选项错误.故选A.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线;直线上任意一点的坐标都满足函数关系式y=kx+b.10.函数y=中自变量x的取值范围()A.x≤B.x≥C.x>D.x<【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式进行计算即可得解.【解答】解:根据题意得,2x﹣5≥0,解得x≥.故选B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.11.已知函数y=x+m与y=mx﹣1,当x=3时,y值相等,那么m的值是()A.1 B.2 C.3 D.4【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】根据当x=3时,两个函数的函数值相等,将x=3代入两个函数中,令其相等,即可解得m 的值.【解答】解:∵当x=3时,两个函数的y值相等,即:3+m=3m﹣1解得:m=2故选B.【点评】本题比较简单,直接代入x=3的值,就可得出结果.12.一次函数y=x+3的图象与两坐标轴所围成的三角形面积为()A.6 B.3 C.9 D.4.5【考点】一次函数图象上点的坐标特征.【分析】先令x=0求出y的值,再令y=0求出x的值,根据三角形的面积公式求解即可.【解答】解:∵令x=0,y=3,令y=0,则x=﹣3,∴此函数与y轴的交点为(0,3),与x轴的交点为(﹣3,0),∴一次函数y=x+3的图象与两坐标轴所围成的三角形面积=×3×3=4.5.故选D.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数与坐标轴的交点特点是解答此题的关键.13.当k>0,b<0时,函数y=kx+b的图象大致是()A.B.C.D.【考点】一次函数图象与系数的关系.【分析】根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.【解答】解:由一次函数图象与系数的关系可得,当k>0,b<0时,函数y=kx+b的图象经过一三四象限.故选D .【点评】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限;k <0时,直线必经过二、四象限;b >0时,直线与y 轴正半轴相交;b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.14.把函数y=3x+2的图象沿着y 轴向下平移一个单位,得到的函数关系式是( )A .y=3x+1B .y=3x ﹣1C .y=3x+3D .y=3x+5【考点】一次函数图象与几何变换.【分析】原来函数过点(0,2),现在沿着y 轴向下平移一个单位,可知现在函数过(0,1)且斜率不变,即可得平移后的函数解析式.【解答】解:根据题意,可设平移后的直线的解析式为:y=3x+b ,而函数y=3x+2的图象过点(0,2),∴沿着y 轴向下平移一个单位可得点为(0,1),即点(0,1)在平移后的函数上,代入得:b=1, ∴函数关系式为:y=3x+1,故选A .【点评】本题考查了一次函数图象与几何变换,是基础题型.15.已知点A (﹣5,y 1)和点B (﹣4,y 2)都在直线y=﹣7x+b 上,则y 1与y 2的大小关系为( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定【考点】一次函数图象上点的坐标特征.【分析】分别把点代入解析式求坐标值比较或是根据﹣5<﹣4及函数递减性质直接判断.【解答】解:由直线y=﹣7x+b 可得,k=﹣7<0,∴函数图象上y 随x 的增大而减小,又∵﹣5<﹣4,∴y 1>y 2.故选A .【点评】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b :当k >0时,y 随x 的增大而增大;当k<0时,y随x的增大而减小.16.邮购一种图书,每册定价20元,另加书价的5%作邮资,购书x册,需付款y(元)与x的函数解析式为()A.y=20x+5%x B.y=20.05x C.y=20(1+5%)x D.y=19.95x【考点】根据实际问题列一次函数关系式.【专题】应用题.【分析】根据题意可得购买一册书需要花费(20+20×5%)元,根据此关系式可得出购书x册与需付款y(元)与x的函数解析式.【解答】解:由题意得;购买一册书需要花费(20+20×5%)元∴购买x册数需花费x(20+20×5%)元即:y=x(20+20×5%)=20(1+5%)x故选C.【点评】本题考查根据题意列方程的知识,要先表示出买一册书的花费,这样问题就迎刃而解了.17.如图,射线l甲、l乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是()A.甲比乙快 B.乙比甲快 C.甲、乙同速D.不一定【考点】函数的图象.【分析】因为s=vt,同一时刻,s越大,v越大,图象表现为越陡峭,可以比较甲、乙的速度.【解答】解:根据图象越陡峭,速度越快;可得甲比乙快.故选:A.【点评】此题主要考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.18.在y=kx中,当x=2时,y=﹣1,则当x=﹣1时,y=()A.﹣2 B.C.D.2【考点】待定系数法求正比例函数解析式.【专题】计算题.【分析】先根据所给自变量和函数的对应值,确定正比例函数的解析式,然后再将x=﹣1代入解析式,求出y的值.【解答】解:把x=2时,y=﹣1代入y=kx中,得2k=﹣1,解得,k=,所以y=x,当x=﹣1时,y=﹣×(﹣1)=.故选C.【点评】本题要首先利用待定系数法确定出正比例函数的解析式,当函数解析式确定后,已知x或y的任意一个值,都可以求出另一个值.三、解答题19.拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:(1)油箱中的余油量Q(升)与工作时间t(时)的函数关系式及自变量的取值范围;(2)当工作5小时时油箱的余油量【考点】根据实际问题列一次函数关系式.【专题】应用题.【分析】(1)由油箱中的余油量=原有油量﹣耗油量可求得函数解析式;(2)把自变量的值代入函数解析式求得相对应的函数值.【解答】解:(1)由题意可知:Q=40﹣4t(0≤t≤10);(2)把t=5时代入Q=40﹣4t得:油箱的余油量Q=20升.【点评】此题由数量关系列出函数解析式,再把自变量的值代入函数解析式求得相对应的函数值,问题解决.20.已知一次函数y=x+6﹣m,求:(1)m为何值时,函数图象交y轴于正半轴?(2)m为何值时,函数图象与y轴的交点在x轴的下方?(3)m为何值时,图象经过原点?【考点】一次函数图象与系数的关系.【专题】计算题.【分析】(1)要使函数图象交y轴于正半轴,y=kx+b中b的值需大于0,即6﹣m>0,解不等式即可.(2)要使函数图象与y轴的交点在x轴的下方,y=kx+b中b的值需小于0,即6﹣m<0,解不等式即可.(3)图象经过原点,即6﹣m=0.【解答】解:(1)由题意得,6﹣m>0,解得,m<6;(2)由题意得,6﹣m<0,解得,m>6;(3)由题意得,6﹣m=0,解得,m=6.【点评】对于直线y=kx+b,当b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.21.用图象法求下面二元一次方程组的近似解.【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】由题意求方程的近似解,画出函数y=﹣+2与函数y=3x﹣4的图象,两函数的图象即为所求的方程组的解.【解答】解:由题意可知函数y=﹣+2与函数y=3x﹣4的交点即为方程组的解,如下图,由上图可知,交点近似为(1.8,1.3),∴二元一次方程组的近似解为.【点评】此题主要考查一次函数的性质及其图象,把二元一次方程同一次函数联系起来,利用函数的图象来解二元一次方程,是一道不错的题型.22.(2014秋•四川校级期末)已知一次函数的图象经过A(2,4),B(0,2)两点,且与x轴交于点C,求:(1)一次函数的解析式;(2)△AOC的面积.【考点】待定系数法求一次函数解析式.【专题】待定系数法.【分析】(1)设一次函数解析式为y=kx+b,把两个点的坐标代入函数解析式求解即可;(2)△AOC的边OC的长度为2,OC边上的高等于点A的纵坐标的长度,代入三角形的面积公式计算即可.【解答】解:(1)设一次函数解析式为y=kx+b,∵图象经过A(2,4),B(0,2)两点,∴,解得,∴一次函数解析式为y=x+2;(2)=×OC×AC=×2×4=4,S△AOC∴△AOC的面积为4.【点评】本题主要考查待定系数法求函数解析式,待定系数法是求函数解析式常用的方法,也是中考的热点之一.。

八年级上册数学函数概念练习题

八年级上册数学函数概念练习题

课时14 平面直角坐标系与函数的概念【课前热身】1.函数3-=x y 的自变量x 的取值范围是 .2.若点P(2,k-1)在第一象限,则k 的取值范围是 .3.点A(-2,1)关于y 轴对称的点的坐标为___________;关于原点对称的点的坐标为________.4. 如图,葡萄熟了,从葡萄架上落下来,下面图象可以大致反映葡萄下落进程中的速度v 随时间转变情况是( )5.在平面直角坐标系中,平行四边形ABCD 极点A 、B 、D 的坐标别离是(0,0),(5,0)(2,3),则C 点的坐标是( )A .(3,7) B.(5,3)C.(7,3)D.(8,2)【考点链接】1. 坐标平面内的点与______________一一对应.2. 按照点所在位置填表(图) 点的位置 横坐标符号纵坐标符号 第一象限第二象限第三象限第四象限 3. x 轴上的点______坐标为0, y 轴上的点______坐标为0. 4. P(x,y)关于x 轴对称的点坐标为__________,关于y 轴对称的点坐标为________,关于原点对称的点坐标为___________.5. 描点法画函数图象的一般步骤是__________、__________、__________.6. 函数的三种表示方式别离是__________、__________、__________.7. x y =成心义,则自变量x 的取值范围是 . xy 1=成心义,则自变量x 的取值范围是 . 【典例精析】例1 ⑴ 在平面直角坐标系中,点A 、B 、C 的坐标别离为A (-•2,1),B (-3,-1),C (1,-1).若四边形ABCD 为平行四边形,那么点D 的坐标是_______.(2)将点A (3,1)绕原点O 顺时针旋转90°到点B ,则点B•的坐标是_____.例2 ⑴ 一天,亮亮发烧了,早晨他烧得厉害,吃过药后感觉好多了, 中午时亮亮的体温大体正常,可是下午他的体温又开始上升,直到半夜亮亮才感觉身上不那么烫了. 图中能大体上反映出亮亮这一天(0时~24时)体温的转变情况的是( )⑵ 汽车由长沙驶往相距400km 的广州. 若是汽车的平均速度是100km/h,那么汽车距广州的路程s(km)与行驶时间t(h)的函数关系用图象表示应为( )例3 一农人带了若干千克自产的马铃薯进城出售,为了方便, 他带了一些零钱备用,按市场价售出一些后,又降价出售, 售出马铃薯千克数与他手中持有的钱线(含备用零钱)的关系如图所示,结合图象回答下列问题:(1) 农人自带的零钱是多少?(2) 降价前他每千克马铃薯出售的价钱是多少?(3) 降价后他按每千克0.4元将剩余马铃薯售完,这时他手中的钱(含备用零钱) 是26元,问他一共带了多少千克马铃薯.【中考演练】1.函数11+=x y 中,自变量x 的取值范围是 .2.已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为 .3.将点(12),向左平移1个单位,再向下平移2个单位后取得对应点的坐标是 .4.点A(—3,2)关于y轴对称的点的坐标是()A.(-3,-2)B.(3,2)C.(3,-2)D.(2,-3)5.若点P(1-m,m)在第二象限,则下列关系式正确的是()A. 0<m<1B. m<0C. m>0D. m>l9.小强在劳动技术课中要制作一个周长为80cm的等腰三角形,请你写出底边长y(cm)与一腰长为x(cm)的函数关系式,并求出自变量x的取值范围.。

八年级数学上册《第十九章 一次函数》单元测试卷附带答案-人教版

八年级数学上册《第十九章 一次函数》单元测试卷附带答案-人教版

八年级数学上册《第十九章 一次函数》单元测试卷附带答案-人教版一、单选题1.对于函数y=x+1,自变量x 取5时,对应的函数值为( )A .3B .36C .16D .62.下列各图像中,y 不是x 的函数的是( ).A .B .C .D .3.已知正比例函数3y x =的图象经过点()1m ,,则m 的值为( ) A .13B .3C .13-D .3-4.若一次函数的3y x b =-+图象上有两点()12A y -,和()26B y ,,则下列1y ,2y 大小关系正确的是( ). A .12y y >B .12y y <C .12y y ≥D .12y y ≤5.如图,直线()0y kx b k =+≠经过点()32A -,,则关于x 的不等式2kx b +<解集为( )A .3x >-B .3x <-C .2x >D .2x <6.一个圆形花坛,面积S 与半径r 的函数关系式2S πr =中关于常量和变量的表述正确的是( )A .常量是2,变量是S 、π、rB .常量是2、π,变量是S 、rC .常量是2,变量是S 、πD .常量是π,变量是S 、r7.点在直线23y x =-+上的是( )A .()23,B .()21-,C .()30,D .()03-,8.根据图象,可得关于x 的不等式k 1x <k 2x+b 的解集是( )A .x <2B .x >2C .x <3D .x >39.同一平面直角坐标系中,一次函数1y k x b =+的图象与2y k x =的图象如图所示,则关于x 的方程12k x b k x +=的解为( )A .0x =B .1x =-C .2x =-D .以上都不对10.清明假期第一天天气晴朗,小明和爸爸去爬山.小明和爸爸同时从山脚出发,由于爸爸有爬山经验,匀速爬到山顶.小明刚开始的速度比爸爸快,累了之后减速继续爬山,和爸爸相遇后0.5h 才加速追赶爸爸,最终爸爸用2h 爬到了山顶,小明比爸爸晚了6min 到达.他们出发的时间x (单位:h )与爬山的路程y (单位:km )的函数图象如图所示,则下列说法错误的是( )A .爸爸爬山的速度为3km/hB .1.5h 时爸爸与小明的距离为0.5kmC .山脚到山顶的总路程为6kmD .小明加速追赶爸爸时的速度为3km/h二、填空题11.函数232x y x -=+中,自变量x 的取值范围是 . 12.正比例函数(2)y m x =-的图象从左到右逐渐下降,则m 的取值范围是 .13.将直线21y x =--向左平移a (0a >)个单位长度后,经过点()15-,,则a 的值为 . 14.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1,0.5,2.分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是 .三、解答题15.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分钟)之间的部分关系如图象所示.求从关闭进水管起需要多少分钟该容器内的水恰好放完.16.正比例函数 y kx = 的图象经过点 ()1,3A - , (),1B a a + 求a 的值.17.已知一次函数的图象经过点A (﹣4,9)与点B (6,3),求这个一次函数的解析式.18.由于灯管老化,现某学校要购进A 、B 两种节能灯管320只,A 、B 两种灯管的单价分别为25元和30元,现要求B 种灯管的数量不少于A 种灯管的3倍,那么购买A 种灯管多少只时,可使所付金额最少?最少为多少元?四、综合题19.如图,长为32米,宽为20米的长方形地面上,修筑宽度均为m 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与m (米)的函数关系式 . (2)计算当m =3时,地砖的费用.20.在平面直角坐标系中,一个正比例函数的图象经过点(12),,把此正比函数的图象向上平移5个单位,得到一次函数:y kx b =+ (1)求一次函数的解析式.(2)直线(0)y kx b k =+≠与x 轴交于点A ,求A 点的坐标.(3)点(1)B n -,是该直线上一点,点C 在x 轴上,当ABC 的面积为154时,请直接写出C 点的坐标.21.如图,一次函数()10y kx b k =+≠的图象分别与x 轴和y 轴相交于C 、()03A ,两点,且与正比例函数22y x =-的图象交于点()1B m -,.(1)求一次函数的解析式;(2)当12y y >时,直接写出自变量x 的取值范围;22.某养殖场计划今年养殖无公害标准化龙虾和鲤鱼,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:(单位: 千元/吨)品种 先期投资养殖期间投资产值 鲤鱼 9 3 30 龙虾41020苗的投放量为x 吨. (1)求x 的取值范围;(2)设这两个品种产出后的总产值为y(千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少?参考答案与解析1.【答案】D【解析】【解答】解:当x=5时,y=5+1=6故答案为:D .【分析】将x=5代入y=x+1,求出y 的值即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版八上《7.2 认识函数》同步练习2
◆基础训练
1.函数y=2x+1中自变量x 的取值范围是________.
2.x-2y=1改写成y 关于x 的函数是______.
3.函数y=x
中自变量x 的取值范围是( ) A .x ≤1且x ≠0 B .x>1且x ≠0 C .x ≠0 D .x<1且x ≠0
4.为解决药价虚高给老百姓带来的求医难问题,•国家决定对某药品的价格分两次降价,若设平均每次降价的百分率均为x ,该药品的原价是m 元,•两次降价后的价格是y 元,则y 与x 之间的函数关系是( )
A .y=2m (1-x )
B .y=2m (1+x )
C .y=m (1-x )2
D .y=m (1+x )2
5.求下列函数中自变量x 的取值范围:
(1)y=1x
; (2)y=x-1; (3)y=x 2-2x+1;
(4)21
(5)(6)1y y x ==-. 6.如图表示函数y 与x 之间的关系.
(1)写出x ,y 的取值范围;
(2)写出x=1时y 的值,y=2时x 的值.
7.A 、B 两地相距30千米,王强以每小时5千米的速度由A 步行到B ,若设他与B 地距离为y 千米,步行的时间为x 时,请写出y 与x 之间的函数关系式.
8.已知水池中有水600立方米,每小时放水50立方米.
(1)写出剩余水的体积Q (立方米)与时间t (小时)之间的函数关系式;
(2)求出自变量t 的取值范围;
(3)8小时后,池中还有多少立方米的水?
(4)几小时后,池中还有100立方米的水?
◆提高训练
9.如图所示是小思所设计的函数值计算程序,若输入x 的值为3,则输出的值为( )
A .5
B .9
C .-1
D .0
10.如图,△ABC 中,∠C=90°,AC=6,BC=8,设P 为BC 上任意一点(点P 不与点B ,C 重合),且CP=x ,设△APB 的面积为S .
(1)求S 与x 之间的函数关系式;(2)求自变量x 的取值范围.
11.设x 是销售某种商品的销售收入,y 是所得的毛利润(毛利润=销售收入-成本),若要使毛利润(毛利率=
毛利润成本)达到40%,则y 关于x 的函数关系式如何?你能求得吗?
12.老王购进一批苹果,到集贸市场零售,已知卖出的苹果数量x 与金额y•的关系如下表:
你能得到y 关于x 的函数关系式吗?
13.已知:功率×做功时间=力×位移.设功率为P ,•做功时间为t .•一辆拖车用了9000牛的力把一辆陷在水沟里的汽车拖出6米,所用时间为t 秒.
(1)求P 关于t 的函数关系式;
(2)如果这辆拖车只用6秒,就把一辆陷在水沟里的汽车拖出6米,•问拖车的功率是多少千瓦?
(3)如果改用功率为1.44千瓦的拖车用同样的力把陷在水沟里的汽车拖出6米,•则需要多少时间?(1瓦=
111 牛米秒

14.李师傅在今年4月1日带了徒弟小王,在师傅的指导下,•小王生产的件数每天增加2件,已知师傅每天可生产60件,小王想在第1个月就追上师傅.
(1)求小王的工作效率v (件/天)与工作时间t (天)之间的函数关系式;
(2)求第6天小王的工作效率;
(3)求第几天小王每天可生产38件;
(4)小王的愿望能实现吗?
◆拓展训练
15.小敏骑自行车于上午8:00从A 地出发,先到B 地游玩一会儿再去C 地游玩(如图),
已知小敏骑自行车的速度为18千米/时,
(1)小敏在B 地和C 地共停留了多少时间?(2)从A 地到C 地的路程是多少?
(3)如果小敏要在中午12时以前赶回A 地,她返程的速度至少要多少?
答案:
1.任何实数 2.y=12x-12
3.A 4.C 5.(1)x ≠0 (2)x 为任意实数 (3)x•为任意实数
(4)x ≤0 (5)x ≥-3 (6)x ≠±1
6.(1)0≤x ≤4,0≤y ≤4 (2)3,2 •7.•y=30-5x
8.(1)Q=600-50t (2)0≤t ≤12 (3)200立方米 (4)10小时
9.C 10.(1)S=24-3x (2)0<x<8 11.y=
27x 12.y=2.1x 13.(1)P=54000t
(2)9千瓦 (3)37.5秒 14.(1)v=2t (2)12件/天 (3)第19天 (4)能实现
15.(1)1时40分钟 (2)24千米 •(3)24千米/时.。

相关文档
最新文档