基于CATIA的斜齿轮全参数化建模方法
使用CATIA绘制斜齿轮(直齿轮)的画法教程
斜齿轮(直齿轮)的制作方法第一步:设置catia,通过工具(tools)——基础结构(options)——显示(relation),勾选“参数”和“关系”选项。
如图1-1和1-2所示:(英文版)(图1-2)(中文版)(图1-2)然后,单击“确定”。
第二步:单击“开始”——形状——创成式外形设计,将会出现“新建零件”窗口,如图2-1,对自己的零件进行命名(注:零件名称只能是英文、下划线和数字,如:xiechilun),单击“确定”,即进入工作界面。
(图2-2)(图2-1)第三步:对齿轮的各项参数进行输入。
参考:斜齿圆柱齿轮中有如下参数及参数关系,不涉及法向参数齿数Z 20 整数模数m 4 实数压力角a 20deg 角度齿顶圆半径 rk = r+m 长度分度圆半径 r = m*z/2 长度基圆半径rb = r*cosa 长度齿根圆半径 rf = r-1.25*m 长度螺旋角 beta 角度齿厚 depth 长度单击界面中的“知识工程”中的“f(x)”,如图3-1所示,进入参数输入界面,如图3-2所示。
(图3-1)输入参数具体步骤:(齿数(整数)、模数(实数)、压力角(角度)、齿厚(长度)螺旋角(角度)五个是需要数值的,其他值由公式计算。
下面以齿数z为例。
)如图3-2(1)选择参数类型,为整数;(2)点击左侧“新类型参数”;(必须先选择参数类型)(3)输入参数名称z;(4)输入参数值20;(5)同样方法输入模数和压力角;(注意更改参数类型)(图3-2)其他四个参数(rk、rf、r和rb)只需执行前三步即可,无需输入数值,可由稍后添加的公式得出;公式的编辑步骤(以rk为例):(5)单击右侧的“添加公式”或是双击参数rk,将会出现“公式编辑器”窗口,如图3-3所示,在黑色框内输入公式:r+m。
单击“确定”,即完成对“rk”的公式的编辑,其值变为“44mm”。
其他三个参数的公式也如此。
最终应为图3-2所示。
CATIA齿轮建模(直齿和斜齿)
直齿轮参数化建模预备工作,在设置里面将参数和关系显示出来1、齿轮参数的创建2、渐开线的创建X—xx=db/2*cos(PI/2*t)+db/2*PI/2*t*sin(PI/2*t)Y—yy=db/2*sin(PI/2*t)-db/2*PI/2*t*cos(PI/2*t)t=0,0.1,0.2,0.3,0.4以t=0为例说明3、在创成式模块中点击点,弹出4、在x栏右键单击,点击编辑公式,弹出5、在模型树上双击法则曲线.x,在字典里选择规则,在双击规则成员里的内容,将()里设置为0,再确定即可,完成t=0时x的创建,同理完成t=0时y的创建,z=0,就创建好了(x(0),y(0)z(0))的创建,其他照此6、将上述点用样条曲线连接,如图7、创建对称渐开线,修剪如图8、拉伸,拉伸齿宽时在长度栏右键,其过程同上,选择参数b,如图9、阵略,如图10、完成(键槽简单,省略)斜齿轮参数化建模预备工作,在设置里面将参数和关系显示出来1、齿轮参数的创建2、渐开线的创建X—xx=db/2*cos(PI/2*t)+db/2*PI/2*t*sin(PI/2*t) Y—yy=db/2*sin(PI/2*t)-db/2*PI/2*t*cos(PI/2*t) t=0,0.1,0.2,0.3,0.4,以t=0为例说明3、在创成式模块中点击点,弹出4、在x栏右键单击,点击编辑公式,弹出5、在模型树上双击法则曲线.x,在字典里选择规则,在双击规则成员里的内容,将()里设置为0,再确定即可,完成t=0时x的创建,同理完成t=0时y的创建,z=0,就创建好了(x(0),y(0)z(0))的创建,其他照此将上述点用样条曲线连接,如图6、创建对称渐开线,修剪如图7、将此渐开线投影到另一面上,并且绕z轴旋转一定角度7、将对应齿根圆上的点用直线连接起来,然后在分别投影到齿根圆柱上8、在零部件设计中运用多截面实体,扫略成齿形9、阵略完成(键槽简单,省略)。
catia齿轮全参数化设计
文档Designing parametricabout Bevel Wheel and Spur Gear Wheel with Catia V5用CATIA V5来设计斜齿轮与直齿轮的参数目录一齿轮参数与公式表格————————————————————————PAGE 3二参数与公式的设置—————————————————————————PAGE 5 三新建零件—————————————————————————————PAGE 7 四定义原始参数———————————————————————————PAGE 8 五定义计算参数———————————————————————————PAGE 10 六核查已定义的固定参数与计算参数——————————————————PAGE 13 七定义渐开线的变量规则———————————————————————PAGE 14 八制作单个齿的几何轮廓———————————————————————PAGE 16 九创建整个齿轮轮廓—————————————————————————PAGE 32 十创建齿轮实体———————————————————————————PAGE 35文档一齿轮参数与公式表格序号参数类型或单位公式描述1 a 角度(deg) 标准值:20deg 压力角:(10deg≤a≤20deg)2 m 长度(mm) ——模数3 z 整数——齿数(5≤z≤200)4 p 长度(mm) m * π齿距5 ha 长度(mm) m 齿顶高=齿顶到分度圆的高度6 hf 长度(mm) if m > 1.25 ,hf = m * 1.25;else hf = m * 1.4齿根高=齿根到分度圆的深度7 rp 长度(mm) m * z / 2 分度圆半径8 ra 长度(mm) rp + ha 齿顶圆半径9 rf 长度(mm) rp - hf 齿根圆半径10 rb 长度(mm) rp * cos( a ) 基圆半径11 rr 长度(mm) m * 0.38 齿根圆角半径12 t 实数0≤t≤1 渐开线变量13 xd 长度(mm) rb * ( cos(t * π) +sin(t * π) * t * π ) 基于变量t的齿廓渐开线X坐标14 yd 长度(mm) rb * ( sin(t * π) -cos(t * π) * t *π ) 基于变量t的齿廓渐开线X坐标15 b 角度(deg) ——斜齿轮的分度圆螺旋角16 L 长度(mm) ——齿轮的厚度(在定义计算参数中舔加公式时,可以直接复制公式:注意单位一致)文档文档二参数与公式的设置文档文档三新建零件依次点击————————Array点击按钮现在零件树看起来应该如下:文档四.定义原始参数点击按钮,如图下所示:这样就可以创建齿轮参数:1.选择参数单位(实数,整数,长度,角度…)2.点击按钮3.输入参数名称4.设置初始值(只有这个参数为固定值时才用)文档现在零件树看起来应该如下:文档文档(直齿轮) (斜齿轮)多了个参数:b 分度圆螺旋角五 定义计算参数大部分的几何参数都由z,m,a 三个参数来决定的,而不需要给他们设置值,因为CATIA 能计算出他们的值来。
catia齿轮参数化建模的过程
catia齿轮参数化建模的过程我们需要在CATIA中创建一个新的零件文件。
在零件文件中,我们可以使用齿轮工具栏上的齿轮生成命令来创建基本的齿轮轮廓。
我们可以指定齿轮的模数、齿轮的齿数、齿轮的压力角等参数,CATIA会根据这些参数生成相应的齿轮模型。
在创建齿轮的过程中,我们可以使用CATIA软件提供的参数化建模功能来实现齿轮的参数化。
参数化建模功能可以将齿轮的各个参数与齿轮模型的几何特征关联起来,当我们修改齿轮的参数时,齿轮模型会自动更新。
例如,我们可以将齿轮的模数与齿轮的齿宽关联起来,当我们修改齿轮的模数时,齿轮的齿宽也会相应地改变。
这样,我们可以通过修改一个参数来改变齿轮的多个几何特征,而无需手动修改每个几何特征。
除了基本的齿轮参数外,我们还可以使用CATIA的表格功能来实现更复杂的参数化。
表格功能可以将齿轮的参数与一个表格中的数值关联起来,当我们修改表格中的数值时,齿轮的参数也会相应地改变。
这样,我们可以通过修改表格中的数值来批量生成不同参数的齿轮模型。
在完成齿轮的参数化建模后,我们可以使用CATIA的装配功能来进行齿轮的装配。
装配功能可以将多个零件组装在一起,并根据零件之间的约束关系来自动调整零件的位置和姿态。
在齿轮的装配过程中,我们可以使用CATIA的参数化装配功能来实现齿轮的参数化装配。
参数化装配功能可以将齿轮的装配位置与齿轮的参数关联起来,当我们修改齿轮的参数时,齿轮的装配位置也会相应地改变。
这样,我们可以通过修改一个参数来改变齿轮的装配位置,而无需手动调整每个齿轮的位置。
通过以上的步骤,我们可以使用CATIA软件实现齿轮的参数化建模。
参数化建模可以大大提高设计效率和灵活性,使我们能够快速生成不同参数的齿轮模型,并进行齿轮的装配和分析。
CATIA的强大的参数化建模功能为我们提供了一种高效、精确的齿轮设计方法,使我们能够更好地满足不同齿轮设计的需求。
总结起来,CATIA齿轮参数化建模的过程包括创建零件文件、使用齿轮工具栏生成齿轮轮廓、使用参数化建模功能实现齿轮的参数化、使用装配功能进行齿轮的装配和使用参数化装配功能实现齿轮的参数化装配。
用catia画渐开线斜齿圆柱齿轮详细教程
1.首先打开Catia:开始→形状→创成式外形设计模块!2.设置:工具→选项→显示按下图设置:3.???? 斜齿圆柱齿轮中有如下参数及参数关系,不涉及法向参数???? 齿数 Z???? 模数 m???? 压力角 a???? 齿顶圆半径?? rk = r+m ???? 分度圆半径?? r = m*z/2 ???? 基圆半径???? rb = r*cosa ???? 齿根圆半径?? rf = r-1.25*m????????点击添加公式进入公式编辑界面:4. 点击x=rb*sin(t*PI*1rad)-rb*t*PI*cos(t*PI*1rad)y=(rb*cos(t*PI*1rad))+((rb*t*PI)*sin(t*PI*1rad)) 如图所示:建议把函数名改成x和y,方便辨认。
建立第二个函数y(t);5.(1)画齿轮齿根圆、分度圆和齿顶圆:点击画圆工具,在中心处右键编辑点(0,0,0),支持面选择xy平面,半径:右键编辑公式输入:rf(2首先画出渐开线上的点,然后用样条曲线连接这些点,就形成渐开线。
具体方法如下:a. 参数b. 规则同样的办法输入y的坐标值,然后再建几个点,比如选择当t=0.1,0.2,0.25,0.3,0.35,0.4时的几个点。
如图示:(4)用外插延伸工具延长样条曲线使其与齿根圆相交。
如图:6.(1(2)用分割工具修剪渐开线。
如图:(橘黄色显示的为保留的一侧)(3(4)建立一个平面A(通过z轴和渐开线与分度圆的交点)。
(5)再建立平面B与A平面成一夹角,旋转轴为Z轴,夹角公式为:-360deg/4/Z 。
如图所示:(6(7)使结合的轮廓线关于新建的平面B对称。
如图:(8现在完成一大半了。
再用结合工具把轮齿轮廓结合成一个整体:7.(1(2(beta)7.画齿坯(1)使用画圆工具,画出齿根圆。
如图:(2(3)使用扫掠工具扫掠出齿坯。
如图:8.9. 生成实体齿轮(1)进入零部件设计模块:(开始→机械设计→零部件设计)(2)使用封闭曲面工具生成实体。
基于CATIA的齿轮参数化设计建模及运动仿真
基于CATIA的齿轮参数化设计建模及运动仿真齿轮是机械传动中常用的元件,用于传递动力和转动运动。
其设计和制造过程需要精确的参数化建模和运动仿真,以确保其稳定性和性能。
CATIA是一款功能强大的三维建模软件,可用于实现齿轮的参数化设计和运动仿真。
以下是基于CATIA的齿轮参数化设计建模及运动仿真的步骤:1.齿轮参数化设计:首先,需要确定齿轮的几何参数,如齿数、模数、压力角等。
在CATIA中,可以根据这些参数创建一个齿轮模型,并将其参数化,使得可以根据不同的参数值自动生成不同的齿轮模型。
参数化设计可以有效地提高设计效率和灵活性。
2.齿轮建模:基于确定的齿轮参数,使用CATIA中的齿轮建模工具创建齿轮的几何模型。
可以选择不同的齿轮类型,如圆柱齿轮、圆锥齿轮等,并根据需要进行形状调整和修饰。
3.齿轮装配:如果需要进行多个齿轮的装配设计,可以使用CATIA的装配设计工具来构建整个齿轮传动机构。
通过将不同的齿轮模型组装在一起,可以实现齿轮传动机构的建模和设计。
4.齿轮运动仿真:基于建立的齿轮模型和装配设计,在CATIA中进行运动仿真,以验证齿轮传动的性能和稳定性。
可以通过设置不同的运动参数和加载条件,模拟齿轮传动过程中的动态行为。
同时,可以进行动力学分析,评估齿轮传动的负载和力学特性。
5.优化和修改:根据仿真结果,可以对齿轮模型和装配设计进行优化和修改。
通过调整参数和改进设计,可以提高齿轮传动的效率和可靠性。
在CATIA中,可以直接修改参数,并自动更新齿轮模型和装配。
利用仿真结果的反馈信息进行优化设计,从而提高齿轮传动的性能。
总结:基于CATIA的齿轮参数化设计建模及运动仿真,可以有效地提高齿轮传动的设计效率和品质。
通过参数化设计和运动仿真,可以快速生成并优化齿轮模型,验证齿轮传动的性能,提高传动效率和可靠性。
同时,CATIA提供了丰富的工具和功能,可帮助工程师进行齿轮传动的设计和优化,提高产品的竞争力和市场价值。
CATIAV5直斜齿画法教程
• 画出齿轮上的一个齿 1、单击工具栏中 对称命令,元素选择接合,参考选择平面B,单
击接合命令,将两个齿廓接合到一起(注:参数下面的检查连接性要 关掉)
2、单击分割命令,齿廓被齿顶圆分割,然后用 修剪命令,进行两次
修剪,对象分别为齿廓和齿顶圆以及齿廓和齿根圆注(修剪是应该先 选择齿廓在选择齿顶圆和齿根圆,否则会出错,如果修剪对象默认保 留相反元素可单击另一侧进行调试)
3、单击
平移命令,平移元素为修剪(齿形),方向为X轴,距离栏中 右键编辑公式,选择重命名参数中depth
4、单击工具栏中
旋转命令,旋转元素为平移,旋转轴选择X轴ta)/rk*57.3deg 单击 多截面曲面命令,对象分别是修剪齿廓和旋转齿廓,这样便形成一 个齿,如下图所示:
齿轮效果图
• 在yz平面上画出rk、r、rf
在右侧工具栏中单击 圆命令,在“中心”栏中右键选择“创建点”,点的 类型选择坐标形式, x、y、z分别为0
在“支持面"栏中右键单击选择yz平面,"半径栏"中右键编辑公式,分别为rk、r、 rf,其中右侧圆限制为全圆
• 建立齿轮渐开线上的点,画出齿廓
单击右侧工具栏中的 点命令,点的类型选择“点在平面上”,平面选择“yz 平面”,H、V:右键选择“编辑公式”,步骤如下图所示:在“Evaluate ()”括号中分别输入0、0.1、0.13、0.15、0.18、0.2 HV输入的数值相同
• 建立两个辅助面
1、建立平面A
首先用 相交的命令求出齿廓与分度圆的交点,然后单击平面 图 标,平面类型选择通过点和直线,其中点选择相交,直线选择X轴
2、建立旋转平面B
单击平面命令,类型选择“平面的角度/法线”,参考选择平面A, 角度栏中右键单击“编辑公式”,公式为:-360deg/4/z此面作为下面 对称的辅助面
基于CATIA的齿轮参数化设计建模及运动仿真
基于CATIA的齿轮参数化设计建模及运动仿真基于CATIA的齿轮参数化建模及运动仿真作者:许昌军指导老师:朱梅(安徽农业大学工学院 07机械设计制造及其自动化合肥230036)摘要:文章介绍了运用参数化三维软件CATIA对渐开线直齿轮及斜齿轮进行参数化三维建模。
通过GSD模块中的fog方式生成参数方程建立渐开线,再通过镜像、剪切、特征阵列等命令建立齿轮轮廓,通过拉伸、开槽等命令建立渐开线齿轮三维模型,大大提高了设计人员的工作效率。
然后用建模的直齿轮创建直齿轮库,最后进入电子样机运动模块(KIN)对两啮合齿轮进行运动仿真及干涉分析。
关键词:参数化 CATIA 运动仿真渐开线直齿轮1 引言本文基于CATIA 的三维建模环境, 设计开发了渐开线直齿轮参数化设计系统,建立零件的3D模型, 为渐开线直齿轮的传动、仿真、优化设计、有限元分析打下基础。
用户只需根据修改齿轮参数就可以生成新的渐开线直齿轮, 减少繁琐复杂的重复劳动, 从而大大提高设计效率。
1.1CATIA软件介绍CATIA(Computer Aided Tri-dimensional Interface Application) 是法国达索(Dassault Systemes)飞机公司于1975年开始发展起来的一整套完整的3D CAD/CAM/CAE软件,CATIA V5作为新一代的CATIA版本,提供更多的新功能,其界面更加人性化,基于Windows的操作界面非常友好,因此使得复杂、枯燥的设计工作变得轻松而又愉快。
CATIA以强大的曲面设计功能在飞机、汽车、轮船等设计领域享有很高的荣誉。
2 CATIA参数化设计分析基于特征参数化设计的关键是特征及其相关尺寸、公差的描述,包括数据特性描述、规则特性描述、关系特性描述。
数据特性描述包含特征的静态信息和制造特性;规则或方法属性定义特征特定的设计和制造特性;关系特性描述特征间的相互依赖关系或定义形状特征间的位置关系。
CATIA斜齿轮全参数化曲面法三维数字建模及精度研究
CATIA 斜齿轮全参数化曲面法三维数字建模及精度研究*刘广武刘笑羽陶永兰冯增铭(吉林大学机械科学与工程学院,长春130025)Research CATIA helical gear to 3D full parametric surface of digital modelingand modeling accuracyLIU Guang-wu ,LIU Xiao-yu ,TAO Yong-lan ,FENG Zeng-ming(Jilin University Mechanical Science and Engineering Institute ,Changchun 130025,China )文章编号:1001-3997(2011)04-0074-03【摘要】依据斜齿轮机械原理基本理论,运用CATIAV5实体和高级曲面复合建模(Hybrid mod -eling )先进技术,提出了一种斜齿轮全参数化曲面法三维数字建模方法,构建了三维斜齿轮理论原型的参数化数字模型,并阐述了该数模的定量几何精度检验方法。
为齿轮传动系统的快速三维CAD 建模、运动学和动力学分析、强度有限元分析,提供了高精度的斜齿轮全参数化数字模板。
关键词:CATIA ;斜齿轮;参数化;曲面;数字模板【Abstract 】Based on the basic theory of helical gear mechanical principle ,using CATIAV5entities and high-level surface hybrid modeling (Hybrid modeling )of advanced technologies,presents a helical gearwhole parameter surface methodology 3D digital modeling method ,construct prototype models of the theory to the 3D digital helical gear ,and presents a quantitative test methods of geometric precision.For the gear transmission system ’s rapid 3D CAD modeling,kinematics and dynamics analysis,finite element analysis of strength,provides a high-precision helical gears whole parameter digital template.Key words :CATIA ;Helical gear ;Parameter ;Surface ;Digital template中图分类号:TH16,TP391.72文献标识码:A*来稿日期:2010-06-11*基金项目:吉林省教育教学研究重大项目(2006Z3-105)1引言齿轮、传动与驱动部件是机械基础零部件,也是各种装备机械的基础部件,同时还承担着机械传动、驱动的任务,而几乎所有的装备机械都需要传动,驱动部件[1]。
基于CATIA的斜齿轮全参数化建模方法
基于CATIA的斜齿圆柱齿轮全参数化建模方法作者:林波关键词:全参数化建模;斜齿圆柱齿轮;CATIA;渐开线;脊线1渐开线的绘制工业用斜齿圆柱轮的齿廓曲面大多是一个渐开线螺旋面,可以看成是沿一条螺旋线排列的无数个渐开线形成的曲面,因此建模的关键就是绘制精确的渐开线打开CATIA软件,首先新建“创成式外形设计”文件,点击下拉菜单“工具”,单击里面的“f(x)公式”,出现公式对话框,在其中输入表1中罗列的参数和公式,如图1所示。
图1输入参数和公式后的“公式”对话框1.2创建法则曲线工业用标准齿轮齿廓线大都为渐开线,CATAI软件中渐开线的创建依靠渐开线方程驱动,公式(1)和(2)为渐开线方程:x=rb*sin(PI*t*1 rad)-PI*t*rb*cos(PI*t*1 rad) (1)y=rb*cos(PI*t*1 rad)+PI*t*rb*sin(PI*t*1 rad) (2)x和y分别为渐开线上点的坐标值变量,PI相当于π,t为实数自变量,1rad 是角度。
下面利用CATIA软件里的fog命令创建法则曲线,步骤如下:(1)单击“知识工程”工具栏里的“规则(fog)”命令,首先创建x规则曲线,法则曲线名称为x。
在“规则编辑器”对话框中创建一个实数自变量t,另一个长度变量x,然后在右边按照公式(1)输入方程式,单击确定。
如图2所示。
偏移量为法则曲线方程x,即获得在yz 平面上的偏移曲线,x法则曲线平面上的偏移曲线,方法同x法则曲线,如图4所示。
图4 利用fog命令创建y法则曲线效果图得到过渡曲线后,有两种方式创建渐开线。
方法一:拉伸上一步中创建的两条过渡曲线,方向分别为x轴和y轴,得到两个相交的拉伸曲面,使用“相交”命令创建两曲面的交线,然后将其交线向xy 平面投影,投影即为渐开线;方法二:使用混合(combine) 命令,合并两条过渡曲线,然后将合并的曲线向 xy 平面投影。
这两种方法原理相同,都可以消去中间变量创建渐开线。
最详细的斜齿轮参数化画法
运行环境:CATIA P3 V5 R20 一齿轮参数与公式表格表1(在定义计算参数中舔加公式时,可以直接复制公式:注意单位一致)图1二、参数与公式的设置1、点击中的工具,选择“选项”,出现如下界面,操作如图选上蓝色圈内的选项,然后同样选上蓝色圈内的选项3、新建零件图1、点击“文件”——“新建”——“part”——命名为“参数齿轮”2、点击“开始”——“形状”——“创成式外形设计”——“参数齿轮”零件树如下:4、定义原始参数点击f(x),出现界面输入参数,首先确定参数的类型,与表1中的参数类型相同,如a=20deg表示角度,m=4mm表示长度,z=30表示整数,如图五、定义计算参数第一步确定参数类型,在此,全是长度,然后输入相关字母,如:ha 、hf ,然后点击“添加公式”,开始编辑公式在1中可以直接输入参数,也可以双击2中的参数这时零件树如下图,检查参数是否正确6、定义渐开线法则曲线渐开线x和y的规则公式:x= rb * ( cos(t * PI*1rad) +sin(t * PI*1rad) * t * PI ) y= rb * (sin (t * PI*1rad)-cos(t * PI*1rad) * t * PI ) 点击找出点击fog,出现在名称中输入x,确定同理,y的输入也一样的,输入完成后,在零件树上的关系式7、制作单个齿的轮廓1、点击选择“轴系”——确定2、在xy平面上任意创建5个点,点击代入x与y规则,令t=0 , 0.1 , 0.2 ,0.3 ,0.4 编辑H、V 点击“点1”再点击出现界面图中的“实数”是相应t 的值“点1”对应t=0,“点2”对应t=0.1,H 对应x 规则,V 对应y 规则,对V 进行同样的操作,其余4点的操作是一样的4、做一条样条线,包含上面所做的5个点5、向齿轮中心外插延伸点击得到说明:因为渐开线的终点在基圆上,基圆半径rb=r*cos(a)当z<42时,齿根圆小于基圆,齿根圆半径rf=rp-1.25*m 因此,由经念公式得外伸长度=2*m输入参数公式点击左边零件树上的再点击出现界面6、定义接触点 point contact方法和之前创建的“点1”到“点5”的方法是一样的变量参数t=a/180deg如下图7、在接触点上创建一个接触平面 plane contact点击8、定义一个中值平面 plane median(在下面做对称时用到)输入参数:步骤与本节第5步中红色部分一样,在零件树上的选择应为“plane median”添加的公式:360deg/4/z9、定义齿初始平面 plane start输入参数:步骤与本节第5步中红色部分相同在零件树上的选择应为“plane start”添加的公式为:-360deg/4/z10、画齿根圆circle roof(1)在plane start平面上定义点point start输入参数:步骤与本节第5步红色部分一样,在零件树上的选择应为“point start”,添加公式:V=0H= -rf(2)定义中心点point central(3)定义齿根圆circle roof点击11、导圆角,齿根圆与样条线之间的圆角点击要注意圆角的位置12、创建齿的另一边(对称于中值平面)点击出现13、画齿顶圆circle outer输入参数,步骤和本节第5步中红色部分一样,在零件树上的选择应为“circle outer”添加公式:ra14、修剪点击注意鼠标点击的位置到此,大部分工作已经完成了,不过还不能大意,因为在上面的过程中很可能出现问题,所以要认真的检查一遍。
基于CATIA的斜齿圆柱齿轮参数化设计
妻 i 8 2 l 1 - . 3 5 ຫໍສະໝຸດ O 2 1 6 8 l
.
算 。文章 以完整 斜 齿 圆柱齿 轮 为 实验元 件 ,并设 置其 材料 为“ t l 5 , s e 4 ” 弹性模 量 为 2 0G a 泊 松 比为 03 e 1 P , -。 在 网格划 分 上 ,不 同区 域 的划 分情 况略 有 不 同,考 虑
断 。轮 齿受 力后 ,其根 部 受交 变弯 曲应力 作 用 ,在齿 齿轮 啮合 点 ,位于 啮合 区最 高点 , 为 了便 于 计算 和施 根过 渡 圆角 处 ,应 力最 大 而且 应 力集 中 ,当 此处 的交 加载 荷 ,将 全 部载 荷作 用 于齿 顶 ,作 用方 向为齿顶 圆
变应 力超 过 了材 料 的疲 劳极 限时 ,其拉 伸 一侧 将产 生 压 力 角 ( 用 于 节 点处 )。 因 此 在 C T A 环 境 下 , 作 A I 疲劳 裂纹 ,裂 纹 不 断扩 展 ,最终 造 成齿 轮 的弯 曲疲 劳 设 齿 顶 施 加 均 匀 分 布 载 荷 F 4 mm, 方 向即 齿 顶 = 0N/ 折 断 [。斜 齿 圆柱 齿轮 其 齿 根裂 纹 往往 沿着 倾 斜 方 向 圆压 力角 。沿 啮合线 作用 在 齿面 上 的法 向载荷 F垂 直 2 ] 扩展 , 生轮 齿 的局 部折 断 。实 际齿轮 在 啮合 过程 中 , 于 齿 面 。为 了便 于加载 操 作 ,将 法 向载 荷 F在 接触 线 发
瞬 时面 接触 ,但 对 于不 同材料 和 不 同受力 情 况下 的 分
析 又有 很大 区别 。所 以在有 限元分 析 时 , 网格 划 分 的
合理 性是 准确 模拟 齿 轮 啮合 的 关键 。尽 管 齿轮 结构 形 状 呈 周期 变化 ,但 载 荷和 位 移约 束 不具 有 周期 性 ,而 且 各 子结 构 的材料 特 性和 物理 特 性也 不 相 同 ,即不 是 周 期对称 结构 ,所 以在 受 力分 析 时不 能 简化 为单 齿计
斜齿轮的catia画法
目录一齿轮参数与公式表格————————————————————————PGE 3二参数与公式的设置—————————————————————————P GE 5 三新建零件—————————————————————————————P GE 7 四定义原始参数———————————————————————————P GE 8 五定义计算参数———————————————————————————P GE 10 六核查已定义的固定参数与计算参数——————————————————P GE 13 七定义渐开线的变量规则———————————————————————P GE 14 八制作单个齿的几何轮廓———————————————————————P GE 16 九创建整个齿轮轮廓—————————————————————————P GE 32 十创建齿轮实体———————————————————————————P GE 35一齿轮参数与公式表格(在定义计算参数中舔加公式时,可以直接复制公式:注意单位一致)二参数与公式的设置三新建零件依次点击————————点击按钮现在零件树看起来应该如下:四.定义原始参数点击按钮,如图下所示:这样就可以创建齿轮参数:1.选择参数单位(实数,整数,长度,角度…)2.点击按钮3.输入参数名称4.设置初始值(只有这个参数为固定值时才用)现在零件树看起来应该如下:(直齿轮) (斜齿轮)多了个参数:b 分度圆螺旋角五 定义计算参数大部分的几何参数都由z,m,a 三个参数来决定的,而不需要给他们设置值,因为CATIA 能计算出他们的值来。
因此代替设置初始值这个步骤的是,点击按钮然后就开始编辑公式:六核查已定义的固定参数与计算参数七定义渐开线的变量规则上面我们已经定义了计算参数的公式,现在我们需要定义出能得到齿廓渐开线上的点的{X,Y}坐标的公式。
平常我们画图也是给一系列渐开线上的点坐标x0,y0,x1,y1…,在这里,CA TIA提供了一个方便的工具来完成它:变量规则。
用catia画渐开线斜齿圆柱齿轮详细教程
1.首先打开Catia:开始→形状→创成式外形设计模块!2.设置:工具→选项→显示按下图设置:3.输入齿轮的各项参数斜齿圆柱齿轮中有如下参数及参数关系,不涉及法向参数齿数Z模数m压力角a齿顶圆半径rk = r+m分度圆半径r = m*z/2基圆半径rb = r*cosa齿根圆半径rf = r-1.25*m螺旋角beta齿厚depth具体方法如下图所示:点击添加公式进入公式编辑界面:结果如下:4. 点击fog按钮,建立一组关于参数t的函数:X(t)、Y(t)方程为:x=rb*sin(t*PI*1rad)-rb*t*PI*cos(t*PI*1rad)y=(rb*cos(t*PI*1rad))+((rb*t*PI)*sin(t*PI*1rad))如图所示:建议把函数名改成x和y,方便辨认。
建立第一个函数x(t);建立第二个函数y(t);特征树种显示结果:5. 现在开始画渐开线:(1)画齿轮齿根圆、分度圆和齿顶圆:点击画圆工具,在中心处右键编辑点(0,0,0),支持面选择xy平面,半径:右键编辑公式输入:rf用相同的方法画出分度圆(r)和齿顶圆(rf):(2)画渐开线:首先画出渐开线上的点,然后用样条曲线连接这些点,就形成渐开线。
具体方法如下:下面就是对函数进行赋值的过程,具体方法如下:a. 参数→law→关系x(双击)b. 规则→然后双击,->Evaluate(t)括号里的数值为参数t的值,这里为0;同样的办法输入y的坐标值,然后再建几个点,比如选择当t=0.1,0.2,0.25,0.3,0.35,0.4时的几个点。
如图示:然后用样条曲线连接各点:如图:(4)用外插延伸工具延长样条曲线使其与齿根圆相交。
如图:6. 画齿形:(1)做齿根圆与渐开线的倒圆角。
如图:(注意倒圆的位置!)(2)用分割工具修剪渐开线。
如图:(橘黄色显示的为保留的一侧)(3)求渐开线与分度圆的交点。
如图:(4)建立一个平面A(通过z轴和渐开线与分度圆的交点)。
CATIA中渐开线斜齿圆柱齿轮的建模方法
CATIA中渐开线斜齿圆柱齿轮的建模方法步骤1:创建一个新的零件文档
打开CATIA软件,并创建一个新的零件文档。
选择“文件”>“新建”>“零件”。
步骤2:创建基础几何图形
使用绘图工具,在XY平面绘制一个基础几何图形,例如一个圆或者一个多边形。
这个图形将用作齿轮的基础形状。
步骤3:绘制母线
在顶视图中创建一个线条,这个线条将用作渐开线的母线。
母线应该与基础几何图形相切,并且可以通过基础几何图形的中心点。
使用“绘制”工具,选择“线”或者“圆弧”等绘图工具,根据需求绘制一条合适的线条。
步骤4:创建渐开线
使用“插入”工具,选择“齿轮”选项。
在“定义渐开线齿轮”对话框中,选择“齿轮”选项,并点击“确定”。
根据对话框中的提示,输入齿轮的参数,如模数、齿数、压力角等。
在渐开线选项中,选择“使用曲线”选项,并选择之前创建的母线曲线。
点击“确定”完成齿轮的创建。
步骤5:修整零件
在齿轮创建完成后,可能需要对齿轮进行一些修整,例如删除或修改不需要的特征。
使用“修整”工具,在需要修整的特征上点击,选择需要的修整操作,例如删除、平面修整或者其他修整选项。
步骤6:完成齿轮建模
在完成修整后,你已经成功地在CATIA中创建了一个渐开线斜齿圆柱
齿轮。
你可以保存零件,并继续进行其他操作,例如添加装配约束、导出
为其他格式等。
总结:。
CATIA参数化齿轮建立(图文运用)
画齿轮主要是确定渐开线方程,这里我就简单介绍一下一种种常见的渐开线绘制方法,就是绘制型值点,然后用样条线连接,得到渐开线后,对称,然后用齿顶圆齿根圆修剪围成齿轮轮廓,拉伸成凸台即可。
(这里就默认是直齿圆柱齿轮)首先用参数工具建立六个主要参数:模数m=4mm齿数z=20压力角a=20degha*=1c*=0.25齿厚s=10mm然后建立基本的几个公式:分度圆直径d=`模数m` *`齿数Z`齿顶圆直径da=(`齿数Z` +2*`ha*` )*`模数m`齿根圆直径df=(`齿数Z` -2*`ha*` -2*`c*` )*`模数m`基圆直径db=`分度圆直径d` *cos(`压力角a` )齿距p=PI*`模数m`由于渐开线极坐标方程为r(k)=r(b)/cosα(k)invα(k)=tanα(k)-α(k)我就不证明了,反正通过转换我得到了x轴和y轴关于渐开线转动角ak的对应方程。
建立X轴法则曲线:创建长度X 创建角度akx=(`基圆直径db`/2 /cos(ak))*cos(tan(ak)*1rad-ak/180deg *(PI*1rad))建立Y轴法则曲线:创建长度y 创建角度aky=(`基圆直径db` /2 /cos(ak))*sin(tan(ak)*1rad-ak/180deg *(PI*1rad))现在我们完成了所有的准备工作,可以创建齿轮了。
首先在平面上绘制直径同参数中数据一致的基圆,分度圆,齿顶圆,齿根圆然后绘制该平面上点,注意每一点对应的x y坐标与X、Y法则曲线在同一ak值下值一一对应。
即:`关系\渐开线方程X` ->Evaluate(ak)`关系\渐开线方程Y` ->Evaluate(ak)为了简化对象和保证精度,我取ak值分别为:0deg 15deg 22deg 29deg 35deg 40deg 50deg得到这七个点(保证在渐开线上,如果需要更高精度,可以增加点个数,但是太高阶的曲线容易产生振荡,所以不建议采用)用样条线连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于CATIA的斜齿圆柱齿轮全参数化建模方法
作者:林波
关键词:全参数化建模;斜齿圆柱齿轮;CATIA;渐开线;脊线
1渐开线的绘制
工业用斜齿圆柱轮的齿廓曲面大多是一个渐开线螺旋面,可以看成是沿一条螺旋线排列的无数个渐开线形成的曲面,因此建模的关键就是绘制精确的渐开线
打开CATIA软件,首先新建“创成式外形设计”文件,点击下拉菜单“工具”,单击里面的“f(x)公式”,出现公式对话框,在其中输入表1中罗列的参
数和公式,如图1所示。
图1输入参数和公式后的“公式”对话框
1.2创建法则曲线
工业用标准齿轮齿廓线大都为渐开线,CATAI软件中渐开线的创建依靠渐开线方程驱动,公式(1)和(2)为渐开线方程:
x=rb*sin(PI*t*1 rad)-PI*t*rb*cos(PI*t*1 rad) (1)
y=rb*cos(PI*t*1 rad)+PI*t*rb*sin(PI*t*1 rad) (2)x和y分别为渐开线上点的坐标值变量,PI相当于π,t为实数自变量,1rad 是角度。
下面利用CATIA软件里的fog命令创建法则曲线,步骤如下:(1)单击“知识工程”工具栏里的“规则(fog)”命令,首先创建x规则曲线,法则曲线名称为x。
在“规则编辑器”对话框中创建一个实数自变量t,另一个长度变量x,然后在右边按照公式(1)输入方程式,单击确定。
如图2所示。
偏移量为法则曲线方程x,即获得在yz 平面上的偏移曲线,
x法则曲线
平面上的偏移曲线,方法同x法则曲线,如图4所示。
图4 利用fog命令创建y法则曲线效果图
得到过渡曲线后,有两种方式创建渐开线。
方法一:拉伸上一步中创建的两条过渡曲线,方向分别为x轴和y轴,得到两个相交的拉伸曲面,使用“相交”命令创建两曲面的交线,然后将其交线向xy 平面投影,投影即为渐开线;
方法二:使用混合(combine) 命令,合并两条过渡曲线,然后将合并的曲线向 xy 平面投影。
这两种方法原理相同,都可以消去中间变量创建渐开线。
如图5所示。
图6各圆弧线生成示意图
(2)创建单齿齿廓线。
使用“相交”命令生成分度圆弧与渐开线的交点,以此交点为始点,以原点为终点建立一条直线。
绕 z 轴旋转此直线,角度为90deg/z ,得到一条镜像直线。
镜像渐开线,然后使用“外插延伸”命令延长两条渐开线至齿根圆,并倒圆角。
效果如图7所示。
使用修剪命令,对齿顶圆 、齿根圆、两渐开线进行修剪,
齿顶圆弧齿根圆弧
最后使用合并命令得到单个齿形,效果如图8所示。
Z 所示。
图9 螺旋线效果图
方法二:利用“展开”工具的逆向操作思路,创建脊线。
斜齿圆柱齿轮的螺旋脊线展开以后是一条直线,如果将展开的这条直线反向操作,利用工具将其缠绕到分度圆弧的曲面上,即就是螺旋脊线,具体步骤如下:
(1)拉伸分度圆弧线,高度等于齿宽。
过镜像线外端点做直线法向平面,
在此平面上绘制一条过镜像线外端点的斜直线,此直线与Z轴夹角大小为螺旋角β,长度可以取两倍齿宽——2B,效果如图10所示。
方法一中的螺旋线
图11 利用直线命令绘制曲面上的螺旋线
从图11我们也可以看出,方法一和方法二所绘制的螺旋线完全重合,说明了两种方法都可以正确绘制出齿廓扫描的脊线。
操作中任选其中一种方法即可。
3斜齿圆柱齿轮实体的创建
斜齿圆柱齿轮建模的关键就是渐开线齿廓和螺旋脊线的创建,不过最终还要创建实体模型,创建的步骤如下:
(1)在CATIA软件中切换进入“零件设计”模块,绘制齿顶圆曲线,将其拉伸为实体,高度等于齿宽B。
(2)使用“开槽”命令,创建齿形槽。
轮廓选择渐开线曲线,中心曲线选择螺旋线,控制轮廓选择拔模方向,而拔模方向为Z轴。
创建的第一道齿槽如图12所示。
图12 使用开槽命令创建齿槽
(3)使用“圆周阵列”命令,阵列步骤(2)中创建的齿槽,阵列数量为齿数z,角度间距为360deg/z,参考元素选择圆柱体侧面,对象选择齿槽,在此切莫选错。
阵列后的效果如图13所示。
图13 最终效果图
4 结语
齿轮三维模型的创建方法有很多种,根据不同需要场合选择不同创建方法,自然精度也各有不同。
CATIA利用全参数化创建齿轮模型,极大减少了齿轮建模的工作量,只需要修改不同的齿轮参数,就可以得到同类别任意型号的齿轮,而本文提供了两种最为精确创建齿廓和脊线的方法,以供读者借鉴。
参考文献:
[1]侯子平.《汽车机械基础》.[M].北京:北京邮电大学出版社,2014.
[2] 尤春风. CATIA V5 高级应用[M]. 北京:清华大学出版社,2006.
[3]刘广武,刘笑羽. CATIA 斜齿轮全参数化曲面法三维数字建模及精度研究[J].机械设计与制造,2011(4):74-3.
[4] 单岩,谢龙汉.CATIA V5 机械设计应用实例[M].北京:清华大学出版社2004.。