新型汽油脱硫技术的对比

新型汽油脱硫技术的对比
新型汽油脱硫技术的对比

新型汽油脱硫技术的对比

摘要:文章针对两种汽油脱硫新技术:RSDS-Ⅱ选择性加氢脱硫技术和S-Zorb 吸附脱硫技术,从反应机理、技术特点、设备特点各方面逐一对比,为炼油企业选择更适合生产实际的汽油质量升级技术提供参考。

关键词:汽油脱硫对比

1、前言

随着人们环保意识的不断增强,降低汽车尾气污染,改善空气质量,已经成为世界范围内的共识。各国对发动机燃料的组成进行了日趋严格的限制,以降低有害物质的排放。降低汽油中的硫含量将有效的减少汽车尾气中有害物质的排放。2017年10月执行的国V汽油标准要求成品汽油中的硫含量须小于10μg/g。

我国汽油组分将长期以催化裂化汽油为主,其份额占到80%左右。汽油质量升级主要是提高催化裂化汽油的质量,控制汽油中的硫、烯烃、芳烃含量和辛烷值等主要指标,与相应的国际标准接轨。而且我国绝大多数的催化裂化装置为重油和渣油催化裂化,和普通催化裂化相比,汽油中的硫含量更高,汽油脱硫难度更大,开发清洁燃料技术成为当前炼油行业技术创新的重点。

中国炼油企业多年来狠抓科技创新,积极推进以生产清洁燃料为主要目标,针对催化汽油脱硫技术引进和开发了两种新型工艺:(1)一次性买断引进美国康菲公司开发的S-sorb汽油吸附脱硫技术,2007年在燕山分公司建成国内第一套120万吨/年工业化装置;(2)由中石化石油化工科学研究院、洛阳石化工程公司、长岭分公司合作开发的RSDS-Ⅱ汽油选择性加氢脱硫技术,2008年在长岭分公司30万吨/年选择性加氢装置成功进行工业化试验。本文对这两种新工艺的反应机理、技术特点进行介绍、对比,为炼油企业选择更适合生产实际的汽油质量升级技术提供参考。

2、反应机理

为了了解RSDS-Ⅱ加氢脱硫和S-Zorb吸附脱硫这两类催化汽油脱硫工艺的区别,首先从脱硫机理比较。

大部分FCC汽油中的硫主要以四种方式存在,即:硫醇、硫化物(包括线性和立体)、噻吩和苯噻吩;硫醇和硫化物的加氢反应很快,通常在直接脱硫的条件下处于热力学平衡状态;噻吩和苯噻吩的加氢脱硫与烯烃的加氢饱和反应速率

相似,但一般噻吩和苯噻吩的加氢脱硫速度比烯烃饱和速度快,因此能够通过加氢的方式使FCC汽油的烯烃在没有完全饱和之前,噻吩和苯噻吩完成加氢脱硫反应。噻吩类直接脱硫过程是速控步骤,它能调节直接脱硫产物的硫含量。在加氢

反应过程中,烯烃和噻吩直接脱硫得到的H

2S会合成硫醇,因而烯烃、H

2

S和硫

醇之间的平衡会限制脱硫。硫醇的合成和分解速度非常快而且主要在反应器出口条件达到完全平衡。因此仅通过一个单纯的加氢工艺过程加工出含硫10ppm产品,并尽量使烯烃不饱和是有困难的。RSDS-Ⅱ技术首先将催化裂化稳定汽油切割为轻、重两个馏分,轻馏分(LCN)进入脱硫醇单元进行碱抽提脱除硫醇。重馏分(HCN)进入加氢单元进行选择性加氢脱硫,然后轻、重汽油混合,再经过氧化脱硫醇装置将剩余的硫醇彻底氧化。

S-Zorb技术则采用与加氢的原理完全不同的工艺,采用专有的吸附剂,运用吸附原理进行脱硫,在脱硫过程中,气态烃类与吸附剂接触后,在吸附剂和氢气的作用下,碳、硫键(C-S)断裂,硫原子从含硫化合物中除去留在吸附剂上,而烃分子则返回到烃气流中。该工艺过程不产生H

2

S,因而避免了硫化氢与产品中的烯烃反应生成硫醇而造成产品硫含量的增加,该技术与加氢过程机理比较如下:

RSDS-Ⅱ加氢脱硫技术反应机理:

S-Zorb吸附脱硫技术反应机理:

由于S-Zorb硫脱除技术基于吸附作用原理,因此对不同化合物中的硫的脱除速度与加氢过程有本质的区别。在加氢过程中很难脱除的含硫化合物在S-Zorb过程中很容易地被脱除;由于反应物流中没有H2S,并且缓和的加氢条件及非加氢类的吸附剂避免了生成硫醇,因此S-Zorb技术较易得到低硫产品,而且氢耗最小。另外由于其吸附剂完全不同于加氢催化剂,因此烯烃饱和很少,所以其产品的辛烷值损失也比加氢少。

3、工业装置流程对比

图1 S-Zorb吸附脱硫工艺原则流程

图2 RSDS-II装置原则流程

图3 RSDS-II装置HCN加氢单元原则流程

图4 RSDS-II装置脱硫醇单元原则流程

从图1~图4可以看出,S-Zorb工艺流程相对简单,可以直接对催化汽油全馏分脱硫;RSDS-II工艺流程针对不同硫形态进行分段脱硫,由分馏单元、轻馏分(LCN)碱抽提脱硫醇单元、重馏分(HCN)加氢脱硫单元,流程相对较长。

4、技术特点对比

4.1 S-Zorb技术的特点

★辛烷值损失小:Phillips开发的吸附剂具有较好的烯烃饱和防护功能,使用独特的化学性能,烃类中的硫被吸附出来,而不是用传统的加氢反应将硫脱除;

★产品体积损失小:该技术可以在保持辛烷值很小损失的情况下,产品的体积收率基本不损失;

★可以生产硫含量低于10ppm的产品,甚至更低;

★低氢耗 0.16-0.2m%:由于该技术不是加氢处理,因此氢耗更低;

★不需要将FCC汽油进行分馏:该技术可以加工全馏分的FCC汽油,因此就不需要分馏装置;

★较低的操作费用:综合考虑运转周期、辛烷值损失、收率损失以及操作参数等各因素,该技术具有比较低的操作费用;

4.2 RSDS技术特点

★工艺操作简单,采用普通加氢工艺和汽油碱洗工艺;

★辛烷值损失小;辛烷值损失小于1.0;

★可以生产硫含量低于10ppm的产品;

★低氢耗在0.11~0.22%;

★产品收率高,可达99.0%;

5.工业装置运行参数对比

5.1、操作条件

表1 操作条件对比

从上表看出S-Zorb相对RSDS-II工艺,操作条件显然更为苛刻,但辛烷值损失较低。

5.2、能耗对比

表2 120万吨/年催化汽油吸附脱硫装置能耗

催化裂化汽油的选择性催化加氢脱硫技术

催化裂化汽油的选择性催化加氢脱硫技术 孙爱国 汪道明 中国石油化工股份有限公司安庆分公司(安徽省安庆市246001) 摘要:论述了催化裂化汽油选择性加氢脱硫技术的现状和发展趋势,着重介绍了催化裂化汽油选择性加氢催化剂的制备、影响选择性的若干因素,以及选择性加氢脱硫工艺技术的进展。对选择性加氢技术与临氢改质技术的差异、选择性加氢工艺与其它工艺的组合应用等问题也进行了讨论。 主题词:催化裂化 汽油料 加氢脱硫 述评 我国催化裂化(FCC)加工能力占二次加工能力比例较大,大部分炼油厂其它二次加工手段欠缺,使得我国汽油总合与国外有很大不同,一般FCC汽油组分占汽油总合的70%~80%,部分炼油厂甚至超过85%。而国外汽油一般来自FCC 34%、催化重整33%、以及烷基化、异构化、醚化和叠合共约33%。我国汽油中的硫和烯烃主要来自FCC汽油组分,因此与国外相比我国车用汽油具有高硫、高烯烃的特点。 通过调整FCC操作,应用降烯烃催化剂如G race公司的RFG催化剂和石油化工科学研究院(RIPP)的G OR催化剂、降烯烃助剂,降烯烃的FCC工艺如RIPP的MIP工艺等手段可以降低FCC汽油中的烯烃含量;通过降低重整操作的苛刻度、提高重整原料的切割点,切除苯的前身物———甲基环戊烷和环己烷,可以有效降低汽油的芳烃和苯含量。但是目前尚没有办法仅通过应用新型催化剂或仅对工艺参数进行调整即可使FCC 汽油的硫含量大幅降低。FCC汽油脱硫成为生产清洁汽油的关键问题。 1 降低FCC汽油硫含量的技术[1~2] 目前正在研究或已得到工业应用的FCC汽油脱硫技术有多种。如FCC原料加氢预处理;改进FCC催化剂;生物脱硫和吸附脱硫等。 2 FCC汽油加氢脱硫技术的比较 临氢改质技术是在对FCC汽油深度加氢脱硫后,通过选择性裂化或异构化等手段使汽油辛烷值恢复。如Exx onM obil公司有多篇专利通过应用ZS M25分子筛选择性裂化低辛烷值的直链烷 烃,使FCC汽油因深度加氢、烯烃大量饱和造成的辛烷值损失得到恢复。该公司开发的OCT2 G AI N T M工艺宣称不仅能够有效脱除FCC汽油中的硫,还能够控制产品的辛烷值。而UOP公司的IS A L工艺和RIPP的RI DOS则是通过对经过加氢脱硫处理的FCC汽油进行异构化处理使受到损失的辛烷值得到恢复。两者的区别在于前者对汽油进行深度加氢脱硫,后者则是进行选择性加氢脱硫。 临氢改质技术可以直接生产硫含量低于30μg/g的清洁汽油组分,而且汽油的烯烃含量很低,辛烷值损失可以控制,但一般氢气消耗很大;操作温度高达350℃;操作空速较低,加氢和改质两段催化剂总空速一般为0.5~1.5h-1,使得催化剂用量增大;在高温下,即便是异构化处理,也会发生比较剧烈的裂化反应,汽油收率会显著降低,依据辛烷值恢复程度不同,收率损失在5%~15%,这些问题使得临氢改质技术的操作费用和生产成本大为增加。 选择性加氢脱硫从提高加氢催化剂的选择性出发,在大量脱除汽油含硫化合物的同时,尽量减少高辛烷值烯烃组分的饱和。一般反应温度较低(多低于300℃);空速较高(液时空速为2~4 h-1);加氢氢耗较低,催化剂用量较小,操作费用相对较少。由于烯烃饱和较少,对国内炼油厂而言,使用选择性加氢脱硫技术,在辛烷值损失可接受的操作条件下难以使汽油烯烃体积含量符合低 收稿日期:2002-03-26。 作者简介:孙爱国,工程师,1993年毕业于江苏石油化工学院石油加工专业,从事加氢工艺及清洁燃料生产工艺研究工作。 炼 油 设 计 2002年10月 PETRO LE UM REFI NERY E NGI NEERI NG 第32卷第10期

汽油吸附脱硫题库(s-zorb)

颗粒密度= 骨架密度(骨架密度×孔体积)+1 第1题:什么叫固体流化态?什么叫流化床? 答:成群的固体小颗粒和运动着的流体(气体或液体)搅混在一起,使固体颗粒能够像流体一样自由流动的现象叫做流化态。固体流化态是在容器内进行的,我们把容器和在其中呈流化态的固体颗粒一起称为流化床。 第2题:固体流化态专业术语。 松动气:任何可以促进吸附剂流化的补充气体(空气、蒸汽、氮气等)。 吸附剂表观堆积密度:是指松散堆积的吸附剂,是在最小流流化速度下的吸附剂密度。 床层密度:固休颗粒和气体形成的流化床的平均密度,床层密度主要是气体速度的函数和温度的函数。 最小鼓泡速度(Umb ):即分散的个别的气泡开始形成时的速度。 最小流化速度(Umf ):吸附剂全部重量被流化气体支撑起的最低速度,在这个最小的气体速度下,固体颗粒填充床开始膨胀,并具流体行为。Umb /Umf 的比值越大,吸附剂越易被流化。 空塔速度:气体通过无任何固体存在的容器和管道时的速度,是流化气体通过单位横截面积时的体积流速。 骨架密度:构成各个吸附剂粒子的纯固体材料的实际密度。 孔体积:吸附剂颗粒中的孔或空隙的体积。 颗粒密度:考虑到固体颗粒结构中空隙体积,固体颗粒实际密度。颗粒密度由下式计算: 第3题:形成流化床必须具备的条件。 答:(1)要求一个容器。在本装置中,如反应器、再生器、还原器、反应器接收器、闭锁料斗、再生器接收器等,通常在这些容器的底部还需要安装分布板和分布管,以便使气体沿界面均匀分布,形成稳定的流化床,有时还在容器内部增加格栅,用来破碎流化过程中产生的较大气泡,以改善流化效果;(2)容器内要有一定数量的固体颗粒,本装置使用微球吸附剂,粒径平均约65微米;(3)要有流化介质,就是能使固体颗粒流化起来的物质——流体。流体可以是液体,也可以是气体。本装置使用氢气、油气、氮气、空气等作为流化介质。 第4题:什么是吸附剂筛分组成? 答:气固流化床中固体颗粒的粒径通常是由小到大分布的,某一粒径区间内吸附剂的百分含量称为吸附剂的筛分组成。 第5题:为什么固体颗粒能被比自己轻的多的流体流化起来? 答:主要依靠流体在固体颗粒之间流动时产生的摩擦推动力下,使固体颗粒搅动流化起来。 第6题:流化床形成过程。 答:利用下图对流化床形成过程进行说明。图中纵坐标为床层压降,横坐标为空塔气速。

汽柴油深度脱硫方法及发展现状

······· ·· ······· ·· 安全与环保 收稿日期:2008-11-05;修回日期:2008-12-08 汽柴油深度脱硫方法及发展现状 程晓明1 王治红1 诸 林1 申乃速2王小红2 (1.西南石油大学化学化工学院,成都610500;2.中石油吐哈油田分公司,新疆吐鲁番839009) 摘要介绍了目前对汽柴油中硫含量的要求以及汽柴油中的硫化物的特点,结合这些特点,叙述了吸附脱硫、萃取脱硫、膜分离、生物技术脱硫、络合沉淀法和催化氧化法等几种深度脱硫方法,并且提出了对未来在汽柴油深度脱硫方面的建议。关键词汽油;柴油;深度脱硫中图分类号TE626.2 文献标识码A 文章编号1006-6829(2009)01-0044-04 近年来,随着环保要求的日益严格,世界各国规定的燃油硫含量标准也在迅速提高。例如,根据美国环保署的要求,从2006年6月起,炼油厂需要将汽油中硫的质量分数从目前的400×10-6降到30×10-6,高速公路柴油的硫的质量分数从500×10-6降到15× 10-6;其他国家如澳大利亚、印度和韩国也提出了大 致相同的含硫标准。 目前我国的汽油标准要求的硫的质量分数为 800×10-6,远低于欧美,但从2010年起将与国际接 轨。因此,国内炼油业对油品高效脱硫技术的需求十分迫切。对柴油的硫含量,2005年欧美限制在50× 10-6以下,进一步还要降低至15×10-6以下,柴油生产正朝着“零硫”(硫的质量分数小于10-6)方向发 展。在我国,2005年起北京执行欧Ⅱ标准柴油规范,要求其硫含量小于30×10-6,而2008年执行更为严格的欧Ⅲ标准柴油规范。 油品脱硫方法的选择取决于其中含硫化合物的结构和性质特点。在脱硫方法的研究中要充分利用含硫化合物的物理性质及其独特的化学性质,尤其是对于汽柴油的硫化物,采取合适的深度脱硫技术。 1汽柴油中的含硫化合物 汽油中的有机硫主要源于裂解汽油(FCC 馏 分),而直馏汽油中的硫含量很低,可直接用于配制汽油。汽油中的含硫化合物主要有硫醇、硫醚、二硫化物、四氢噻吩、噻吩、苯并噻吩(BT )、二苯并噻吩(DBT )、甲基二苯并噻吩和4,6-二甲基苯并噻吩等。柴油一般由中间馏分、催化裂化直馏瓦斯油(FCC LGO )和焦化瓦斯油(Coker Gas Oil )调和而得。其含 硫化合物主要包括脂肪族硫化物、硫醚、DBT 、烷基 苯并噻吩和烷基二苯并噻吩等。 2加氢深度脱硫 加氢脱硫技术主要包括催化裂化进料加氢预处 理技术、选择性加氢脱硫技术、非选择性加氢脱硫技术和催化蒸馏加氢脱硫技术。相对于其他技术,加氢脱硫是较成熟的技术,国内外对此都做了大量的研究工作。 催化加氢脱硫(HDS )技术是炼油企业普遍采用的一种脱硫方法,在催化剂Co-Mo/Al 2O 3或Ni-Mo/ Al 2O 3作用下,通过高温(300~350℃)、高压(5~10MPa )催化加氢可以将油品中的有机硫转化成H 2S 脱除。但该方法很难将BT 尤其是DBT 和多取代的苯并噻吩脱除。 如果采用现有的HDS 技术继续深度加氢,会降低燃油中烯烃和芳香烃的含量,从而引起燃油辛烷值的降低,氢耗增加,反应器体积增大,设备投资及操作费用急剧增加。因此,目前的HDS 技术很难将汽柴油的硫质量分数降低到10×10-6以下。因此需要开发更为有效的汽柴油深度脱硫技术[1]。 加氢脱硫技术是一种很成熟的工艺,对于高含硫油品,该技术可大幅度降低硫含量,同时,加氢脱硫技术操作灵活,精制油收率高,颜色好,能有效地脱除如噻吩类等难以脱除的硫化物。此外,加氢脱硫技术操作费用高,工艺条件苛刻,需高温、高压和高活性催化剂,并需要消耗大量高纯度氢气,故很难被 程晓明等汽柴油深度脱硫方法及发展现状安全与环保 ·44 ·

汽油加氢技术

汽油加氢技术 主要是加氢脱硫 对于汽油加氢脱硫 按照原料是否加氢前切割,可以分为全馏分汽油加氢脱硫和切割馏分汽油加氢脱硫现在的汽油加氢技术很多。如法国ifp、美国uop 等都有这方面的专利技术。其原理就是加氢脱硫而尽量不饱和烯烃,以减少辛烷值的损失。国内石化研究院有一种技术是先将烯烃芳构化,然后再进行加氢脱硫。 目前比较牛逼的技术:国外就是prime-g+,szorb;国内就是抚研院的oct-m,石科院的rsds;prime-g+:首先进行加氢预处理,解决二烯烃问题,再切割轻重两部分,轻馏分去无碱脱臭,重馏分加氢脱硫,再轻重调合。(原料适应性较好,流程复杂,投资高)cdtech: 一种组合技术,贵金属类催化剂,不适合我国情况。 s-zorb:沸腾床吸附脱硫,辛烷值损失最小,原料适应性强,要

求规模大,投资最大。oct-m:无预处理,直接切割轻重两部分,轻馏分去无碱脱臭,重馏分加氢脱硫,再轻重调合。(工艺简单)rsds:无预处理,直接切割轻重两部分,轻馏分进行碱液抽提(有环保压力),重馏分加氢脱硫,再轻重调合催化剂上活性金属基本上是:co、mo、ni 发生的反应为(以噻吩硫为例):噻吩在催化剂活性金属的催化下,与氢发生反应,生成烃类和硫化氢 技术的关键控制指标:辛烷值损失与硫脱除率 1.国外工艺技术概况 国外f汽油脱硫、降烯烃的主要工艺技术有以下几种:isal(加氢脱硫/辛烷值恢复技术)、octgain(加氢脱硫/辛烷值恢复技术)、scanfining(选择性加氢脱硫工艺)、prime-g和prime-g+(选择性加氢脱硫工艺)、cdhydrocdhds(催化蒸馏加氢脱硫工艺)和s-zorb工艺等。 上述几种工艺技术可以分为固定床加氢技术(含催化蒸馏技术)

催化裂化汽油加氢脱硫技术及工艺流程分析

催化裂化汽油加氢脱硫技术及工艺流程分析 发表时间:2019-12-30T13:27:29.667Z 来源:《科学与技术》2019年 15期作者:陈飞宇[导读] 经济与社会不断发展、进步,人们生活水平不断提升,摘要:经济与社会不断发展、进步,人们生活水平不断提升,我国机动车数量也在快速攀升,与此同时,由机动车尾气排放对环境造成的污染也越来越明显,因此对催化裂化汽油加氢脱硫技术进行研究极具现实意义。基于此,文章对汽油燃烧排放的硫化物种类及其危害进行了阐述,分析了催化加氢脱硫(HDS)反应原理,并对催化裂化汽油加氢脱硫技术及其工艺流程进行可分析,以期能够为提升汽油脱硫处 理质量提供有效参考。关键词:催化裂化;汽油;加氢脱硫;应用低硫含量是当前世界车用汽油应用发展的主要趋势之一。对于我国的车用汽油而言,其四分之三以上是催化裂化汽油,也称为FCC汽油。然而,FCC汽油具备烯烃、硫含量较高,安定性不高的缺陷,对车用汽油指标造成不良影响,此类汽车用油的污染物排放标准难以达到国际先进标准,甚至与国内最新的机动车污染物排放指标相去甚远。虽说汽油中硫化物含量值不是最高,但是其产生的危害却极大。一方面,硫化物燃烧生成物主要是SOx的形式,也是引发酸雨的主要因素,而且SOx排放过大也会刺激NO,、CO这些有毒有害气体的生产与排放。另一方面,硫化物还会使汽油燃烧时还会导致汽车尾气转化器催化剂失效,NO、SOx、CO等有害气体的排放量进一步增加,降低城市空气质量。除此之外,硫化物也会对金属设备产生一定程度腐蚀危害,影响汽油泵等相关部件的使用寿命,提高了事故概率。 一、催化加氢脱硫(HDS)反应原理分析 HDS反应原理,主要是利用在石油中加氢使得含硫化合物氢解形成相应的烃合物与H2S,进而脱去石油中的硫原子,其过程中C—S键的断裂与相应断裂物的饱和是最为基本的化学反应。例如噻吩和苯并噻吩的HDS过程通常包含了加氢与裂解两途径。通过加氢使噻吩环双键饱和接着开环脱硫形成烷烃,再通过裂解反应使开环脱硫形成丁二烯,丁二烯在氢环境中饱和。噻吩经过加氢脱硫处理后主要产生丁二烯、丁烯,丁烷、C2、C3产物则少得多。硫化物主要以非杂环与杂环两种类型存在于原油中。非杂环类硫化物以硫醇、硫醚等结构为主,具备较高的反应活性,加氢脱除较为容易。而噻吩、甲基、苯基等杂环类硫化物具备与芳烃相似的稳定结构,所以去除较为困难。 二、催化裂化汽油加氢脱硫技术工艺流程分析催化裂化汽油加氢脱硫处理,要求其过程能够最大限度地完成脱硫工作,并将汽油辛烷值损失控制在最低范围。此外,催化裂化汽油加氢脱硫处理流程还应满足一下要求:①装置要能够实现长周期运转,且单周期要和催化裂化装置检修周期相同;②装置选择应经济、适用,有效降低加氢脱硫成本;③基于确保反应质量的前提制定工艺流程;④使工艺流程和国I、国IV标准要求最大限度地保持一致;⑤采取有效技术方法提高工艺流程可行性与可衔接性;⑥确保技术在产品中的应用稳定与高质量,并具备一定灵活性。将催化裂化汽油的烯烃集中在轻馏分中,汽油中的硫则集中在重馏分中。结合烯烃与硫在催化裂化汽油中分布特点,有选择地展开预加氢反应,混氢原料油经过催化剂作用把二烯烃转化成单烯烃,如此便可避免在后续加氢脱硫反应器发生结焦问题。其中一些轻含硫物与轻疏醇会在硫醚化反应中转化为重含硫化合物,同时还催生了烯烃异构化反应使得辛烷值得到了一定程度的增加。催化裂化汽油分馏,应把预加氢催化裂化汽油划分出重汽油与轻汽油。对于重汽油处理环节借助催化剂作用脱硫与烯烃饱和反应,同时实现了将重汽油以分馏比例调和。 三、常见的FCC汽油脱硫技术现阶段,在汽油脱硫处理方面应用较为成熟,较为广泛的脱硫技术无疑是催化加氢脱硫工艺,许多发达国家的FCC汽油处理采用了这一技术。HDS技术主要分为了传统型与选择性型HDS技术。前者应用虽然能够使汽油硫含量有效减少,然而在脱硫过程中国烯烃饱和率也会大幅提升,使得汽油辛烷值出现较大损失。而后者应用的最大优势能够在满足汽油脱硫要求的同时烯烃饱和率不至于过高,辛烷值损失较少,因此具备较好的应用发展前景。现阶段应用较为成熟选择性HDS技术主要下面几种工艺: (一)SCANFining技术这一技术应用始于美国,使用的RT-225催化剂。核心工艺在于把全馏分催化轻汽油分为低硫高烯烃、硫和烯烃含量中等、高硫低烯烃3个组分的催化重汽油,进而针对性的选择合适脱硫技术生成调和油,达到92%~95%的汽油脱硫率,并且将抗爆指数损失控制在可2个单位以下。 (二)ISAL技术这一技术由美国UOP公司与委内瑞拉石油研究及技术中心联合开发,运用了常规固定床工艺,与最新型的沸石催化剂,可解决现阶段炼化企业面临的大部分共性难题,不但有效减少了汽油硫与烯烃含量,而且确保辛烷值不会减小。这一技术主要是通过调整催化剂大小、表面积、孔容孔径、酸度等对反应烃链长度进行有效控制,避免了辛烷值出现损失。ISAL技术可应用与含硫在30μg/g清洁汽油生产,并且操作周期大于2年。(三)Prime-G和Prime-G+技术该技术由法国石油研究院最先开发,关键点在于对FCC汽油选择性加氢脱硫处理时采用双催化剂工艺,脱硫率较高,甚至实现汽油硫含量小于10μg/g,并且工艺应用条件相对缓和,烯烃饱和率也比较小,不会出现芳烃饱和及裂化反应现象,有着98%以上的脱硫率,耗氢较少且辛烷值损失低。(四)OCTGAIN技术该技术由Mobil公司开发,具备较高的FCC汽油脱硫处理效率,并且产物辛烷值的可控性较高。在脱硫方面采用了固定床催化工艺,脱硫率大于95%,然而会发生5%~10%的汽油损失率。(五)CDTECH技术这一脱硫工艺应用了两个催化蒸馏塔,采用两段式反应。第一阶段是在催化蒸馏加氢脱己烷塔中的反应,在催化剂作用下,轻汽油馏分中二烯烃与硫醇发生反应,得到高沸点产物进入重馏分,从塔顶形成的C5、C6馏分中硫醇含量控制在1μg/g以下,并对剩余的二烯烃进行选择加氢。第二阶段应用CDHDS技术,将催化汽油中C7以上组分的硫去掉,总脱硫率达高于95%,辛烷值损失可控制在1.0以下。(六)RIDOS技术

Szorb催化汽油吸附脱硫装置试车方案

S z o r b催化汽油吸附脱硫装置试车方案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

*************** * 内部资料 * * 注意保存 * *************** 120万吨/年S-Zorb汽油吸附脱硫装 置总体试车方案 燕山分公司炼油厂 2005年12月

目录 1 工程概况 ----------------------------------------------------------------------------- 3 2 总体试车方案的编制依据与编制原则----------------------------------------- 4 3 试车的指导思想和应达到的标准----------------------------------------------- 4 4 试车应具备的条件 ----------------------------------------------------------------- 5 5 试车的组织与指挥体系 ----------------------------------------------------------- 9 6 试车进度 ----------------------------------------------------------------------------- 9 7 物料平衡 ---------------------------------------------------------------------------- 10 8 燃料、动力平衡 ------------------------------------------------------------------- 11 9 环境保护 ---------------------------------------------------------------------------- 12 10 安全技术与工业卫生 ----------------------------------------------------------- 13 11 试车难点及对策------------------------------------------------------------------ 16 12 经济效益预测 -------------------------------------------------------------------- 17 附录一 120万吨/年S-Zorb汽油吸附脱硫装置开车组成员名单

新型汽油脱硫技术的对比

新型汽油脱硫技术的对比 摘要:文章针对两种汽油脱硫新技术:RSDS-Ⅱ选择性加氢脱硫技术和S-Zorb 吸附脱硫技术,从反应机理、技术特点、设备特点各方面逐一对比,为炼油企业选择更适合生产实际的汽油质量升级技术提供参考。 关键词:汽油脱硫对比 1、前言 随着人们环保意识的不断增强,降低汽车尾气污染,改善空气质量,已经成为世界范围内的共识。各国对发动机燃料的组成进行了日趋严格的限制,以降低有害物质的排放。降低汽油中的硫含量将有效的减少汽车尾气中有害物质的排放。2017年10月执行的国V汽油标准要求成品汽油中的硫含量须小于10μg/g。 我国汽油组分将长期以催化裂化汽油为主,其份额占到80%左右。汽油质量升级主要是提高催化裂化汽油的质量,控制汽油中的硫、烯烃、芳烃含量和辛烷值等主要指标,与相应的国际标准接轨。而且我国绝大多数的催化裂化装置为重油和渣油催化裂化,和普通催化裂化相比,汽油中的硫含量更高,汽油脱硫难度更大,开发清洁燃料技术成为当前炼油行业技术创新的重点。 中国炼油企业多年来狠抓科技创新,积极推进以生产清洁燃料为主要目标,针对催化汽油脱硫技术引进和开发了两种新型工艺:(1)一次性买断引进美国康菲公司开发的S-sorb汽油吸附脱硫技术,2007年在燕山分公司建成国内第一套120万吨/年工业化装置;(2)由中石化石油化工科学研究院、洛阳石化工程公司、长岭分公司合作开发的RSDS-Ⅱ汽油选择性加氢脱硫技术,2008年在长岭分公司30万吨/年选择性加氢装置成功进行工业化试验。本文对这两种新工艺的反应机理、技术特点进行介绍、对比,为炼油企业选择更适合生产实际的汽油质量升级技术提供参考。 2、反应机理 为了了解RSDS-Ⅱ加氢脱硫和S-Zorb吸附脱硫这两类催化汽油脱硫工艺的区别,首先从脱硫机理比较。 大部分FCC汽油中的硫主要以四种方式存在,即:硫醇、硫化物(包括线性和立体)、噻吩和苯噻吩;硫醇和硫化物的加氢反应很快,通常在直接脱硫的条件下处于热力学平衡状态;噻吩和苯噻吩的加氢脱硫与烯烃的加氢饱和反应速率

上海石化-汽油选择性加氢脱硫工艺(RSDS-Ⅱ)的应用

汽油选择性加氢脱硫工艺(RSDS-Ⅱ)的应用 屈建新 (中国石化上海石油化工股份有限公司上海 200540) 摘要:第二代催化裂化汽油选择性加氢脱硫技术(简称RSDS-Ⅱ技术)在上海石油化工股份有限公司进行了工业应用。标定结果表明,RSDS-II技术具有非常好的脱硫选择性,在深度脱硫条件下 辛烷值损失小,完全可以满足生产欧IV/沪IV(S<50μg/g)清洁汽油的需要。本文还就生产中遇 到的问题进行了探讨,并制定了相应的措施。 关键词:催化裂化汽油加氢脱硫应用 1 引言 为了降低汽车尾气排放以保护环境和人类健康,世界各国的车用汽油质量标准越来越严格,其中硫含量和烯烃含量降幅最大。 汽油质量标准的不断升级,使炼油企业的汽油生产技术和工艺面临着越来越严峻的挑战。上海石化的成品汽油中催化裂化汽油占60%以上,重整汽油约占10%,加氢裂化汽油约占13%,其他为汽油高辛烷值调和组分如甲苯、二甲苯、甲基叔丁基醚等,有时还调和少量直馏汽油。上海石化催化裂化稳定汽油的烯烃含量在40v%~50v%、硫含量400~500μg/g,而其他的汽油调和组分中的硫和烯烃含量均很低。由于上海石化所产的催化裂化汽油中部分烯烃被抽提出来作为化工用料,调和汽油中的烯烃含量能够满足要求,因此,上海石化汽油质量升级的关键是降低催化裂化汽油中的硫含量。 2003年上海石化采用石油化工科学研究院(RIPP)开发的第一代催化裂化汽油选择性加氢脱硫(RSDS-Ⅰ)技术进行FCC汽油脱硫。标定结果表明,在催化裂化汽油烯烃体积分数约50%的情况下,RSDS汽油产品脱硫率为79.7%时(生产硫含量小于150μg/g的汽油为目的),RON损失0.9个单位;RSDS汽油产品脱硫率为91.8%时(生产硫含量小于50μg/g的汽油为目的),RON损失1.9个单位[1]。该工艺为上海石化满足2005年后汽油硫含量小于150μg/g的标准提供了技术保证。 2010年世博会在上海举行,上海市提出绿色世博的理念,要求车用汽油的硫含量在2010年前达到50μg/g以下。这意味着,上海石化的FCC汽油的脱硫率要达到90%以上,如果继续采用RSDS-Ⅰ技术,虽然可以达到目的,但汽油辛烷值的损失也要达到1.9个单位,经济效益受到很大的影响。因此,上海石化应用新的FCC汽油选择性加氢脱硫技术(RSDS-Ⅱ),达到了深度脱硫,同时降低辛烷值损失的目的。 2 工艺流程和催化剂 上海石化50万吨/年RSDS-Ⅱ装置的原则流程见图1。来自催化裂化汽油稳定塔塔底的催化裂化汽油(以下简称FCC汽油原料)在分馏塔中被切割为轻馏分(LCN)和重馏分(HCN),轻馏分进入汽油脱硫醇装置进行碱抽提脱硫醇,重馏分进入加氢单元进行选择性加氢脱硫,然后抽提硫醇后的轻馏分和加氢后的重馏分再混合进入固定床氧化脱硫醇装置,产品称为RSDS-Ⅱ汽油。RSDS-Ⅱ装置加氢反应部分采用石科院开发的RSDS-21、RSDS-22催化剂(主催化剂)。与RSDS-I比较,RSDS-Ⅱ在脱硫反应器前增加选择性脱二烯烃反应器(内装RGO-2

S-zorb催化汽油吸附脱硫装置培训资料

S-zorb 催化汽油吸附脱硫装置

目录 第一部分:基础知识篇 1 国内外同类装置概况 (7) 1.1 同类装置概况及装置的作用介绍 (7) 1.2 技术进展 (7) 2 装置生产原理 (7) 2.1 硫的吸附 (7) 2.2 烯烃加氢反应 (8) 2.3 烯烃加氢异构化反应 (8) 2.4 吸附剂的氧化反应 (8) 2.5 吸附剂的还原反应 (8) 3 吸附剂循环系统(闭锁料斗)的控制原理 (9) 3.1 闭锁料斗的进料 (9) 3.2 闭锁料斗的出料 (9) 3.3 闭锁料斗的压力控制 (9) 3.4 闭锁料斗循环过程 (10) 4 相关名词解释 (12) 5 装置正常操作 (13) 5.1 生产过程中的影响因素 (13) 5.2 关键设备的正常操作 (17) 5.3 常规设备操作 (20) 6 装置开工操作 (25) 6.1 反应系统冷压测试 (25) 6.2 原料及反应系统赶空气 (25) 6.3 稳定系统的蒸汽吹扫和置换 (25) 6.4 稳定塔瓦斯充压 (26) 6.5 建立稳定塔循环 (26) 6.6 反应器升温及干燥 (26) 6.7 反应系统热压测试 (27) 6.8 建立氢气循环 (27) 6.9 反应器升温 (28) 6.10 准备投用闭锁料斗 (28) 6.11 再生系统冷压测试及空气贯通 (28) 6.12 投用再生取热系统 (29) 6.13 再生系统升温 (29) 6.14 吸附剂储罐收剂 (29) 6.15 系统吸附剂装填及建立吸附剂循环 (30) 6.16 反应器进料 (31) 6.17 反应原料注硫 (33) 6.18 吸附剂再生 (33) 7 装置停工操作 (34) 7.1 汽油进料停止 (34) 7.2 反应器热氢气循环 (34) 7.3 装置切断进料后的操作调整 (34)

汽油脱硫的方法与优缺点比较

CHINA UNIVERSITY OF PETROLEUM 论文题目:汽油脱硫的方法与优缺点比较 所在院系:化学工程学院 姓名:齐智 学号: 2011213551 专业年级:化学研11-4班 完成日期: 2012年4月 15日

汽油脱硫的方法与优缺点比较 摘要:随着环保法规的日益严格,脱硫技术已经成为世界炼油技术的关键部分,汽油中的硫含量90%来自催化裂化,本文将简要介绍几种选择性加氢脱硫技术和非加氢脱硫技术,并对这些技术在催化剂使用、工艺操作条件、脱硫效果、汽油辛烷值及汽油收率等方面进行优缺点的比较。 关键词:汽油脱硫辛烷值加氢非加氢 随着人们环保意识的增强,汽油、柴油硫含量的指标趋于严格,汽油、柴油脱硫显得越来越重要。据统计,我国车用汽油中90%的硫来自催化裂化[1]。而催化裂化汽油中的硫化物存在形式以硫醇、硫醚、二硫化物和噻吩类硫化物为主,其中噻吩类硫的含量占总硫含量的60%以上,而硫醚硫和噻吩硫的含量占总硫含量的85%以上[2]。因此,催化汽油脱硫过程中如何促进噻吩类和硫醚类化合物的转化是降低催化汽油硫含量的关 键[3,4]。目前相关脱硫技术可以分为两类:加氢脱硫和非加氢脱硫。加氢脱硫技术主要包括催化裂化加氢脱硫技术、选择性加氢脱硫技术、非选择性加氢脱硫技术和催化蒸馏加氢脱硫技术;非加氢脱硫技术主要包括吸附脱硫、生物脱硫和添加剂技术以及氧化脱硫等。加氢工艺迅速发展的根本原因是催化剂的发展,常规技术在脱硫的同时使烯烃饱和,造成辛烷值下降,一般MON下降3~4个单位,RON下降7~8个单位,而且消耗氢气,因此开发出一系列既脱硫又使辛烷值损失减小的加氢脱硫技术。 1.选择性汽油加氢脱硫技术 1.1 SCANfining技术[1] SCANfining技术是埃克森研究工程公司为炼油厂提供的一种选择性高、效益好的催化裂化汽油加氢脱硫技术,于1998年实现工业化生产。该技术采用与阿克苏诺贝尔公司共同开发的高选择性RT-225催化剂,经对加氢操作条件的优化,最大程度地减少了辛烷值损失和氢耗。第一代技术可将汽油中的硫含量降到10μg/g,但汽油辛烷值有一定损失;而第二代技术不仅将汽油中的硫含量降到10μg/g,在加氢脱硫过程中,其烯烃饱和量仅为第一代技术的50%左右,所以辛烷值损失仅为第一代技术的一半左右。 1.2 Prime-G技术[2] 该技术有法国石油研究院开发,采用双催化剂体系对FCC汽油进行选择性加氢脱硫。其工艺条件缓和,烯烃加氢活性低,不发生烯烃饱和及裂化反应,液体收率大100%,脱硫率大于95%,辛烷值损失少、氢耗低。将FCC重汽油加氢脱硫,调合得到的成品汽油可以实现硫含量100~150μg/g的目标;将FCC轻汽油和中汽油分别加氢脱硫,可实现硫含量的30μg/g的目标。

汽油脱硫技术

汽油脱硫技术 摘要:我国成品汽油中90%以上的含硫化合物来自催化裂化汽油,降低成品油中硫含量的关键是降低FCC汽油的硫含量。本文主要综述了FCC汽油脱硫技术的优缺点。 关键词:催化裂化;汽油;脱硫技术 前言 据统计,我国车用汽油中90%的硫来自催化裂化。而催化裂化汽油中的硫化物存在形式以硫醇、硫醚、二硫化物和噻吩类硫化物为主,其中噻吩类硫的含量占总硫含量的60%以上,而硫醚硫和噻吩硫的含量占总硫的85%以上。因此,催化汽油脱硫过程中如何促进噻吩类和硫醚类化合物的转化是降低催化汽油硫含量的关键。围绕低硫和超低硫油品的生产,开发出了许多相关的脱硫技术,目前相关的脱硫技术大体上可以分为两类:加氢脱硫和非加氢脱硫。加氢脱硫技术主要包括催化裂化进料加氢脱硫技术、选择性加氢脱硫技术、非选择性加氢脱硫技术和催化蒸馏加氢脱硫技术;非加氢脱硫技术主要包括吸附脱硫、氧化脱硫和生物脱硫以及添加剂技术等。 1. 加氢脱硫技术 1.1 FCC原料加氢预处理脱硫技术 是通过对FCC原料油加氢处理来降低FCC汽油硫含量,可将FCC原料硫含量降至0.2%以下,从而使FCC汽油硫含量降到200μg/g。 对催化裂化原料油进行加氢处理,可以同时降低催化裂化汽油和馏分油的硫含量,可以显著地改善产品的产率和质量。但投资高(FCC原料加氢预处理所需投资为其他方法的4~5倍),要消耗氢气,操作费用高,且难以满足硫含量小于30μg/g的要求。 1.2 FCC过程直接脱硫技术 该技术是在FCC过程中使用具有降低硫含量的催化剂和助剂以及其他工艺新技术,从而在催化裂化反应过程中直接达到降硫的目的。 该类技术的特点是使用方便、不需增加投资和操作费用,缺点是脱硫效果差。 1.3 FCC汽油加氢处理

催化汽油加氢脱硫技术简介

催化汽油加氢脱硫技术简介 摘要:本文介绍了国内外催化汽油加氢脱硫技术的工艺以及工业进展情况,并针对国内催化汽油的特点,对我国的加氢脱硫技术提出了建议。 关键词:催化汽油加氢脱硫工艺特点 Technology progress of FCC gasoline hydrodesulphurization Abstract: The main purpose of this article is to introduce different technological features of FCC gasoline hydrodesulphurization technology both at home and abroad, and put forward proposal for domestic development. Key words: FCC gasoline; hydrodesulfurization; technological features 汽油低硫化是一种发展趋势,限制硫含量是生产清洁燃料和控制汽油排放污染最有效的方法之一。目前我国成品汽油的主要调和组分有催化裂化汽油、催化重整汽油、烷基化汽油、异构化汽油等,其中的催化裂化汽油占我国成品汽油的80%以上,因此,如何有效地控制催化汽油的硫含量是控制成品汽油硫含量的关键。与国外汽油相比,我国的催化裂化汽油基本呈现两高两低的特点(高硫高烯烃,低芳烃低辛烷值),由于烯烃是辛烷值比较高的组分,因此如何在脱硫的同时尽量保持烯烃不被饱和,就成了催化汽油加氢脱硫的研究重点。以下便是对国内外的几家选择性加氢脱硫技术的简要介绍。 1.Prime G+技术: AXENS的Prime-G+是在Prime-G的基础上发展起来的,采用固定床双催化剂的加氢脱硫技术。该技术能够在保证脱硫的同时尽量减少烯烃的饱和。其工艺流程包括:全馏分选择性加氢(SHU)及分馏,重汽油选择性加氢脱硫(HDS)。在全馏分加氢过程中,发生以下反应: ● 二烯烃的加氢 ●反式烯烃异构为顺式烯烃 ●轻硫醇及轻硫化物与烯烃发生硫醚化反应转化成较重的硫化物 在SHU过程中,硫醇、轻硫化物和二烯烃含量降低,但总硫量并不降低,仅把轻硫化物转化成重硫化物,无H2S生成,烯烃不被饱和,所以产品辛烷值不损失,SHU后经分馏可以生产低硫和无硫醇的轻石脑油,硫醚化生成的重质硫化物在分馏的时候留在重质汽油中[1]。 重质汽油去后续的选择性加氢(HDS)单元,该单元是在保证高的脱硫水平下控制烯烃饱和率尽量低。该工艺采用了两种催化剂,通过第一种催化剂完成了大部分的脱硫反应,由于催化剂的脱硫率高、选择性好,烯烃饱和量少;第二种催化剂只是降低硫醇含量而没有烯烃饱和,通过两种催化剂的作用,在脱硫的同时保证了辛烷值损失在可允许范围内。其示意流程图如下: Prime G+的特点是:催化裂化全馏分汽油,脱硫率可以达到98%,能够满足硫含量低于10ppm 的超低硫规格。烯烃饱和少,汽油辛烷值损失小,液收率高,同步脱臭,不需要另外进行脱臭操作。该工艺目前在世界范围内应用最广。2008年奥运会之前,中石油大港石化分公司和锦西石化分公司就分别采用了一套Prime G+技术。大港石化分公司加氢脱硫后的汽油硫含量小于

150万吨汽油吸附脱硫招标书

150万吨/年催化汽油吸附脱硫项目 工程施工招标文件 招 标 人: 洛阳隆惠石化工程有限公司 招标编号: LHZB-201212001-JSJ-GCSG 招标时间: 二○一二年十二月 洛阳隆惠石化工程有限公司 Luoyang LongHui Petrocchemical Engineering Corporation LTD

投标须知 一、总则 1. 工程说明 工程名称:150万吨/年催化汽油吸附脱硫项目 工程规模:新建150万吨/年催化汽油吸附脱硫项目及配套建设系统工程。 现场条件: 1) 施工场地:四通一平已经完成,场地满足施工要求; 2) 施工用水、电:工程开工前,招标人在施工场地界区边界处提供施工用水源、施工用电源接点位置,中标单位自装经校验合格的计量表,招标人按表读数及规定的水电单价收费(具体收费办法按招标人有关规定执行); 3) 道路已通抵拟建工程区; 4) 除工程本身所占场地外,中标单位因施工所需的仓库、场地、临时建筑等占用场地,需根据工程实际需要向招标人申请。具体布置投标人需在投标文件(施工总平面布置图)中明确,并须征得发包人同意。建造的临时设施不得影响生产及工程的施工,否则造成的拆除或重建的全部费用由中标单位自理; 5) 通讯、对外交通由中标单位自行解决。 上述工程按照《中华人民共和国招标投标法》和有关招投标法规、规章和规定,通过招标来择优选定施工企业。 2. 招标方式 本工程采用邀请招标。 3. 招标范围 3.1本次招标的工程范围包括: 部分静置设备、管道安装工程、装置区防腐保温、脚手架搭拆工程。 3.2本次招标的标段划分为三标段: 1. 第一标段 部分静置设备、管道安装工程 1)按业主最终结算,人工调整到53元/工日,不参与取费,材、 机不调整,降点(降点不低于5%)招标。 2)按《石油化工行业安装工程预算定额》(2007年版),人工调

Szorb催化汽油吸附脱硫装置试车方案设计

*************** * 部资料* * 注意保存* *************** 120万吨/年S-Zorb汽油吸附脱硫装 置总体试车方案 燕山分公司炼油厂 2005年12月

目录 1 工程概况---------------------------------------------------------------------------- 3 2 总体试车方案的编制依据与编制原则 --------------------------------------- 4 3 试车的指导思想和应达到的标准 --------------------------------------------- 4 4 试车应具备的条件---------------------------------------------------------------- 5 5 试车的组织与指挥体系---------------------------------------------------------- 9 6 试车进度---------------------------------------------------------------------------- 9 7 物料平衡--------------------------------------------------------------------------- 10 8 燃料、动力平衡------------------------------------------------------------------ 11 9 环境保护--------------------------------------------------------------------------- 12 10 安全技术与工业卫生 ---------------------------------------------------------- 13 11 试车难点及对策 ---------------------------------------------------------------- 16 12 经济效益预测 ------------------------------------------------------------------- 17 附录一120万吨/年S-Zorb汽油吸附脱硫装置开车组成员

Szorb催化汽油吸附脱硫装置试车方案(工程科技)

*************** * 内部资料* * 注意保存* *************** 120万吨/年S-Zorb汽油吸附脱硫装 置总体试车方案 燕山分公司炼油厂 2005年12月

目录 1 工程概况---------------------------------------------------------------------------- 3 2 总体试车方案的编制依据与编制原则 --------------------------------------- 4 3 试车的指导思想和应达到的标准 --------------------------------------------- 4 4 试车应具备的条件---------------------------------------------------------------- 5 5 试车的组织与指挥体系---------------------------------------------------------- 9 6 试车进度---------------------------------------------------------------------------- 9 7 物料平衡--------------------------------------------------------------------------- 10 8 燃料、动力平衡------------------------------------------------------------------ 11 9 环境保护--------------------------------------------------------------------------- 12 10 安全技术与工业卫生 ---------------------------------------------------------- 13 11 试车难点及对策 ---------------------------------------------------------------- 16 12 经济效益预测 ------------------------------------------------------------------- 17 附录一120万吨/年S-Zorb汽油吸附脱硫装置开车组成员名单

汽油脱硫

汽油脱硫 汽油脱硫的意义 汽车排放污染已成为日趋严重的社会问题,为了达到环保要求,要大幅度降低汽油的硫含量。根据我国的实际情况,要在全国范围内完全实现汽油硫含量不大于150ppm的欧III标准还是要付出很大的努力[1]。因此,开发经济有效的汽油深度脱硫技术具有极其重要的现实意义。燃油加氢脱硫(HDS)催化剂已逐步取代FCC催化剂成为石化工业中用量最大的催化剂。但该技术需耗费大量的氢气,易引起辛烷值的降低,且在高温高压下进行,设备投资和操作费用非常昂贵,尤其对燃料油中含有的大分子稠环噻吩类硫化物衍生物的脱除非常困难[2]。正因为如此,吸附脱硫方式的应用越来越引起人们的关注。 汽油脱硫的方法 汽油脱硫的技术有很多种,采用哪种技术脱硫取决于汽油中的硫 的形态,以及硫含量的要求。对于硫含量超标不多的且是以硫醇硫为

主的汽油一般采用碱洗(脱臭)的方法即可解决,但碱洗法会产生碱渣造成后续的处理的问题。 目前工业装置汽油脱硫技术主要是以汽油选择性加氢脱硫和S-zorp 两大技术为主。选择性加氢脱硫技术是在较低的压力和温度下对高硫汽油进行加氢脱硫,可以将硫含量在1000ppm左右的汽油中的硫含量降低到10ppm以下,R损失在0.6各单位左右。 S-zorp汽油脱硫技术是中石化引进的国外汽油脱硫技术。其核心技术是采用了加氢+吸附的专用催化剂和连续再生的技术。可以可以将硫含量在600ppm左右的汽油中的硫含量降低到10ppm以下,R损失在1各单位左右。 从石脑油沸程烃物流中除去硫的方法,所述方法包含的步骤有:(a)将含有烯烃,二烯烃,硫醇及噻吩的石脑油沸程烃物流与有效量的氢气加入到第一蒸馏塔反应器中,进入加料区;(b)沸腾含有硫醇,二烯烃和大部分所述烯烃的所述石脑油沸程烃物流馏分向上进入第一蒸馏反应区,所述反应区含有第Ⅷ族金属加氢催化剂,以使部分所述硫醇与部分二烯烃进行反应形成硫化物和具有低硫醇含量的塔顶馏出物产品,所述催化剂制备成某种形态使其能在反应条件下用作催化蒸馏结构;(c)将所述硫化物,噻吩以及重硫醇与高沸点馏分一起作为塔底馏出物,从所述第一蒸馏塔反应器中除去;(d)将所述塔底馏出物和氢气加入到具有第二蒸馏反应区的第二蒸馏塔反应器中,所述反应区含有加氢脱硫催化剂,以使部分所述硫化物,噻吩及重硫醇与所述氢气反应生成H↓[2]S,所述催

相关文档
最新文档