金融数学 练习题详解

合集下载

(完整版)金融数学课后习题答案

(完整版)金融数学课后习题答案

(完整版)金融数学课后习题答案第一章习题答案1. 设总量函数为A(t) = t2 + 2t + 3 。

试计算累积函数a(t) 和第n 个时段的利息In 。

解: 把t = 0 代入得A(0) = 3 于是:a(t) =A(t)A(0)=t2 + 2t + 33In = A(n) ? A(n ?1)= (n2 + 2n + 3) ?((n ?1)2 + 2(n ?1) + 3))= 2n + 12. 对以下两种情况计算从t 时刻到n(t < n) 时刻的利息: (1)Ir(0 < r <n); (2)Ir = 2r(0 < r < n).解:(1)I = A(n) ? A(t)= In + In?1 + + It+1=n(n + 1)2t(t + 1)2(2)I = A(n) ? A(t)=Σnk=t+1Ik =Σnk=t+1Ik= 2n+1 ?2t+13. 已知累积函数的形式为: a(t) = at2 + b 。

若0 时刻投入的100 元累积到3 时刻为172 元,试计算:5 时刻投入的100 元在10 时刻的终值。

第1 页解: 由题意得a(0) = 1, a(3) =A(3)A(0)= 1.72a = 0.08,b = 1∴A(5) = 100A(10) = A(0) ? a(10) = A(5) ? a(10)a(5)= 100 × 3 = 300.4. 分别对以下两种总量函数计算i5 和i10 :(1) A(t) = 100 + 5t; (2) A(t) = 100(1 + 0.1)t. 解:(1)i5 =A(5) ? A(4)A(4)=5120≈4.17%i10 =A(10) ? A(9)A(9)=5145≈3.45%(2)i5 =A(5) ? A(4)A(4)=100(1 + 0.1)5 ?100(1 + 0.1)4100(1 + 0.1)4= 10%i10 =A(10) ? A(9)A(9)=100(1 + 0.1)10 ?100(1 + 0.1)9100(1 + 0.1)9= 10%第2 页5.设A(4) = 1000, in = 0.01n. 试计算A(7) 。

七年级数学上册综合算式专项练习题解简单的金融数学问题

七年级数学上册综合算式专项练习题解简单的金融数学问题

七年级数学上册综合算式专项练习题解简单的金融数学问题金融数学是一门应用数学学科,它涵盖了金融领域中的各种数学应用。

在生活中,人们经常需要处理金融问题,比如利息计算、投资收益预测等。

在本文中,我们将通过解答七年级数学上册综合算式专项练习题,来了解一些简单的金融数学问题。

1. 简单利息计算题目:小明向银行存款1000元,利率为3%,存款期限为1年。

请计算一年后小明能够得到的利息。

解答:利息 = 存款金额 ×年利率 = 1000 × 0.03 = 30元答案:一年后小明能够得到30元的利息。

2. 复利计算题目:小玲向银行存款2000元,利率为2%,存款期限为3年。

请计算三年后小玲能够得到的本息和。

解答:本息和 = 存款金额 × (1 + 年利率)^存款期限 = 2000 × (1 + 0.02)^3 = 2000 × 1.061208 = 2122.42元答案:三年后小玲能够得到2122.42元的本息和。

3. 等额还款计算题目:小华向银行贷款5000元,贷款期限为2年,年利率为4%。

请计算小华每个月需要偿还的本金和利息。

解答:每月偿还的本金 = 贷款金额 ÷贷款期限 = 5000 ÷ (2 × 12) = 208.33元每月偿还的利息 = 剩余贷款 ×月利率 = (贷款金额 - 已偿还的本金) ×月利率首月,已偿还的本金为0元第一个月偿还的利息 = (5000 - 0) × 0.04 = 200元贷款剩余金额 = 5000 - 208.33 = 4791.67元第二个月,已偿还的本金为208.33元第二个月偿还的利息 = (4791.67 - 208.33) × 0.04 = 191.67元贷款剩余金额 = 4791.67 - 208.33 = 4583.34元依此类推,直到贷款期限结束。

《数理金融》习题参考答案

《数理金融》习题参考答案
为了验证上面所列现金流的正确性,假设公司将在第三年的年初购买新机器,则公司在第一年的成本为旧机器9000美元的运转成本;在第二年的成本为旧机器11000美元的运转成本;在第三年的成本为新机器22000美元的购买成本,加上6000美元的运转成本,再减去从替换机器中得到的2000美元;在第四年的成本是7000美元的运转成本;在第五年的成本是8000美元的运转成本;在第六年的成本是-12000美元,它是已经使用了3年的机器价值的负值。其他的3个现金流序列可以通过相似的方法推得。
题3-2CAMP模型的基本含义是什么?
解:(3.3.5)式和(3.3.7)式就是消费-资本资产定价模型的基本形式。它们非常深刻地揭示了资产价格与个人消费之间的关系,一般均衡与资产定价之间的关系。它们表明:
(1)资产的预期收益(价格)与消费的边际效用之间的协方差负相关。换句话说,其等价的命题是,消费的预期效用应该和资产的预期收益是一致的。
题1-11已知
求出收益曲线和现值函数。
解:改写 为

则可以给出以下的收益曲线
因此,现值函数为
第二章(P109)
题2-1在金融学中,资产和资产结构是如何定义的?
解:参考定义2.3.4和定义2.3.5。
题2-2不确定性与风险二者是什么关系?风险与协方差的基本关系是什么?
解:本题第一问可参考2.4节第一个自然段,第二问答案就是本章(2.4.15)式。
对于年利率 ,第一个现金流序列的现值为
其他现金流的现值可用同样的方法计算出。这四个现金流的现值分别是
46.083,43.794,43.760,45.627
因此,公司应在两年后购买新机器。
题1-7一个打算在20年后退休的人,决定今后240个月每月月初在银行存款 ,使得他可以在随后的360个月的每月月初提款1000美元。假设每月计息一次的名义年利率为6%,那么 的值应该为多少?

大学金融数学试题及答案

大学金融数学试题及答案

大学金融数学试题及答案一、单项选择题(每题2分,共20分)1. 金融数学中,以下哪个概念是用来描述资产未来价值的?A. 现值B. 终值C. 贴现率D. 复利答案:B2. 在连续复利情况下,如果本金为P,利率为r,时间为t,那么资产的未来价值FV的计算公式是:A. FV = P(1 + r)^tB. FV = P(1 - r)^tC. FV = P * e^(rt)D. FV = P / e^(rt)答案:C3. 以下哪个不是金融衍生品?A. 期货B. 期权C. 股票D. 掉期答案:C4. 标准普尔500指数的计算方式是:A. 算术平均B. 加权平均C. 几何平均D. 调和平均答案:B5. 以下哪个不是金融市场的基本功能?A. 资金融通B. 风险管理C. 价格发现D. 产品制造答案:D6. 以下哪个不是金融市场的参与者?A. 银行B. 保险公司C. 政府机构D. 制造业公司答案:D7. 以下哪个不是金融市场的分类?A. 货币市场B. 资本市场C. 外汇市场D. 商品市场答案:D8. 以下哪个不是金融监管机构的职能?A. 制定和执行金融政策B. 维护金融市场稳定C. 促进金融创新D. 保护消费者权益答案:C9. 以下哪个不是金融风险管理的工具?A. 套期保值B. 风险转移C. 风险分散D. 风险接受答案:D10. 以下哪个不是金融数学中常用的数学工具?A. 概率论B. 统计学C. 微分方程D. 线性代数答案:D二、计算题(每题10分,共40分)1. 假设某投资者以10%的年利率投资10000元,投资期限为5年,请计算5年后的终值。

答案:终值为16105.10元。

2. 假设某投资者希望在10年后获得50000元,年利率为5%,请问现在需要投资多少本金?答案:现在需要投资32,143.68元。

3. 假设某公司发行了一张面值为1000元的债券,年利率为6%,期限为3年,每年支付利息,到期还本。

如果投资者在第二年购买了这张债券,购买价格为950元,请计算投资者的年收益率。

金融数学引论答案 .docx

金融数学引论答案 .docx

第一章习题答案1.设总量函数为A(t) = t2 + 2/ + 3 o试计算累积函数a(t)和第n个吋段的利息【仇°解:把t =()代入得4(()) = 3于是:4(t) t? + 2t + 3啲=丽=3In = 4(北)一A(n一1)=(n2 + 2n + 3) — ((n — I)2 + 2(n — 1) + 3))= 2n+l2.对以下两种情况计算从t时刻到冗(£ < n)时刻的利息:(1)厶(0 < r < n);(2)/r =2r(0<r <n).解:(1)I = A(n) - A(t)—In + in-1+ • • • + A+l n(n + 1) t(t + 1)=2 2I = A(n) - A(t)n n=乞h = 土hk=t+l A:=t+13.已知累积函数的形式为:Q(t) = at2 +几若0时刻投入的100元累积到3吋刻为172元,试计算:5时刻投入的10()元在10时刻的终值。

解:由题意得。

(0) = 1, «(3) = = L72=> a = 0.0& 6=14(5) = 100>1(10) = 4(0) • «(10) = 4⑸• W = 100 x 3 = 300.a(5)4.分别对以下两种总量函数计算订和讪:(1) A(t) = 100 + 5t; (2) A(t) = 100(1 + 0.1尸・解:(1)_ 4(5) - 4(4)5 _ 4(4)5二面-.17% . 4(10)-4(9)210 =—4(9)—5=—^ 3.45%145⑵_ 4(5) - 4(4)5 - 4⑷_ 100(1 + 0.1)5 - 100(1 + 0.1)4 = 100(1+ 0.1)4=10%. 4(10) —4(9)皿=_ 100(1+ O.1)10-100(1+ 0.1)9 = 100(1 + 0.1)9=10%5•设4(4) = 1000, i n = O.Oln.试计算4(7)。

金融数学课后答案

金融数学课后答案

金融数学课后答案【篇一:金融数学(利息理论)复习题练习题】购买一张3年期,面值为1000元的国库券,每年末按息票率为8%支付利息,第三年末除支付80元利息外同时偿付1000元的债券面值,如果该债券发行价为900元,请问他做这项投资是否合适? 2.已知:1) 1?i2) 1?由于(1?m)?(1?n)?1?i 由于(1?)?(1?)?1?d3. 假设银行的年贷款利率12%,某人从银行借得期限为1年,金额为100元的贷款。

银行对借款人的还款方式有两种方案:一、要求借款人在年末还本付息;二、要求借款人每季度末支付一次利息年末还本。

试分析两种还款方式有何区别?哪一种方案对借款人有利?4. 设m?1,按从小到大的顺序排列i,i(m)(m)(m)(m)m?(1?i5)(1?i6)?1 求m?? ?(1?d(5)d(6)?1)(1?6) 求m?? 5(5)(6)d(m)mm(n)nm(n)n,d,d(m),?解:由i?d?i?d? i?dd(m?1)?d(m) ? d?d(m) i(m)?d(n) ? d(m)?i(m) i(m?1)?i(m)?i(m)?ii(m)?limd(m)?? 1?i?e??1?? , limm??m???d?d(m)???i(m)?i5. 两项基金x,y以相同的金额开始,且有:(1)基金x以利息强度5%计息;(2)基金y以每半年计息一次的名义利率j计算;(3)第8年末,基金x中的金额是基金y中的金额的1.5倍。

求j.6. 已知年实际利率为8%,乙向银行贷款10,000元,期限为5年,计算下列三种还款方式中利息所占的额度:1)贷款的本金及利息积累值在第五年末一次还清; 2)每年末支付贷款利息,第五年末归还本金; 3)贷款每年年末均衡偿还(即次用年金方式偿还)。

三种还款方式乙方支付的利息相同吗? 请你说明原因?7.某人在前两年中,每半年初在银行存款1000元,后3年中,每季初在银行存款2000元,每月计息一次的年名义利率为12% 计算5年末代储户的存款积累值。

金融学计算题答案及案例分析

金融学计算题答案及案例分析

计算题解答四
3.假定商业银行系统有150亿元的存款准备金,r=10%, 当r上升至15%或下降至5%时,最终货币供给量有何变 化? 解:D1=1/r*R=1÷10%*150=1500(亿元) • D2=1/r*R=1÷15%*150=1000(亿元) • D3=1/r*R=1÷5%*150=3000(亿元) 所以, 当r由10%上升至15%时,货币供给量减少500亿元; • r由10%下降至5%时,货币供给量增加1500亿元。 •
计算题五
• 1.某银行接到一客户的要求,贴现一个月后到期的 面值为20万的零息债券,贴现率为8.4%(年息),请 计算贴现利息和实际贴现利率。 • 解:贴现利息=200000*8.4%*(30/360)=1400元 • 实际贴现利率=1400/(200000-1400)*360/30 • *100%=8.46%(银行实得利率)
计算题解答一
2.银行发放一笔金额为30 000元,期限为3年, 年利率为10%的贷款,规定每半年复利一次,试 计算3年后本利和是多少? 解:年利率为10%,半年利率为10%÷2=5% 则:S=P(1+R) n =30 000*(1+5%) 3*2=40203元 即三年后的本利和为40203元。
计算题解答一
计算题解答三
4.某银行对某企业贷款年利率为5.4%,某 企业某年6月30日向银行借款30000元,同 年9月10日归还,求利息额及本利和。 解:利息额=30000*5.4%*70÷360=315(元) 本利和=30000+315=30315(元)
计算题解答四
• 1.设某商业银行吸收原始存款100亿元,其存 款准备率为10%,客户提取现金率为10%,不 考虑其他因素,该商业银行能创造多少派生存款? • 解:k=1/(R1+R2)=1/20%=5 • D=R/(R1+R2)=100/(10%+10%) • = 100/20%=500亿元 • 500-100=400亿元 • 所以该商业银行能创造400亿元的派生存款。

徐景峰《金融数学》1-4章习题解答

徐景峰《金融数学》1-4章习题解答

《利息理论》习题详解 第一章 利息的基本概念1.解:(1))()0()(t a A t A =又()25A t t =+(0)5()2()1(0)55A A t a t t A ∴===++ (2)3(3)(2)11(92 2.318I A A =-=== (3)4(4)(3)0.178(3)A A i A -===2.解:15545(4)(3)(1)100(10.04)0.05 5.2nn n I i A I A i A i i -=∴==+=+⨯=3.证明: (1)123(1)()(2)(1)(3)(2)()(1)m m m m k I A m A m I A m A m I A m A m I A m k A m k ++++=+-=+-+=+-+=+-+-123123()()()()()m m m m k m m m n I I I I A m k A m n m k A n A m I I I I m n +++++++∴++++=+-=+-=++++<令有(2)()(1)()1(1)(1)n A n A n A n i A n A n --==---()1(1)()(1)(1)n n A n i A n A n i A n ∴+=-∴=+-4.证明: (1)112123123(1)(0)(0)(2)(0)(0)(0)(3)(0)(0)(0)(0)()(0)(0)(0)(0)(0)k nk i a a a i a a a i a i a a a i a i a i a n a a i a i a i a i ∴=+=++=+++=+++++第期的单利利率是又(0)1a =123123()1()(0)()1nna n i i i i a n a a n i i i i ∴=+++++∴-=-=++++(2)由于第5题结论成立,当取0m =时有12()(0)n A n A I I I -=+++5.解:(1)以单利积累计算1205003i =⨯1200.085003i ∴==⨯800(10.085)1120∴+⨯=(2)以复利积累计算3120500500(1)i +=+0.074337i ∴=5800(10.074337)1144.97∴+=6.解:设原始金额为(0)A 有(0)(10.1)(10.08)(10.06)1000A +++=解得 (0)794.1A =7.证明:设利率是i ,则n 个时期前的1元钱的当前值为(1)ni +,n 个时期后的1元钱的当前值为1(1)ni +又22211[(1)](1)20(1)(1)n n n ni i i i +-=++-≥++,当且仅当221(1)(1)1(1)n n n i i i +=⇒+=+,0i =即或者n=0时等号成立。

金融数学第一章练习试题详解

金融数学第一章练习试题详解
注:不知道为什么,笔者算出来的答案恰好是参考答案的两倍,将2.5244带进去右边=66,将1.262代进去,右边=80,由此可得2.5244接近真实结果
1.22已知利息力为 ,2≤t≤10。请计算在此时间区间的任意一年内,与相应利息力等价的每半年贴现一次的年名义贴现率。
1.13资金A以10%的单利累积,资金B以5%的单贴现率累积。请问在何时,两笔资金的利息力相等。
1.14某基金的累积函数为二次多项式,如果向该基金投资1年,在上半年的名义利率为5%(每半年复利一次),全年的实际利率为7%,试确定 。
1.15某投资者在时刻零向某基金存入100,在时刻3又存入X。此基金按利息力 累积利息,其中t > 0。从时刻3到时刻6得到的全部利息为X,求X。
金融数学第一章练习题详解
第1章利息度量
1.1现在投资$600,以单利计息,2年后可以获得$150的利息。如果以相同的复利利率投资$2000,试确定在3年后的累积值。
1.2在第1月末支付314元的现值与第18月末支付271元的现值之和,等于在第T月末支付1004元的现值。年实际利率为5%。求T。
1.3在零时刻,投资者A在其账户存入X,按每半年复利一次的年名义利率i计息。同时,投资者B在另一个账户存入2X,按利率i(单利)来计息。假设两人在第八年的后六个月中将得到相等的利息,求i。
1.4一项投资以δ的利息力累积,27.72年后将翻番。金额为1的投资以每两年复利一次的名义利率δ累积n年,累积值将成为7.04。求n。
1.5如果年名义贴现率为6%,每四年贴现一次,试确定$100在两年末的累积值。
1.6如果 = 0.1844144, = 0.1802608,试确定m。
1.7基金A以每月复利一次的名义利率12 %累积。基金B以 = t / 6的利息力累积。在零时刻,分别存入1到两个基金中。请问何时两个基金的金额将相等。

O《金融数学》练习题参考答案

O《金融数学》练习题参考答案

−1 =
n 2

n
= 16
∫ 1.29
⎡2 ⎤ AV = 1000 ⋅ exp ⎢⎣ 0 δtdt ⎥⎦ = 1068.94
1.30 500(1 + 2.5i) + 500(1+1.75i) + 500(1+ 0.25i) = 500(3 + 4.5i) = 1635 ⇒ i = 6%
3
1.31
AVJoe = 10[1+10(0.11)]+ 30[1+ 5(0.11)] = 67.5 AVTina = 10(1.0915)10−n + 30(1.0915)10−2n
⇒ 67.5 = 10(1.0915)10−n + 30(1.0915)10−2n ⇒ n = 1.262
∫ ∫ 1.32
a(n)
=
exp
⎡ ⎢⎣
n 2
δ t
dt
⎤ ⎥⎦
=
exp
⎡ ⎢⎣
n 2
t
2 −1
dt
⎤ ⎥⎦
=
(n
− 1) 2
,
d (2)
=
2 ⎡⎣1− (1− d )0.5 ⎤⎦
=
2(1 −
n −1 )
1.12 由已知得 e27.72δ = 2 ⇒ δ = 0.025
n
当 i0.5 = δ 时, (1+ 2δ )2 = 7.04 ⇒ n = 80
1.13 100×(1-4×6%)-1/4×2=114.71
1.14
1+
i
=
⎡⎢⎢⎣1+
im m
⎤⎥⎥⎦ m
=
⎡⎢⎢⎣1−

历年金融数学试题及答案

历年金融数学试题及答案

历年金融数学试题及答案一、选择题1. 假设某项投资的年利率为5%,若按复利计算,1年后本金和利息的总和是多少?A. 5%本金B. 5%本金 + 本金C. 105%本金D. 110%本金答案:C2. 以下哪个是金融数学中常用的折现因子?A. 1 + 利率B. 1 - 利率C. 1 / (1 + 利率)D. 利率答案:C3. 某公司的股票价格在一年内从100元上涨到120元,问其年化收益率是多少?A. 20%B. 15%C. 25%D. 10%答案:A二、简答题1. 简述什么是期权的时间价值,并给出计算公式。

答:期权的时间价值是指期权价格中除去内在价值之外的部分,它反映了期权到期前标的资产价格变动的不确定性。

计算公式为:时间价值 = 期权价格 - 内在价值。

2. 描述债券的到期收益率(YTM)与票面利率(Coupon Rate)的区别。

答:到期收益率(YTM)是指投资者持有债券至到期时的平均年化收益率,它考虑了债券的购买价格、面值、利息支付和剩余期限。

而票面利率(Coupon Rate)是债券发行时确定的,表示债券每年支付的固定利息与债券面值的比率。

三、计算题1. 假设你购买了一份面值为1000元,年票面利率为5%,期限为5年的债券。

如果市场利率上升至6%,债券的当前价格是多少?解:首先计算债券的年利息收入:1000元 * 5% = 50元。

然后使用现值公式计算债券的当前价格:\[ \text{债券价格} = \frac{50}{1.06} + \frac{50}{(1.06)^2} + \frac{50}{(1.06)^3} + \frac{50}{(1.06)^4} +\frac{1000}{(1.06)^5} \]计算得出债券的当前价格。

2. 如果一项投资的现值为1000元,未来现金流分别为第1年100元,第2年200元,第3年300元,年利率为10%,请计算该投资的净现值(NPV)。

解:使用净现值公式计算:\[ \text{NPV} = \frac{100}{(1+0.10)^1} +\frac{200}{(1+0.10)^2} + \frac{300}{(1+0.10)^3} - 1000 \] 计算得出投资的净现值。

金融数学附答案修订版

金融数学附答案修订版

金融数学附答案修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】1、给定股票价格的二项模型,在下述情况下卖出看涨期权 S 0 S u S d X r τ 股数50 60 40 55 0.55 1/2 1000(1)求看涨期权的公平市场价格。

(2)假设以公平市场价格+0.10美元卖出1000股期权,需要买入多少股股票进行套期保值,无风险利润是多少?答案:(1)d u d r S S S e S q --=τ0=56.0406040505.005.0=--⨯⨯e (2)83.2>73.2,τr e S V -∆+∆='0083.2> τr e S -∆+∆'0 406005--=--=∆d u S S D U =25.0股 104025.00'-=⨯-=∆-=∆d S D 753.9975.0105.005.0'-=⨯-=∆⨯-e 美元则投资者卖空1000份看涨期权,卖空250股股票,借入9753美元所以无风险利润为1.85835.005.0=⨯e 美元2、假定 S 0 = 100,u=1.1,d=0.9,执行价格X=105,利率r=0.05,p=0.85,期权到期时间t=3,请用连锁法则方法求出在t=0时该期权的价格。

(答案见课本46页)3、一只股票当前价格为30元,六个月期国债的年利率为3%,一投资者购买一份执行价格为35元的六个月后到期的美式看涨期权,假设六个月内股票不派发红利。

波动率σ为0.318.问题:(1)、他要支付多少的期权费?【参考N(0.506)=0.7123;N(0.731)=0.7673 】{提示:考虑判断在不派发红利情况下,利用美式看涨期权和欧式看涨期权的关系}解析:在不派发红利情况下,美式看涨期权等同于欧式看涨期权!所以利用B—S公式,就可轻易解出来这个题!同学们注意啦,N(d1)=N(-0.506),N(d2)=N(-0.731)。

O《金融数学》练习题参考答案

O《金融数学》练习题参考答案

(1+ i)n +1
(1+ i)n +1
s
(1 + )i 3n −1 (1 + i)2n −1+ (1+ )i 3n −1
1+ 3n = 1+
=
s 2n
(1 + i )2n −1
(1 + )i 2n −1
(1+ i)n +1+ (1+ )i 2n + (1+ i)n +1 (1+ i)2n + 2 (1+ i)n + 2
n
=
2 n
d = a(n + 1) − a(n) = n2 − (n −1)2
a(n +1)
n2
第2章
等额年金
2.1 1363 元
ห้องสมุดไป่ตู้
2.2 27943 元
2.3 月实际利率为 0.5%,年金的领取次数为 123,截至 2005 年 12 月 31 日,领取次数为
70。因此
200a =18341 123 0.5%
2.17 100a = 4495.5038 = 6000vk ⇒ vk = 0.7493 ⇒ k = 29 60
( ) ( ) 2.18 a 1+ v15 + v30 = 1− v15 1+ v15 + v30 = 1+ v15 + v30 − v15 − v30 − v45 = 1− v45 = a
= ⎡⎣(1+ i)n −1⎤⎦2 ⋅ ⎡⎣(1+ i)n + 1⎤⎦2 + ⎡⎣(1+ i)n −1⎤⎦2 ⎡⎣(1+ i)n −1⎤⎦ ⋅ ⎡⎣(1+ i)n −1⎤⎦ ⋅ ⎡⎣(1+ i)n + 1⎤⎦

历年金融数学试题及答案

历年金融数学试题及答案

历年金融数学试题及答案一、单项选择题(每题2分,共10题,共20分)1. 假设某项投资的年收益率服从均值为5%,标准差为2%的正态分布,那么该投资年收益率超过7%的概率是多少?A. 0.1587B. 0.8413C. 0.1587D. 0.8413答案:B2. 以下哪个不是金融衍生品?A. 期货B. 期权C. 债券D. 掉期答案:C3. 假设某公司股票的预期收益率为10%,无风险利率为3%,市场风险溢价为5%,那么该公司股票的贝塔系数是多少?A. 1B. 1.5C. 2D. 0.5答案:A4. 以下哪个不是金融市场的基本功能?A. 资源配置B. 风险管理C. 价格发现D. 收入分配答案:D5. 假设某投资者持有一个投资组合,其中股票A占50%,股票B占50%,股票A的预期收益率为8%,股票B的预期收益率为6%,那么该投资组合的预期收益率是多少?A. 7%B. 7.5%C. 6.5%D. 7.5%答案:A6. 以下哪个不是金融市场的参与者?A. 投资者B. 借款人C. 监管机构D. 保险公司答案:D7. 假设某债券的面值为1000元,年利率为5%,期限为5年,每年付息一次,那么该债券的年付息额是多少?A. 50元B. 100元C. 200元D. 250元答案:B8. 以下哪个不是金融风险管理的方法?A. 风险分散B. 风险转移C. 风险避免D. 风险接受答案:C9. 假设某投资者购买了一份看涨期权,行权价格为100元,期权费为5元,那么该投资者的盈亏平衡点是多少?A. 95元B. 105元C. 110元D. 115元答案:C10. 以下哪个不是金融市场的分类?A. 货币市场B. 资本市场C. 外汇市场D. 保险市场答案:D二、多项选择题(每题3分,共5题,共15分)1. 以下哪些因素会影响股票的预期收益率?A. 公司的盈利能力B. 市场风险溢价C. 公司的财务状况D. 宏观经济环境答案:A, B, C, D2. 以下哪些属于金融衍生品?A. 期货B. 期权C. 债券D. 掉期答案:A, B, D3. 以下哪些是金融市场的功能?A. 资源配置B. 风险管理C. 价格发现D. 收入分配答案:A, B, C4. 以下哪些是金融市场的参与者?A. 投资者B. 借款人C. 监管机构D. 保险公司答案:A, B, C5. 以下哪些是金融风险管理的方法?A. 风险分散B. 风险转移C. 风险避免D. 风险接受答案:A, B, D三、计算题(每题10分,共2题,共20分)1. 假设某投资者持有一个投资组合,其中股票A占60%,股票B占40%,股票A的预期收益率为12%,标准差为0.2,股票B的预期收益率为10%,标准差为0.15,股票A和股票B的相关系数为0.5,计算该投资组合的预期收益率和标准差。

金融数学试卷及答案

金融数学试卷及答案

一、填空(每空4分,共20分)1.一股股票价值100元,一年以后,股票价格将变为130元或者90元.假设相应的衍生产品的价值将为U=10元或D=0元。

即期的一年期无风险利率为5%。

则t=0时的衍生产品的价格_______________________________.(利用博弈论方法)2.股票现在的价值为50元,一年后,它的价值可能是55元或40元,一年期利率为4%,则执行价为45元的看跌期权的价格为___________________.(利用资产组合复制方法)3.对冲就是卖出________________, 同时买进_______________。

4.Black-Scholes 公式_________________________________________________。

5.我们准备卖出1000份某公司的股票期权,这里.1,30.0,05.0,40,500=====T r X s σ因此为了对我们卖出的1000份股票期权进行对冲,我们必须购买___________股此公司 的股票。

(参考8643.0)100.1(,8554.0)060.1(==N N )二、计算题1.(15分)假设股票价格模型参数是:.120,8.0,7.10===S d u 一个欧式看涨期权到期时间,3=t 执行价格,115=X 利率06.0=r .请用连锁法则方法求出在0=t 时刻期权的价格。

2.(15分)假设股票价格模型参数是:85.0.100,9.0,1.10====p S d u 一个美式看跌期权到期时间,3=t 执行价格,105=X 利率05.0=r 。

请用连锁法则方法求出在0=t 时刻期权的价格。

3。

(10分)利用如下图的股价二叉树,并设置向下敲出的障碍为跌破65元,50=X 元,.06.0=r 求0=t 时刻看涨期权的价格。

4.(15分)若股票指数点位是702,其波动率估计值,4.0=σ指数期货合约将在3个月后到期,并在到期时用美元按期货价格结算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金融数学第一章练习题详解
第1章利息度量
1.1 现在投资$600,以单利计息,2年后可以获得$150的利息。

如果以相同的复利利率投资$2000,试确定在3年后的累积值。

1.2 在第1月末支付314元的现值与第18月末支付271元的现值之和,等于在第T月末支付1004元的现值。

年实际利率为5%。

求T。

1.3 在零时刻,投资者A在其账户存入X,按每半年复利一次的年名义利率i计息。

同时,投资者B在另一个账户存入2X,按利率i (单利)来计息。

假设两人在第八年的后六个月中将得到相等的利息,求i。

1.4 一项投资以δ的利息力累积,27.72年后将翻番。

金额为1的投资以每两年复利一次的名义利率δ累积n年,累积值将成为7.04。

求n。

1.5 如果年名义贴现率为6%,每四年贴现一次,试确定$100在两年末的累积值。

1.6 如果)(m i=0.1844144,)(m
d=0.1802608,试确定m。

1.7 基金A以每月复利一次的名义利率12%累积。

基金B以
=t/6
t
的利息力累积。

在零时刻,分别存入1到两个基金中。

请问何时两个基金的金额将相等。

1.8 基金A 以t δ=a+bt 的利息力累积。

基金B 以t δ=g+ht 的利息力
累积。

基金A 与基金B 在零时刻和n 时刻相等。

已知a>g>0,h>b>0。

求n 。

1.9 在零时刻将100存入一个基金。

该基金在头两年以每个季度贴现一次的名义贴现率?支付利息。

从t=2开始,利息按照t
t +=11δ的利息力支付。

在t=5时,存款的累积值为260。

求δ。

1.10在基金A 中,资金1的累积函数为t+1,t>0;在基金B 中,资金1的累积函数为1+t 2。

请问在何时,两笔资金的利息力相等。

1.11已知利息力为t t +=12δ。

第三年末支付300元的现值与在第六年末支付600元的现值之和,等于第二年末支付200元的现值与在第五年末支付X 元的现值。

求X 。

82
.315))51/(())21(200-)61(600)31(300()
5()2(200)6(600)3(300)1()()1()(22-2211112
12)1ln(212
0=++⨯+⨯++⨯=⇒⨯+⨯=⨯+⨯+=⇒+==⎰=---------++X a X a a a t t a t e e t a t dt t t
1.12已知利息力为1003t t =δ。

请求)3(1-a 。

1.13资金A 以10%的单利累积,资金B 以5%的单贴现率累积。

请问在何时,两笔资金的利息力相等。

1.14某基金的累积函数为二次多项式,如果向该基金投资1年,在上半年的名义利率为5%(每半年复利一次),全年的实际利率为7%,试确定5.0δ。

1.15某投资者在时刻零向某基金存入100,在时刻3又存入X 。

此基金按利息力100
2t t =δ累积利息,其中t>0。

从时刻3到时刻6得到的全部利息为X ,求X 。

1.16一位投资者在时刻零投资1000,按照以下利息力计息: 求前4年每季度复利一次的年名义利率。

1.17已知每半年复利一次的年名义利率为7.5%,求下列两项的和:
(1)利息力;(2)每季度贴现一次的年名义贴现率。

注:个人认为,求这两个数的和并没有实际意义
1.18假设利息力为⎪⎩⎪⎨⎧≤<≤<=105,25
15
0,2t kt t kt t δ,期初存入单位1在第10年末将会累积到2.7183。

试求k 。

1.19已知利息力为t
t +=21δ,一笔金额为1的投资从t=0开始的前n 年赚取的总利息是8。

试求n 。

1.201996年1月1日,某投资者向一个基金存入1000,该基金在t 时刻的利息力为0.1(t-1)2,求1998年1月1日的累积值。

1.21投资者A 今天在一项基金中存入10,5年后存入30,已知此项基金按单利11%计息;投资者B 将进行同样数额的两笔存款,但是在n 年后存入10,在2n 年后存入30,已知此项基金按复利9.15%计息。

在第10年末,两基金的累积值相等。

求n 。

注:不知道为什么,笔者算出来的答案恰好是参考答案的两倍,将
2.5244带进去右边=66,将1.262代进去,右边=80,由此可得2.5244接近真实结果
1.22已知利息力为1
2-=t t δ,2≤t ≤10。

请计算在此时间区间的任意一年内,与相应利息力等价的每半年贴现一次的年名义贴现率。

相关文档
最新文档