分式的乘除混合运算

合集下载

初二分式的乘除混合运算练习题

初二分式的乘除混合运算练习题

初二分式的乘除混合运算练习题假设有以下初二分式的乘除混合运算练习题,请同学们认真计算并填写答案。

1. 计算:2/3 × 1/4 ÷ 1/62. 计算:7/8 ÷ 5/6 × 2/33. 计算:4/5 × [1/3 ÷ (2/3 + 1/6)]4. 计算:(3/4 - 1/3) ÷ (2/5 - 3/10)解答:1. 解:2/3 × 1/4 ÷ 1/6首先计算乘法:2/3 × 1/4 = 2/12 = 1/6然后计算除法:1/6 ÷ 1/6 = 1答案:12. 解:7/8 ÷ 5/6 × 2/3首先计算除法:7/8 ÷ 5/6 = (7/8) × (6/5) = 42/40 = 21/20然后计算乘法:21/20 × 2/3 = 42/60 = 7/10答案:7/103. 解:4/5 × [1/3 ÷ (2/3 + 1/6)]首先计算括号内的加法:2/3 + 1/6 = 4/6 + 1/6 = 5/6然后计算除法:1/3 ÷ 5/6 = (1/3) × (6/5) = 6/15 = 2/5最后计算乘法:4/5 × 2/5 = 8/25答案:8/254. 解:(3/4 - 1/3) ÷ (2/5 - 3/10)首先计算减法:3/4 - 1/3 = (3/4) × (3/3) - (1/3) × (4/4) = 9/12 - 4/12 = 5/12然后计算减法:2/5 - 3/10 = (2/5) × (2/2) - (3/10) × (1/1) = 4/10 -3/10 = 1/10最后计算除法:5/12 ÷ 1/10 = (5/12) × (10/1) = 50/12 = 4 2/12 = 41/6答案:4 1/6以上就是初二分式的乘除混合运算练习题的解答。

分式的运算例题讲解

分式的运算例题讲解

15.2 分式的运算1.分式的乘除(1)分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 用式子表示为:a b ·c d =a ·c b ·d . (2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为:a b ÷c d =a b ·d c =a ·d b ·c. 分式的除法要转化为乘法,然后根据乘法法则进行运算,结果要化为最简分式.【例1】 计算:(1)4a 4b 215x 2·9x 8a 4b ; (2)a 2-1a 2+2a +1÷a 2-a a +1;(3)a 2-4a 2+4a +4·2a a 2-4a +4; (4)4x 2+4xy +y 22x +y÷(4x 2-y 2).2.分式的乘方(1)法则:分式乘方要把分子、分母分别乘方.(2)用式子表示:⎝⎛⎭⎫a b n =a n b n .解技巧 分式的乘方的理解 (1)分式乘方时,分子、分母要乘相同次方;(2)其结果的符号与有理数乘方结果的符号确定方法一样.【例2】 计算:(1)⎝⎛⎭⎫a 2-b 34; (2)⎝⎛⎭⎫x 2y -z 23.3.分式的加减(1)同分母分式相加减:①法则:分母不变,把分子相加减; ②用式子表示:a c ±b c =a ±b c. (2)异分母分式相加减:①法则:先通分,变为同分母的分式,再加减;②用式子表示:a b ±c d =ad bd ±bc bd =ad ±bc bd. 警误区 分式加减运算的注意点 (1)同分母分式的加减运算的关键是分子的加减运算,分子加减时要将其作为一个整体进行加减,当分子是多项式时,要添加括号;(2)异分母分式加减运算的关键是先通分,转化为同分母的分式相加减,再根据同分母分式加减法进行运算,通分时要注意最简公分母的确定;(3)分式加减运算的结果要化为最简分式或整式.【例3】 计算:(1)(a -b )22ab +(a +b )22ab ; (2)a a 2-1-11-a 2; (3)1x +y -1x -y +2x x 2-y 2;(4)12m 2-9+23-m ; (5)x -3x 2-1-2x +1; (6)4a +2-a -2.4.整数指数幂一般地,当n 是正整数时,a -n =1a n (a ≠0).这就是说,a -n (a ≠0)是a n 的倒数.这样引入负整数指数幂后,指数的取值范围就推广到全体整数.根据整数指数幂的运算性质,当m ,n 为整数时,a m ÷a n =a m -n ,a m ·a -n =a m +(-n )=a m -n ,因此a m÷a n =a m ·a -n .特别地,a b=a ÷b =a ·b -1,所以⎝⎛⎭⎫a b n =(a ·b -1)n ,即商的乘方⎝⎛⎭⎫a b n 可以转化为积的乘方(a ·b -1)n . 这样,整数指数幂的运算性质可以归纳为:(1)a m ·a n =a m +n (m ,n 是整数);(2)(a m )n =a mn (m ,n 是整数);(3)(ab )n =a n b n (m ,n 是整数).【例4】 计算:(1)⎝⎛⎭⎫-23-2; (2)a 2b -3(a -1b )3÷(ab )-1.5.科学记数法(1)用科学记数法表示绝对值大于1的数时,应当表示为a ×10n 的形式,其中1≤|a |<10,n 为原数整数部分的位数减1;(2)用科学记数法表示绝对值小于1的数时,可以表示为a ×10-n 的形式,其中n 为原数第1个不为零的数字前面所有零的个数(包括小数点前面的那个零),1≤|a |<10.提示:用科学记数法的形式表示数更方便于比较数的大小.【例5】 把下列各数用科学记数法表示出来:(1)650 000; (2)-36 900 000; (3)0.000 002 1; (4)-0.000 006 57.6.分式的乘除混合运算分式的乘除混合运算要统一为乘法运算来计算.谈重点 分式乘除混合运算的方法 (1)分式的乘除混合运算顺序与分数的乘除混合运算顺序相同,即从左到右的顺序,有括号先算括号里面的;(2)分式的乘除混合运算要注意每个分式中分子、分母括号的处理,以及结果符号的确定;(3)分式的乘除混合运算结果应为最简分式或整式.7.分式的混合运算分式的四则混合运算与有理数的混合运算相同,必须按照运算顺序,先乘方,再乘除,后加减,有括号时先去小括号再去中括号,最后结果要化为最简分式或整式.解技巧 分式混合运算的技巧 分式四则混合运算要注意:(1)按照运算顺序进行,确定合理的运算顺序是解题的关键;(2)灵活运用交换律、结合律、分配律,可以使运算简捷,而且还可以提高运算速度和准确率;(3)将结果化为最简分式或整式;(4)运算过程中要注意符号的确定.8.把分式化简后再求值 分式的化简求值题,关键是要准确地运用分式的运算法则,然后代入求值.化简运算过程中要注意约分、通分时分式的值保持不变,要注意分清运算顺序,先乘除,后加减,如果有括号,先进行括号内的运算.【例6】 计算:1-x 2x 2+4x +4÷(x -1)2·x 2+3x +2x -1.【例7】 计算:⎣⎢⎡⎦⎥⎤a 2-b 2a 2+2ab +b 2+2ab ÷⎝⎛⎭⎫1a +1b 2·2a 2-b 2+2ab.【例8】 先化简,再求值:⎝⎛⎭⎫3x x -1-x x +1·x 2-12x ,其中x =-3.9.运用分式运算解决实际问题运用分式运算解决实际问题,关键是理解题意,找准各种量之间的关系,这也是解决数学应用题的基本方法,作差法等也是解决这类问题的常用方法.在判断两分式的差的正负的时候,可以考虑利用完全平方式的非负性和题中字母的实际意义来解题.作差法举例:若x ≠y 且x >0,y >0,比较4x +y 与x +y xy的大小.【例9】 甲、乙两工人生产同一种零件,甲每小时比乙多生产8个,现要求甲生产出168个零件,乙生产出144个零件,则他们两人谁能先完成任务?10.分式混合运算的开放型题所以在解决此类问题时,首先还是要正确进行分式的化简,然后还要注意问题的多解的情况.举例:已知P =a 2+b 2a 2-b 2,Q =2ab a 2-b 2,用“+”或“-”连接P ,Q 共有三种不同的形式:P +Q ,P -Q ,Q -P ,请选择其中一种进行化简求值,其中a =3,b =2.【例10】 已知A =1x -2,B =2x 2-4,C =x x +2.将它们组合成(A -B)÷C 或A -B÷C 的形式,请你从中任选一种进行计算.先化简,再求值,其中x =3.。

7分式的乘除混合运算

7分式的乘除混合运算

3


16 a 2 a4 a2 例2 计算: 2 a 8a 16 2a 8 a 2 16 a 2 2a 8 a2 解:原式= 2 a 8a 16 a4 a2
a2 (4 a)( 4 a) 2(a 4) a4 a2 2 (a 4)
下列解答过程是否正确?若正确,请写出每一步的依据; 若不正确,请指出错误的原因,并订正!

1 x 1 ( x 2) x 1 x2 1 x 1 ( x 2) x 1 x 2 1 ( x 1) x 1 1 1 x 1 x 1 1 2 ( x 1)
-1
2 (a 2) a2 2a 4 a2
规则:同学们先在草稿本上完成题目(过程要完整)。5分钟 后,随机抽取同学进行投影展示!每题2分,每失误一 处扣1分!
2 2 81 a 3 3x ab 3x a 9 1 a a ab 第三轮: 2 ( 第一轮:① ) ( ) 第二轮:① ( a b ) 2 a 4 y6 aa 9 y 2a 6 a b 9 2 xa ab 1 1 1 a x 2 x 3 ② 2 2 ax 3 2a 1 x a 9 a5 x 3 5 25
本堂课学习了分式的乘除混合运算,你对所学 存在疑问吗?
1、只要我们能梦想的,我们就能实现。 2、一个有学问的人就是一个善于辨别是非 的人。
学习目标: 1、进一步掌握分式的乘除法法则。 2、能运用法则熟练进行分式的乘除混合运算。 课堂要 ) xy x2 y 3 y x 1 解:原式= ( 2 ) ( ) ( 2 ) x y xy 3 1 x y 2 2 xy y x xy3 3 3 x y 1 2 x

分式的乘除法掌握分式的乘除运算法则

分式的乘除法掌握分式的乘除运算法则

分式的乘除法掌握分式的乘除运算法则分式是数学中的一种表示形式,它由分子和分母两部分组成。

分式的乘除法是对分式进行乘法和除法运算的方法。

正确掌握分式的乘除运算法则对于解决复杂的数学问题至关重要。

本文将介绍分式的乘除法,详细讲解分式的乘除运算法则。

一、分式乘法分式乘法是指两个分式相乘的运算。

当两个分式相乘时,我们将它们的分子相乘,分母相乘,然后将结果化简为最简分式。

具体操作步骤如下:1. 将两个分式相乘,将分子相乘得到新分子,将分母相乘得到新分母;2. 化简新分子和新分母,使其互质,得到最简分式。

例如,计算分式1/2和3/4的乘积。

解:1/2 * 3/4 = 1 * 3 / 2 * 4 = 3/8所以,1/2 * 3/4 = 3/8。

二、分式除法分式除法是指将一个分式除以另一个分式的运算。

当两个分式相除时,我们将被除数的分子乘以除数的分母,被除数的分母乘以除数的分子,然后将结果化简为最简分式。

具体操作步骤如下:1. 将被除数的分子乘以除数的分母,得到新分子;2. 将被除数的分母乘以除数的分子,得到新分母;3. 化简新分子和新分母,使其互质,得到最简分式。

例如,计算分式2/3除以4/5的结果。

解:2/3 ÷ 4/5 = 2/3 * 5/4 = 2 * 5 / 3 * 4 = 10/12化简得到最简分式:10/12 = 5/6所以,2/3 ÷ 4/5 = 5/6。

三、分式的乘除混合运算在实际应用中,我们经常会遇到分式的乘除混合运算。

在进行分式的乘除混合运算时,我们需要先进行分式的乘法,再进行分式的除法。

具体操作步骤如下:1. 先按照乘法法则计算所有的乘法运算;2. 再按照除法法则计算所有的除法运算;3. 若有多个乘法或除法运算,则按照从左到右的顺序进行计算。

例如,计算分式2/3 * 4/5 ÷ 1/2的结果。

解:2/3 * 4/5 ÷ 1/2 = (2/3 * 4/5) ÷ 1/2 = (2 * 4 / 3 * 5) ÷ 1/2 = 8/15 * 2/1 = 8/15 * 2 = 16/15所以,2/3 * 4/5 ÷ 1/2 = 16/15。

分式的加减乘除混合运算课件PPT

分式的加减乘除混合运算课件PPT
问题1:甲工程队完成一项工程需n天, 乙工程队要比甲队多用3天才能完成这 项工程,两队共同工作一天完成这项工 程的几分之几?
1
答乙:工甲程工队程一队天一完天成完这成项这工项程工的程_的______n______1____________,, 两队共同工作一天完成这项工程的 n 3
_________(_1_____1__.) n n3
bd
bd
三、例题学习,提高认知
例 计算 :
(1)5x x2
3y y2
2x x2 y2

解:原式=
(5x
3y) x2 y
2
2
x
3x 3y
= x2 y2
把分子看成一个整体, 先用括号括起来!
=
3(x y) (x y)(x y)
=
3; x y
注意:结果要 化为最简分式!
计算 :
(2)
分母不变, 分子相加减.
分式加减运算的方法思路:
异分母 通分 相加减 转化为
同分母 分母不变 相加减 转化为
分子(整式)
相加减
分式加减运算的注意事项:
(1)分母是多项式时,能分解因式的要先分解因 式;(2)分子相加减时,如果分子是一个多项式, 要将分子看成一个整体,先用括号括起来,再运 算,可减少出现符号错误;(3)分式加减运算的 结果要约分,化为最简分式(或整式).
问题2:2001年,2002年,2003年某地的森林 面积(单位:公顷)分别是S1,S2,S3,2003年 与2002年相比,森林面积增长率提高了多少?
答20:0220年03的年森的林森面林积面增积长增率长是率_是_s__2_s__1__s__1_s___3__s____2__s__,2,

八年级上册数学15.2.1第2课时分式的乘方及乘除混合运算级

八年级上册数学15.2.1第2课时分式的乘方及乘除混合运算级

乘方
(x - y)2 x2 y2
(x2
y2)
(x
x3 - y)3
除法变乘法
(x - y)2 (x y)( x y) x3
x2 y2
(x - y)3
分解因式
x2 xy y2 .
乘法、约分
探索新知
知识点2 分式的乘方
含有乘方的分式乘除混合运算的步骤 (1)先算分式的乘方; (2)除法变乘法; (3)若分子或分母为多项式,要分解因式; (4)进行乘法运算,约分得到结果.
第十五章 分式
15.2.1 分式的乘除
第2课时 分式的乘方及乘除混合运算
学习目标-新课导入-探索新知-课堂小结-课堂练习
人教版·八年级上册
学习目标
1.进一步熟练分式的乘除法则,会进行乘、除法的混合运算.(重点) 2.了解并掌握分式的乘方法则.(重点) 3.能熟练运用分式的乘方法则进行计算,会进行含乘方的分式的乘 除混合运算.(难点)
(x
3)(x
3)
1.
课堂练习
7.(1)化简:a a
2 2
-
4 a
(
a -1 a2
)2
a a2
2 1 2a
.
解:原式 (a 2)(a 2) a(a 1)
a 12 a 22
a(a 2) (a 1)(a 1)
a a
2 1
.
1
(2)当a=5时,其结果为 2 .
(3)请你选择一个你喜欢的数作为a的值,则a不可以取 0,±1,-.2
(2)( 3xy 2 )3; 4z
解:(1)
( 2a2b )2 3c
( 2a 2b) 2 (3c)2
4a4b2 9c2
;

5.2.分式的乘除法(教案)

5.2.分式的乘除法(教案)
在讲授过程中,我特别强调了分式乘除法则,并且用了一些具体的案例来说明。但是,从学生们的反馈来看,可能还需要更多不同类型的例题来帮助他们更好地理解和消化这些规则。
小组讨论的环节,我发现学生们在交流中能够互补不足,互相学习。但是,也有个别小组在讨论时偏离了主题,这提醒我在今后的教学中,需要更加明确讨论的目标和范围,确保讨论的有效性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式乘除法的基本概念。分式乘除法是指对两个或多个分式进行乘法或除法运算的方法。它在数学运算中非常重要,可以帮助我们解决生活中的许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设我们要计算两个物体的速度比,我们可以通过分式乘除法来得到答案。这个案例展示了分式乘除法在实际中的应用,以及它如何帮助我们解决问题。
5.2.分式的乘除法(教案)
一、教学内容
本节课选自教材第五章第二节“分式的乘除法”。主要内容包括:
1.掌握分式乘法的法则,能够正确进行分式的乘法运算。
-分式乘法法则:a/b × c/d = ac/bd(b、d不为0)
2.掌握分式除法的法则,能够正确进行分式的除法运算。
-分式除法法则:a/b ÷ c/d = a/b × d/c(b、c、d不为0)
3.重点难点解析:在讲授过程中,我会特别强调分式乘法法则和分式除法法则这两个重点。对于难点部分,比如分式乘除混合运算的顺序和符号处理,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式乘除法相关的实际问题,如计算购物打折后的价格。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用代数式的分式乘除法来计算几何图形的面积比。

八年级数学 15.2.2分式的混合运算

八年级数学 15.2.2分式的混合运算

b d b c bc
同分母加减:b c b c
加减法
aa a
异分母加减:b d bc ad bc ad
a c ac ac ac
一 新课讲解
2
问题:如何计算
2m

n


1 m-n
-
m n

n 4

请先思考这道题包含的运算,再确定运算顺 序,并独立完成.
b



a
1
b

a
1
b



a
1
b

a
1
b



a
1
b

a
1
b

2a
a2 b2
巧用公式
一 能力提升
例4.若
2 x2 1

A x 1
B ,求A、B的值. x 1
解析:先将等式两边化成同分母分式,然后对 照两边的分子,可得到关于A、B的方程组.
2.课本p146 习题15.2 第6题
一 课堂练习
1.
计算
1
3x 2y

3x 2y

2y 3x
的结果是( C

2 y 6xy
A. 9x2
2y 3x
B. 2y
3x 2y
C. 3x
3x
D. 2 y
2.
化简(
x y

y) x

x
x
y
的结果是
x y y.3.化简来自1x y x 3y
解:∵ A B x 1 x 1

分式的加减乘除乘方混合运算

分式的加减乘除乘方混合运算

分式的加减乘除乘方混合运算在数学中,分式是由分子和分母组成的表达式,表示两个数的商。

分式可以进行加、减、乘、除以及乘方等混合运算。

本文将介绍和讲解如何进行分式的加减乘除乘方混合运算。

一、分式的加法运算分式的加法运算是指将两个分式相加的操作。

要进行分式的加法运算,需要保证两个分式的分母相同,然后分别将分子相加,再将分子写在分式的分子位置上,分母不变。

例如:1/3 + 2/3 = (1+2)/3 = 3/3 = 1二、分式的减法运算分式的减法运算是指将两个分式相减的操作。

同样地,要进行分式的减法运算,也需要保证两个分式的分母相同,然后分别将分子相减,再将分子写在分式的分子位置上,分母不变。

例如:5/6 - 1/6 = (5-1)/6 = 4/6 = 2/3三、分式的乘法运算分式的乘法运算是指将两个分式相乘的操作。

要进行分式的乘法运算,只需要将两个分式的分子相乘,将两个分式的分母相乘,然后将得到的新分子写在新分式的分子位置上,得到的新分母写在新分式的分母位置上。

例如:2/5 * 3/4 = (2*3)/(5*4) = 6/20 = 3/10四、分式的除法运算分式的除法运算是指将一个分式除以另一个分式的操作。

要进行分式的除法运算,需要将第一个分式的分子乘以第二个分式的倒数,也就是将第一个分式的分子乘以第二个分式分数倒数的分子,将第一个分式的分母乘以第二个分式分数倒数的分母。

例如:1/2 ÷ 2/3 = (1/2)*(3/2) = 3/4五、分式的乘方运算分式的乘方运算是指将一个分式进行指数运算的操作。

要进行分式的乘方运算,需要将分式的分子和分母分别进行指数运算,然后将得到的新分子写在新分式的分子位置上,得到的新分母写在新分式的分母位置上。

例如:(1/2)^2 = 1^2 / 2^2 = 1/4六、分式的混合运算分式的混合运算是指将分式的加减乘除以及乘方运算混合在一起进行的操作。

在进行混合运算时,需要根据运算法则依次进行各个运算的步骤,最终得到结果。

分式加减乘除混合运算题及答案

分式加减乘除混合运算题及答案

分式加减乘除混合运算题及答案
题目1:5÷2+4×7-6=?
答案:5÷2+4×7-6 = 25
题目2:7+2×9-6÷3=?
答案:7+2×9-6÷3 = 25
题目3:8÷2-3×2+7=?
答案:8÷2-3×2+7 = -1
在学习数学的过程中,掌握数学的基本运算至关重要,其中分式加减乘除混合运算是其中一种。

分式加减乘除混合运算,应根据乘除的优先级,优先处理乘除再处理加减。

一、计算优先级
在计算分式加减乘除混合运算时,乘除运算符号的优先级则是比加减
运算符号优先。

也就是在表达式中,需要先参与计算的运算符号是乘除,再是加减。

二、计算步骤
1. 预处理:剔除表达式中的括号;
2. 乘除计算:从左数乘、除运算,计算出结果;
3. 加减计算:从左数加减,计算出结果。

三、实例
例:4+7÷2×5-6=
步骤:预处理:4+7÷2×5-6
乘除计算:4+3.5×5-6
加减计算:4+17.5-6
结果:15.5
显然,如何正确计算分式加减乘除混合运算,需要注意两点:
1. 运算时,需根据乘除的优先级,优先处理乘除再处理加减;
2. 步骤应为:预处理、乘除计算、加减计算,最后确定答案。

四、练习
1. 5÷2+4×7-6=
答案:25
2. 7+2×9-6÷3=
答案:25
3. 8÷2-3×2+7=
答案:-1。

分式的乘除法混合运算

分式的乘除法混合运算

分式的乘除法混合运算在数学中,分式的乘除法混合运算是一种常见的运算形式。

它结合了分式的乘法和除法,需要我们掌握一定的运算规则和技巧。

本文将详细解释分式的乘除法混合运算的概念、计算方法和注意事项。

一、概念解释:分式是数学中的一种表示形式,通常由分子和分母组成,用水平线隔开。

分子表示分数的被除数,分母表示分数的除数。

分式的乘除法混合运算即在一个式子中同时进行分式的乘法和除法运算。

二、计算方法:1. 乘法运算:分式的乘法运算很简单,只需将两个分式的分子相乘并将其作为结果的分子,将两个分式的分母相乘并将其作为结果的分母。

例如,计算分式1/2乘以3/4的结果如下:(1/2) × (3/4) = (1 × 3) / (2 × 4) = 3/82. 除法运算:分式的除法运算比乘法稍微复杂一些。

我们需要将除数倒置,然后将除法转化为乘法运算。

即将除法a/b转化为a乘以b的倒数。

例如,计算分式2/3除以4/5的结果如下:(2/3) ÷ (4/5) = (2/3) × (5/4) = (2 × 5)/(3 × 4) = 10/123. 混合运算:分式的乘除法混合运算可以通过先进行乘法运算,再进行除法运算的顺序来计算。

例如,计算分式2/3乘以4/5再除以1/2的结果如下:(2/3) × (4/5) ÷ (1/2) = (2/3) × (4/5) × (2/1) = (2 × 4) / (3 × 5) × 2 = 16/15三、注意事项:在进行分式的乘除法混合运算时,需要特别注意以下几点:1. 括号的运用:如果混合运算中有括号存在,我们应当优先计算括号内的乘除法。

2. 化简分式:在得到运算结果后,我们应当尽可能地将其化简。

即将分子和分母的公因数约去,使分式的结果更加简洁。

3. 正确运用分数运算规则:在进行分式的乘除法混合运算时,需要按照分数的运算规则进行计算,确保运算的准确性。

用1521分式的乘除混合运算及乘方

用1521分式的乘除混合运算及乘方

、学习目标1 •掌握分式的乘除混合运算2 •掌握分式的乘方(乖二、检查预习效果根据P182预习检测第2题,思考:1•如何进行分式的乘除混合运算?铳一转化签乘法运其2•如何确定结果符号?根据负号的个毅定符号.偶正奇负三、例题讲解例4 (课本P138)计算:S 宀9 5+练一练:课本P139练习1 (注意步骤及规范)归纳: 混合运算顺序:四、自学探究阅读课本P13 “思考”内容,讨论并归纳分式的乘方法则:今式的乘方,要把今3、今母今别乘方,7、" _ an试一试:P182预习检测第1题注:乘方运算要先确定符号,正确运用幕的运算法则五、例题讲解练一练:课本P139练习2 (注意步骤及规范)例5 (课本P139) 计算: 先乘六、巩固练习1.P184分层练习A组题独更完咸,同集互对答嚓2.B组题小爼耐俺,合作完咸四'1當鳖测忤〕X6iZj rX (3汀4 8 兀y3V= (18x 2-12x 2y + 30x 4)x一9(一押 一丄X 〉。

丄兀y27• 36*亠八聖=27x 2/(4)(1 &Y 2 -12x 2y + 3Qr 4)4- (-9x 2)卜"(洽)+ 30讥一£—12/+纬—233 33= _2 + 4y_10£2 •计算: (1) 3心c 、32x 2}8x 4X99'x_2 4x '-------- '—7 ----u x + 2 — 4 丿例3、计算:0)( 、4— a宀丿 tz (x-2 4x ) 卫+ 2十宀4,(x-2)x+2x 2 -4- ・(x+ 2)(x — 2)+=宀44xX 2-4x 2~2~2宀 24•a 2(x — a)L 3(d + x)2 _L a 2 J_ 23a 8a l4x 4 (a — x)4(a+x)49(a +x)48x 4(x — a)4 43~5x y x y8a\x —aY(宀4)a 4~4~4七、当堂小测P当堂小测独宣完咸,5今钟达标检测••…做一做(3m 2«2^2‘ 2m n 、 3_ 2k 2m n 丿<3m 3/i 2 丿3 m4 n(2)(―二)2・(_丄)口 (—与X [ x + yy( \2丁一兀X:(5 y+ x2x 2-184-4x + x 2一(x + 3)・3 —x x 2 + x-6-x 52x + 6入r -r •1 •计算(1)::号(2)x 2+x(xy-x 2)^-_-4x 2-l x + 111 —2x x2.如果m 个人完成一项工程需要d 天 ,那么(m+ri )个人完成此项工作 需要多少天?。

人教八年级数学上册-分式的乘除混合运算与分式的乘方(附习题)

人教八年级数学上册-分式的乘除混合运算与分式的乘方(附习题)

=
1 2n2
3. 先化简再求值:
a2 1
a 1

a2 2a 1 a3 a2
其中a= 3 .
解:原式=
a2
a2 1 2a
1
a2 a 1 a 1
a2,
将a= 3 代入,
2
原式= 3 3.
课堂小结
分式的乘方法则:
一般地,当n 是正整数时,
6 44 n7个a4 48
( a )n = a b 1b
a2 8a 16 2a 8 a 2
解:原式=
4
a 4 a 42
a
2 a 4
a4
a a
2 2
= 2a 4 a2
随堂演练 1.下列计算中,正确的是( D )
A.
x 2
3
y
x2 6y2
B.
2x 3
y
2x3 y3
x 3
x3
C.
3y
27 y
D.
b 2 a 2 a b
n个 a
n个b
即( a )n = an . b
b bn
这就是说,分式乘方要把分子、分母分别乘方.
例 计算:
(1)(
y 2x
)3;(2)(
-2a c2
)2;(3)(
2a2b -3c
)2.
解:(1)(
y 2x
)3= y3 (2x)3
=
y3 8x3

(2)(
-2a c2
)2 =(-2a)2 (c2)2
=
b4 a4
2. 计算下列各题.
(1)
2x2 y
2
2y2 3
3x
2y x
4

分式的乘方及乘方与乘除的混合运算课件

分式的乘方及乘方与乘除的混合运算课件

符号的处理
在进行分式的乘方运算时 ,应注意符号的变化,特 别是负数的偶次幂和奇次 幂。
运算顺序
在进行分式的乘方与乘除 混合运算时,应遵循先乘 除后乘方的原则,同时注 意运算的优先级。
防止运算错误
在进行分式的乘方运算时 ,应仔细核对每个步骤, 确保运算的正确性,避免 因疏忽导致错误。
CHAPTER 02
分式乘方运算还可以与其他数学工具结合使用,例如微积 分和线性代数。通过将分式乘方运算与其他数学工具结合 使用,可以更深入地探索数学的本质和应用。
CHAPTER 04
练习与巩固
分式乘方的例题解析
总结词
掌握分式乘方的运算规则
详细描述
通过例题解析,让学生理解分式乘方的运算规则,掌握分式乘方的计算方法,例如:$frac{a^m}{b^n} = frac{a^{m times k}}{b^{n times k}}$。
乘方与乘除混合运算的例题解析
总结词
掌握乘方与乘除混合运算的运算顺序
详细描述
通过例题解析,让学生理解乘方与乘除 混合运算的运算顺序,掌握先进行乘方 运算,再进行乘除运算的计算方法,例 如:$a^m times a^n = a^{m+n}$, $a^m div a^n = a^{m-n}$。
分式乘方运算的习题集
总结词
通过习题练习巩固分式乘方的计算能 力
详细描述
提供一系列分式乘方的习题,让学生 通过练习巩固分式乘方的计算能力, 提高解题速度和准确性。
THANKS FOR WATCHING
ቤተ መጻሕፍቲ ባይዱ感谢您的观看
分式乘方的运算规则
01
02
03
分子乘方的规则
分子乘方时,应先单独对 分子进行乘方运算,再将 结果与分母进行除法运算 。

分式的混合运算方法

分式的混合运算方法

分式的混合运算方法
对于分式混合运算,一般应按运算顺序,有括号先做括号内的运算,若利用乘法对加法的分配律,则可简化运算。

分式混合运算法则
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);
乘法进行化简,因式分解在先,分子分母相约,然后再行运算;
加减分母需同,分母化积关键;找出最简公分母,通分不是很难;
变号必须两处,结果要求最简。

分式运算法则
1、约分
根据分式基本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。

约分的关键是确定分式中分子与分母的公因式。

2、公因式的提取方法
系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。

3、最简分式
一个分式不能约分时,这个分式称为最简分式。

约分时,一般将一个分式化为最简分式。

乘法同分母分式的加减法法则进行计算。


个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

4、除法
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。

也可表述为:除以一个分式,等于乘以这个分式的倒数。

5、乘方
分子乘方做分子,分母乘方做分母,可以约分的约分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学重点
熟练地进行分式乘除法的混合运算
教学难点
正确熟练地进行分式乘除法的混合运算
教学设计
教师活动
学生活动
一、复习巩固:
1、(1) (2)
2、如何进行乘除混合运算?
二、课堂展示:
计算:
三、总结归纳:
分式混合运算步骤:
1、除法转化成乘法
2、分子分母是多项式应先分解因式,在约分
3、每一个多项式因式都要按某个字母的降幂或升幂排列(遇到问题时在强调)
学生当堂课完成,反馈,检查学习效果,在此体会存在的问题及如何避免
不要求所有学生都会,灵活处理最后一题。
板书设计:分式的乘除混合运算
典型题:
计算: 练习板书用地
总结步骤:
教学反思:
红花中学教(学)案
总课时数
学科数学年级八执教人
时间
2012年2月6日第二周第课时
课题
16.2.1分式的乘除混合运算
课型
新授
教学目标
1、熟练地进行分式乘除法的混合运算。
2、经历探索分式的乘除及混合运算法则的过程,能结合具体情境说明其合理性。
3、教学过程中渗透类比转化的思想,在学知识的同时学到方法,受到思维训练。
五、小结:
本节课你有何收获?请谈一谈!
1、分式的乘除混合运算顺序及步骤:

2、应注意的问题:

3、你还有何感想?
六、课堂检测:
计算:(1)
(2)
(3)
(4)
1、 已知 ︳3a-b+1︳+(3a- ,求 的值。
七、作业设计:(布置不同层次的作业)
学生谈体会,做练习后的感受及检验教训等。总结本节课学的知识
2)
1、学生练习巩固,两生板演之后纠正错误。
2、学生总结分式如何进行乘除运算
3、反思哪没掌握好
4、回答乘除混合运算顺序
学生尝试做,做错的地方为什么错了,应注意什么问题,纠正错误后在总结分式如何进行混合运算
学生尝试解题,完善解题步骤,解题思路。
黑板板演,师生共同纠错,查找错误的原因,和如何避免错
相关文档
最新文档