光伏组件原理及常见质量问题复习过程
光伏组件质量问题大盘点及预防措施
光伏组件质量问题大盘点及预防措施光伏组件质量问题一直以来都是用户关心的重点,今天就来盘点一下光伏组件较为常见的质量问题,及避免出现问题的预防措施。
其实很多质量问题隐藏在光伏组件内部,或者是光伏电站运营一段时间后才发生,在光伏系统安装验收时难以识别,需借助专业设备进行检测。
在2007年经过国家质检总局批准设立国家太阳能光伏产品质量监督检验中心(CPVT),拥有一支由教授级高工带领的、以博士和硕士为主体的高素质光伏检测研究团队,设备固定资产投资超过一亿元,检测办公面积12000平方米,具备光伏原辅材料、光伏部件、光伏组件、光伏电站等光伏全产业链产品检测研究能力,能够为光伏生产商提供所有市场准入的一站式认证服务。
一、蜗牛纹1.蜗牛纹的出现是一个综合的过程,EVA胶膜中的助剂、电池片表面银浆构成、电池片的隐裂以及体系中水份的催化等因素都会对蜗牛纹的形成起促进作用,而蜗牛纹现象的出现也不是必然,而是有它偶然的引发因素。
EVA胶膜配方中包含交联剂,抗氧剂,偶联剂等助剂,其中交联剂一般采用过氧化物来引发EVA树脂的交联,由于过氧化物属于活性较高的引发剂,如果在经过层压后交联剂还有较多残留的话,将会对蜗牛纹的产生有引发和加速作用。
2.EVA胶膜使用助剂都有纯度的指标,一般来说纯度要求要在99.5%以上。
助剂中的杂质主要是合成中的副产物以及合成中的助剂残留,以小分子状态存在,沸点较高,无法通过层压抽真空的方法从体系中排除,所以助剂如果纯度不高,那么这些杂质也将会影响EVA胶膜的稳定性,可能会造成蜗牛纹的出现。
组件影响:1.纹路一般都伴随着电池片的隐裂出现。
2.电池片表面被氧化。
3.影响了组件外观。
预防措施:1.VA胶膜使用符合纯度指标的助剂。
2.安装过程中对组件的轻拿轻放有足够认识。
二、EVA脱层1.交联度不合格.(如层压机温度低,层压时间短等)造成。
2.EVA、玻璃、背板等原材料表面有异物造成。
3.EVA原材料成分(例如乙烯和醋酸乙烯)不均导致不能在正常温度下溶解造成脱层。
光伏组件质量问题总结分析教学内容
光伏组件质量问题总结分析网状隐裂原因1.电池片在焊接或搬运过程中受外力造成.2.电池片在低温下没有经过预热在短时间内突然受到高温后出现膨胀造成隐裂现象组件影响:1.网状隐裂会影响组件功率衰减.2.网状隐裂长时间出现碎片,出现热斑等直接影响组件性能预防措施:1.在生产过程中避免电池片过于受到外力碰撞.3.EL测试要严格要求检验.网状隐裂EVA脱层原因1.交联度不合格.(如层压机温度低,层压时间短等)造成2.EVA、玻璃、背板等原材料表面有异物造成.3.EVA原材料成分(例如乙烯和醋酸乙烯)不均导致不能在正常温度下溶解造成脱层4.助焊剂用量过多,在外界长时间遇到高温出现延主栅线脱层组件影响:1.脱层面积较小时影响组件大功率失效。
当脱层面积较大时直接导致组件失效报废预防措施:1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验,并将交联度控制在85%±5%内。
2.加强原材料供应商的改善及原材检验.3.加强制程过程中成品外观检验4.严格控制助焊剂用量,尽量不超过主栅线两侧0.3mm硅胶不良导致分层&电池片交叉隐裂纹原因1.交联度不合格.(如层压机温度低,层压时间短等)造成2.EVA、玻璃、背板等原材料表面有异物造成.3.边框打胶有缝隙,雨水进入缝隙内后组件长时间工作中发热导致组件边缘脱层4.电池片或组件受外力造成隐裂组件影响:1.分层会导致组件内部进水使组件内部短路造成组件报废2.交叉隐裂会造成纹碎片使电池失效,组件功率衰减直接影响组件性能预防措施:1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验。
2.加强原材料供应商的改善及原材检验.3.加强制程过程中成品外观检验4.总装打胶严格要求操作手法,硅胶需要完全密封5.抬放组件时避免受外力碰撞硅胶不电池交良分层叉隐裂纹组件烧坏原因1.汇流条与焊带接触面积较小或虚焊出现电阻加大发热造成组件烧毁组件影响:1.短时间内对组件无影响,组件在外界发电系统上长时间工作会被烧坏最终导致报废预防措施:焊接,避免在焊接过程中出现焊接面积过小.2.焊接完成后需要目视一下是否焊接ok.3.严格控制焊接烙铁问题在管控范围内(375±15)和焊接时间2-3s组件内部烧坏组件接线盒起火原因1.引线在卡槽内没有被卡紧出现打火起火.2.引线和接线盒焊点焊接面积过小出现电阻过大造成着火.3.引线过长接触接线盒塑胶件长时间受热会造成起火组件影响:1.起火直接造成组件报废,严重可能一起火灾.预防措施:1.严格按照sop作业将引出线完全插入卡槽内接触接线盒塑胶件.电池裂片原因1.焊接过程中操作不当造成裂片2.人员抬放时手法不正确造成组件裂片3.层压机故障出现组件类片组件影响:1.裂片部分失效影响组件功率衰减,2.单片电池片功率衰减或完全失效影响组件功率衰减预防措施:1.汇流条焊接和返工区域严格按照sop手法进行操作3.确保层压机定期的保养.每做过设备的配件更换都要严格做好首件确认ok后在生产.4.EL测试严格把关检验,禁止不良漏失.电池助焊剂用量过多原因1.焊接机调整助焊剂喷射量过大造成2.人员在返修时涂抹助焊剂过多导致组件影响:1.影响组件主栅线位置EVA脱层,2.组件在发电系统上长时间后出现闪电纹黑斑,影响组件功率衰减使组件寿命减少或造成报废预防措施:1.调整焊接机助焊剂喷射量.定时检查.2.返修区域在更换电池片时请使用指定的助焊笔,禁止用大头毛刷涂抹助焊剂虚焊、过焊原因1.焊接温度过多或助焊剂涂抹过少或速度过快会导致虚焊2.焊接温度过高或焊接时间过长会导致过焊现象.组件影响:1.虚焊在短时间出现焊带与电池片脱层,影响组件功率衰减或失效,2.过焊导致电池片内部电极被损坏,直接影响组件功率衰减降低组件寿命或造成报废预防措施:1.确保焊接机温度、助焊剂喷射量和焊接时间的参数设定.并要定期检查,2.返修区域要确保烙铁的温度、焊接时间和使用正确的助焊笔涂抹助焊剂.3.加强EL检验力度,避免不良漏失下一工序.焊带偏移或焊接后翘曲破片原因1.焊接机定位出现异常会造成焊带偏移现象2.电池片原材主栅线偏移会造成焊接后焊带与主栅线偏移3.温度过高焊带弯曲硬度过大导致焊接完后电池片弯曲组件影响:1.偏移会导致焊带与电池面积接触减少,出现脱层或影响功率衰减2.过焊导致电池片内部电极被损坏,直接影响组件功率衰减降低组件寿命或造成报废3.焊接后弯曲造成电池片碎片预防措施:1.定期检查焊接机的定位系统.2.加强电池片和焊带原材料的来料检验,组件钢化玻璃爆和接线盒导线断裂原因1.组件在搬运过程中受到严重外力碰撞造成玻璃爆破2.玻璃原材有杂质出现原材自爆.3.导线没有按照规定位置放置导致导线背压坏.组件影响:1.玻璃爆破组件直接报废,预防措施:1.组件在抬放过程中要轻拿轻放.避免受外力碰撞.2.加强玻璃原材检验测试,3.导线一定要严格按照要求盘放.避免零散在组件上气泡产生原因1.层压机抽真空温度时间过短,温度设定过低或过高会出现气泡2.内部不干净有异物会出现气泡.3.上手绝缘小条尺寸过大或过小会导致气泡.组件影响:1.组件气泡会影响脱层.严重会导致报废预防措施:1.层压机抽真空时间温度参数设定要严格按照工艺要求设定.2.焊接和层叠工序要注意工序5s清洁,3.绝缘小条裁切尺寸严格要求进行裁切和检查.热斑和脱层原因1.组件修复时有异物在表面会造成热斑2.焊接附着力不够会造成热斑点.3.脱层层压温度、时间等参数不符合标准造成组件影响:1.热斑导致组件功率衰减失效或者直接导致组件烧毁报废.2.脱层导致组件功率衰减或失效影响组件寿命使组件报废.预防措施:1.严格按照返修SOP要求操作,并注意返修后检查注意5s.2.焊接处烙铁温度焊焊机时间的控制要符合标准,3.定时检查层压机参数是否符合工艺要求.同时要按时做交联度实验确保交联度符合要求85%±5%.电池热脱层斑烧毁EVA脱层原因1.交联度不合格.(如层压机温度低,层压时间短等)造成2.EVA、玻璃、背板等原材料表面有异物造成.3.EVA原材料成分(例如乙烯和醋酸乙烯)不均导致不能在正常温度下溶解造成脱层组件影响:1.脱层会导致组件内部进水使组件内部短路造成组件失效至报废预防措施:1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验。
光伏组件层压出现的质量问题原因与分析
光伏组件层压出现的质量问题原因与分析引言随着光伏产业科技的进步和成熟,市场的饱和,导致原材料的种类和日供应量日趋紧张,行业利益更加的透明,面对的挑战更加激烈,如何在大环境下提高产品的质量,降低成本,提高产品的合格率成了在光伏市场中制胜的关键。
1、光伏组件质量问题目前主流的光伏组件的加工工艺采用EVA、背板、玻璃、电池片等材料层压组成,从焊接到成品测试和包装入库的完成,各个工序之间相互影响相互制约,组件的质量影响用户在户外的使用寿命,从实际生产中存在组件质量主要问题有:生产中出现电池片隐裂碎片、气泡、空胶、组件外观变形、接线盒烧毁等问题。
在生产过程中出现的气泡、组件边缘分层进行分析,针对气泡和组件边缘分层问题从层压工艺和原材料进行分析及提出改进措施提供参考。
2、气泡的影响在国标地面用晶体硅光伏组件要求组件破碎、开裂或外表脱附;在组件的边缘和任何一部分电路之间形成连续的气泡或脱层通道,都视为严重的外观缺陷。
[1]当组件在户外使用的时候,由于收到光照和组件正常工作的影响,气泡会呈现扩大化趋势,长此以往,气泡位置的EVA会与玻璃和背板脱层,组件中进入水汽,组件性能和功率受到严重影响,最终导致组件报废。
3、气泡的产生的原因分析和解决方案3.1汇流带边缘气泡3.1.1汇流带之间的存在高度差,气体流动受阻,加之抽空时间较短,组件边缘在层压过程中开始交联,导致层压过程中产生的气体无法顺利抽出;解决方案:调整汇流带工艺方式,增加隔离厚度。
3.1.2层压机设定的层压温度高或层压时间过长,在层压过程中汇流带升温速度快,汇流带位置的EVA预先交联,当组件交联度达到标准时,汇流带位置的交联度已过交联;解决方案:适当调整层压工艺参数。
3.2焊带根部气泡3.2.1焊带弯折处有缝隙,焊带之间存在高度差,在层压过程中EVA变软具有流动性,流动的EVA填充组件中的缝隙,焊带之间的高度差大于EVA的流动的胶量,致使EVA无法填满焊带之间的缝隙;解决方案:增加焊带之间的胶量。
太阳能光伏组件常见质量问题现象及分析
虚焊、过焊
虚焊、过焊原因
1.焊接温度过多或助焊剂涂抹过少或速度 过快会导致虚焊
2.焊接温度过高或焊接时间过长会导致过 焊现象. 组件影响:
1.虚焊在短时间出现焊带与电池片脱层, 影响组件功率衰减或失效, 2.过焊导致电池片内部电极被损坏,直接
影响组件功率衰减降低组件寿命或造成
报废 预防措施:
1.确保焊接机温度、助焊剂喷射量和焊接 时间的参数设定. 并要定期检查, 2.返修区域要确保烙铁的温度、焊接时间 和使用正确的助焊笔涂抹助焊剂. 3.加强EL检验力度,避免不良漏失下一 工序.
• 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19
焊带偏移或焊接后翘曲破片
焊带偏移或焊接后翘曲破片原因 1.焊接机定位出现异常会造成焊带偏 移现象 2.电池片原材主栅线偏移会造成焊接 后焊带与主栅线偏移 3.温度过高焊带弯曲硬度过大导致焊 接完后电池片弯曲 组件影响: 1.偏移会导致焊带与电池面积接触减 少,出现脱层或影响功率衰减 2.过焊导致电池片内部电极被损坏, 直接影响组件功率衰减降低组件寿命 或造成报废 3.焊接后弯曲造成电池片碎片 预防措施: 1.定期检查焊接机的定位系统. 2.加强电池片和焊带原材料的来料检 验,
电池裂片
电池裂片原因
1.焊接过程中操作不当造成裂片 2.人员抬放时手法不正确造成组件裂片 3.层压机故障出现组件类片 组件影响:
光伏组件缺陷形成机理
光伏组件缺陷形成机理光伏组件是太阳能发电系统中的核心部分,其性能直接影响到整个系统的效率和稳定性。
然而,在制造和使用过程中,光伏组件可能会出现各种缺陷。
本文将详细阐述光伏组件缺陷形成机理及主要影响因素,帮助读者更好地了解光伏组件制造过程。
一、原材料问题光伏组件制造过程中,原材料的质量和稳定性对组件的性能和可靠性有着重要影响。
常见的原材料问题包括:1. 硅片质量不均匀:硅片是光伏组件的核心材料,其质量不均匀会导致组件功率下降、效率降低。
2. 电池片效率低:电池片是光伏组件中的重要组成部分,效率低下的电池片会直接影响到组件的整体效率。
3. 封装材料质量差:封装材料主要包括玻璃、EVA、背板等,质量差的封装材料可能会导致组件漏水、起泡等问题。
二、工艺问题光伏组件制造过程中,工艺控制对组件的性能和可靠性起着至关重要的作用。
常见的工艺问题包括:1. 烧结温度过高:烧结是光伏组件制造过程中的一个关键步骤,温度过高会导致硅片变形、电池片损坏等问题。
2. 时间过长或过短:烧结时间过长或过短都会影响到组件的性能,时间过长会导致硅片变形、电池片损坏等问题,时间过短则会导致封装材料未完全固化,影响组件的可靠性。
3. 焊接质量差:焊接是光伏组件制造过程中一个重要的环节,焊接质量差会导致组件功率下降、效率降低,甚至出现开路、短路等问题。
三、环境因素光伏组件制造过程中,环境因素也会对其质量和可靠性产生重要影响。
常见的环境因素包括:1. 温度变化:温度变化会影响到光伏组件的性能和可靠性,过高或过低的温度都可能对组件造成损害。
2. 湿度变化:湿度变化可能引起封装材料老化、电池片腐蚀等问题,进而导致组件性能下降。
3. 污染:生产环境中的污染物可能附着在光伏组件表面,影响其性能和可靠性。
四、人为因素人为因素是影响光伏组件质量和可靠性的重要因素之一。
常见的人为因素包括:1. 操作不规范:操作人员未按照规定的流程和标准进行操作,可能会导致组件出现各种问题。
光伏组件常见问题汇总 原因分析 影响及预防措施
未打胶会进入雨水或湿气造成连电组件起火现象.
1.组件功率过低. 2.连接不良出现电阻加大,打火造成组件烧毁. 1.硅胶不固化胶会从线盒缝隙边缘流出,盒内引线会暴露 在空气中遇雨水或湿气会造成连电使组件起火现象.
1.外观不良客户不接受. 2.可能会造成脱层现象
1.影响组件整体外观.造成投诉预防措施: 1.对层叠和玻璃上料工序做好 5S 清洁,避免异物出现. 2.发现不良后禁止在组件上做标记,直接在流程卡上记录 不良位置. 3.产线产品摆放严格执行“三定”原则标识摆放 1.影响组件整体外观.造成投诉
光伏组件质量问题及预防措施汇总
光伏组件质量问题及预防措施汇总光伏组件较为常见的质量问题汇总,很多质量问题隐藏在电池板内部,或光伏电站运营一段时间后才发生,在电池板进场验收时难以识别,需借助专业设备进行检测。
1、蜗牛纹1.蜗牛纹的出现是一个综合的过程,EVA胶膜中的助剂、电池片表面银浆构成、电池片的隐裂以及体系中水份的催化等因素都会对蜗牛纹的形成起促进作用,而蜗牛纹现象的出现也不是必然,而是有它偶然的引发因素。
EVA胶膜配方中包含交联剂,抗氧剂,偶联剂等助剂,其中交联剂一般采用过氧化物来引发EVA 树脂的交联,由于过氧化物属于活性较高的引发剂,如果在经过层压后交联剂还有较多残留的话,将会对蜗牛纹的产生有引发和加速作用。
2.EVA胶膜使用助剂都有纯度的指标,一般来说纯度要求要在99.5%以上。
助剂中的杂质主要是合成中的副产物以及合成中的助剂残留,以小分子状态存在,沸点较高,无法通过层压抽真空的方法从体系中排除,所以助剂如果纯度不高,那么这些杂质也将会影响EVA胶膜的稳定性,可能会造成蜗牛纹的出现。
组件影响:1.纹路一般都伴随着电池片的隐裂出现。
2.电池片表面被氧化。
3.影响了组件外观。
预防措施:1.VA胶膜使用符合纯度指标的助剂。
2.安装过程中对组件的轻拿轻放有足够认识。
3.EVA脱层1.交联度不合格.(如层压机温度低,层压时间短等)造成。
2.EVA、玻璃、背板等原材料表面有异物造成。
3.EVA原材料成分(例如乙烯和醋酸乙烯)不均导致不能在正常温度下溶解造成脱层。
4.助焊剂用量过多,在外界长时间遇到高温出现延主栅线脱层。
组件影响:1.脱层面积较小时影响组件大功率失效。
当脱层面积较大时直接导致组件失效报废。
预防措施:1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验,并将交联度控制在85%±5%内。
2.加强原材料供应商的改善及原材检验。
3.加强制程过程中成品外观检验。
4.严格控制助焊剂用量,尽量不超过主栅线两侧0.3mm。
光伏组件原理及常见质量问题
2.组件工艺过程及常见质量问题
采用质量优良的原材料
➢ 组件各种封装原材料应有技术规范或技术标准 ,符合中华人民共和 国国家标准(GB),中华人民共和国电力行业标准(DL),中华人 民共和国电子行业标准(SJ)及相关的IEC标准。在国内标准与IEC标 准矛盾时,应按较高标准执行。
I=x V=y
1
I=x 2
V=y
I=z<x V=y
3
4
I=x V=y
I=z V=4y
P=4zy<4xy
2.组件工艺过程及常见质量问题
• 组件原材料— 太阳电池
➢太阳电池对组件质量的影响 ✓ 电池混档表现:由于组件中电池片之间不匹配导致测试异常,曲 线出现“台阶”。EL也会出现亮度不同的现象。
2.组件工艺过程及常见质量问题
✓背板的水汽渗透率过高,容易引起组件的PID,影响组件的衰减特 性。
3.组件工艺过程及常见质量问题
• 组件原材料— 背板
➢背板对组件质量的影响 背板黄变:组件在户外使用1—2年后PET背板和FEVE涂料背板颜色 变化明显,PVDF背板、KPE背板和BBF背板颜色也有变化,Tedlar和 TPT背板颜色相对更为稳定。
EVA胶膜在未层压前是线性大分子,当受热时,交联剂分解,形成活性自由 基,引发EVA分子间反应形成网状结构。从而提高EVA的力学性能、耐热 性、耐溶剂性、耐老化性。
2.组件工艺过程及常见质量问题
• 组件原材料— EVA
➢EVA对 降低13%max; 转换效率eff降低19%max;
温度系数测量
- 确定组件电流(α),电压(β)和最大功率(δ)的温度系数;
标称工作温度测量
- 标称工作温度是指在标准参考环境下,敞开式支架安装情况下,太阳 电池的平均平衡结温。在系统设计中,比较不同组件设计的性能时该 参数是一个很有价值的参数。
光伏建筑一体化组件常见质量问题及解决方法
光伏建筑一体化组件常见质量问题及解决方法【摘要】本文主要阐述了光伏建筑一体化(BIPV)组件在生产过程中出现的一些质量问题和解决方法,从而提高产品的封装质量,延长使用寿命,促进产业的良性开展。
【关键词】光伏;建筑;构造;质量;方法1、引言光伏建筑一体化(BIPV)组件是应用太阳能发电,不会污染环境、不占用土地、减少电力在传输过程中的电力损耗、减少建筑物的整体造价。
BIPV光伏系统发电效率高、可降低发电本钱。
随着全球太阳能光伏发电比重的增加,光伏建筑一体化(BIPV)发电将成为光伏发电的主流。
但是现阶段同行业的竞争压力越来越大,目前各个企业均在不断的改进生产工艺,减少产品质量问题,提高组件的成品率。
2、常见质量问题及改进方法。
光伏建筑一体化(BIPV)组件,一般采用层压机封装,易产生的问题主要有以下几方面:组件本身设计不合理、组件内部气泡、组件边缘空胶、电池串位置移动、电池片碎片等。
2.1组件设计方面在满足透光率和光电的转换效率的前提下,电池片间距尽量小,电池片到玻璃边缘的距离尽量大。
组件在层压阶段,层压机的硅胶板与组件外表接触,组件外表受到硅胶板向下的压力,硅胶板逐渐作用于玻璃边缘,此时,玻璃边缘分别受到一个向下的压力及向组件内部的分应力。
此时如果电池片距离玻璃边缘太近,焊带就很有可能弯曲。
2.2组件气泡方面2.2.1组件预压完成后出现的气泡:抽真空不充分,PVB内部有空气残留。
解决的方法是:调整层压工艺参数,适当延长抽真空时间;PVB胶片的存储环境不合格(由于PVB胶片的吸水性极强,储存条件有严格的要求:相对温度1820°C,相对湿度2530%);PVB厚度不均匀,造成局部充填不良;钢化玻璃自身的弯曲度不同,导致两层玻璃间存在缝隙;上下两片玻璃尺寸大小不同,导致敷设组件时上下玻璃不能完全对齐。
2.2.2组件内部气泡回返现象生产出的合格组件在放置一端时间后,组件的边缘出现了气泡,具体解决方法如下:①在真空预压生产完毕后,待组件冷却下来,就要将组件进展高压釜固化处理,预压组件在现场放置时间不得超过24小时,否那么也会造成气泡回返现象的发生。
光伏组件培训资料
光伏组件培训资料第一章:光伏组件基础知识光伏组件是光伏电站的核心组成部分,负责将太阳能转化为电能。
本章将介绍光伏组件的基础知识,包括构成、工作原理和分类等内容。
1.1 光伏组件的构成光伏组件主要由光伏电池、外壳、背板、接线盒和钢化玻璃等部分构成。
光伏电池是将太阳能转化为电能的核心元件,外壳和背板起到保护和支撑作用,接线盒则用于连接电池和输入输出电路,而钢化玻璃作为光伏组件的表面保护层。
1.2 光伏组件的工作原理光伏组件的工作原理基于光伏效应,通过将光能转换为电能实现电力的发电。
当光线照射到光伏组件上时,光伏电池中的半导体材料将光能吸收并将其转换为电能。
这些电能经过电池的排列和连接后,可以输出稳定的直流电。
1.3 光伏组件的分类根据材料和工艺的不同,光伏组件可以分为单晶硅、多晶硅和非晶硅三种类型。
其中,单晶硅光伏组件具有高转换效率和较好的温度特性,多晶硅光伏组件相对便宜但效率略低,非晶硅光伏组件则具有柔性和轻薄特点。
第二章:光伏组件性能测试与评估光伏组件的性能测试与评估是确保光伏电站正常运行的重要环节。
本章将介绍光伏组件的性能测试方法和评估标准,并介绍光伏组件的常见问题及解决方法。
2.1 光伏组件性能测试方法光伏组件的性能测试主要包括输出功率测试、开路电压测试、短路电流测试和填充因子测试等。
这些测试方法可以帮助评估光伏组件的实际发电能力、工作稳定性和电气参数。
2.2 光伏组件性能评估标准光伏组件的性能评估标准主要包括转换效率、温度系数、光电流和漏电流等多个指标。
这些指标能够全面评估光伏组件的能量转换效率、抗压能力和安全性能。
2.3 光伏组件常见问题及解决方法光伏组件在使用过程中可能会出现一些常见问题,如灰尘覆盖、组件老化和线路损耗等。
本节将介绍这些问题的原因分析和解决方法,以确保光伏组件的正常发电效果。
第三章:光伏组件安装与维护光伏组件的安装和维护对于保证光伏电站的正常运行至关重要。
本章将介绍光伏组件的安装要点和维护注意事项,帮助培训人员掌握光伏组件的安装和维护技能。
光伏组件常见的质量问题有哪些?
光伏组件常见的质量问题有:热斑、隐裂和功率衰减。
由于这些质量问题隐藏在电池板内部,或光伏电站运营一段时间后才发生,在电池板进场验收时难以识别,需借助专业设备进行检测。
热斑形成原因及检测方法光伏组件热斑是指组件在阳光照射下,由于部分电池片受到遮挡无法工作,使得被遮盖的部分升温远远大于未被遮盖部分,致使温度过高出现烧坏的暗斑。
光伏组件热斑的形成主要由两个内在因素构成,即内阻和电池片自身暗电流。
热斑耐久试验是为确定太阳电池组件承受热斑加热效应能力的检测试验。
通过合理的时间和过程对太阳电池组件进行检测,用以表明太阳电池能够在规定的条件下长期使用。
热斑检测可采用红外线热像仪进行检测,红外线热像仪可利用热成像技术,以可见热图显示被测目标温度及其分布。
隐裂形成原因及检测方法隐裂是指电池片中出现细小裂纹,电池片的隐裂会加速电池片功率衰减,影响组件的正常使用寿命,同时电池片的隐裂会在机械载荷下扩大,有可能导致开路性破坏,隐裂还可能会导致热斑效应。
隐裂的产生是由于多方面原因共同作用造成的,组件受力不均匀,或在运输、倒运过程中剧烈的抖动都有可能造成电池片的隐裂。
光伏组件在出厂前会进行EL 成像检测,所使用的仪器为EL 检测仪。
该仪器利用晶体硅的电致发光原理,利用高分辨率的CCD 相机拍摄组件的近红外图像,获取并判定组件的缺陷。
EL 检测仪能够检测太阳能电池组件有无隐裂、碎片、虚焊、断栅及不同转换效率单片电池异常现象。
功率衰减分类及检测方法光伏组件功率衰减是指随着光照时间的增长,组件输出功率逐渐下降的现象。
光伏组件的功率衰减现象大致可分为三类:第一类,由于破坏性因素导致的组件功率衰减;第二类,组件初始的光致衰减;第三类,组件的老化衰减。
其中,第一类是在光伏组件安装过程中可控制的衰减,如加强光伏组件卸车、倒运、安装质量控制可降低组件电池片隐裂、碎裂出现的概率等。
第二类、第三类是光伏组件生产过程中亟需解决的工艺问题。
光伏组件功率衰减测试可通过光伏组件I-V 特性曲线测试仪完成。
太阳能光伏组件常见质量问题现象及分析 ppt
预防措施: 1.在生产过程中避免电池片过于受到外力碰 撞. 2.在焊接过程中电池片要提前保温(手焊) 烙铁温度要 符合要求. 3.EL测试要严格要求检验.
-
8
硅胶不良导致分层&电池片交叉隐裂纹原因
硅胶不良导致分层&电池片交叉隐裂纹原因
1.交联度不合格.(如层压机温度低,层压时间短
等)造成
2.EVA、玻璃、背板等原材料表面有异物造成.
-
10
异物和玻璃表面红笔印
异物和玻璃表面红笔印原因:
1.层叠和玻璃上料处5S不清洁造成 异物被压在组件内, 2.人员发现不良做好标记评审完后未 及时清理直接包装.
组件影响:
1.影响组件整体外观.造成投诉预防 措施: 1.对层叠和玻璃上料工序做好5S清 洁,避免异物出现. 2.发现不良后禁止在组件上做标记, 直接在流程卡上记录不良位置. 3.产线产品摆放严格执行“三定”原 则标识摆放
区分投放避免混片.
3.返修区域做好电池片颜色等级的
标识,返工时和返工后做自己动作,
避免用错片子造成色差
-
2
焊带偏移或焊接后翘曲破片
焊带偏移或焊接后翘曲破片原因 1.焊接机定位出现异常会造成焊带偏 移现象 2.电池片原材主栅线偏移会造成焊接 后焊带与主栅线偏移 3.温度过高焊带弯曲硬度过大导致焊 接完后电池片弯曲 组件影响: 1.偏移会导致焊带与电池面积接触减 少,出现脱层或影响功率衰减 2.过焊导致电池片内部电极被损坏, 直接影响组件功率衰减降低组件寿命 或造成报废 3.焊接后弯曲造成电池片碎片 预防措施: 1.定期检查焊接机的定位系统. 2.加强电池片和焊带原材料的来料检 验,
-
11
低效原因 1.低档次电池片混放到高档次组 件内,(原材混料/ 或制程中混 料)
太阳能光伏系统质量问题处理记录
太阳能光伏系统质量问题处理记录一、问题描述在使用太阳能光伏系统的过程中,我们发现了一些质量问题,现进行记录如下:1. 组件损坏:在安装太阳能光伏系统的过程中,有部分组件出现损坏,表现为玻璃板破损、电池片脱落等问题。
2. 连接线松动:有些系统出现了连接线松动的情况,导致光伏组件与电汇箱之间的连接不牢固,影响了系统的正常发电。
3. 不稳定输出:部分太阳能光伏系统在运行期间出现了电压波动、频繁的断电等问题,造成系统发电不稳定。
二、问题分析与原因针对上述问题,我们进行了详细的分析,并找到了以下原因:1. 运输与安装:在运输和安装过程中,组件可能受到了外力的挤压和碰撞,导致组件损坏。
2. 连接线安装不牢固:连接线在安装过程中可能没有正确固定,或者存在接触不良的情况,导致线路不稳定。
3. 设备质量问题:有些组件或其他设备本身存在质量问题,导致系统运行异常。
三、问题处理措施为解决以上质量问题,我们制定了以下处理措施:1. 更换损坏组件:对于损坏的组件,我们将进行更换,并严格要求供应商提供质量保证。
2. 固定连接线:重新检查连接线的安装情况,确保连接牢固,并进行适当的扎紧和固定。
3. 设备质量把关:加强对组件和其他相关设备的质量把关,与供应商建立长期合作关系,并进行定期的设备检查与维护。
4. 增强监控系统:完善太阳能光伏系统的监控设备,实时监测系统运行情况,及时发现并处理异常情况。
5. 健全售后服务:建立健全的售后服务体系,为用户提供及时的技术支持和问题解决。
四、效果评估经过以上处理措施的实施,我们对太阳能光伏系统的质量问题取得了一定的改善效果:1. 组件损坏降低:新组件不再出现损坏的情况,系统使用寿命得到了有效延长。
2. 连接线稳固:经过重新固定连接线后,系统运行稳定,断电情况大大减少。
3. 输送稳定性提升:系统电压波动情况明显下降,整体发电稳定性得到了提升。
五、结论通过以上的质量问题处理记录,我们更加深刻认识到太阳能光伏系统质量问题的重要性。
光伏组件简介及常见的21个质量问题介绍
光伏组件简介及常见的21个质量问题介绍展开全文组件定义1、具有封装及内部联结2、能单独提供直流电输出3、具有最小不可分割的光伏电池组合装置为什么要制造组件,电池片不可以直接用吗?1、电极暴露在空气中,极容易氧化2、单个晶硅电池片功率偏低,电压仅有0.5v左右3、厚度太薄,容易折断,不易搬运4、耐候性较差,电池片衰减较快组件分类1、按太阳能电池片类型分类晶体硅(单、多晶硅)太阳能光伏组件非晶硅薄膜太阳能光伏组件砷化镓光伏组件等;2、按封装材料和工艺分类环氧树脂封装电池板层压封装电池组件3、按用途的不同分类普通型太阳能光伏组件建材型太阳能光伏组件。
其中建材型太阳能光伏组件又分为单面玻璃透光型光伏组件、双面夹胶玻璃光伏组件和双面中空玻璃光伏组件。
组件工艺生产流程组件常见问题1、组件表面脏2、电池片有色差3、组件有气泡、EVA有脱层现象4、组件碎裂5、其他质量问题组件常见问题原因、影响及措施【网状隐裂原因】1.电池片在焊接或搬运过程中受外力造成.2.电池片在低温下没有经过预热在短时间内突然受到高温后出现膨胀造成隐裂现象组件影响:1.网状隐裂会影响组件功率衰减.2.网状隐裂长时间出现碎片,出现热斑等直接影响组件性能预防措施:1.在生产过程中避免电池片过于受到外力碰撞.2.在焊接过程中电池片要提前保温(手焊)烙铁温度要符合要求.3.EL测试要严格要求检验。
【EVA脱层原因】1.交联度不合格.(如层压机温度低,层压时间短等)造成2.EVA、玻璃、背板等原材料表面有异物造成.3.EVA原材料成分(例如乙烯和醋酸乙烯)不均导致不能在正常温度下溶解造成脱层4. 助焊剂用量过多,在外界长时间遇到高温出现延主栅线脱层组件影响:1.脱层面积较小时影响组件大功率失效。
当脱层面积较大时直接导致组件失效报废预防措施:1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验,并将交联度控制在85%±5%内。
2.加强原材料供应商的改善及原材检验.3. 加强制程过程中成品外观检验4.严格控制助焊剂用量,尽量不超过主栅线两侧0.3mm【硅胶不良导致分层&电池片交叉隐裂纹原因】1.交联度不合格.(如层压机温度低,层压时间短等)造成2.EVA、玻璃、背板等原材料表面有异物造成.3.边框打胶有缝隙,雨水进入缝隙内后组件长时间工作中发热导致组件边缘脱层4.电池片或组件受外力造成隐裂组件影响:1.分层会导致组件内部进水使组件内部短路造成组件报废2.交叉隐裂会造成纹碎片使电池失效,组件功率衰减直接影响组件性能预防措施:1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验。
光伏电站质量问题及全流程质量管理
光伏电站质量问题及全流程质量管理近年来,光伏电站凭借其清洁、高效、灵活的应用优势,使其得到越来越多人的关注,这也使我们大力推动光伏电站建设。
与此同时,由于我们对光伏电站的建设经验不足,光伏电站在建设过程中频繁出现质量问题,从而降低了光伏电站的建设质量。
对于光伏电站来说,其涉及到诸多环节,任何环节的管理不到位,都可能会出现质量问题。
为此,本文对光伏电站的质量问题进行分析,并以全流程角度阐述了光伏电站的质量管理。
标签:光伏电站;质量问题;质量管理随着自然能源的日益枯竭,人们对电力资源需求的不断增加,使人们迫切需要通过可再生能源来转化电能,从而在满足电力需求的同时,还能够保护人类的自然生态环境。
太阳能作为一种可再生能源,利用太阳能来转化为电能,已经受到越来越多人的关注,光伏电站便是将太阳能转化为电能的一种重要发电设施。
近年来,我国大力开展光伏电站建设,但由于我国相比于其他发达国家,在光伏电站建设的经验积累上存在很大不足,致使光伏电站在建设中经常出现各种质量问题。
而要解决这些质量问题,就必须要对光伏电站建设的各个环节进行严格的管理,这对于提高我国光伏电站建设质量有着十分重要的意义。
一、光伏电站质量问题分析由于光伏电站的发电效果受到当地日照条件的很大影响,因此光伏电站的建设地点主要分布在我国西部地区。
光伏电站在建设过程中主要存在以下质量问题:其一,是设计质量问题,由于在制定光伏电站建设方案时,没有对当地的环境进行充分的考虑,或是在光伏电站建设中,没有对设计细节进行充分的考虑,都会造成光伏电站在建设中出现质量问题;其二,是设备质量问题,在光伏电站建设中,所使用的设备经常存在“以次充好”的现象,即使是厂家所提供的设备,也往往很难保证其自身质量;其三,是施工质量问题,在光伏电站施工中,所使用的设备及材料质量较差,无法满足光伏电站的建设要求,同时,所采用的施工工艺不够精细,致使光伏电站在施工过程中存在很多质量隐患。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平衡系统
光伏组件
配电系统 土建工程等
光伏组件是光伏电站的 核心,也是初始投资之 最大构成,光伏组件成 本越低,初始投资越少 ,光伏组件质量越高, 使用年限越长,发电量 越高,度电成本越低。
2.组件工艺过程及常见质量问题
光伏组件存在问题
✓影响光伏组件质量因 素有哪些?
✓认证后的产品为什么 还在实际应用中频繁出 现故障?
温度系数测量
- 确定组件电流(α),电压(β)和最大功率(δ)的温度系数;
标称工作温度测量
- 标称工作温度是指在标准参考环境下,敞开式支架安装情况下,太阳 电池的平均平衡结温。在系统设计中,比较不同组件设计的性能时该 参数是一个很有价值的参数。
- 至少选用10个数据点,覆盖300W/m2以上辐照度范围,做(TJ-Tamb) 随辐照度变化的曲线,做回归分析拟合;
冰雹试验
- 验证组件经受冰雹撞击的能力(无间歇断路现象,无严重外观缺陷, Pmax衰减<5%,满足绝缘测试要求);
旁路二极管热性能试验
- 评价旁路二极管的热设计及防止对组件有害的热斑效应能相对长期的可靠
- 确定800W/m2时的(TJ-Tamb)值,加上20℃即为标称工作温度;
15
2.组件工艺过程及常见质量问题
NOCT下的电性能:
- 条件:标称工作温度,及800W/m2的辐照度,组件带载情况下的电性能 - 操作执行:可在测温度系数时同时执行
STC下的电性能:
- 条件:温度25 ℃,辐照度1000W/m2,组件带载情况下的电性能 - 操作执行:太阳能模拟器
紫外预处理试验
- 热循环和湿冻前,进行紫外线预测试以证明材料和连接能经受紫外衰减; - 波长280nm ~400nm,5倍于对应标准光谱辐照度;
热循环试验
1. 太阳电池组件无严重外 观缺陷;
2. 太阳电池组件最大输出 功率的衰减不超过试验 前测试值的5%。
3. 满足绝缘要求
17
2.组件工艺过程及常见质量问题
湿漏电流试验
- 评价组件在潮湿工作条件下的绝缘性能,验证雨、雾、露水或溶雪的湿气 不能进入组件内部电路的工作部分,如果湿气进入在该处可能会引起腐蚀 、漏电或安全事故(A<0.1m2,R≥400MΩ;A>0.1m2,
R*A≥400MΩ•m2);
机械载荷试验
- 确定组件经受风、雪或覆冰等静态载荷的能力(无间歇断路现象,无严重 外观缺陷,Pmax衰减<5%,满足绝缘测试要求);
1.光伏发电优势及原理
光伏电池发电原理
N型半导体
P型半导体
- 纯净硅晶体中掺入5价杂质磷/砷/锑,N型半导体; - 如果掺入的是三价的硼/镓,则会形成P型半导体。
1.光伏发电优势及原理
光伏电池发电原理
- N区的电子扩散至P区,自身带正电; - P区空穴被电子填补(接受电子)带负电,PN结形成
组件设计— 可靠性测试
8个组件(IEC61215)
目测、电性能、绝缘、湿漏电
1
2
温度系数
标称工作温度
3
紫外线
4
热循环200
电性能
热循环50
低辐照电性能 户外暴露
湿冻
二极管热试验 热斑
终端试验
目测、电性能、绝缘、湿漏电
5
பைடு நூலகம்湿热
机械 强度
雹击
2.组件工艺过程及常见质量问题
绝缘测试
- 测定组件的载流元件与组件边框或外界之间的绝缘是否良好; - 无绝缘击穿或表面裂纹现象 - 在2Vsys+1000V下,漏电电流 ≤ 50μA - 在500V下,绝缘电阻应≥50MΩ(或漏电流≤10μA)
湿冻试验
- 确定组件承受高温、高湿之后零下温度对其影响的能力
1. 太阳电池组件无严重外观缺陷; 2. 太阳电池组件最大输出功率的衰减不超过试验前测试值的5%。 3. 满足绝缘要求
18
2.组件工艺过程及常见质量问题
湿热试验
- 确定组件承受长期湿气渗透的能力(无外观缺陷,Pmax衰减<5%,满足 绝缘要求);
太阳能发电的优势
– 太阳能每秒钟到达地面的能量高达80万千瓦/秒; – 地球表面0.1%太阳能转为电能,转换效率5%,每年发电量可达 5.6×1012千瓦小时,相当于目前世界上能耗的40倍; – 足以供给人类使用几十亿年。
1.光伏发电优势及原理
欧洲JRC的预测 (2000-2100)
自天然气起,以下为化石燃料 化石燃料生产峰值在2030-2040年之间
✓光伏组件是否真的能 够有效运行25年? ✓组件潜在的缺陷对光 伏电站的发电量和寿命 有生产什工么艺影响?
2.组件工艺过程及常见质量问题
组件结构
2.组件工艺过程及常见质量问题
组件结构
背板 EVA胶
膜 电池串 EVA胶 膜 玻璃
2.组件工艺过程及常见质量问题
组件质量的影响因素
2.组件工艺过程及常见质量问题
低辐照度下的电性能:
- 条件:温度25 ℃+/-2 ℃ ,辐照度200W/m2,组件带载情况下的电性能 - 操作执行:太阳能模拟器,只是光强度变化,光谱分布和1000W/m2下相同
室外暴晒:
- 目的:对组件经受室外条件的能力作初步评价并揭示组件在室内试验探查不 到的一些综合衰减因素(试验时间短且实验条件随环境在变化,所以本试验 仅被用作可能存在问题的提示)
- 试验执行:组件短接,共接受60kW/m2的辐照 - 评估标准:1)无严重目测缺陷;2)Pmax衰减<5%;3)满足绝缘试验
16
2.组件工艺过程及常见质量问题
热斑耐久试验
- 确定组件承受热斑加热效应的能力;组件内某电池单元不匹配或裂纹、内 部连接失效、局部被遮光或弄脏使电池局部电压电流积增大,从而产生局 部温升,可能导致焊接融化或封装退化
光伏发电原理及组件生产过程 中常见质量问题
目录
1
光伏发电优势及原理
2 光伏(电池/组件)生产过程及常见质量问题
3
电站组件质量保障措施
1.光伏发电优势及原理
可开采65年左右
铀资源
可开采58年左右
天然气
可开采100年左右
煤资源
可开采40年左右
石油资源
人类未来的能源之路在何方?
1.光伏发电优势及原理
1.光伏发电优势及原理
光伏电池发电原理---光生伏打效应
Number of Photons of Wavelength λ(nm)
E h
- 光照PN结将电子从共价键中激发,产生电子-空穴对; - 电子向带正电的N区运动,空穴向带负电的P区运动, 形成电压和电流;
2.光伏工艺过程及常见质量问题