历年高考数学真题(多年汇总)
十年高考(2012-2021)高考数学真题详解集合篇
![十年高考(2012-2021)高考数学真题详解集合篇](https://img.taocdn.com/s3/m/d157887324c52cc58bd63186bceb19e8b8f6ec15.png)
T 专题01 集合【2021 年】1.(2021 年全国高考乙卷数学(文)试题)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则U(M ⋃N ) =()A.{5} B.{1, 2} C.{3, 4} D.{1, 2,3, 4}【答案】A 由题意可得:M N ={1, 2,3, 4},则U (M U N )={5}.故选:A.2.(2021 年全国高考乙卷数学(理)试题)已知集合S={s s=2n+1,n∈Z},T={t t=4n+1,n∈Z},则S ()A.∅B.S C.T D.Z【答案】C【分析】任取t ∈T ,则t = 4n +1 = 2⋅(2n)+1,其中n ∈Z ,所以,t ∈S ,故T ⊆S ,因此,S I T =T .故选:C.3.(2021 年全国高考甲卷数学(文)试题)设集合M={1,3,5,7,9},N={x2x>7},则M I N =()A.{7,9} B.{5, 7,9} C.{3,5, 7,9} D.{1,3,5, 7,9}【答案】B【分析】N =⎛7, +∞⎫,故M ⋂N ={5, 7,9},2 ⎪⎝⎭故选:B.(2021 年全国高考甲卷数学(理)试题)设集合M ={x 0 <x < 4}, N =⎧ 1x ≤ 5⎫,则M I N =()⎬A.⎧x 0 <x ≤1 ⎫⎭B.⎧x1≤x < 4⎫⎨3⎬⎨3⎬⎩⎭C.{x 4 ≤x < 5}⎩⎭D.{x 0 <x ≤ 5}【答案】B【分析】因为 M ={x | 0 <x < 4}, N ={x | 1≤x ≤ 5} ,所以 M ⋂N =⎧x|1≤x < 4⎫, 3⎨3⎬⎩⎭故选:B.5.(2021 年全国新高考Ⅰ卷数学试题)设集合A={x-2<x<4},B={2,3,4,5},则AIB =()A.{2} B.{2,3} C.{3, 4} D.{2,3, 4}【答案】B【分析】由题设有A ⋂B ={2,3},故选:B .【2012 年——2020 年】1.(2020 年全国统一高考数学试卷(文科)(新课标Ⅰ))已知集合A={x|x2-3x-4<0},B={-4,1,3,5},则A IB =()A.{-4,1} B.{1,5}C.{3,5} D.{1,3}【答案】D【分析】由x2 -3x - 4 < 0 解得-1 <x < 4 ,所以A ={x | -1 <x < 4},又因为B ={-4,1,3,5},所以A I B ={1,3},故选:D.2.(2020 年全国统一高考数学试卷(理科)(新课标Ⅰ))设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4 B.–2 C.2 D.4【答案】B【分析】求解二次不等式x2 - 4 ≤ 0 可得:A ={x | -2 ≤x ≤ 2},求解一次不等式2x + a ≤ 0 可得: B = ⎧x | x ≤ -a ⎫ . ⎨ 2 ⎬ ⎩⎭由于 A ⋂ B ={x | -2 ≤ x ≤1} ,故: - a= 1,解得: a = -2 . 2故选:B.3.(2020 年全国统一高考数学试卷(文科)(新课标Ⅱ))已知集合 A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则 A ∩B =( )A . ∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}【答案】D因为 A = {x x < 3, x ∈ Z} = {-2, -1, 0,1, 2} ,B = {x x > 1, x ∈ Z} = {x x > 1或 x < -1, x ∈ Z },所以 AI B ={2, -2}.故选:D.4.(2020 年全国统一高考数学试卷(理科)(新课标Ⅱ))已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则 = ()A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A【分析】由题意可得: A ⋃ B ={-1, 0,1, 2},则U ( A U B ) ={-2,3} .故选:A.5.(2020 年全国统一高考数学试卷(文科)(新课标Ⅲ))已知集合A = {1,2,3,5,7,11} ,B = {x | 3 < x < 15} ,则 A ∩B 中元素的个数为()A .2B .3C .4D .5【答案】B【分析】由题意, A⋂ B = {5,7,11},故 A IB 中元素的个数为 3.故选:B6.(2020 年全国统一高考数学试卷(理科)(新课标Ⅲ))已知集合 A ={(x , y ) | x , y ∈ N * , y ≥ x },U ( A ⋃ B )⎩ B = {(x , y ) | x + y = 8},则 A I B 中元素的个数为()A .2B .3C .4D .6【答案】C【分析】由题意, A I B 中的元素满足⎧y ≥ x,且 x , y ∈ N * ,由 x + y = 8 ≥ 2x ,得 x ≤ 4 ,⎨x + y = 8所以满足 x + y = 8 的有(1,7),(2,6),(3,5),(4,4) ,故 A I B 中元素的个数为 4.故选:C.7.(2019 年全国统一高考数学试卷(文科)(新课标Ⅰ))已知集合U = {1, 2,3, 4,5, 6, 7},A ={2,3, 4,5},B ={2,3, 6, 7} ,则 B I C U AA .{1, 6}B .{1, 7}C .{6, 7}D .{1, 6, 7}【答案】C【分析】由已知得C U A = {1, 6, 7},所以 B ⋂ C U A = {6, 7},故选 C . 8.(2019 年全国统一高考数学试卷(理科)(新课标Ⅰ))已知集合M = {x -4 < x < 2},N = {x x 2 - x - 6 < 0} ,则 M ⋂ N =A .{x -4 < x <3}B .{x -4 < x <-2}C .{x -2 < x < 2}D .{x 2 < x <3}【答案】C【分析】【详解】由题意得, M = {x -4 < x < 2}, N = {x -2 < x < 3} ,则M ⋂ N = {x -2 < x < 2}.故选 C .9.(2019 年全国统一高考数学试卷(文科)(新课标Ⅱ))已知集合 A ={x | x > -1},B ={x | x < 2},则 A ∩B = A .(–1,+∞) B .(–∞,2) C .(–1,2) D . ∅【答案】C【分析】本题借助于数轴,根据交集的定义可得.【详解】R A =由题知,A I B = (-1, 2) ,故选C.10.(2019 年全国统一高考数学试卷(理科)(新课标Ⅱ))设集合A={x|x2-5x+6>0},B={ x|x-1<0},则A∩B= A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)【答案】A【分析】由题意得, A ={x x2或x3}, B ={x x < 1},则A ⋂B ={x x < 1}.故选A.11.(2019 年全国统一高考数学试卷(文科)(新课标Ⅲ))已知集合A={-1,0,1,2},B={x x2 ≤1},则A I B =A.{-1, 0,1} B.{0,1} C.{-1,1} D.{0,1, 2}【答案】A【分析】Q x2 ≤ 1,∴-1 ≤x ≤ 1,∴B ={x -1 ≤x ≤1},则A I B ={-1, 0,1},故选A.12.(2018 年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知集合A={0,2},B={-2,-1,0,1,2},则A I B=A.{0,2} B.{1,2} C.{0} D.{-2,-1,0,1,2}【答案】A【分析】详解:根据集合交集中元素的特征,可以求得A B ={0, 2},故选A.13.(2018 年全国普通高等学校招生统一考试理科数学(新课标I 卷))已知集合A={x x2 -x-2>0},则A.{x -1 <x < 2} C.{x |x <-1}⋃{x x 2} B.{x -1 ≤x ≤ 2} D.{x | x ≤-1}⋃{x | x ≥ 2}【答案】B【详解】:解不等式x2 -x - 2 > 0 得x <-1或x > 2 ,所以A ={x | x <-1或x > 2},所以可以求得C R A ={x | -1≤x ≤ 2},故选B.14.(2018 年全国普通高等学校招生统一考试文数(全国卷II))已知集合A={1,3,5,7},B={2,3,4,5},则 A I B =A.{3} B.{5} C.{3, 5} D.{1, 2,3, 4,5,7}【答案】C【详解】详解:Q A ={1,3,5,7}, B ={2,3, 4,5},∴A⋂B ={3,5},故选C15.(2018 年全国卷Ⅲ文数高考试题)已知集合A={x|x-1≥0},B={0,1,2},则A I B=A.{0} B.{1} C.{1, 2} D.{0,1, 2}【答案】C【分析】:由集合 A 得x ≥1,所以A ⋂B ={1, 2}故答案选C.16.(2018 年全国普通高等学校招生统一考试理数(全国卷II))已知集合A={(x,y)x2 +y2 ≤3,x∈Z,y∈Z},则A 中元素的个数为()A.9 B.8 C.5 D.4【答案】A【分析】Q x2 +y2 ≤ 3∴x2≤3,Q x∈Z∴x=-1,0,1当x =-1时,y=-1,0,1;当x=0时,y=-1,0,1;当x = 1 时,y =-1,0,1;所以共有9 个,故选:A.17.(2018 年全国卷Ⅲ理数高考试题)已知集合A={x|x-1≥0},B={0,1,2},则A I B=A.{0} B.{1} C.{1,2} D.{0,1,2}【答案】C【解析】详解:由集合A 得x ≥1,所以A ⋂B ={1, 2}故答案选 C.(2017 年全国普通高等学校招生统一考试文科数学(新课标1 卷))已知集合A= {x|x<2},B= {x|3-2x>0},则A .A IB = ⎧x |x < 3 ⎫B .A I B =∅⎨ 2 ⎬⎩ ⎭ C .A U B = ⎧x |x < 3 ⎫D .A U B=R⎨ 2 ⎬⎩⎭ 【答案】A【详解】由3 - 2x > 0 得 x < 3 ,所以 A I 2 B ={x | x < 2}I {x | x < 3} ={x | x < 3},选 A .2 219.(2017 年全国普通高等学校招生统一考试理科数学(新课标 1 卷))已知集合A ={x |x <1},B ={x | 3x < 1},则A. A IB ={x | x < 0}B. A U B = RC. A U B ={x | x >1}D. A I B =∅【答案】A【解析】∵集合 B ={x | 3x< 1}∴ B = {x x < 0}∵集合 A ={x | x <1}∴ A ⋂ B = {x x < 0} , A ⋃ B ={x | x <1} 故选A20.(2017 年全国普通高等学校招生统一考试文科数学(新课标 2 卷))设集合A ={1, 2,3},B ={2,3, 4},则 A U B = A .{1,2,3, 4} B .{1,2,3} C .{2,3,4} D .{1,3,4}【答案】A【详解】由题意 A ⋃ B = {1,2,3,4},故选 A.21.(2017 年全国普通高等学校招生统一考试理科数学(新课标 2 卷))设集合 A = {1, 2, 4}, B ={x x 2 - 4x + m = 0}.若 A ⋂ B = {1},则 B =( )A .{1, -3}B .{1, 0}C .{1, 3}D .{1, 5}【答案】C【详解】∵ 集合 A = {1,2,4}, B = {x | x 2 - 4x + m = 0}, A IB = {1}∴ x = 1 是方程 x 2 - 4x + m = 0 的解,即1- 4 + m = 0 ∴ m = 3∴B = {x | x 2- 4x + m = 0} = {x | x 2- 4x + 3 = 0}= {1,3},故选 C2 2 2 2 3, ) 22.(2017 年全国普通高等学校招生统一考试文科数学(新课标3 卷))已知集合 A={1,2,3,4},B={2,4,6,8},则 A I B 中元素的个数为 A .1B .2C .3D .4【答案】B【详解】由题意可得 A IB ={2, 4},故 A IB 中元素的个数为 2,所以选 B. 23.(2017 年全国普通高等学校招生统一考试文科数学)已知集合A = {(x , y ) x 2 + y 2= 1}, B = {(x , y ) y = x } ,则 A IB 中元素的个数为( )A .3B .2C .1D .0【答案】B【解析】试题分析:集合中的元素为点集,由题意,可知集合 A 表示以(0, 0)为圆心,1为半径的单位圆上所有点组成的集合,集合 B 表示直线 y = x 上所有的点组成的集合,又圆x 2 + y 2 = 1 与直线 y = x⎛ ⎫ ⎛ 相交于两点, , - , - ⎫ ,则 A I B 中有 2 个元素.故选 B. 2 2 ⎪ 2 2 ⎪ ⎝ ⎭ ⎝ ⎭24.(2016 年全国普通高等学校招生统一考试文科数学)设集合 A = {1,3,5, 7} , B ={x | 2 ≤ x ≤ 5},则 A ⋂ B =A .{1,3}B .{3,5}C .{5,7}D .{1,7}【答案】B【解析】试题分析:集合 与集合 的公共元素有3,5,故,故选B.25.(2016 年全国普通高等学校招生统一考试文科数学)设集合 A ={x | x 2 - 4x + 3 < 0},B ={x | 2x -3 > 0},则 A I B =A . (-3, - 3) 2B . (- 32 3. (1, )2 3 . ( , 3)2【答案】D【详解】:集合A = {x | ( x -1)( x - 3) < 0}= {x |1 < x < 3},集合 ,所以C DA BA ⋂B =⎧x |3<x <⎫,故选D.⎨2 3⎬⎩⎭.2016 年全国普通高等学校招生统一考试文科数学(新课标2 卷)已知集合A={1,2,3},B ={x | x2 < 9},则A⋂B =A.{-2, -1,0,1, 2,3} B.{-2, -1,0,1, 2}C.{1,2,3} D.{1, 2}【答案】D【解析】试题分析:由x2< 9 得-3<x<3,所以B={x|-3<x<3},因为A={1,2,3},所以A⋂B={1,2},故选D.27.(2016 年全国普通高等学校招生统一考试文科数学)已知集合A={1,2,3},B ={x | (x +1)(x - 2) < 0, x ∈Z},则 A⋃B =A.{1}B.{1,2} C.{0,1,2,3}D.{-1,0,1,2,3}【答案】C【详解】试题分析:集合B ={x | -1 <x < 2, x ∈Z} ={0,1},而A ={1, 2,3},所以A⋃B ={0,1, 2,3},故选C.(2016 年全国普通高等学校招生统一考试文科数学(新课标3 卷))设集合A={0,2,4,6,8,10},B={4,8},则=A.{4,8}B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10}【答案】C【详解】试题分析:由补集的概念,得A B ={0, 2, 6,10},故选C.29.(2016 年全国普通高等学校招生统一考试理科数学(新课标3))设集合S ={x|(x - 2)(x -3) ≥ 0},T ={x|x > 0} ,则S ⋂T=A.[2,3] B.(−∞,2] ⋃[3,+ ∞)C.[3,+ ∞)D.(0,2] ⋃[3,+ ∞)【答案】D【详解】:由(x - 2)(x -3) ≥ 0 解得x ≥ 3 或x ≤ 2 ,所以S ={x | x ≤ 2或x ≥ 3},所以S ⋂T ={x | 0 <x ≤ 2或x ≥ 3},故选D.30.(2015 年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知集合A ={x | x = 3n + 2, n ∈N},B ={6,8,10,12,14},则集合A⋂B 中的元素个数为A.5 B.4 C.3 D.2【答案】D【详解】由已知得 A⋂B中的元素均为偶数,∴n应为取偶数,故 A⋂B ={8,14},故选D.31.(2015 年全国普通高等学校招生统一考试文科数学(新课标Ⅱ))已知集合A ={x | -1 <x < 2},B ={x | 0 <x < 3}, 则A U B =()A.(-1,3) B.(-1, 0) C.(0, 2) D.(2,3)【答案】A【详解】因为A ={x | -1<x < 2}, B ={x | 0 <x < 3},所以A U B={x | -1 <x < 3}. 故选A. 32.(2015 年全国普通高等学校招生统一考试理科数学(新课标Ⅱ))已知集合A={-2,-1,0,1,2},B ={x | (x -1)(x +2) <0},则A I B =()A.{-1, 0} B.{0,1} C.{-1, 0,1} D.{0,1, 2}【答案】A【详解】已知得B={x|-2<x<1},因为A={-2,-1,0,1,2},所以A⋂B={-1,0},故选A.33.(2014 年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知集合M ={x | -1<x < 3}, N ={x | -2 <x <1},则 M ⋂N =A. B. C. D.【答案】B【详解】试题分析:根据集合的运算法则可得:M ⋂N ={x | -1 <x < 1},即选B.34.(2014 年全国普通高等学校招生统一考试理科数学(新课标Ⅰ卷))已知集合,则A. B. C. D.【答案】A【详解】试题分析:由已知得,A ={x | x ≤-1或x ≥ 3},故A⋂B ={x | -2 ≤x ≤-1},选A.35.(2014 年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷))设集合A ={-2, 0, 2},B ={x | x2 -x - 2 = 0} ,则 A⋂B =A.∅B. C.{0}【答案】B【详解】:由已知得,B={2,-1},故A⋂B={2},选B.D.{-2}36.(2013 年全国普通高等学校招生统一考试文科数学(新课标1 卷))已知集合A={1,2,3,4},B ={x | x =n2 , n ∈A} ,则A∩B=A.{1,4}B.{2,3}C.{9,16} D.{1,2}【答案】A【分析】依题意,,故A⋂B ={1, 4}.37.(2013 年全国普通高等学校招生统一考试理科数学(新课标1 卷)已知集合A={x|x2-2x>0},B={x|—5 <x<5 },则().A.A∩B=B.A∪B=R C.B ⊆A D.A ⊆B【答案】B【详解】依题意 A ={x | x 0或x2},又因为B={x|-5 <x<5 },由数轴可知A∪B=R,故选B.38.(2013 年全国普通高等学校招生统一考试文科数学)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1 }【答案】C【详解】因为集合M=,所以M∩N={0,-1,-2},故选C.39.(2013 年全国普通高等学校招生统一考试理科数学)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3}【答案】A【详解】:由(x﹣1)2<4,解得:﹣1<x<3,即M={x|﹣1<x<3},∵N={﹣1,0,1,2,3},∴M∩N={0,1,2}.故选A40.(2012 年全国普通高等学校招生统一考试文科数学)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则A. B.C.A=B D.A∩B=Æ【答案】B【详解】集合,又,所以B 是A 的真子集,选B.41.(2012 年全国普通高等学校招生统一考试理科数学)已知集合A={1,2,3,4,5}, B ={(x, y) x ∈A, y ∈A, x -y ∈A},则B 中所含元素的个数为A.3 B.6 C.8 D.10【答案】D【详解】列举法得出集合B={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},共含10 个元素.故答案选D .。
历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)
![历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)](https://img.taocdn.com/s3/m/fde42b5903020740be1e650e52ea551811a6c94e.png)
历年(2019-2024)全国高考数学真题分类(数列)汇编考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项D .无最大项,无最小项考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .293.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .154.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( )A .-1B .12-C .0D .125.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-二、填空题 15.(2024∙全国新Ⅱ卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .16.(2022∙全国乙卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d = . 17.(2020∙山东∙高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为 .18.(2020∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S = .19.(2019∙江苏∙高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 .20.(2019∙北京∙高考真题)设等差数列{an }的前n 项和为Sn ,若a 2=−3,S 5=−10,则a 5= ,Sn 的最小值为 .21.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S = . 22.(2019∙全国∙高考真题)记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S = .考点04 等比数列及其前n 项和一、单选题 1.(2023∙全国甲卷∙高考真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =( ) A .158B .658C .15D .402.(2023∙天津∙高考真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =( )A .16B .32C .54D .1623.(2023∙全国新Ⅱ卷∙高考真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =( ). A .120B .85C .85-D .120-4.(2022∙全国乙卷∙高考真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14B .12C .6D .35.(2021∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( ) A .7B .8C .9D .106.(2020∙全国∙高考真题)设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A .12B .24C .30D .327.(2020∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则n nS a =( )A .2n –1B .2–21–nC .2–2n –1D .21–n –18.(2020∙全国∙高考真题)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=- ,则 k =( ) A .2B .3C .4D .5二、填空题 11.(2023∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为 . 12.(2023∙全国乙卷∙高考真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a = . 13.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若13314a S ==,,则S 4= . 14.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若214613a a a ==,,则S 5= .考点05 数列中的数学文化1.(2023∙北京∙高考真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a = ;数列{}n a 所有项的和为 .2.(2022∙全国新Ⅱ卷∙高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021∙全国新Ⅰ卷∙高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为 ;如果对折n次,那么1nk k S ==∑ 2dm .4.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .5.(2020∙全国∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010B .11011C .10001D .110016.(2020∙全国∙高考真题)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块考点06 数列求和1.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 2.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=3.(2020∙江苏∙高考真题)设{an }是公差为d 的等差数列,{bn }是公比为q 的等比数列.已知数列{an +bn }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是 .参考答案考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <【答案】D【详细分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【答案详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误; 178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,,,47b b <故D 正确.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n nS a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ).A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】B【详细分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【答案详解】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<< , 且由50T <可知()06,i T i i N <≥∈, 由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=. 故数列{}n T 中存在最大项,且最大项为4T . 故选:B.【名师点评】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立【答案】B【详细分析】法1:利用数列归纳法可判断ACD 正误,利用递推可判断数列的性质,故可判断B 的正误. 法2:构造()()31664x f x x =-+-,利用导数求得()f x 的正负情况,再利用数学归纳法判断得各选项n a 所在区间,从而判断{}n a 的单调性;对于A ,构造()()32192647342h x x x x x =-+-≤,判断得11n n a a +<-,进而取[]4m M =-+推得n a M >不恒成立;对于B ,证明n a 所在区间同时证得后续结论;对于C ,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+推得n a M >不恒成立;对于D ,构造()()32192649942g x x x x x =-+-≥,判断得11n n a a +>+,进而取[]1m M =+推得n a M <不恒成立. 【答案详解】法1:因为()311664n n a a +=-+,故()311646n n a a +=--,对于A ,若13a =,可用数学归纳法证明:63n a -≤-即3n a ≤, 证明:当1n =时,1363a -=≤--,此时不等关系3n a ≤成立; 设当n k =时,63k a -≤-成立, 则()3162514764,4k k a a +⎛⎫-∈--- ⎝=⎪⎭,故136k a +≤--成立, 由数学归纳法可得3n a ≤成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()20144651149n a --=-≥>,60n a -<,故10n n a a +-<,故1n n a a +<, 故{}n a 为减数列,注意1063k a +-≤-< 故()()()()23111666649644n n n n n a a a a a +-=≤-=-⨯--,结合160n a +-<,所以()16694n n a a +--≥,故19634n n a +⎛⎫-≥ ⎪⎝⎭,故19634nn a +⎛⎫≤- ⎪⎝⎭,若存在常数0M ≤,使得n a M >恒成立,则9634nM ⎛⎫-> ⎪⎝⎭,故6934nM -⎛⎫> ⎪⎝⎭,故946log 3M n -<,故n a M >恒成立仅对部分n 成立, 故A 不成立.对于B ,若15,a =可用数学归纳法证明:106n a --≤<即56n a ≤<, 证明:当1n =时,10611a ---≤≤=,此时不等关系56n a ≤<成立; 设当n k =时,56k a ≤<成立, 则()31164416,0k k a a +⎛⎫-∈-⎪⎝=⎭-,故1106k a +--≤<成立即 由数学归纳法可得156k a +≤<成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()201416n a --<,60n a -<,故10n n a a +->,故1n n a a +>,故{}n a 为增数列, 若6M =,则6n a <恒成立,故B 正确.对于C ,当17a =时, 可用数学归纳法证明:061n a <-≤即67n a <≤, 证明:当1n =时,1061a <-≤,此时不等关系成立; 设当n k =时,67k a <≤成立, 则()31160,4164k k a a +⎛⎤-∈ ⎥⎝=⎦-,故1061k a +<-≤成立即167k a +<≤ 由数学归纳法可得67n a <≤成立.而()()21166014n n n n a a a a +⎡⎤=--<⎢⎥⎣⎦--,故1n n a a +<,故{}n a 为减数列,又()()()2111666644n n n n a a a a +-=-⨯-≤-,结合160n a +->可得:()111664n n a a +⎛⎫-≤- ⎪⎝⎭,所以1164nn a +⎛⎫≤+ ⎪⎝⎭, 若1164nn a +⎛⎫≤+ ⎪⎝⎭,若存在常数6M >,使得n a M >恒成立,则164nM ⎛⎫-≤ ⎪⎝⎭恒成立,故()14log 6n M ≤-,n 的个数有限,矛盾,故C 错误.对于D ,当19a =时, 可用数学归纳法证明:63n a -≥即9n a ≥, 证明:当1n =时,1633a -=≥,此时不等关系成立; 设当n k =时,9k a ≥成立,则()3162764143k k a a +-≥=>-,故19k a +≥成立 由数学归纳法可得9n a ≥成立.而()()21166014n n n n a a a a +⎡⎤=-->⎢⎥⎣⎦--,故1n n a a +>,故{}n a 为增数列,又()()()2119666446n n n n a a a a +->=-⨯--,结合60n a ->可得:()11116396449n n n a a --+⎭-⎛⎫⎛⎫-= ⎪⎪⎝⎝⎭> ,所以114963n n a -+⎛⎫⎪⎭≥+⎝,若存在常数0M >,使得n a M <恒成立,则19643n M -⎛⎫⎪⎝>+⎭,故19643n M -⎛⎫⎪⎝>+⎭,故946log 13M n -⎛⎫<+ ⎪⎝⎭,这与n 的个数有限矛盾,故D 错误.故选:B.法2:因为()3321119662648442n n n n n n n a a a a a a a +-=-+-=-+-, 令()3219264842f x x x x =-+-,则()239264f x x x =-+',令()0f x ¢>,得06x <<6x >+;令()0f x '<,得66x << 所以()f x在,6⎛-∞ ⎝⎭和63⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在633⎛⎫-+ ⎪ ⎪⎝⎭上单调递减, 令()0f x =,则32192648042x x x -+-=,即()()()146804x x x ---=,解得4x =或6x =或8x =,注意到465<<,768<<, 所以结合()f x 的单调性可知在(),4-∞和()6,8上()0f x <,在()4,6和()8,+∞上()0f x >, 对于A ,因为()311664n n a a +=-+,则()311646n n a a +=--,当1n =时,13a =,()32116643a a =--<-,则23a <, 假设当n k =时,3k a <, 当1n k =+时,()()331311646364k k a a +<---<-=,则13k a +<, 综上:3n a ≤,即(),4n a ∈-∞,因为在(),4-∞上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 因为()332111916612647442n n n n n n n a a a a a a a +-+=-+-+=-+-, 令()()32192647342h x x x x x =-+-≤,则()239264h x x x '=-+,因为()h x '开口向上,对称轴为96324x -=-=⨯, 所以()h x '在(],3-∞上单调递减,故()()2333932604h x h ''≥=⨯-⨯+>,所以()h x 在(],3-∞上单调递增,故()()321933326347042h x h ≤=⨯-⨯+⨯-<,故110n n a a +-+<,即11n n a a +<-, 假设存在常数0M ≤,使得n a M >恒成立,取[]14m M =-+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +<-,所以[][]2132431,1,,1M M a a a a a a -+-+<-<-<- , 上式相加得,[][]()14333M a a M M M -+<--+≤+-=, 则[]14m M a a M +=<,与n a M >恒成立矛盾,故A 错误; 对于B ,因为15a =, 当1n =时,156a =<,()()33211166566644a a =-+=⨯-+<, 假设当n k =时,6k a <,当1n k =+时,因为6k a <,所以60k a -<,则()360k a -<, 所以()3116664k k a a +=-+<, 又当1n =时,()()332111615610445a a =-+=⨯+-->,即25a >, 假设当n k =时,5k a ≥,当1n k =+时,因为5k a ≥,所以61k a -≥-,则()361k a -≥-, 所以()3116654k k a a +=-+≥, 综上:56n a ≤<,因为在()4,6上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 此时,取6M =,满足题意,故B 正确;对于C ,因为()311664n n a a +=-+,则()311646n n a a +=--,注意到当17a =时,()3216617644a =-+=+,3341166441664a ⎪⎛⎫⎫+=+ ⎪⎝+-⎭⎭⎛= ⎝,143346166144416a ⎢⎛⎫+=⎡⎤⎛⎫=+-⎢⎥ ⎪⎝+ ⎪⎭⎭⎥⎦⎝⎣猜想当2n ≥时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当2n =与3n =时,2164a =+与43164a ⎛⎫=+ ⎪⎝⎭满足()1312164nn a -⎛⎫+ ⎪=⎝⎭,假设当n k =时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当1n k =+时,所以()())13113131122311666116664444k k k k a a +-+-⎡⎤⎛⎫⎛⎫⎢⎥=+-+ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦-+=+=, 综上:()()13121624n n a n - =⎛⎫+≥⎪⎝⎭,易知310n->,则)13121014n -⎛⎫<< ⎪⎝⎭,故()()()1312166,724n n a n -⎛⎪=⎫+∈≥ ⎝⎭,所以(],67n a ∈,因为在()6,8上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 假设存在常数6M >,使得n a M >恒成立,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+,其中[]*00001,N m m m m -<≤∈,则()0142log 6133m mM ->=+, 故()()14log 61312m M ->-,所以()1312614m M -⎛⎫ ⎪<⎝-⎭,即)1312164m M -⎛⎫+ ⎪⎭<⎝, 所以m a M <,故n a M >不恒成立,故C 错误; 对于D ,因为19a =, 当1n =时,()32116427634a a ==->-,则29a >, 假设当n k =时,3k a ≥, 当1n k =+时,()()331116936644k k a a +≥=-->-,则19k a +>,综上:9n a ≥,因为在()8,+∞上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 因为()332111916612649442n n n n n n n a a a a a a a +--=-+--=-+-, 令()()32192649942g x x x x x =-+-≥,则()239264g x x x '=-+, 因为()g x '开口向上,对称轴为96324x -=-=⨯, 所以()g x '在[)9,+∞上单调递增,故()()2399992604g x g ≥=⨯-⨯+'>',所以()()321999926949042g x g ≥=⨯-⨯+⨯->, 故110n n a a +-->,即11n n a a +>+, 假设存在常数0M >,使得n a M <恒成立, 取[]21m M =+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +>+,所以[][]213211,1,,1M M a a a a a a +>+>+>+ , 上式相加得,[][]1191M a a M M M +>+>+->, 则[]21m M a a M +=>,与n a M <恒成立矛盾,故D 错误. 故选:B.【名师点评】关键名师点评:本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n n S a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 【答案】B【详细分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +⎛⎫-=<=+ ⎪-+⎝⎭-+,累加可求出()111111113323nn a n ⎛⎫-<-++++ ⎪⎝⎭ ,再次放缩可得出10051002a >. 【答案详解】∵11a =,易得()220,13a =∈,依次类推可得()0,1n a ∈ 由题意,1113n n n a a a +⎛⎫=- ⎪⎝⎭,即()1131133n n n n na a a a a +==+--,∴1111133n n n a a a +-=>-, 即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->≥, 累加可得()11113n n a ->-,即11(2),(2)3n n n a >+≥, ∴()3,22n a n n <≥+,即100134a <,100100100334a <<, 又11111111,(2)333132n n n n a a a n n +⎛⎫-=<=+≥ ⎪-+⎝⎭-+, ∴211111132a a ⎛⎫-=+ ⎪⎝⎭,321111133a a ⎛⎫-<+ ⎪⎝⎭,431111134a a ⎛⎫-<+ ⎪⎝⎭,…,111111,(3)3n n n a a n -⎛⎫-<+≥ ⎪⎝⎭, 累加可得()11111111,(3)3323n n n a n ⎛⎫-<-++++≥ ⎪⎝⎭ ,∴100111111111333349639323100326a ⎛⎫⎛⎫-<++++<+⨯+⨯< ⎪ ⎪⎝⎭⎝⎭ , 即100140a <,∴100140a >,即10051002a >; 综上:100510032a <<. 故选:B .【名师点评】关键点名师点评:解决本题的关键是利用递推关系进行合理变形放缩. 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 【答案】A【详细分析】显然可知,10032S >,利用倒数法得到21111124n n a a +⎛⎫==+-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【答案详解】因为)111,N n a a n *+==∈,所以0n a >,10032S >.由211111124n n n a a a ++⎛⎫=⇒=+=+-⎪⎪⎭2111122n a +⎛⎫∴<⇒<⎪⎪⎭12<()111,222n n n -+<+=≥,当1n =112+=,12n +≤,当且仅当1n =时等号成立,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++ 113n n a n a n ++∴≤+, 由累乘法可得()6,2(1)(2)n a n n n ≤≥++,且16(11)(12)a =++,则6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<. 故选:A .【名师点评】的不等关系,再由累加法可求得24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .【答案】10【详细分析】根据通项公式可求出数列{}n a 的前三项,即可求出. 【答案详解】因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=. 故答案为:10.【名师点评】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题.6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .【答案】7【详细分析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论.【答案详解】2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++135********()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=,17a ∴=.故答案为:7.【名师点评】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->【答案】A【解析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确.【答案详解】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+= 选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<, 故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥ ,且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>, 故选项A 正确; 选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =, 即当12a =时,数列{}n a 为常数列,12n a =,则101102a =<,故选项B 错误; 选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为=1x -或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2, 同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为12x =, 同理可知,此时的常数列{}n a 也不能使1010a >, 则选项D 错误. 故选:A.【名师点评】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-【答案】B【详细分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【答案详解】由105678910850S S a a a a a a -=++++==,则80a =, 则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .29【答案】D【详细分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【答案详解】方法一:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=. 故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D3.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .15【答案】C【详细分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出; 方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出. 【答案详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==, 所以515455210202S a d ⨯=+⨯=⨯+=. 故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=, 所以53520S a ==. 故选:C.4.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( ) A .-1B .12-C .0D .12【答案】B【详细分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素详细分析、推理作答.【答案详解】依题意,等差数列{}n a 中,112π2π2π(1)()333n a a n n a =+-⋅=+-, 显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=, 于是有2πcos cos()3θθ=+,即有2π()2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈, 所以Z k ∈,2ππ4πππ1cos(π)cos[(π)]cos(π)cos πcos πcos 333332ab k k k k k =--+=--=-=-.故选:B5.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a nn n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”;若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =【答案】D【详细分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【答案详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+,∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++, ()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.【名师点评】本题主要考查等差数列的性质应用,属于基础题.8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则。
历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编(附答案)
![历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编(附答案)](https://img.taocdn.com/s3/m/299505546d85ec3a87c24028915f804d2b1687af.png)
历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 .3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}24.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5}D .{1,3}基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+D .4ln ln y x x=+3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13B .12C .9D .64.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .32参考答案解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3}C .{3,1,0}--D .{1,0,2}-【答案】A【详细分析】化简集合A ,由交集的概念即可得解.【答案详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-. 故选:A.2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 . 【答案】{}|13x x -<<【详细分析】求出方程2230x x --=的解后可求不等式的解集. 【答案详解】方程2230x x --=的解为=1x -或3x =, 故不等式2230x x --<的解集为{}|13x x -<<, 故答案为:{}|13x x -<<.3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【详细分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出. 方法二:将集合M 中的元素逐个代入不等式验证,即可解出.【答案详解】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-. 故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .4.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5} D .{1,3}【答案】D【详细分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ⋂,得到结果. 【答案详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B = , 故选:D.【名师点评】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 【答案】B【详细分析】根据指数函数和对数函数的单调性结合基本不等式详细分析判断AB ;举例判断CD 即可. 【答案详解】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB :可得121222222x xx x ++>=,即12122202x x y y ++>>, 根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故B 正确,A 错误;对于选项D :例如120,1x x ==,则121,2y y ==, 可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故D 错误; 对于选项C :例如121,2x x =-=-,则1211,24y y ==, 可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故C 错误, 故选:B.2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+ D .4ln ln y x x=+【答案】C【详细分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意.【答案详解】对于A ,()2224133y x x x =++=++≥,当且仅当=1x -时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞ ,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意. 故选:C .【名师点评】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C【详细分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【答案详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C . 【名师点评】4.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32【答案】B【详细分析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =等式,即可求得答案. 【答案详解】 2222:1(0,0)x y C a b a b -=>> ∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E 两点 不妨设D 为在第一象限,E 在第四象限 联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b -∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =≥==当且仅当a b ==∴C 的焦距的最小值:8故选:B.【名师点评】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了详细分析能力和计算能力,属于中档题.。
近三年高考数学试卷
![近三年高考数学试卷](https://img.taocdn.com/s3/m/f35aea3c814d2b160b4e767f5acfa1c7aa008287.png)
近三年高考数学试卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合A = {xx^2 - 3x + 2 = 0},B={x∈ Z1≤slant x≤slant 3},则A∩ B = ( )A. {1}B. {2}C. {1, 2}D. {1, 2, 3}2. 复数z=(2i)/(1 - i)(i为虚数单位)的共轭复数¯z等于()A. -1 - iB. -1 + iC. 1 - iD. 1 + i3. 已知向量→a=(1,2),→b=(x,1),若→a⊥→b,则x的值为()A. -2B. -1C. 1D. 24. 函数y = sin(2x+(π)/(3))的最小正周期为()A. πB. 2πC. (π)/(2)D. (2π)/(3)5. 在等差数列{a_n}中,a_1=1,d = 2,则a_5等于()A. 9B. 11C. 13D. 156. 若log_a(2)/(3)<1(a>0且a≠1),则a的取值范围是()A. (0,(2)/(3))B. ((2)/(3),1)C. (1,+∞)D. (0,(2)/(3))∪(1,+∞)7. 从5名男生和3名女生中任选3人参加奥运会火炬接力活动,若随机变量X表示所选3人中女生的人数,则P(X≥slant1)等于()A. (15)/(28)B. (16)/(28)C. (17)/(28)D. (18)/(28)8. 若双曲线frac{x^2}{a^2}-frac{y^2}{b^2} = 1(a>0,b>0)的一条渐近线方程为y=√(3)x,则双曲线的离心率为()A. √(2)B. √(3)C. 2D. 49. 已知函数f(x)=x^3+ax^2+bx + c,x∈[-2,2]表示的曲线过原点,且在x=±1处的切线斜率均为-1,则以下结论正确的是()A. f(x)的解析式为f(x)=x^3-4x,x∈[-2,2]B. f(x)的极值点有且仅有一个。
历年(2019-2024)全国高考数学真题分类(统计与数字特征)汇编(附答案)
![历年(2019-2024)全国高考数学真题分类(统计与数字特征)汇编(附答案)](https://img.taocdn.com/s3/m/d4ff7344a200a6c30c22590102020740be1ecda1.png)
历年(2019-2024)全国高考数学真题分类(统计与数字特征)汇编考点01 随机抽样1.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).A .4515400200C C ⋅种B .2040400200C C ⋅种 C .3030400200C C ⋅种D .4020400200C C ⋅种考点02 图表类统计图综合1.(2022∙天津∙高考真题)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .8B .12C .16D .182.(2021∙天津∙高考真题)从某网络平台推荐的影视作品中抽取400部,统计其评分数据,将所得400个评分数据分为8组:[)66,70、[)70,74、L 、[]94,98,并整理得到如下的频率分布直方图,则评分在区间[)82,86内的影视作品数量是( )A.20 B.40 C.64 D.804.(2021∙全国甲卷∙高考真题)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间5.(2020∙全国新Ⅱ卷∙高考真题)(多选)我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A.这11天复工指数和复产指数均逐日增加;B.这11天期间,复产指数增量大于复工指数的增量;C.第3天至第11天复工复产指数均超过80%;D.第9天至第11天复产指数增量大于复工指数的增量;5.(2020∙天津∙高考真题)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[)[)[)[],并整理得到如下频率分布直方图,则在被抽取的零件中,5.31,5.33,5.33,5.35,,5.45,5.47,5.47,5.49直径落在区间[5.43,5.47)内的个数为()A.10 B.18 C.20 D.36考点03 样本的数字特征一、单选题1.(2024∙全国新Ⅱ卷∙高考真题)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg)并整理如下表亩产[900,950) [950,1000) [1000,1050) [1050,1100) [1100,1150) [1150,1200) 量频数 6 12 18 30 24 10根据表中数据,下列结论中正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg至300kg之间D.100块稻田亩产量的平均值介于900kg至1000kg之间2.(2022∙全国乙卷∙高考真题)分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C .甲同学周课外体育运动时长大于8的概率的估计值大于0.4D .乙同学周课外体育运动时长大于8的概率的估计值大于0.63.(2022∙全国甲卷∙高考真题)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座后问卷答题的正确率的极差大于讲座前正确率的极差4.(2020∙全国∙高考真题)在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====5.(2020∙全国∙高考真题)设一组样本数据x 1,x 2,…,xn 的方差为0.01,则数据10x 1,10x 2,…,10xn 的方差为( )A .0.01B .0.1C .1D .106.(2019∙全国∙高考真题)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差二、多选题9.(2023∙全国新Ⅰ卷∙高考真题)有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则( ) A .2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数B .2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数C .2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差D .2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差10.(2021∙全国新Ⅱ卷∙高考真题)下列统计量中,能度量样本12,,,n x x x 的离散程度的是( )A .样本12,,,n x x x 的标准差B .样本12,,,n x x x 的中位数C .样本12,,,n x x x 的极差D .样本12,,,n x x x 的平均数11.(2021∙全国新Ⅰ卷∙高考真题)有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c =+(1,2,,),i n c =⋅⋅⋅为非零常数,则( )A .两组样本数据的样本平均数相同B .两组样本数据的样本中位数相同C .两组样本数据的样本标准差相同D .两组样本数据的样本极差相同三、填空题12.(2020∙江苏∙高考真题)已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是 .13.(2019∙江苏∙高考真题)已知一组数据6,7,8,8,9,10,则该组数据的方差是 .考点04 变量间的相关关系1.(2024∙天津∙高考真题)下列图中,线性相关性系数最大的是( )A .B .C .D .2.(2023∙天津∙高考真题)鸢是鹰科的一种鸟,《诗经∙大雅∙旱麓》曰:“鸢飞戾天,鱼跃余渊”. 鸢尾花因花瓣形如鸢尾而得名,寓意鹏程万里、前途无量.通过随机抽样,收集了若干朵某品种鸢尾花的花萼长度和花瓣长度(单位:cm ),绘制散点图如图所示,计算得样本相关系数为0.8642r =,利用最小二乘法求得相应的经验回归方程为 0.75010.6105y x =+,根据以上信息,如下判断正确的为( )A .花瓣长度和花萼长度不存在相关关系B .花瓣长度和花萼长度负相关C .花萼长度为7cm 的该品种鸢尾花的花瓣长度的平均值为5.8612cmD .若从样本中抽取一部分,则这部分的相关系数一定是0.86423.(2020∙全国∙高考真题)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i = 得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A .y a bx =+B .2y a bx =+C .e x y a b =+D .ln y a b x =+参考答案考点01 随机抽样1.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).A .4515400200C C ⋅种B .2040400200C C ⋅种 C .3030400200C C ⋅种 D .4020400200C C ⋅种【答案】D【详细分析】利用分层抽样的原理和组合公式即可得到答案. 【答案详解】根据分层抽样的定义知初中部共抽取4006040600⨯=人,高中部共抽取2006020600⨯=, 根据组合公式和分步计数原理则不同的抽样结果共有4020400200C C ⋅种.故选:D.考点02 图表类统计图综合1.(2022∙天津∙高考真题)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .8B .12C .16D .18【答案】B 【详细分析】结合已知条件和频率分布直方图求出志愿者的总人数,进而求出第三组的总人数,从而可以求得结果. 【答案详解】志愿者的总人数为20(0.240.16)1+⨯=50, 所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.故选:B.2.(2021∙天津∙高考真题)从某网络平台推荐的影视作品中抽取400部,统计其评分数据,将所得400个评分数据分为8组:[)66,70、[)70,74、L 、[]94,98,并整理得到如下的频率分布直方图,则评分在区间[)82,86内的影视作品数量是( )A .20B .40C .64D .80【答案】D 【详细分析】利用频率分布直方图可计算出评分在区间[)82,86内的影视作品数量.【答案详解】由频率分布直方图可知,评分在区间[)82,86内的影视作品数量为4000.05480⨯⨯=.故选:D.4.(2021∙全国甲卷∙高考真题)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是( )A .该地农户家庭年收入低于4.5万元的农户比率估计为6%B .该地农户家庭年收入不低于10.5万元的农户比率估计为10%C .估计该地农户家庭年收入的平均值不超过6.5万元D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【详细分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【答案详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+⨯==,故B 正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++⨯==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.027.68⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=(万元),超过6.5万元,故C 错误.综上,给出结论中不正确的是C.故选:C.【名师点评】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于⨯频率组距组距. 5.(2020∙全国新Ⅱ卷∙高考真题)(多选)我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A .这11天复工指数和复产指数均逐日增加;B .这11天期间,复产指数增量大于复工指数的增量;C .第3天至第11天复工复产指数均超过80%;D .第9天至第11天复产指数增量大于复工指数的增量;【答案】CD【详细分析】注意到折线图中有递减部分,可判定A 错误;注意考查第1天和第11天的复工复产指数的差的大小,可判定B 错误;根据图象,结合复工复产指数的意义和增量的意义可以判定CD 正确.【答案详解】由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A 错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B 错误;由图可知,第3天至第11天复工复产指数均超过80%,故C 正确;由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D 正确;【名师点评】本题考查折线图表示的函数的认知与理解,考查理解能力,识图能力,推理能力,难点在于指数增量的理解与观测,属中档题.5.(2020∙天津∙高考真题)从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[)[)[)[]5.31,5.33,5.33,5.35,,5.45,5.47,5.47,5.49 ,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A .10B .18C .20D .36【答案】B 【详细分析】根据直方图确定直径落在区间[)5.43,5.47之间的零件频率,然后结合样本总数计算其个数即可. 【答案详解】根据直方图,直径落在区间[)5.43,5.47之间的零件频率为:()6.25 5.000.020.225+⨯=, 则区间[)5.43,5.47内零件的个数为:800.22518⨯=.故选:B.【名师点评】本题主要考查频率分布直方图的计算与实际应用,属于中等题.考点03 样本的数字特征一、单选题1.(2024∙全国新Ⅱ卷∙高考真题)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并整理如下表 亩产量[900,950) [950,1000) [1000,1050) [1050,1100) [1100,1150) [1150,1200) 频数 6 12 18 30 24 10 根据表中数据,下列结论中正确的是( )A .100块稻田亩产量的中位数小于1050kgB .100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C .100块稻田亩产量的极差介于200kg 至300kg 之间D .100块稻田亩产量的平均值介于900kg 至1000kg 之间【答案】C【详细分析】计算出前三段频数即可判断A ;计算出低于1100kg 的频数,再计算比例即可判断B ;根据极差计算方法即可判断C ;根据平均值计算公式即可判断D.【答案详解】对于 A, 根据频数分布表可知, 612183650++=<,所以亩产量的中位数不小于 1050kg , 故 A 错误;对于B ,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 的稻田占比为1003466%100-=,故B 错误; 对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D ,由频数分布表可得,平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误. 故选;C.2.(2022∙全国乙卷∙高考真题)分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h ),得如下茎叶图:则下列结论中错误的是( )A .甲同学周课外体育运动时长的样本中位数为7.4B .乙同学周课外体育运动时长的样本平均数大于8C .甲同学周课外体育运动时长大于8的概率的估计值大于0.4D .乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【详细分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【答案详解】对于A 选项,甲同学周课外体育运动时长的样本中位数为7.37.57.42+=,A 选项结论正确.对于B 选项,乙同学课外体育运动时长的样本平均数为:6.37.47.68.18.28.28.58.68.68.68.69.09.29.39.810.18.50625816+++++++++++++++=>, B 选项结论正确.对于C 选项,甲同学周课外体育运动时长大于8的概率的估计值60.3750.416=<, C 选项结论错误.对于D 选项,乙同学周课外体育运动时长大于8的概率的估计值130.81250.616=>, D 选项结论正确.故选:C3.(2022∙全国甲卷∙高考真题)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【详细分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解. 【答案详解】讲座前中位数为70%75%70%2+>,所以A 错; 讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B 对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C 错;讲座后问卷答题的正确率的极差为100%80%20%-=,讲座前问卷答题的正确率的极差为95%60%35%20%-=>,所以D 错.故选:B.4.(2020∙全国∙高考真题)在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====【答案】B【详细分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组.【答案详解】对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=; 对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=; 对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=; 对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=. 因此,B 选项这一组的标准差最大.故选:B.【名师点评】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题. 5.(2020∙全国∙高考真题)设一组样本数据x 1,x 2,…,xn 的方差为0.01,则数据10x 1,10x 2,…,10xn 的方差为( )A .0.01B .0.1C .1D .10【答案】C【详细分析】根据新数据与原数据关系确定方差关系,即得结果. 【答案详解】因为数据(1,2,,)i ax b i n +=L ,的方差是数据(1,2,,)i x i n =L ,的方差的2a 倍, 所以所求数据方差为2100.01=1⨯故选:C【名师点评】本题考查方差,考查基本详细分析求解能力,属基础题.6.(2019∙全国∙高考真题)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差【答案】A【详细分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【答案详解】设9位评委评分按从小到大排列为123489x x x x x x ≤≤≤≤≤ .则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x ≤≤≤ ,中位数仍为5x ,∴A 正确. ②原始平均数1234891()9x x x x x x x =+++++ ,后来平均数234817x x x x x '=+++ () 平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确 ③()()()222219119S x x x x x x ⎡⎤=-+-++-⎣⎦ ()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦ 由②易知,C 不正确. ④原极差91=x -x ,后来极差82=x -x 可能相等可能变小,D 不正确.【名师点评】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.考点04 变量间的相关关系1.(2024∙天津∙高考真题)下列图中,线性相关性系数最大的是( )A .B .C .D .【答案】A【详细分析】由点的分布特征可直接判断【答案详解】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A2.(2023∙天津∙高考真题)鸢是鹰科的一种鸟,《诗经∙大雅∙旱麓》曰:“鸢飞戾天,鱼跃余渊”. 鸢尾花因花瓣形如鸢尾而得名,寓意鹏程万里、前途无量.通过随机抽样,收集了若干朵某品种鸢尾花的花萼长度和花瓣长度(单位:cm ),绘制散点图如图所示,计算得样本相关系数为0.8642r =,利用最小二乘法求得相应的经验回归方程为 0.75010.6105y x =+,根据以上信息,如下判断正确的为( )A .花瓣长度和花萼长度不存在相关关系B .花瓣长度和花萼长度负相关C .花萼长度为7cm 的该品种鸢尾花的花瓣长度的平均值为5.8612cmD .若从样本中抽取一部分,则这部分的相关系数一定是0.8642【答案】C【详细分析】根据散点图的特点及经验回归方程可判断ABC 选项,根据相关系数的定义可以判断D 选项.【答案详解】根据散点的集中程度可知,花瓣长度和花萼长度有相关性,A 选项错误散点的分布是从左下到右上,从而花瓣长度和花萼长度呈现正相关性,B 选项错误,把7x =代入 0.75010.6105y x =+可得 5.8612cm y =,C 选项正确;由于0.8642r =是全部数据的相关系数,取出来一部分数据,相关性可能变强,可能变弱,即取出的数据的相关系数不一定是0.8642,D 选项错误故选:C3.(2020∙全国∙高考真题)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i = 得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A .y a bx =+B .2y a bx =+C .e x y a b =+D .ln y a b x =+ 【答案】D【详细分析】根据散点图的分布可选择合适的函数模型.【答案详解】由散点图分布可知,散点图分布在一个对数函数的图象附近, 因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+. 故选:D.【名师点评】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.。
历年高考数学真题(全国卷整理版)完整版完整版
![历年高考数学真题(全国卷整理版)完整版完整版](https://img.taocdn.com/s3/m/5738a8079b89680202d82587.png)
参考公式:如果事件 A、B互斥,那么球的表面积公式P( A B) P( A) P(B)S 4R2如果事件 A、B相互独立,那么其中 R表示球的半径P(A B) P( A) P(B)球的体积公式如果事件 A 在一次试验中发生的概率是p ,那么V3R3n 次独立重复试验中事件 A 恰好发生k次的概率4其中 R 表示球的半径P n (k ) C n k p k (1 p)n k (k 0,1,2, n)普通高等学校招生全国统一考试一、选择题13i 1、复数i =1A 2+I B2-I C 1+2i D 1- 2i2、已知集合 A ={1.3.m },B={1,m} ,A B = A, 则 m=A0或3 B 0或3C1或3 D 1或33椭圆的中心在原点,焦距为 4 一条准线为 x=-4 ,则该椭圆的方程为A x2y2=1Bx2y2=1 16++12128C x2y2=1Dx2y28+12+=1 444已知正四棱柱ABCD- A 1B 1C1D1中,AB=2 ,CC1= 2 2 E 为 CC1的中点,则直线 AC 1与平面 BED 的距离为A2B3C2D1(5)已知等差数列{a n} 的前 n 项和为 S n, a5=5, S5=15,则数列的前100项和为10099(C)99101(A)(B)(D)100101101100(6)△ ABC 中, AB 边的高为 CD ,若a· b=0, |a|=1, |b|=2,则(A)(B)(C)(D)3(7)已知α为第二象限角,sinα+ sinβ =3,则 cos2α = 5555--(C) 9(D)3(A)3(B)9(8)已知 F1、 F2 为双曲线 C: x2-y2=2的左、右焦点,点P 在 C 上, |PF1|=|2PF2|,则 cos ∠F1PF2=1334(A) 4(B)5(C)4(D)51(9)已知 x=ln π, y=log52 ,z=e2,则(A)x < y< z(B)z<x<y(C)z < y< x(D)y < z< x(10) 已知函数y= x2-3x+c 的图像与 x 恰有两个公共点,则c=(A )-2 或 2 (B)-9 或 3 (C)-1 或 1 (D)-3 或 1(11)将字母 a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12 种( B)18 种( C)24 种( D)36 种7(12)正方形 ABCD 的边长为1,点 E 在边 AB 上,点 F 在边 BC 上, AE = BF =3。
(word完整版)历年高考数学真题(全国卷整理版)43964.doc
![(word完整版)历年高考数学真题(全国卷整理版)43964.doc](https://img.taocdn.com/s3/m/e7d2504804a1b0717fd5ddf1.png)
实用文档参考公式:如果事件 A、B互斥,那么P( A B) P( A)P( B)如果事件 A、B相互独立,那么P(AgB)P( A)gP( B)如果事件 A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件 A 恰好发生 k 次的概率P n (k ) C n k p k (1 p)n k (k 0,1,2,⋯n) 球的表面积公式S 4R2其中 R 表示球的半径球的体积公式V 3 R34其中 R表示球的半径普通高等学校招生全国统一考试一、选择题1、复数 1 3i =1 iA 2+IB 2-IC 1+2iD 1- 2i2、已知集合 A= {1.3. m },B={1,m} ,A U B=A, 则 m=A 0 或3B 0 或 3C 1或3D 1 或 33 椭圆的中心在原点,焦距为4 一条准线为 x=-4 ,则该椭圆的方程为A x2 + y2 =1B x2 + y2 =116 12 12 8C x2 + y2 =1D x2 + y2 =18 4 12 44 已知正四棱柱ABCD- A1B1C1D1中, AB=2, CC= 2 2 E 为 CC的中点,则直线AC与平面1 1 1 BED的距离为A 2B 3C 2D 1(5)已知等差数列{a n} 的前 n 项和为 S n,a5=5, S5=15,则数列的前100项和为(A) 100(B)99(C)99(D)101 101101100100(6)△ ABC中, AB边的高为 CD,若a· b=0, |a|=1 , |b|=2 ,则(A)( B)(C)(D)3(7)已知α为第二象限角, sin α+ sin β =3,则 cos2α =555 5--9(D) 3(A) 3 (B ) 9 (C)(8)已知 F1、 F2 为双曲线 C : x2 -y 2 =2 的左、右焦点,点 P 在 C 上, |PF1|=|2PF2| ,则 cos ∠ F1PF2=1 334(A) 4( B ) 5(C)4(D)51( 9)已知 x=ln π, y=log52 , z=e 2,则 (A)x < y < z ( B ) z < x <y (C)z < y < x (D)y< z < x(10) 已知函数 y = x2 -3x+c 的图像与 x 恰有两个公共点,则 c =(A ) -2 或 2 ( B ) -9 或 3 (C ) -1 或 1 ( D )-3 或 1( 11)将字母 a,a,b,b,c,c, 排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有( A ) 12 种( B ) 18 种( C ) 24 种( D ) 36 种7(12)正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上, AE = BF = 3。
高考数学真题全国卷(汇总5篇)
![高考数学真题全国卷(汇总5篇)](https://img.taocdn.com/s3/m/3e088063bdd126fff705cc1755270722192e5999.png)
高考数学真题全国卷(汇总5篇)1.高考数学真题全国卷第1篇一、正余弦定理正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径余弦定理:a2=b2+c2-2bc*cosA二、两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)三、倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a四、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))五、和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB2.高考数学真题全国卷第2篇集合与函数内容子交并补集,还有幂指对函数。
各省市高考数学真题汇总精选13套(含答案)
![各省市高考数学真题汇总精选13套(含答案)](https://img.taocdn.com/s3/m/837e5442e53a580217fcfe22.png)
绝密★启用前普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是 A .16B .14C .13D .124.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.85.函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2B .3C .4D .56.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3= A . 16B . 8C .4D . 27.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .a=e ,b =-1B .a=e ,b =1C .a=e -1,b =1D .a=e -1,1b =-8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A.4122-B. 5122-C. 6122-D. 7122-10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF△的面积为 A .32B .52C .72D .9211.记不等式组6,20x y x y +⎧⎨-≥⎩表示的平面区域为D .命题:(,),29p x y D x y ∃∈+;命题:(,),212q x y D x y ∀∈+.下面给出了四个命题①p q ∨ ②p q ⌝∨ ③p q ∧⌝ ④p q ⌝∧⌝这四个命题中,所有真命题的编号是 A .①③B .①②C .②③D .③④12.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 二、填空题:本题共4小题,每小题5分,共20分。
历年高考数学试题及答案word
![历年高考数学试题及答案word](https://img.taocdn.com/s3/m/d9320358590216fc700abb68a98271fe900eaf47.png)
历年高考数学试题及答案word 以下是历年高考数学试题及答案的格式示例:
一、选择题(每题4分,共40分)
1. 若函数f(x)=x^2+2x+1,则f(-1)的值为()
A. 0
B. 1
C. 2
D. 3
答案:B
2. 已知数列{an}满足a1=1,an+1=2an+1,求a3的值为()
A. 5
B. 7
C. 9
D. 11
答案:A
二、填空题(每题4分,共20分)
3. 函数y=x^3-3x在区间(-1,1)上的单调性为()。
答案:单调递减
4. 已知向量a=(1,2),b=(2,-1),则|a+b|的值为()。
答案:√5
三、解答题(共40分)
5. 已知函数f(x)=x^2-4x+3,求函数的零点。
答案:函数的零点为x=1和x=3。
6. 已知直线l的方程为y=2x+1,求直线l与x轴的交点坐标。
答案:直线l与x轴的交点坐标为(-1/2, 0)。
结束语:以上为历年高考数学试题及答案的示例,希望对同学们的复
习有所帮助。
在实际考试中,题目的难度和类型可能会有所不同,但
解题的基本方法和思路是相通的。
建议同学们在复习过程中多做练习,掌握各种题型的解题技巧,提高解题速度和准确率。
同时,也要注意
培养良好的考试心态,保持冷静和自信,相信自己能够取得理想的成绩。
历代高考数学试卷题目
![历代高考数学试卷题目](https://img.taocdn.com/s3/m/41459c70bc64783e0912a21614791711cd797911.png)
一、1977年恢复高考1. 题目:求函数f(x) = x^2 - 4x + 3的零点。
解析:此题考查了二次方程的求解,属于基础题。
2. 题目:已知等差数列{an}的首项为a1,公差为d,求第10项an。
解析:此题考查了等差数列的通项公式,属于基础题。
二、1980年代1. 题目:已知等比数列{an}的首项为a1,公比为q,求第5项an。
解析:此题考查了等比数列的通项公式,属于基础题。
2. 题目:已知函数f(x) = (x-1)^2 + 2x,求f(x)的最小值。
解析:此题考查了二次函数的最值问题,属于基础题。
三、1990年代1. 题目:已知函数f(x) = ax^2 + bx + c,若a > 0,且f(0) = 1,f(1) = 3,求a、b、c的值。
解析:此题考查了二次函数的性质和解析几何,属于中档题。
2. 题目:已知函数f(x) = log2(x+1),求f(x)的单调性。
解析:此题考查了对数函数的性质,属于中档题。
四、21世纪初1. 题目:已知数列{an}的前n项和为Sn,若Sn = n^2 + n,求第10项an。
解析:此题考查了数列的前n项和与通项公式的求解,属于中档题。
2. 题目:已知函数f(x) = e^x + 1,求f(x)在区间[0, 1]上的最大值。
解析:此题考查了指数函数的性质和最值问题,属于中档题。
五、21世纪10年代1. 题目:已知函数f(x) = x^3 - 3x + 2,求f(x)的极值点。
解析:此题考查了导数的应用,属于中档题。
2. 题目:已知函数f(x) = sin(x) + cos(x),求f(x)的周期。
解析:此题考查了三角函数的性质,属于中档题。
六、21世纪20年代1. 题目:已知函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 1,求f(x)的零点。
解析:此题考查了多项式的因式分解,属于中档题。
2. 题目:已知数列{an}的通项公式为an = n^2 - n + 1,求数列的前n项和Sn。
近年高考数学试卷
![近年高考数学试卷](https://img.taocdn.com/s3/m/719c365feef9aef8941ea76e58fafab068dc4455.png)
第一部分:选择题(共20题,每题5分,共100分)1. 下列函数中,在其定义域内连续的是:A. \( f(x) = |x| \)B. \( f(x) = \frac{1}{x} \)C. \( f(x) = x^2 - 4x + 4 \)D. \( f(x) = \sqrt{x} \)2. 已知等差数列的前三项分别为2,5,8,则该数列的公差是:A. 1B. 2C. 3D. 43. 若复数\( z = a + bi \)(\( a, b \in \mathbb{R} \))满足\( |z - 1| =|z + 1| \),则实数\( a \)的值为:A. 0B. 1C. -1D. 不存在4. 在平面直角坐标系中,抛物线\( y = ax^2 + bx + c \)的顶点坐标为\( (h, k) \),则\( h \)的取值范围是:A. \( h < 0 \)B. \( h > 0 \)C. \( h \geq 0 \)D. \( h \leq 0 \)5. 已知函数\( f(x) = \log_2(x + 1) \),则\( f(3) \)的值为:A. 1B. 2C. 3D. 46. 若\( \triangle ABC \)的内角A、B、C的对边分别为a、b、c,且\( a^2 + b^2 - c^2 = 2ab \),则\( \cos C \)的值为:A. \( \frac{1}{2} \)B. \( \frac{1}{3} \)C. \( \frac{2}{3} \)D. \( \frac{1}{4} \)7. 下列不等式中,恒成立的是:A. \( x^2 + y^2 \geq 2xy \)B. \( x^2 + y^2 \leq 2xy \)C. \( x^2 + y^2 = 2xy \)D. 无法确定8. 若\( \sin x + \cos x = \sqrt{2} \sin(x + \frac{\pi}{4}) \),则\( x \)的取值范围是:A. \( x \in [0, \pi] \)B. \( x \in (0, \pi) \)C. \( x \in [-\frac{\pi}{2}, \frac{\pi}{2}] \)D. \( x \in (-\frac{\pi}{2}, \frac{\pi}{2}) \)9. 下列数列中,不是等比数列的是:A. \( \{1, 2, 4, 8, \ldots\} \)B. \( \{2, 4, 8, 16, \ldots\} \)C. \( \{1, 3, 9, 27, \ldots\} \)D. \( \{2, 6, 18, 54, \ldots\} \)10. 若\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),则\( \lim_{x \to 0} \frac{\tan x}{x} \)的值为:A. 1B. 2C. 3D. 411. 已知函数\( f(x) = x^3 - 3x \),则\( f'(x) \)的值为:A. \( 3x^2 - 3 \)B. \( 3x^2 - 2 \)C. \( 3x^2 + 2 \)D. \( 3x^2 + 3 \)12. 若\( \log_2(3x - 1) = 2 \),则\( x \)的值为:A. 1B. 2C. 3D. 413. 下列函数中,在\( x = 0 \)处不可导的是:A. \( f(x) = x^2 \)B. \( f(x) = \sqrt{x} \)C. \( f(x) = e^x \)D. \( f(x) = \ln x \)14. 已知\( \triangle ABC \)的面积\( S = 12 \),边长\( a = 6 \),\( b = 8 \),则\( c \)的取值范围是:A. \( c \in (2, 10) \)B. \( c \in (10, 14) \)C. \( c \in (4, 12) \)D. \( c \in (8, 16) \)15. 下列数列中,不是等差数列的是:A. \( \{1, 4, 7, 10, \ldots\} \)B. \( \{2, 5, 8, 11, \ldots\} \)C. \( \{3, 6, 9, 12, \ldots\} \)D. \( \{4, 7, 10, 13, \ldots\} \)16. 若\( \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0 \),则下列结论正确的是:A. \( \lim_{x \to \infty} f(x) = 0 \)B. \( \lim_{x \to \infty} g(x) = 0 \)C. \( f(x) \)和\( g(x) \)都趋向于无穷大D. 无法确定17. 已知函数\( f(x) = \frac{x^2 - 1}{x - 1} \),则\( f(2) \)的值为:A. 1B. 2C. 3D. 418. 若\( \sin A + \cos A = \sqrt{2} \sin(A + \frac{\pi}{4}) \),则\( \cos A \)的值为:A. \( \frac{1}{2} \)B. \( \frac{1}{3} \)C. \( \frac{2}{3} \)D. \( \frac{1}{4} \)19. 下列不等式中,恒成立的是:A. \( x^2 + y^2 \geq 2xy \)B. \( x^2 + y^2 \leq 2xy \)C. \( x^2 + y^2 = 2xy \)D. 无法确定20. 若\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),则\( \lim_{x \to 0}\frac{\tan x}{x} \)的值为:A. 1B. 2C. 3D. 4第二部分:解答题(共40分)21. (12分)已知函数\( f(x) = x^3 - 3x \),求\( f'(x) \)并求出\( f(x) \)在\( x = 1 \)处的切线方程。
全国近三年的高考数学试卷
![全国近三年的高考数学试卷](https://img.taocdn.com/s3/m/e6028145a200a6c30c22590102020740be1ecd95.png)
考试时间:3小时满分:150分一、选择题(本大题共10小题,每小题5分,共50分。
每小题给出的四个选项中,只有一项是符合题目要求的。
请把正确选项的字母填在题后的括号内。
)1. 已知函数$f(x) = 2x^3 - 3x^2 + 4x + 1$,则$f(0)$的值为()A. 1B. -1C. 0D. 22. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若$\sin A + \sin B +\sin C = 2$,则三角形ABC是()A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等边三角形3. 下列各数中,属于有理数的是()A. $\sqrt{2}$B. $\pi$C. $-\frac{1}{3}$D. $i$4. 已知等差数列$\{a_n\}$的前n项和为$S_n$,若$a_1 + a_3 + a_5 = 12$,则$S_5$的值为()A. 20B. 30C. 40D. 505. 已知函数$f(x) = x^2 - 4x + 4$,则$f(2)$的值为()A. 0B. 2C. 4D. 66. 在等腰三角形ABC中,若$AB = AC = 5$,$BC = 6$,则底角B的度数为()A. $30^\circ$B. $45^\circ$C. $60^\circ$D. $75^\circ$7. 已知复数$z = 3 + 4i$,则$|z|$的值为()A. 5B. 7C. 9D. 118. 下列函数中,在定义域内单调递增的是()A. $f(x) = -x^2 + 2x$B. $f(x) = x^2 - 2x$C. $f(x) = -2x^2 +4x$ D. $f(x) = 2x^2 - 4x$9. 已知等比数列$\{b_n\}$的公比为$q$,若$b_1 = 2$,$b_3 = 8$,则$q$的值为()A. 2B. 4C. 8D. 1610. 在平面直角坐标系中,点P(2,3)关于直线$x+y=1$的对称点为()A.(-1,-2)B.(-2,-1)C.(-1,-3)D.(-3,-1)二、填空题(本大题共5小题,每小题5分,共25分。
历年(2019-2024)全国高考数学真题分类(数列、函数与集合新定义)汇编(附答案)
![历年(2019-2024)全国高考数学真题分类(数列、函数与集合新定义)汇编(附答案)](https://img.taocdn.com/s3/m/abde3342a9114431b90d6c85ec3a87c241288a7a.png)
历年(2019-2024)全国高考数学真题分类(数列、函数与集合新定义)汇编考点01 数列新定义一、小题1.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=2.(2020∙全国新Ⅱ卷∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)m i i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010 B .11011C .10001D .11001二、大题1.(2024∙全国新Ⅰ卷∙高考真题)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列; (2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >. 2.(2024∙北京∙高考真题)已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.3.(2023∙北京∙高考真题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r iB A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值; (2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >> 使得t p s q A B A B +=+.4.(2022∙北京∙高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列. (1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由; (2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥.5.(2021∙北京∙高考真题)设p 为实数.若无穷数列{}n a 满足如下三个性质,则称{}n a 为p ℜ数列:①10a p +≥,且20a p +=; ②414,1,2,n n a a n -<=⋅⋅⋅();③{},1m n m n m n a a a p a a p +∈+++++,(),1,2,m n =⋅⋅⋅.(1)如果数列{}n a 的前4项为2,‐2,‐2,‐1,那么{}n a 是否可能为2ℜ数列?说明理由; (2)若数列{}n a 是0ℜ数列,求5a ;(3)设数列{}n a 的前n 项和为n S .是否存在p ℜ数列{}n a ,使得10n S S ≥恒成立?如果存在,求出所有的p ;如果不存在,说明理由.6.(2020∙北京∙高考真题)已知{}n a 是无穷数列.给出两个性质:①对于{}n a 中任意两项,()i j a a i j >,在{}n a 中都存在一项m a ,使2i m ja a a =;②对于{}n a 中任意项(3)n a n …,在{}n a 中都存在两项,()k l a a k l >.使得2k n l a a a =. ()Ⅰ若(1,2,)n a n n == ,判断数列{}n a 是否满足性质①,说明理由;()Ⅱ若12(1,2,)n n a n -== ,判断数列{}n a 是否同时满足性质①和性质②,说明理由;()Ⅲ若{}n a 是递增数列,且同时满足性质①和性质②,证明:{}n a 为等比数列.7.(2020∙江苏∙高考真题)已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为Sn .设λ与k 是常数,若对一切正整数n ,均有11111k k k n n n S S a λ++-=成立,则称此数列为“λ~k ”数列. (1)若等差数列{}n a 是“λ~1”数列,求λ的值; (2)若数列{}n a 是2”数列,且an >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ~3”数列,且an ≥0?若存在,求λ的取值范围;若不存在,说明理由,8.(2019∙江苏∙高考真题)定义首项为1且公比为正数的等比数列为“M -数列”. (1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”; (2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n },对任意正整数k ,当k ≤m 时,都有1k k k c b c +≤≤成立,求m 的最大值.考点02 函数新定义一、大题1.(2024∙上海∙高考真题)对于一个函数()f x 和一个点(),M a b ,令()()22()()s x x a f x b =-+-,若()()00,P x f x 是()s x 取到最小值的点,则称P 是M 在()f x 的“最近点”.(1)对于1()(0)f x x x=>,求证:对于点()0,0M ,存在点P ,使得点P 是M 在()f x 的“最近点”; (2)对于()()e ,1,0xf x M =,请判断是否存在一个点P ,它是M 在()f x 的“最近点”,且直线MP 与()y f x =在点P 处的切线垂直;(3)已知()y f x =在定义域R 上存在导函数()f x ',且函数 ()g x 在定义域R 上恒正,设点()()()11,M t f t g t --,()()()21,M t f t g t ++.若对任意的t ∈R ,存在点P 同时是12,M M 在()f x 的“最近点”,试判断()f x 的单调性.2.(2020∙江苏∙高考真题)已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()2222()f x x x g x x x D =+=-+=-∞+∞,,,,求h (x )的表达式; (2)若2()1()ln (),(0)f x x x g x k x h x kx k D =-+==-=+∞,,,,求k 的取值范围; (3)若()()()()422342248432(0f x x x g x x h x t t x t t t =-=-=--+<≤,,,[],D m n ⎡=⊆⎣,求证:n m -≤.考点03 集合新定义一、小题1.(2020∙浙江∙高考真题)设集合S,T,S⊆N*,T⊆N*,S,T中至少有两个元素,且S,T满足: ①对于任意x,y∈S,若x≠y,都有xy∈T②对于任意x,y∈T,若x<y,则yx∈S;下列命题正确的是()A.若S有4个元素,则S∪T有7个元素B.若S有4个元素,则S∪T有6个元素C.若S有3个元素,则S∪T有5个元素D.若S有3个元素,则S∪T有4个元素考点04 其他新定义1.(2020∙北京∙高考真题)2020年3月14日是全球首个国际圆周率日(π Day).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔∙卡西的方法是:当正整数n充分大时,计算单位圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔∙卡西的方法,π的近似值的表达式是().A.30303sin tannn n︒︒⎛⎫+⎪⎝⎭B.30306sin tannn n︒︒⎛⎫+⎪⎝⎭C.60603sin tannn n︒︒⎛⎫+⎪⎝⎭D.60606sin tannn n︒︒⎛⎫+⎪⎝⎭参考答案 考点01 数列新定义一、小题1.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=【答案】ACD【详细分析】利用()n ω的定义可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误.【答案详解】对于A 选项,()01k n a a a ω=+++ ,12101122222k k k k n a a a a +-=⋅+⋅++⋅+⋅ ,所以,()()012k n a a a n ωω=+++= ,A 选项正确;对于B 选项,取2n =,012237121212n +==⋅+⋅+⋅,()73ω∴=, 而0120212=⋅+⋅,则()21ω=,即()()721ωω≠+,B 选项错误;对于C 选项,3430234301018522251212222k k k k n a a a a a a +++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅++⋅ ,所以,()01852k n a a a ω+=++++ ,2320123201014322231212222k k k k n a a a a a a +++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅++⋅ , 所以,()01432k n a a a ω+=++++ ,因此,()()8543n n ωω+=+,C 选项正确;对于D 选项,01121222n n --=+++ ,故()21nn ω-=,D 选项正确.故选:ACD.2.(2020∙全国新Ⅱ卷∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)m i i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010 B .11011C .10001D .11001【答案】C【详细分析】根据新定义,逐一检验即可【答案详解】由i m i a a +=知,序列i a 的周期为m ,由已知,5m =,511(),1,2,3,45i i k i C k a a k +===∑对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=≤∑52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;故选:C【点晴】本题考查数列的新定义问题,涉及到周期数列,考查学生对新定义的理解能力以及数学运算能力,是一道中档题.二、大题1.(2024∙全国新Ⅰ卷∙高考真题)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列; (2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >. 【答案】(1)()()()1,2,1,6,5,6 (2)证明见解析 (3)证明见解析【详细分析】(1)直接根据(),i j -可分数列的定义即可; (2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【答案详解】(1)首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+', 得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可. 换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列. 那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6. 所以所有可能的(),i j 就是()()()1,2,1,6,5,6.(2)由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组. (如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.(3)定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立, 则数列1,2,...,42m +一定是(),i j -可分数列: 命题1:,i A j B ∈∈或,i B j A ∈∈; 命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠. 此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后, 剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列: ①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组; ③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组. (如果某一部分的组数为0,则忽略之) 故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠. 此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈. 则由i j <可知124241k k +<+,即2114k k ->,故21k k >. 由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组; ③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组. (如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数. 这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=. 但这导致2112k k -=,矛盾,所以,i B j A ∈∈. 设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个. 所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>==++++++++. 这就证明了结论.【点评】关键点点评:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.2.(2024∙北京∙高考真题)已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”. 【答案】(1)():3,4,4,5,8,4,3,10A Ω (2)不存在符合条件的Ω,理由见解析 (3)证明见解析【详细分析】(1)直接按照()ΩA 的定义写出()ΩA 即可;(2)解法一:利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;解法二:对于任意序列,所得数列之和比原数列之和多4,可知序列Ω共有8项,可知:()()2122128,1,2,3,4n n n n b b a a n --+-+==,检验即可;(3)解法一:分充分性和必要性两方面论证;解法二:若12345678a a a a a a a a +=+=+=+,分类讨论1357,,,a a a a 相等得个数,结合题意证明即可;若存在序列Ω,使得()ΩA 为常数列,结合定义详细分析证明即可.【答案详解】(1)因为数列:1,3,2,4,6,3,1,9A , 由序列()11,3,5,7T 可得()1:2,3,3,4,7,3,2,9T A ; 由序列()22,4,6,8T 可得()21:2,4,3,5,7,4,2,10T T A ; 由序列()31,3,5,7T 可得()321:3,4,4,5,8,4,3,10T T T A ; 所以()Ω:3,4,4,5,8,4,3,10A .(2)解法一:假设存在符合条件的Ω,可知()ΩA 的第1,2项之和为12a a s ++,第3,4项之和为34a a s ++, 则()()()()121234342642a a a a sa a a a s⎧+++=++⎪⎨+++=++⎪⎩,而该方程组无解,故假设不成立, 故不存在符合条件的Ω;解法二:由题意可知:对于任意序列,所得数列之和比原数列之和多4, 假设存在符合条件的Ω,且()128Ω:,,,A b b b ⋅⋅⋅, 因为2642824484+++++++=,即序列Ω共有8项,由题意可知:()()2122128,1,2,3,4n n n n b b a a n --+-+==, 检验可知:当2,3n =时,上式不成立, 即假设不成立,所以不存在符合条件的Ω.(3)解法一:我们设序列()21...s T T T A 为{}(),18s n a n ≤≤,特别规定()0,18n n a a n =≤≤. 必要性:若存在序列12:,,s T T T Ω ,使得()ΩA 的各项都相等.则,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a =======,所以,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+. 根据()21...s T T T A 的定义,显然有,21,21,211,21s j s j s j s j a a a a ----+=++,这里1,2,3,4j =,1,2,...s =. 所以不断使用该式就得到12345678,1,2s s a a a a a a a a a a s +=+=+=+=+-,必要性得证. 充分性:若12345678a a a a a a a a +=+=+=+.由已知,1357a a a a +++为偶数,而12345678a a a a a a a a +=+=+=+,所以()()24681213574a a a a a a a a a a +++=+-+++也是偶数.我们设()21...s T T T A 是通过合法的序列Ω的变换能得到的所有可能的数列()ΩA 中,使得,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-最小的一个.上面已经说明,21,21,211,21s j s j s j s j a a a a ----+=++,这里1,2,3,4j =,1,2,...s =.从而由12345678a a a a a a a a +=+=+=+可得,1,2,3,4,5,6,7,812s s s s s s s s a a a a a a a a a a s +=+=+=+=++. 同时,由于t t t t i j k w +++总是偶数,所以,1,3,5,7t t t t a a a a +++和,2,4,6,8t t t t a a a a +++的奇偶性保持不变,从而,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数. 下面证明不存在1,2,3,4j =使得,21,22s j s j a a --≥.假设存在,根据对称性,不妨设1j =,,21,22s j s j a a --≥,即,1,22s s a a -≥.情况1:若,3,4,5,6,7,80s s s s s s a a a a a a -+-+-=,则由,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数,知,1,24s s a a -≥.对该数列连续作四次变换()()()()2,3,5,8,2,4,6,8,2,3,6,7,2,4,5,7后,新的4,14,24,34,44,54,64,74,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-减少4,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾;情况2:若,3,4,5,6,7,80s s s s s s a a a a a a -+-+->,不妨设,3,40s s a a ->.情况2‐1:如果,3,41s s a a -≥,则对该数列连续作两次变换()()2,4,5,7,2,4,6,8后,新的2,12,22,32,42,52,62,72,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-至少减少2,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾;情况2‐2:如果,4,31s s a a -≥,则对该数列连续作两次变换()()2,3,5,8,2,3,6,7后,新的2,12,22,32,42,52,62,72,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-至少减少2,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的1,2,3,4j =都有,21,21s j s j a a --≤. 假设存在1,2,3,4j =使得,21,21s j s j a a --=,则,21,2s j s j a a -+是奇数,所以,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+都是奇数,设为21N +.则此时对任意1,2,3,4j =,由,21,21s j s j a a --≤可知必有{}{},21,2,,1s j s j a a N N -=+.而,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数,故集合{},s m m a N =中的四个元素,,,i j k w 之和为偶数,对该数列进行一次变换(),,,i j k w ,则该数列成为常数列,新的1,11,21,31,41,51,61,71,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-等于零,比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-更小,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾.综上,只可能(),21,201,2,3,4s j s j a a j --==,而,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+,故{}(),Ωs n a A =是常数列,充分性得证.解法二:由题意可知:Ω中序列的顺序不影响()ΩA 的结果, 且()()()()12345678,,,,,,,a a a a a a a a 相对于序列也是无序的, (ⅰ)若12345678a a a a a a a a +=+=+=+, 不妨设1357a a a a ≤≤≤,则2468a a a a ≥≥≥, ①当1357a a a a ===,则8642a a a a ===, 分别执行1a 个序列()2,4,6,8、2a 个序列()1,3,5,7,可得1212121212121212,,,,,,,a a a a a a a a a a a a a a a a ++++++++,为常数列,符合题意; ②当1357,,,a a a a 中有且仅有三个数相等,不妨设135a a a ==,则246a a a ==, 即12121278,,,,,,,a a a a a a a a ,分别执行2a 个序列()1,3,5,7、7a 个序列()2,4,6,8可得1227122712272778,,,,,,,a a a a a a a a a a a a a a a a ++++++++, 即1227122712272712,,,,,,,a a a a a a a a a a a a a a a a ++++++++, 因为1357a a a a +++为偶数,即173a a +为偶数, 可知17,a a 的奇偶性相同,则*712a a -∈N , 分别执行712a a -个序列()1,3,5,7,()1,3,6,8,()2,3,5,8,()1,4,5,8, 可得7217217217217217217217213232323232323232,,,,,,,22222222a a a a a a a a a a a a a a a a a a a a a a a a +-+-+-+-+-+-+-+-,为常数列,符合题意;③若1357a a a a =<=,则2468a a a a =>=,即12125656,,,,,,,a a a a a a a a , 分别执行5a 个()1,3,6,8、1a 个()2,4,5,7,可得1512151215561556,,,,,,,a a a a a a a a a a a a a a a a ++++++++, 因为1256a a a a +=+,可得1512151215121512,,,,,,,a a a a a a a a a a a a a a a a ++++++++, 即转为①,可知符合题意;④当1357,,,a a a a 中有且仅有两个数相等,不妨设13a a =,则24a a =,即12125678,,,,,,,a a a a a a a a ,分别执行1a 个()2,4,5,7、5a 个()1,3,6,8,可得1512151215561758,,,,,,,a a a a a a a a a a a a a a a a ++++++++,且1256a a a a +=+,可得1512151215121758,,,,,,,a a a a a a a a a a a a a a a a ++++++++, 即转为②,可知符合题意;⑤若1357a a a a <<<,则2468a a a a >>>,即12345678,,,,,,,a a a a a a a a , 分别执行1a 个()2,3,5,8、3a 个()1,4,6,7,可得1312133415363718,,,,,,,a a a a a a a a a a a a a a a a ++++++++,且1234a a a a +=+,可得1312131215363718,,,,,,,a a a a a a a a a a a a a a a a ++++++++, 即转为③,可知符合题意;综上所述:若12345678a a a a a a a a +=+=+=+,则存在序列Ω,使得()ΩA 为常数列; (ⅱ)若存在序列Ω,使得()ΩA 为常数列, 因为对任意()128Ω:,,,A b b b ⋅⋅⋅,均有()()()()12123434b b a a b b a a +-+=+-+()()()()56567878b b a a b b a a =+-+=+-+成立, 若()ΩA 为常数列,则12345678b b b b b b b b +=+=+=+, 所以12345678a a a a a a a a +=+=+=+;综上所述:“存在序列Ω,使得()ΩA 为常数列”的充要条件为“12345678a a a a a a a a +=+=+=+”. 【点评】关键点点评:本题第三问的关键在于对新定义的理解,以及对其本质的详细分析.3.(2023∙北京∙高考真题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r iB A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值; (2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >> 使得t p s q A B A B +=+. 【答案】(1)00r =,11r =,21r =,32r = (2),n r n n =∈N (3)证明见答案详解【详细分析】(1)先求01230123,,,,,,,A A A A B B B B ,根据题意详细分析求解; (2)根据题意题意详细分析可得11i ir r +-≥,利用反证可得11i i r r +-=,在结合等差数列运算求解;(3)讨论,m m A B 的大小,根据题意结合反证法详细分析证明.【答案详解】(1)由题意可知:012301230,2,3,6,0,1,4,7A A A A B B B B ========, 当0k =时,则0000,,1,2,3i B A B A i ==>=,故00r =; 当1k =时,则01111,,,2,3i B A B A B A i <<>=,故11r =;当2k =时,则22232,0,1,,,i B A i B A B A ≤=>>故21r =; 当3k =时,则333,0,1,2,i B A i B A ≤=>,故32r =; 综上所述:00r =,11r =,21r =,32r =. (2)由题意可知:nr m≤,且nr ∈N,因为1,1n n a b ≥≥,且11a b ≥,则10n A B B ≥>对任意*n ∈N 恒成立, 所以010,1r r =≥, 又因为112ii i r r r -+≤+,则11i i i i r r r r +--≥-,即112101m m m m r r r r r r ----≥-≥⋅⋅⋅≥-≥,可得11i ir r +-≥,反证:假设满足11n n r r +->的最小正整数为01j m ≤≤-,当i j ≥时,则12i i r r +-≥;当1i j ≤-时,则11i ir r +-=,则()()()112100m m m m m r r r r r r r r ---=-+-+⋅⋅⋅+-+()22m j j m j ≥-+=-, 又因为01j m ≤≤-,则()2211m r m j m m m m ≥-≥--=+>, 假设不成立,故11n n r r +-=,即数列{}n r 是以首项为1,公差为1的等差数列,所以01,n r n n n =+⨯=∈N . (3)因为,n n a b 均为正整数,则{}{},n n A B 均为递增数列,(ⅰ)若m m A B =,则可取0t q ==,满足,,p q s t >> 使得t p s q A B A B +=+; (ⅱ)若m m A B <,则k r m <,构建,1n n r n S B A n m =-≤≤,由题意可得:0n S ≤,且n S 为整数, 反证,假设存在正整数K ,使得K S m ≤-,则1,0K K r K r K B A m B A +-≤-->,可得()()111K K K K K r r r r K r K b B B B A B A m +++=-=--->, 这与{}11,2,,K r b m +∈⋅⋅⋅相矛盾,故对任意1,n m n ≤≤∈N ,均有1n S m≥-.①若存在正整数N ,使得0N N r N S B A =-=,即N N r A B =, 可取0,,N t q p N s r ====,满足,p q s t >>,使得t p s q A B A B +=+; ②若不存在正整数N ,使得0NS =,因为(){}1,2,,1n S m ∈--⋅⋅⋅--,且1n m ≤≤, 所以必存在1X Y m ≤<≤,使得X Y S S =,即X Y r X r Y B A B A -=-,可得X Y Y r X r A B A B +=+, 可取,,,Y X p Y s r q X t r ====,满足,p q s t >>,使得t p s q A B A B +=+; (ⅲ)若m m A B >,定义{}max ,{0,1,2,,}k i k R i A B i m =≤∈L ∣,则k R m <,构建,1n n R n S A B n m =-≤≤,由题意可得:0n S ≤,且n S 为整数, 反证,假设存在正整数,1K K m ≤≤,使得K S m ≤-,则1,0K K R K R K A B m A B +-≤-->,可得()()111K K K K K R R R R K R K a A A A B A B m +++=-=--->, 这与{}11,2,,K R a m +∈⋅⋅⋅相矛盾,故对任意11,n m n ≤≤-∈N ,均有1n S m≥-.①若存在正整数N ,使得0N N R N S A B =-=,即N R N A B =, 可取0,,N q t s N p R ====,即满足,p q s t >>,使得t p s q A B A B +=+; ②若不存在正整数N ,使得0NS =,因为(){}1,2,,1n S m ∈--⋅⋅⋅--,且1n m ≤≤, 所以必存在1X Y m ≤<≤,使得X Y S S =, 即X Y R X R Y A B A B -=-,可得Y X R X R Y A B A B +=+, 可取,,,Y X p R t X q R s Y ====, 满足,p q s t >>,使得t p s q A B A B +=+.综上所述:存在0,0q p m t s m ≤<≤≤<≤使得t p s q A B A B +=+.4.(2022∙北京∙高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列. (1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由; (2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥. 【答案】(1)是5-连续可表数列;不是6-连续可表数列. (2)证明见解析. (3)证明见解析.【详细分析】(1)直接利用定义验证即可;(2)先考虑3k ≤不符合,再列举一个4k =合题即可;(3)5k ≤时,根据和的个数易得显然不行,再讨论6k =时,由12620a a a +++< 可知里面必然有负数,再确定负数只能是1-,然后分类讨论验证不行即可.【答案详解】(1)21a =,12a =,123a a +=,34a =,235a a +=,所以Q 是5-连续可表数列;易知,不存在,i j 使得16i i i j a a a +++++= ,所以Q 不是6-连续可表数列.(2)若3k ≤,设为:Q ,,a b c ,则至多,,,,,a b b c a b c a b c ++++,6个数字,没有8个,矛盾;当4k =时,数列:1,4,1,2Q ,满足11a =,42a =,343a a +=,24a =,125a a +=,1236a a a ++=,2347a a a ++=,12348a a a a +++=, min 4k ∴=.(3)12:,,,k Q a a a ,若i j =最多有k 种,若i j ≠,最多有2C k 种,所以最多有()21C 2k k k k ++=种, 若5k ≤,则12,,,k a a a …至多可表()551152+=个数,矛盾, 从而若7k <,则6k =,,,,,,a b c d e f 至多可表6(61)212+=个数, 而20a b c d e f +++++<,所以其中有负的,从而,,,,,a b c d e f 可表1~20及那个负数(恰 21个),这表明~a f 中仅一个负的,没有0,且这个负的在~a f 中绝对值最小,同时~a f 中没有两数相同,设那个负数为(1)m m -≥ ,则所有数之和125415m m m m m ≥++++++-=+ ,415191m m +≤⇒=,{,,,,,}{1,2,3,4,5,6}a b c d e f ∴=-,再考虑排序,排序中不能有和相同,否则不足20个,112=-+ (仅一种方式),1∴-与2相邻,若1-不在两端,则",1,2,__,__,__"x -形式,若6x =,则56(1)=+-(有2种结果相同,方式矛盾),6x ∴≠, 同理5,4,3x ≠ ,故1-在一端,不妨为"1,2,,,"A B C D -形式,若3A =,则523=+ (有2种结果相同,矛盾),4A =同理不行,5A =,则6125=-++ (有2种结果相同,矛盾),从而6A =,由于7126=-++,由表法唯一知3,4不相邻,、 故只能1,2,6,3,5,4-,①或1,2,6,4,5,3-,② 这2种情形,对①:96354=+=+,矛盾,对②:82653=+=+,也矛盾,综上6k ≠, 当7k =时,数列1,2,4,5,8,2,1--满足题意,7k ∴≥.【点评】关键点评,先理解题意,是否为m -可表数列核心就是是否存在连续的几项(可以是一项)之和能表示从1到m 中间的任意一个值.本题第二问3k ≤时,通过和值可能个数否定3k ≤;第三问先通过和值的可能个数否定5k ≤,再验证6k =时,数列中的几项如果符合必然是{1,2,3,4,5,6}-的一个排序,可验证这组数不合题.5.(2021∙北京∙高考真题)设p 为实数.若无穷数列{}n a 满足如下三个性质,则称{}n a 为p ℜ数列:①10a p +≥,且20a p +=; ②414,1,2,n n a a n -<=⋅⋅⋅();③{},1m n m n m n a a a p a a p +∈+++++,(),1,2,m n =⋅⋅⋅.(1)如果数列{}n a 的前4项为2,‐2,‐2,‐1,那么{}n a 是否可能为2ℜ数列?说明理由; (2)若数列{}n a 是0ℜ数列,求5a ;(3)设数列{}n a 的前n 项和为n S .是否存在p ℜ数列{}n a ,使得10n S S ≥恒成立?如果存在,求出所有的p ;如果不存在,说明理由.【答案】(1)不可以是2R 数列;理由见解析;(2)51a =;(3)存在;2p =. 【详细分析】(1)由题意考查3a 的值即可说明数列不是2ℜ数列; (2)由题意首先确定数列的前4项,然后讨论计算即可确定5a 的值;(3)构造数列n n b a p =+,易知数列{}n b 是0ℜ的,结合(2)中的结论求解不等式即可确定满足题意的实数p 的值.【答案详解】(1)因 为 122,2,2,p a a ===- 所以12122,13a a p a a p ++=+++=, 因 为32,a =-所 以{}312122,21a a a a a ∈+++++ 所以数列{}n a ,不可能是2ℜ数列. (2)性质①120,0a a ≥=,由性质③{}2,1m m m a a a +∈+,因此31a a =或311a a =+,40a =或41a =, 若40a =,由性质②可知34a a <,即10a <或110a +<,矛盾; 若4311,1a a a ==+,由34a a <有111a +<,矛盾. 因此只能是4311,a a a ==.又因为413a a a =+或4131a a a =++,所以112a =或10a =. 若112a =,则{}{}{}2111111110,012,211,2a a a a a a a a +=∈+++++=+=, 不满足20a =,舍去.当10a =,则{}n a 前四项为:0,0,0,1,下面用数学归纳法证明()444(1,2,3),1n i n a n i a n n N ++===+∈: 当0n =时,经验证命题成立,假设当(0)n k k ≤≥时命题成立, 当1n k =+时:若1i =,则()()4541145k k j k j a a a +++++-==,利用性质③:{}*45,144{,1}jk j aa j N j k k k +-+∈≤≤+=+∣,此时可得:451k a k +=+; 否则,若45k a k +=,取0k =可得:50a =,而由性质②可得:{}5141,2a a a =+∈,与50a =矛盾. 同理可得:{}*46,145{,1}jk j a a j N j k k k +-+∈≤≤+=+∣,有461k a k +=+; {}*48,246{1,2}jk j a a j N j k k k +-+∈≤≤+=++∣,有482k a k +=+;{}*47,146{1}jk j aa j N j k k +-+∈≤≤+=+∣,又因为4748k k a a ++<,有47 1.k a k +=+ 即当1n k =+时命题成立,证毕. 综上可得:10a =,54111a a ⨯+==. (3)令n nb a p =+,由性质③可知:*,,m n m n m n N b a p ++∀∈=+∈{},1m n m n a p a p a p a p +++++++{},1m n m n b b b b =+++,由于11224141440,0,n n n n b a p b a p b a p a p b --=+≥=+==+<+=, 因此数列{}n b 为0ℜ数列. 由(2)可知:若444,(1,2,3),1n i n n N a n p i a n p ++∀∈=-==+-;11111402320a S S a p ⨯+-==-≥=,91010422(2)0S S a a p ⨯+-=-=-=--≥,因此2p =,此时1210,,,0a a a ⋯≤,()011j a j ≥≥,满足题意.【点评】本题属于数列中的“新定义问题”,“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.6.(2020∙北京∙高考真题)已知{}n a 是无穷数列.给出两个性质:①对于{}n a 中任意两项,()i j a a i j >,在{}n a 中都存在一项m a ,使2i m ja a a =;②对于{}n a 中任意项(3)n a n …,在{}n a 中都存在两项,()k l a a k l >.使得2k n la a a =. ()Ⅰ若(1,2,)n a n n == ,判断数列{}n a 是否满足性质①,说明理由;()Ⅱ若12(1,2,)n n a n -== ,判断数列{}n a 是否同时满足性质①和性质②,说明理由;()Ⅲ若{}n a 是递增数列,且同时满足性质①和性质②,证明:{}n a 为等比数列.【答案】()Ⅰ详见解析;()Ⅱ答案详解解析;()Ⅲ证明详见解析. 【详细分析】()Ⅰ根据定义验证,即可判断;()Ⅱ根据定义逐一验证,即可判断;()Ⅲ解法一:首先,证明数列中的项数同号,然后证明2231a a a =,最后,用数学归纳法证明数列为等比数列即可.解法二:首先假设数列中的项数均为正数,然后证得123,,a a a 成等比数列,之后证得1234,,,a a a a 成等比数列,同理即可证得数列为等比数列,从而命题得证.【答案详解】()Ⅰ{}2323292,3,2n a a a a Z a ===∉∴Q 不具有性质①; ()Ⅱ{}22*(2)1*2,,,2,2i j i i i j n j ja a i j N i j i j N a a a a ---∀∈>=-∈∴=∴Q 具有性质①; {}2*(2)11,3,1,2,22,k l n k n n la n N n k n l a n a a ---∀∈≥∃=-=-===∴Q 具有性质②;()Ⅲ解法一首先,证明数列中的项数同号,不妨设恒为正数:显然()0*n a n N ≠∉,假设数列中存在负项,设{}0max |0n N n a =<, 第一种情况:若01N =,即01230a a a a <<<<< ,由①可知:存在1m ,满足12210m a a a =<,存在2m ,满足22310m a a a =<, 由01N =可知223211a a a a =,从而23a a =,与数列的单调性矛盾,假设不成立.第二种情况:若02N ≥,由①知存在实数m ,满足0210Nm a a a =<,由0N 的定义可知:0m N ≤,另一方面,000221NNm N N a a a a a a =>=,由数列的单调性可知:0m N >,这与0N 的定义矛盾,假设不成立. 同理可证得数列中的项数恒为负数. 综上可得,数列中的项数同号.其次,证明2231a a a =:利用性质②:取3n =,此时()23kla a k l a =>,由数列的单调性可知0k l a a >>, 而3kk k la a a a a =⋅>,故3k <,此时必有2,1k l ==,即2231a a a =,最后,用数学归纳法证明数列为等比数列:假设数列{}n a 的前()3k k ≥项成等比数列,不妨设()111s s a a q s k -=≤≤,其中10,1a q >>,(10,01a q <<<的情况类似)由①可得:存在整数m ,满足211k k m k k a a a q a a -==>,且11k m k a a q a +=≥ (*) 由②得:存在s t >,满足:21s s k s s t t a aa a a a a +==⋅>,由数列的单调性可知:1t s k <≤+, 由()111s s a a qs k -=≤≤可得:2211111s t k s k k ta a a q a a q a ---+==>= (**)由(**)和(*)式可得:211111k s t k a q a qa q ---≥>, 结合数列的单调性有:211k s t k ≥-->-, 注意到,,s t k 均为整数,故21k s t =--, 代入(**)式,从而11kk a a q +=.总上可得,数列{}n a 的通项公式为:11n n a a q -=.即数列{}n a 为等比数列. 解法二:假设数列中的项数均为正数:首先利用性质②:取3n =,此时23()kla a k l a =>,由数列的单调性可知0k l a a >>, 而3kk k la a a a a =⋅>,故3k <, 此时必有2,1k l ==,即2231a a a =,即123,,a a a 成等比数列,不妨设22131,(1)a a q a a q q ==>,然后利用性质①:取3,2i j ==,则224331121m a a q a a q a a q===, 即数列中必然存在一项的值为31a q ,下面我们来证明341a a q =,否则,由数列的单调性可知341a a q <,在性质②中,取4n =,则24k k k k l la aa a a a a ==>,从而4k <,与前面类似的可知则存在{,}{1,2,3}()k l k l ⊆>,满足24kl a a a =,若3,2k l ==,则:2341kla a a q a ==,与假设矛盾; 若3,1k l ==,则:243411k la a a q a q a ==>,与假设矛盾; 若2,1k l ==,则:22413k la a a q a a ===,与数列的单调性矛盾; 即不存在满足题意的正整数,k l ,可见341a a q <不成立,从而341a a q =, 然后利用性质①:取4,3i j ==,则数列中存在一项2264411231m a a q a a q a a q===, 下面我们用反证法来证明451a a q =, 否则,由数列的单调性可知34151a q a a q <<,在性质②中,取5n =,则25k k k k l la aa a a a a ==>,从而5k <, 与前面类似的可知则存在{}{}(),1,2,3,4k l k l ⊆>,满足25k la a a =,即由②可知:22222115111k k l k l l a a q a a q a a q----===, 若214k l --=,则451a a q =,与假设矛盾; 若214k l -->,则451a a q >,与假设矛盾;若214k l --<,由于,k l 为正整数,故213k l --≤,则351a a q ≤,与315a q a <矛盾;综上可知,假设不成立,则451a a q =.同理可得:566171,,a a q a a q == ,从而数列{}n a 为等比数列,同理,当数列中的项数均为负数时亦可证得数列为等比数列.由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数. 从而题中的结论得证,数列{}n a 为等比数列.【点评】本题主要考查数列的综合运用,等比数列的证明,数列性质的应用,数学归纳法与推理方法、不等式的性质的综合运用等知识,意在考查学生的转化能力和推理能力.7.(2020∙江苏∙高考真题)已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为Sn .设λ与k 是常数,若对一切正整数n ,均有11111k k k n n n S S a λ++-=成立,则称此数列为“λ~k ”数列. (1)若等差数列{}n a 是“λ~1”数列,求λ的值;。
十年高考真题分类汇编(2010—2019)数学(20210417120444)
![十年高考真题分类汇编(2010—2019)数学(20210417120444)](https://img.taocdn.com/s3/m/100af986f5335a8103d22003.png)
十年高考真题分类汇编(2010—2019)数学专题空间向量1. (2014 •全国2 •理T11)直三棱柱ABC-A6C 、中,N%4R00 ,MN 分别是A £, A6的中 点,则6y 与4V 所成角的余弦值为() r 同 u.— 102. (2013 •北京•文T8)如图,在正方体被〃中,尸为对角线做的三等分点,尸到各顶点的距离的不同取值有()3. (2012 •陕西•理T5)如图,在空间直角坐标系中有直三棱柱板。
1二8与纸则直线与直线必夹角的余弦值为(4. (2010 •大纲全国•文T6)直三棱柱ABC-ABQ 中,若NBAC =90° ,AB=AC=AA1,则异面直线BA : 与AQ 所成的角等于()A. 30°B. 45°C. 60°D. 90°5. (2019 •天津•理 T17)如图,AE,平面 ABCD, CF 〃AE , AD 〃BC, AD_LAB, AB=AD=1, AE=BC 二2.(1)求证:BF 〃平面ADE;B -l B. 4个C 5个 D.6个A.3个 C.这⑵求直线CE与平面BDE所成角的正弦值;⑶若二面角E-BD-F的余弦值为京求线段CF的长.EB6.(2019 •浙江• T 19)如图,已知三棱柱ABC-A&C,平面 4月平面ABC, ZABC^0° , Z 区灰>30° ,4月引。
泡尸分别是〃;43的中点.(1)证明:年J_6C;⑵求直线房与平面46。
所成角的余弦值.7.(2019 •全国1•理T18)如图,直四棱柱极〃的底面是菱形,例=1,止2, N 员切40° ,EM,V分别是比破,4。
的中点.⑴证明:/V〃平面C、DE;(2)求二面角力T4M的正弦值.8.(2019 •全国2 •理T17)如图,长方体力用a-4£4〃的底面月颜是正方形,点£在棱前[上,龙LEG.⑴证明:麻山平面微a;⑵若AE=A^求二面角B-EC-C的正弦值.9.(2019 •全国3 •理T19)图1是由矩形ADEB,Rt^ABC和菱形BFGC组成的一个平面图形,其中AB=1, BE=BF=2, ZFBC=60° .将其沿AB, BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A, C, G, D四点共面,且平面ABC_L平面BCGE;(2)求图2中的二面角B-CG-A的大小.10.(2018 •浙江• T 8)已知四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点).设SE与BC所成的角为01,SE与平面ABCD所成的角为82,二面角S-AB-C的平面角为83,则()A.01<02<03B.03<02<61C.01<O3<02D.92<03<0111.(2018 •全国3 •理T19)如图,边长为2的正方形4加9所在的平面与半圆弧曲所在平面垂直,"是曲上异于的点.(1)证明:平面AMD_L平面BMC;⑵当三棱锥M-ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.12.(2018 •北京•理T16)如图,在三棱柱ABC-A瓜&中,CC_L平面ABCM & F, G分别为44:, AQ 4Q 能的中点,AB二BC二遍,AC=AA尸2.⑴求证:AC_L平面BEF;(2)求二面角B-CD-G的余弦值;16.(2018 •浙江• T9)如图,已知多面体ABCA瓜心, 44 £5 均垂直于平面ABC, Z板=120° , A.A^ GC=1, AB=BC=B-.B=^.(1)证明:四_L平面4A4;⑵求直线月a与平面月期所成的角的正弦值.17.(2018 •上海,T17)已知圆锥的顶点为P,底面圆心为0,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设P0=4, 0A, 0B是底面半径,且NA0B=90° , M为线段AB的中点,如图,求异面直线PM与0B 所成的角的大小.18.(2017 •北京•理T16)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD,平面ABCD, 点M在线段PB上,PD〃平面MAC, PA=PD二遍,AB=4.⑴求证:M为PB的中点;(2)求二面角B-PD-A的大小;⑶求直线MC与平面BDP所成角的正弦值.19.(2017 •全国 1 •理 T18)如图,在四棱锥 P-ABCD 中,AB〃CD,且NBAP=NCDP=90。
十年高考数学试卷汇编(10~19年 选择题和填空题部分)
![十年高考数学试卷汇编(10~19年 选择题和填空题部分)](https://img.taocdn.com/s3/m/26603bd43b3567ec102d8ab6.png)
全国卷•十年高考(选择填空题部分)2019年全国统一高考数学试卷(理科)(新课标Ⅰ) (2)2018年全国统一高考数学试卷(理科)(新课标Ⅰ) (6)2017年全国统一高考数学试卷(理科)(新课标Ⅰ) (9)2016年全国统一高考数学试卷(理科)(新课标Ⅰ) (13)2015年全国统一高考数学试卷(理科)(新课标Ⅰ) (16)2014年全国统一高考数学试卷(理科)(新课标Ⅰ) (19)2013年全国统一高考数学试卷(理科)(新课标Ⅰ) (22)2012年全国统一高考数学试卷(理科)(新课标) (26)2011年全国统一高考数学试卷(理科)(新课标) (30)2010年全国统一高考数学试卷(理科)(新课标) (33)2019年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2019•新课标Ⅰ)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2}C.{x|﹣2<x<2} D.{x|2<x<3}2.(2019•新课标Ⅰ)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1 B.(x﹣1)2+y2=1C.x2+(y﹣1)2=1 D.x2+(y+1)2=1 3.(2019•新课标Ⅰ)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<bC.c<a<b D.b<c<a4.(2019•新课标Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm 5.(2019•新课标Ⅰ)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(2019•新课标Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.7.(2019•新课标Ⅰ)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.8.(5分)(2019•新课标Ⅰ)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+9.(2019•新课标Ⅰ)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5 B.a n=3n﹣10C.S n=2n2﹣8n D.S n=n2﹣2n 10.(2019•新课标Ⅰ)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1 B.+=1C.+=1 D.+=111.(2019•新课标Ⅰ)关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③12.(2019•新课标Ⅰ)已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通高等学校招生全国统一考试
(多年精选汇总)
参考公式:
如果事件A 、B 互斥,那么 球的表面积公式
()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径
()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径
()(1)
(0,1,2,)k k n k n n P k C p p k n -=-=… 一、 选择题
1、 复数131i i
-++= A 2+I B 2-I C 1+2i D 1- 2i
2、已知集合A =},B ={1,m} ,A B =A, 则m=
A 0或3 C 1或3 3 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为
A 216x +212y =1
B 212x +28
y =1 C 28x +24y =1 D 212x +24
y =1
4 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=为CC 1的中点,则直线AC 1与平面BED 的距离为
(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列
的前100项和为 (A)100101 (B) 99101 (C) 99100 (D) 101100
(6)△ABC 中,AB 边的高为CD ,若
a ·b=0,|a|=1,|b|=2,则
(A) (B ) (C) (D)
(7)已知α为第二象限角,sin α+sin β=,则cos2α=
(A) (B ) (C) (D)
(8)已知F1、F2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF1|=|2PF2|,则cos ∠F1PF2= (A)14 (B )35 (C)34 (D)4
5
(9)已知x=ln π,y=log52,12z=e ,则
(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x。