立体几何中的向量方法【高考一轮复习总结】
高考数学复习点拨:领略立体几何中的向量方法
领略立体几何中的向量方法战前热身立体几何研究的基本对象是点、直线、平面以及由它们组成的空间图形,为了利用空间向量这个工具解决立体几何问题,◆首先要解决如何利用向量把空间中的点、直线、平面的位置表示出来。
1.直线的方向向量:是指和这条直线平行(或共线)的向量.一条直线的方向向量有 个。
2.平面的法向量:直线α⊥l ,取直线l 的方向向量,则向量叫做平面的法向量.一个平面的法向量有 个,它们的关系是 。
3.求法向量的步骤:(1)设出平面的法向量),,(z y x =;(2)找出平面内的两个不共线的向量的坐标),,(),,,(321321b b b a a a ==;(3)根据法向量的定义建立关于z y x ,,的方程组⎪⎩⎪⎨⎧=⋅=⋅00;(4)解方程组,取其中的一个解,即得一个法向量。
4.利用向量确定点、直线、平面在空间中的位置:(1)空间中的任意一点P ,可以以一定点O 作为基点,用向量 来确定; (2)空间中任意一条直线l ,可以通过l 上的一个定点A 和l 的一个方向向量来确定,即直线l 可以表示为a t AP =,其中P 是l 上任意一点;(3)空间中任意一个平面α,有两种向量表示形式:①通过α上的一个定点O 和两个不共线向量b a ,来确定,即平面α可以表示为:OP = ,其中P 是α上的任意一点;②通过α上的一个定点O 和α的法向量a 来确定,即平面α可以表示为:0=⋅a OP ,其中P 为α上的任意一点。
◆其次要解决如何结合运算,利用空间向量表示立体几何中的平行、垂直和夹角。
设直线l ,m 的方向向量分别为),,(),,,(321321b b b a a a ==,平面βα,的法向量分别为),,(),,,(321321d d d d c c c c ==,则:(1)线线平行 ⇔=⇔⇔k m l //// ; 线面平行 ⇔=⋅⇔⊥⇔0//l α ;面面平行 ⇔βα// ⇔ ⇔ 。
特别提醒:这里的线线平行包括线线重合,线面平行包括线在面内,面面平行包括面面重合.(2)线线垂直 ⇔=⋅⇔⊥⇔⊥0m l ;线面垂直//l a c a kc α⊥⇔⇔=⇔r r r r; 面面垂直 ⇔⊥βα ⇔ ⇔ 。
2022年高考数学总复习:立体几何中的向量方法(一)证明平行与垂直
2022年高考数学总复习:立体几何中的向量方法(一)——证明平行与垂直最新考纲 1.理解直线的方向向量及平面的法向量;2.能用向量语言表述线线、线面、面面的平行和垂直关系;3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知识梳理1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔n·m=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥βn∥m⇔n=λm α⊥βn⊥m⇔n·m=0[常用结论与微点提醒]1.用向量知识证明立体几何问题,仍离不开立体几何中的定理.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.2.用向量证明立体几何问题,写准点的坐标是关键,要充分利用中点、向量共线、向量相等来确定点的坐标.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)直线的方向向量是唯一确定的.()(2)若直线a 的方向向量和平面α的法向量平行,则a ∥α.( ) (3)若两平面的法向量平行,则两平面平行.( )(4)若直线a 的方向向量与平面α的法向量垂直,则a ∥α.( ) 解析 (1)直线的方向向量不是唯一的,有无数多个; (2)a ⊥α;(3)两平面平行或重合;(4)a ∥α或a ⊂α. 答案 (1)× (2)× (3)× (4)×2.(选修2-1P104练习2改编)已知平面α,β的法向量分别为n 1=(2,3,5),n 2=(-3,1,-4),则( ) A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对解析 ∵n 1≠λn 2,且n 1·n 2=2×(-3)+3×1+5×(-4)=-23≠0,∴α,β相交但不垂直. 答案 C3.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( ) A.l ∥α B.l ⊥α C.l ⊂αD.l 与α斜交解析 ∵a =(1,0,2),n =(-2,0,-4), ∴n =-2a ,即a ∥n .∴l ⊥α. 答案 B4.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( )A.(-1,1,1)B.(1,-1,1)C.⎝ ⎛⎭⎪⎫-33,-33,-33D.⎝ ⎛⎭⎪⎫33,33,-33解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎨⎧-x +y =0,-x +z =0,∴x =y =z .答案 C5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z轴,建立空间直角坐标系(图略),设正方体的棱长为1,则A (0,0,0),M ⎝ ⎛⎭⎪⎫0,1,12,O ⎝ ⎛⎭⎪⎫12,12,0,N ⎝ ⎛⎭⎪⎫12,0,1.AM →·ON →=⎝ ⎛⎭⎪⎫0,1,12·⎝ ⎛⎭⎪⎫0,-12,1=0,∴ON 与AM 垂直. 答案 垂直考点一 利用空间向量证明平行问题【例1】 (一题多解)如图,在四面体ABCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC . 证明:PQ ∥平面BCD .证明 法一 如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线分别为y , z 轴的正半轴,建立空间直角坐标系O -xyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ→=3QC →, 所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,所以PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0. 又平面BCD 的一个法向量为a =(0,0,1),故PQ→·a =0.又PQ ⊄平面BCD , 所以PQ ∥平面BCD .法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF→=14CD →,设点F 坐标为(x ,y ,0),则 (x -x 0,y -y 0,0)=14(-x 0,2-y 0,0), ∴⎩⎪⎨⎪⎧x =34x 0,y =24+34y 0,∴OF →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0又由法一知PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0, ∴OF→=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .规律方法 1.恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.2.证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【训练1】 已知正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F ,G 分别为AB ,AD ,AA 1的中点,求证:平面EFG ∥平面B 1CD 1. 证明 建立如图所示的空间直角坐标系D -xyz ,则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),B 1(1,1,1),D 1(0,0,1).得E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫12,0,0,G ⎝ ⎛⎭⎪⎫1,0,12, EF →=⎝ ⎛⎭⎪⎫-12,-12,0,EG →=⎝ ⎛⎭⎪⎫0,-12,12. 设n 1=(x 1,y 1,z 1)为平面EFG 的法向量,n 2=(x 2,y 2,z 2)为平面B 1CD 1的一个则⎩⎪⎨⎪⎧n 1·EF →=0,n 1·EG →=0,即⎩⎪⎨⎪⎧-12x 1-12y 1=0,-12y 1+12z 1=0.令x 1=1,可得y 1=-1,z 1=-1, 同理可得x 2=1,y 2=-1,z 2=-1. 则n 1=(1,-1,-1),n 2=(1,-1,-1). 由n 1=n 2,得平面EFG ∥平面B 1CD 1. 考点二 利用空间向量证明垂直问题【例2】 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明: (1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .证明 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,BC 为交线,PO ⊂平面PBC ,△PBC 为等边三角形,即PO ⊥BC , ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0,∴P A ⊥BD , ∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM→·PB →=32×1+0×0+32×(-3)=0, ∴DM→⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0, ∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,P A ,PB ⊂平面P AB , ∴DM ⊥平面P AB . ∵DM ⊂平面P AD , ∴平面P AD ⊥平面P AB .规律方法 1.利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. 2.用向量证明垂直的方法(1)线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零. (2)线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.(3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.【训练2】 如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB =AA 1= 2.证明:A 1C ⊥平面BB 1D 1D .证明 由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立如图所示的空间直角坐标系.因为AB =AA 1=2,所以OA =OB =OA 1=1,所以A (1,0,0),B (0,1,0), C (-1,0,0),D (0,-1,0),A 1(0,0,1). 由A 1B 1→=AB →,易得B 1(-1,1,1).因为A 1C →=(-1,0,-1),BD →=(0,-2,0),BB 1→=(-1,0,1), 所以A 1C →·BD →=0,A 1C →·BB 1→=0, 所以A 1C ⊥BD ,A 1C ⊥BB 1.又BD ∩BB 1=B ,BD ,BB 1⊂平面BB 1D 1D , 所以A 1C ⊥平面BB 1D 1D .考点三 用空间向量解决探索性问题(多维探究) 命题角度1 与平行有关的探索性问题【例3-1】 (2016·北京卷改编)如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 因为平面P AD ⊥平面ABCD ,AB ⊥AD , 所以AB ⊥平面P AD ,所以AB ⊥PD .又因为P A ⊥PD 且AB ∩P A =A ,P A ,AB ⊂平面P AB ,所以PD ⊥平面P AB .(2)解 取AD 的中点O ,连接PO ,CO . 因为P A =PD ,所以PO ⊥AD .又因为PO ⊂平面P AD ,平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD .因为CO ⊂平面ABCD ,所以PO ⊥CO . 因为AC =CD ,所以CO ⊥AD .如图,建立空间直角坐标系O -xyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0), D (0,-1,0),P (0,0,1).设M 是棱P A 上一点,则存在λ∈[0,1],使得AM →=λAP →.因此M (0,1-λ,λ),BM→=(-1,-λ,λ).因为BM ⊄平面PCD ,所以BM ∥平面PCD , 当且仅当BM→·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M ,使得BM ∥平面PCD , 此时AM AP =14.命题角度2 与垂直有关的探索性问题【例3-2】 如图,正方形ADEF 所在平面和等腰梯形ABCD 所在的平面互相垂直,已知BC =4,AB =AD =2. (1)求证:AC ⊥BF ;(2)在线段BE 上是否存在一点P ,使得平面P AC ⊥平面BCEF ?若存在,求出BP PE 的值;若不存在,请说明理由.(1)证明 ∵平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,AF ⊥AD ,AF ⊂平面ADEF , ∴AF ⊥平面ABCD .又AC ⊂平面ABCD ,∴AF ⊥AC .过A 作AH ⊥BC 于H ,则BH =1,AH =3,CH =3,∴AC =23,∴AB 2+AC 2=BC 2,∴AC ⊥AB , ∵AB ∩AF =A ,AB ,AF ⊂平面F AB , ∴AC ⊥平面F AB ,∵BF ⊂平面F AB ,∴AC ⊥BF .(2)解 存在.由(1)知,AF ,AB ,AC 两两垂直,以A 为坐标原点,AB→,AC →,AF →的方向分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,23,0),E (-1,3,2).假设在线段BE 上存在一点P 满足题意,则易知点P 不与点B ,E 重合, 设BP →=λPE →,则λ>0,P ⎝ ⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ. 设平面P AC 的法向量为m =(x ,y ,z ).由AP →=⎝ ⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ,AC →=(0,23,0), 得⎩⎨⎧m ·AP →=2-λ1+λx +3λ1+λy +2λ1+λz =0,m ·AC →=23y =0,即⎩⎪⎨⎪⎧y =0,z =λ-22λx ,令x =1,则z =λ-22λ, 所以m =⎝⎛⎭⎪⎫1,0,λ-22λ为平面P AC 的一个法向量. 同理,可求得n =⎝ ⎛⎭⎪⎫1,33,1为平面BCEF 的一个法向量.当m ·n =0,即λ=23时,平面P AC ⊥平面BCEF ,故存在满足题意的点P ,此时BP PE =23.规律方法 解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理. (2)探索性问题的关键是设点:①空间中的点可设为(x ,y ,z );②坐标平面内的点其中一个坐标为0,如xOy 面上的点为(x ,y ,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z );④直线(线段)AB 上的点P ,可设为AP →=λAB →,表示出点P 的坐标,或直接利用向量运算.提醒 解这类问题时要利用好向量垂直和平行的坐标表示. 【训练3】 如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5. (1)求证:AA 1⊥平面ABC ;(2)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BDBC 1的值.证明 (1)因为AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,AA 1⊂平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC .(2)由(1)知AA 1⊥AB ,AA 1⊥AC .由题知AB =3,BC =5,AC =4,所以AB ⊥AC . 如图,以A 为原点建立空间直角坐标系A -xyz .则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4). 设D (x ,y ,z )是直线BC 1上的一点,且BD →=λBC →1,所以(x ,y -3,z )=λ(4,-3,4), 解得x =4λ,y =3-3λ,z =4λ, 所以AD→=(4λ,3-3λ,4λ). 由AD →·A 1B →=0,A 1B →=(0,3,-4),则9-25λ=0,解得λ=925.因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B ,此时,BD BC 1=λ=925.基础巩固题组 (建议用时:40分钟)一、选择题1.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 等于( ) A.2B.-4C.4D.-2解析 ∵α∥β,∴两平面的法向量平行, ∴-21=-42=k -2,∴k =4.答案 C2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ) A.相交 B.平行C.在平面内D.平行或在平面内解析 ∵AB→=λCD →+μCE →,∴AB →,CD →,CE →共面.则AB 与平面CDE 的位置关系是平行或在平面内. 答案 D3.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( ) A.P (2,3,3)B.P (-2,0,1)C.P (-4,4,0)D.P (3,-3,4)解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP→·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内. 答案 A4.(2018·郑州月考)如图,F 是正方体ABCD -A 1B 1C 1D 1的棱CD 的中点.E 是BB 1上一点,若D 1F ⊥DE ,则有( ) A.B 1E =EB B.B 1E =2EB C.B 1E =12EB D.E 与B 重合解析 分别以DA ,DC ,DD 1为x ,y ,z 轴建立空间直角坐标系,设正方形的边长为2,则D (0,0,0),F (0,1,0),D 1(0,0,2),设E (2,2,z ),D 1F →=(0,1,-2),DE →=(2,2,z ),∵D 1F →·DE →=0×2+1×2-2z =0,∴z =1,∴B 1E =EB . 答案 A5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是( ) A.斜交 B.平行C.垂直D.MN 在平面BB 1C 1C 内解析 建立如图所示的空间直角坐标系, 由于A 1M =AN =2a 3,则M ⎝ ⎛⎭⎪⎫a ,2a 3,a 3,N ⎝ ⎛⎭⎪⎫2a 3,2a 3,a ,MN →=⎝ ⎛⎭⎪⎫-a 3,0,2a 3. 又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1→=(0,a ,0)为平面BB 1C 1C 的一个法向量. 因为MN →·C 1D 1→=0,所以MN →⊥C 1D 1→,又MN ⊄平面BB 1C 1C , 所以MN ∥平面BB 1C 1C . 答案 B二、填空题6.(2018·武汉调研)已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.解析 设平面α的法向量为m =(x ,y ,z ), 由m ·AB →=0,得x ·0+y -z =0⇒y =z , 由m ·AC →=0,得x -z =0⇒x =z ,取x =1, ∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β. 答案 α∥β7.(2018·西安调研)已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x +y =________.解析由条件得⎩⎨⎧3+5-2z =0,x -1+5y +6=0,3(x -1)+y -3z =0,解得x =407,y =-157,z =4, ∴x +y =407-157=257. 答案 2578.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP→=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP→∥BD →.其中正确的序号是________.解析 ∵AB→·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确.又AB→与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确.由于BD→=AD →-AB →=(2,3,4),AP →=(-1,2,-1), ∴BD →与AP →不平行,故④错误. 答案 ①②③ 三、解答题9.(一题多解)如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面P AD ⊥平面ABCD ,且ABCD 为正方形, ∴AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如右图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). 法一 ∴EF→=(0,1,0),EG →=(1,2,-1),设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EF →=0,n ·EG →=0,即⎩⎨⎧y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量, ∵PB→=(2,0,-2),∴PB →·n =0,∴n ⊥PB →, ∵PB ⊄平面EFG ,∴PB ∥平面EFG .法二 PB→=(2,0,-2),FE →=(0,-1,0),FG→=(1,1,-1).设PB →=sFE →+tFG →, 即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎨⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE→与FG →不共线,∴PB →,FE →与FG →共面.∵PB ⊄平面EFG , ∴PB ∥平面EFG .10.如图正方形ABCD 的边长为22,四边形BDEF 是平行四边形,BD 与AC 交于点G ,O 为GC 的中点,FO =3,且FO ⊥平面ABCD .(1)求证:AE ∥平面BCF ; (2)求证:CF ⊥平面AEF .证明 取BC 中点H ,连接OH ,则OH ∥BD , 又四边形ABCD 为正方形,∴AC ⊥BD ,∴OH ⊥AC ,故以O 为原点,建立如图所示的直角坐标系,则A (3,0,0),C (-1,0,0),D (1,-2,0),F (0,0,3),B (1,2,0).BC→=(-2,-2,0),CF →=(1,0,3),BF →=(-1,-2,3).(1)设平面BCF 的法向量为n =(x ,y ,z ), 则⎩⎨⎧-2x -2y =0,x +3z =0,取z =1,得n =(-3,3,1). 又四边形BDEF 为平行四边形, ∴DE→=BF →=(-1,-2,3), ∴AE→=AD →+DE →=BC →+BF → =(-2,-2,0)+(-1,-2,3)=(-3,-4,3), ∴AE→·n =33-43+3=0,∴AE →⊥n , 又AE ⊄平面BCF ,∴AE ∥平面BCF .(2)AF →=(-3,0,3),∴CF →·AF →=-3+3=0,CF →·AE→=-3+3=0,∴CF →⊥AF →,CF →⊥AE →, 又AE ∩AF =A , AE ,AF ⊂平面AEF , ∴CF ⊥平面AEF .能力提升题组 (建议用时:20分钟)11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE .则M 点的坐标为( )A.(1,1,1)B.⎝ ⎛⎭⎪⎫23,23,1 C.⎝ ⎛⎭⎪⎫22,22,1D.⎝⎛⎭⎪⎫24,24,1 解析 设AC 与BD 相交于O 点,连接OE ,由AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO , 又O 是正方形ABCD 对角线交点, ∴M 为线段EF 的中点.在空间坐标系中,E (0,0,1),F (2,2,1). 由中点坐标公式,知点M 的坐标⎝ ⎛⎭⎪⎫22,22,1.答案 C12.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.解析 以D 1A 1,D 1C 1,D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x ,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1), ∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ), 由于B 1E ⊥平面ABF ,所以FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1. 答案 113.如图,正△ABC 的边长为4,CD 为AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .(1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)在线段BC 上是否存在一点P ,使AP ⊥DE ?如果存在,求出BPBC 的值;如果不存在,请说明理由.解 (1)AB ∥平面DEF ,理由如下:在△ABC 中,由E ,F 分别是AC ,BC 的中点,得EF ∥AB . 又因为AB ⊄平面DEF ,EF ⊂平面DEF , 所以AB ∥平面DEF .(2)以点D 为坐标原点,直线DB ,DC ,DA 分别为x 轴,y 轴,z 轴,建立空间直角坐标系(如图所示),则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),故DE→=(0,3,1).假设存在点P (x ,y ,0)满足条件,则AP →=(x ,y ,-2),AP →·DE →=3y -2=0, 所以y =233.又BP→=(x -2,y ,0),PC →=(-x ,23-y ,0),BP →∥PC →, 所以(x -2)(23-y )=-xy ,所以3x +y =2 3. 把y =233代入上式得x =43,所以BP →=13BC →,BP BC=1 3.所以在线段BC上存在点P使AP⊥DE,此时。
立体几何中的向量方法(Ⅰ)证明平行与垂直高三数学(理)一轮总复习名师伴学
1。
【2017课标1,理18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=。
证明:平面PAB ⊥平面PAD ;【考点】面面垂直的证明2。
【2016年高考北京理数】(本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,5AC CD ==(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱PA上是否存在点M,使得//BM平面PCD?若存在,求AM AP的值;若不存在,说明理由.【答案】(1)见解析;(2)33;(3)存在,14AMAP=如图建立空间直角坐标系xyzO-,由题意得,)1,0,0(),0,1,0(),0,0,2(),0,1,1(),0,1,0(P D C B A -。
设平面PCD 的法向量为),,(z y x n =,则⎪⎩⎪⎨⎧=⋅=⋅,0,0PC n PD n 即⎩⎨⎧=-=--,02,0z x z y 令2=z ,则2,1-==y x . 所以)2,2,1(-=n .又)1,1,1(-=PB ,所以33,cos -=⋅>=<PBn PB n PB n . 所以直线PB 与平面PCD 所成角的正弦值为33.考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等。
3. 【2014年湖北,卷理9】(本小题满分12分) 如图,在棱长为2的正方体1111D C B A ABCD -中,N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在棱1DD ,1BB 上移动,且()20<<==λλBQ DP .(1)当1=λ时,证明:直线//1BC 平面EFPQ ;(2)是否存在λ,使平面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由。
高考数学一轮复习第7讲 立体几何中的向量方法
第7讲立体几何中的向量方法1.直线的方向向量和平面的法向量(1)直线的方向向量直线l上的向量e或与01共线的向量叫做直线l的方向向量,显然一条直02无数个.(2)平面的法向量如果表示向量n03垂直于平面α,则称这个向量垂直于平面α,记作n⊥α,此时向量n叫做平面α的法向量.04无数个,且它们是05共线向量.(3)设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,v,则l∥m06a∥b⇔07a=k b,k∈R;l⊥m08a⊥b⇔09a·b=0;l∥α10a⊥u⇔11a·u=0;l⊥α12a∥u⇔13a=k u,k∈R;α∥β14u∥v⇔15u=k v,k∈R;α⊥β16u⊥v⇔17u·v=0.2.空间向量与空间角的关系(1)两条异面直线所成角的求法设两条异面直线a,b的方向向量分别为a,b,其夹角为θ,则cosφ=|cosθ| 18|a·b||a||b|(其中φ为异面直线a,b所成的角,范围是(0°,90°]).(2)直线与平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=19|e ·n ||e ||n |,φ的取值范围是[0°,90°].(3)求二面角的大小如图①,AB ,CD 是二面角α-l -β的两个半平面内与棱l 垂直的直线,则二面角的大小θ=20〈AB→,CD →〉.如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉,取值范围是[0°,180°].确定平面法向量的方法(1)直接法:观察是否有垂直于平面的向量,若有,则此向量就是法向量. (2)待定系数法:取平面内的两个相交向量a ,b ,设平面的法向量为n =(x ,y ,z ),由⎩⎨⎧n ·a =0,n ·b =0,解方程组求得.1.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α和平面β的位置关系是( )A .平行B .相交但不垂直C .垂直D .重合答案 C解析 由(1,2,0)·(2,-1,0)=1×2+2×(-1)+0×0=0,知两平面的法向量互相垂直,所以两平面互相垂直.2.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( )A .⎝ ⎛⎭⎪⎫33,33,-33B .⎝ ⎛⎭⎪⎫33,-33,33C .⎝ ⎛⎭⎪⎫-33,33,33D .⎝ ⎛⎭⎪⎫-33,-33,-33答案 D解析 AB→=(-1,1,0),AC →=(-1,0,1),设平面ABC 的法向量n =(x ,y ,z ),∴⎩⎨⎧-x +y =0,-x +z =0.令x =1,则y =1,z =1,∴n =(1,1,1).单位法向量为±n |n |=±⎝ ⎛⎭⎪⎫33,33,33. 3. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .MN 在平面BB 1C 1C 内答案 B解析 MN →=MA 1→+A 1A →+AN →=13BA 1→+A 1A →+13AC →=13(B 1A 1→-B 1B →)+B 1B →+13(AB →+AD →)=23B 1B →+13B 1C 1→,∴MN →,B 1B →,B 1C 1→共面.又MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .4. 如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,E ,F 分别是CC 1,AD 的中点,那么异面直线OE 与FD 1所成角的余弦值等于( )A .105B .155C .45D .23答案 B解析 建立如图所示的空间直角坐标系,则O (1,1,0),E (0,2,1),F (1,0,0),D 1(0,0,2),∴FD 1→=(-1,0,2),OE →=(-1,1,1).∴cos 〈FD 1→,OE →〉=FD 1→·OE→|FD1→||OE →|=1+0+25×3=155.故选B .5.如图,已知P 为矩形ABCD 所在平面外一点,P A ⊥平面ABCD ,E ,F 分别是AB ,PC 的中点.若∠PDA =45°,则EF 与平面ABCD 所成的角的大小是( )A .90°B .60°C .45°D .30°答案 C解析 设AD =a ,AB =b ,因为∠PDA =45°,P A ⊥平面ABCD ,所以P A ⊥AD ,P A =AD =a .以点A 为坐标原点,AB ,AD ,AP 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,a ),E ⎝ ⎛⎭⎪⎫b 2,0,0,F ⎝ ⎛⎭⎪⎫b 2,a 2,a 2,所以EF→=⎝ ⎛⎭⎪⎫0,a 2,a 2.易知AP →=(0,0,a )是平面ABCD 的一个法向量.设EF 与平面ABCD 所成的角为θ,则sin θ=|cos 〈AP →,EF →〉|=|AP →·EF →||AP →||EF →|=22.所以θ=45°.6. (2020·广东华侨中学高三模拟)如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则点M 的坐标为( )A .(1,1,1)B .⎝ ⎛⎭⎪⎫23,23,1C .⎝ ⎛⎭⎪⎫22,22,1D .⎝ ⎛⎭⎪⎫24,24,1答案 C解析 设AC 与BD 相交于点O ,连接OE ,∵AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线的交点,∴M 为线段EF 的中点.在空间直角坐标系中,E (0,0,1),F (2,2,1).由中点坐标公式,知点M 的坐标为⎝ ⎛⎭⎪⎫22,22,1.考向一 利用空间向量证明平行、垂直例1 如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠ABC =∠BCD =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 所成的角为30°.求证:(1)CM ∥平面P AD ; (2)平面P AB ⊥平面P AD .证明 以点C 为坐标原点,分别以CB ,CD ,CP 所在的直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系Cxyz .∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角. ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32,∴DP→=(0,-1,2),DA→=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32. (1)设n =(x ,y ,z )为平面P AD 的一个法向量,由⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,得⎩⎨⎧-y +2z =0,23x +3y =0. 令y =2,得n =(-3,2,1).∵n ·CM→=-3×32+2×0+1×32=0,∴n ⊥CM →.又CM ⊄平面P AD ,∴CM ∥平面P AD . (2)如图,取AP 的中点E ,连接BE ,则E (3,2,1),BE →=(-3,2,1).∵PB =AB ,∴BE ⊥P A .又BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE→⊥DA →,∴BE ⊥DA . 又P A ∩DA =A ,∴BE ⊥平面P AD . 又BE ⊂平面P AB ,∴平面P AB ⊥平面P AD . 1.用向量法证平行问题的类型及常用方法线线平行证明两直线的方向向量共线线面平行 ①证明该直线的方向向量与平面的某一法向量垂直;②证明该直线的方向向量与平面内某直线的方向向量平行;③证明该直线的方向向量可以用平面内的两个不共线的向量表示面面平行①证明两平面的法向量平行(即为共线向量); ②转化为线面平行、线线平行问题线线垂直 问题证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直 问题 直线的方向向量与平面的法向量共线,或利用线面垂直的判定定理转化为证明线线垂直面面垂直 问题两个平面的法向量垂直,或利用面面垂直的判定定理转化为证明线面垂直1. 如图所示,在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C .证明 由题意知AA 1,AB ,AC 两两垂直,以A 为坐标原点建立如图所示的空间直角坐标系.不妨设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1).(1)因为几何体是直三棱柱, 所以侧棱AA 1⊥底面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1),所以MN →·AA 1→=0,即MN →⊥AA 1→.因为MN ⊄平面A 1B 1C 1,故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2),所以⎩⎪⎨⎪⎧n 1·MB →=0,n 1·MC 1→=0,即⎩⎨⎧-x 1+2y 1=0,x 1+2z 1=0, 令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1).同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1).因为n 1·n 2=2×0+1×1+(-1)×1=0,所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C . 多角度探究突破考向二 利用空间向量求空间角 角度1 求异面直线所成的角例2 (1) (2020·汕头模拟)如图,正四棱锥P -ABCD 的侧面P AB 为正三角形,E 为PC 的中点,则异面直线BE 和P A 所成角的余弦值为( )A .33B .32C .22D .12答案 A解析 连接AC ,BD ,交于点O ,连接PO ,以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,设AB =2,则OA =OB =OP =1,A (1,0,0),B (0,1,0),C (-1,0,0),P (0,0,1),E ⎝ ⎛⎭⎪⎫-12,0,12,BE →=⎝ ⎛⎭⎪⎫-12,-1,12,P A →=(1,0,-1),设异面直线BE 和P A 所成角为θ,则cos θ=|BE →·P A →||BE →||P A →|=132×2=33. ∴异面直线BE 和P A 所成角的余弦值为33.故选A .(2) 如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是CC 1,AD 的中点,那么异面直线D 1E 和A 1F 所成角的余弦值等于________.答案 25解析 如图,以D 为原点建立空间直角坐标系.则A 1(2,0,2),F (1,0,0),D 1(0,0,2),E (0,2,1), 则A 1F →=(-1,0,-2),D 1E →=(0,2,-1), cos 〈D 1E →,A 1F →〉=D 1E →·A 1F →|D 1E →||A 1F →|=25×5=25, ∴异面直线D 1E 和A 1F 所成角的余弦值等于25.(1)求异面直线所成角的思路①选好基底或建立空间直角坐标系; ②求出两直线的方向向量v 1,v 2;③代入公式cos θ=|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解(θ为两异面直线所成角).(2)两异面直线所成角的关注点两异面直线所成角θ的范围是(0°,90°],两向量的夹角α的范围是[0°,180°],当异面直线的方向向量的夹角为锐角或直角时,该角就是异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.2.(多选)(2020·山东潍坊5月模拟)已知在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点E ,F ,H 分别是AB ,DD 1,BC 1的中点,下列结论中正确的是( )A .D 1C 1∥平面CHDB .AC 1⊥平面BDA 1C .三棱锥D -BA 1C 1的体积为56 D .直线EF 与BC 1所成的角为30° 答案 ABD解析 如图1所示,因为D 1C 1∥DC ,D 1C 1⊄平面CHD ,DC ⊂平面CHD ,所以D 1C 1∥平面CHD ,A 正确;建立空间直角坐标系,如图2所示.由于正方体ABCD -A 1B 1C 1D 1的棱长为1,则AC 1→=(-1,1,1),BD →=(-1,-1,0),DA 1→=(1,0,1),所以AC 1→·BD →=1-1+0=0,AC 1→·DA 1→=-1+0+1=0,所以AC 1→⊥BD →,AC 1→⊥DA 1→,所以AC 1⊥平面BDA 1,B 正确;三棱锥D -BA 1C 1的体积为V 三棱锥D -BA 1C 1=V 正方体ABCD -A 1B 1C 1D 1-4V 三棱锥A 1-ABD =1-4×13×12×1×1×1=13,所以C 错误;E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫0,0,12,所以EF →=⎝ ⎛⎭⎪⎫-1,-12,12,BC →1=(-1,0,1),所以cos 〈EF →,BC 1→〉=EF →·BC 1→|EF →||BC 1→|=1+0+1232×2=32,所以直线EF 与BC 1所成的角是30°,D 正确.故选ABD.角度2 求直线与平面所成的角例3 (2020·山东高考) 如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.解 (1)证明:在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l .因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,又PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD . 因为DC ∩PD =D ,所以l ⊥平面PDC . (2)如图,建立空间直角坐标系Dxyz .因为PD =AD =1,所以D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC→=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1).设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎨⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,知直线PB 与平面QCD 所成角的正弦值等于|cos 〈n ,PB→〉|= |1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63, 当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63.利用向量法求线面角的方法 (1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.提醒:在求平面的法向量时,若能找出平面的垂线,则在垂线上取两个点可构成一个法向量.3.(2019·浙江高考)如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.解解法一:(1)证明:如图1,连接A1E.因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又因为平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.又因为A1E∩A1F=A1,所以BC⊥平面A1EF.因为EF⊂平面A1EF,所以EF⊥BC.(2)如图1,取BC的中点G,连接EG,GF,连接A1G交EF于点O,则四边形EGF A1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGF A1为矩形.由(1),得BC⊥平面EGF A1,所以平面A1BC⊥平面EGF A1,所以EF在平面A1BC上的射影在直线A1G上.则∠EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG = 3. 由于O 为A 1G 的中点,故EO =OG =A 1G 2=152, 所以cos ∠EOG =EO 2+OG 2-EG 22EO ·OG=35.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 解法二:(1)证明:如图2,连接A 1E .因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又因为平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .以点E 为坐标原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立如图所示的空间直角坐标系Exyz .不妨设AC =4,则E (0,0,0),A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝ ⎛⎭⎪⎫32,32,23,C (0,2,0). 因此,EF →=⎝ ⎛⎭⎪⎫32,32,23,BC →=(-3,1,0).由EF →·BC→=0,得EF ⊥BC .(2)由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC →·n =0,A 1C →·n =0,得⎩⎪⎨⎪⎧-3x +y =0,y -3z =0. 取n =(1, 3,1),设直线EF 与平面A 1BC 所成的角为θ,故sin θ=|cos 〈EF →,n 〉|=|EF →·n ||EF →||n |=45,所以cos θ=35.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 角度3 求二面角例4 (2020·济南一模)如图1,平面四边形ABCD 中,AB =AC =2,AB ⊥AC ,AC ⊥CD ,E 为BC 的中点,将△ACD 沿对角线AC 折起,使CD ⊥BC ,连接BD ,DE ,AE ,得到如图2所示的三棱锥D -ABC .(1)证明:平面ADE ⊥平面BCD ;(2)已知直线DE 与平面ABC 所成的角为π4,求二面角A -BD -C 的余弦值. 解 (1)证明:在三棱锥D -ABC 中,因为CD ⊥BC ,CD ⊥AC ,AC ∩BC =C ,所以CD ⊥平面ABC . 又AE ⊂平面ABC ,所以AE ⊥CD .因为AB =AC ,E 为BC 的中点,所以AE ⊥BC . 又BC ∩CD =C ,所以AE ⊥平面BCD . 又AE ⊂平面ADE ,所以平面ADE ⊥平面BCD .(2)由(1)可知∠DEC 即为直线DE 与平面ABC 所成的角,所以∠DEC =π4. 在Rt △ABC 中,由勾股定理得BC =2,故CD =CE =1.作EF ∥CD 交BD 于点F ,由(1)知EA ,EB ,EF 两两垂直,以E 为原点,EA ,EB ,EF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则E (0,0,0),A (1,0,0),B (0,1,0),D (0,-1,1), 易知平面BCD 的一个法向量为n 1=(1,0,0), 又AB→=(-1,1,0),AD →=(-1,-1,1), 设平面ABD 的一个法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 2·AB →=-x +y =0,n 2·AD →=-x -y +z =0,令x =1,解得n 2=(1,1,2), cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=66.由图可知,该二面角为锐角, 所以二面角A -BD -C 的余弦值为66.利用向量法确定二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量夹角的大小就是二面角的大小.4. (2020·青岛模拟)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qiàn dǔ);阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑(biē nào)指四个面均为直角三角形的四面体.如图在堑堵ABC -A 1B 1C 1中,AB ⊥AC .(1)求证:四棱锥B -A 1ACC 1为阳马;(2)若C 1C =BC =2,当鳖臑C 1-ABC 体积最大时,求锐二面角C -A 1B -C 1的余弦值.解 (1)证明:∵A 1A ⊥底面ABC ,AB ⊂面ABC , ∴A 1A ⊥AB .又AB ⊥AC ,A 1A ∩AC =A , ∴AB ⊥面ACC 1A 1. 又四边形ACC 1A 1为矩形, ∴四棱锥B -A 1ACC 1为阳马.(2)∵AB ⊥AC ,BC =2,∴AB 2+AC 2=4. 又C 1C ⊥底面ABC ,∴VC 1-ABC =13·C 1C ·12AB ·AC =13·AB ·AC ≤13·AB 2+AC 22=23,当且仅当AB =AC =2时,=13·AB ·AC 取最大值.∵AB ⊥AC ,A 1A ⊥底面ABC ,∴以A 为原点,建立如图所示的空间直角坐标系,则B (2,0,0),C (0,2,0),A 1(0,0,2),C 1(0,2,2),A 1B →=(2,0,-2),BC →=(-2,2,0),A 1C 1→=(0,2,0).设面A 1BC 的一个法向量为n 1=(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n 1·A 1B →=0,n 1·BC →=0,得⎩⎪⎨⎪⎧2x 1-2z 1=0,-2x 1+2y 1=0,令z 1=1,得n 1=(2,2,1). 同理得面A 1BC 1的一个法向量为n 2=(2,0,1),cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=155,∴二面角C -A 1B -C 1的余弦值为155.用向量法探究点的位置如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.解 (1)证明:因为平面P AD ⊥平面ABCD ,AB ⊥AD ,所以AB ⊥平面P AD ,所以AB ⊥PD .又因为P A ⊥PD ,P A ∩AB =A ,所以PD ⊥平面P AB . (2)如图,取AD 的中点O ,连接PO ,CO .因为P A =PD ,所以PO ⊥AD . 又因为PO ⊂平面P AD , 平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD . 因为CO ⊂平面ABCD , 所以PO ⊥CO .因为AC =CD ,所以CO ⊥AD . 建立空间直角坐标系Oxyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1),PB →=(1,1,-1),PC→=(2,0,-1),PD →=(0,-1,-1).设平面PCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0. 令z =2,则x =1,y =-2,所以n =(1,-2,2). 又PB→=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB→|=-33,所以直线PB 与平面PCD 所成角的正弦值为33.(3)假设在棱P A 上存在点M ,使得BM ∥平面PCD ,则存在λ∈[0,1]使得AM →=λAP→.因此点M (0,1-λ,λ),BM →=(-1,-λ,λ). 因为BM ⊄平面PCD ,所以当且仅当BM →·n =0时,BM ∥平面PCD ,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14. 答题启示对于点的探究型问题,要善于根据点的位置结合向量的有关定理灵活设出未知量,尽量使未知量个数最少.对点训练(2020·滨州二模) 如图所示,在等腰梯形ABCD 中,AD ∥BC ,∠ADC =60°,直角梯形ADFE 所在的平面垂直于平面ABCD ,且∠EAD =90°,EA =AD =2DF =2CD =2.(1)证明:平面ECD ⊥平面ACE ;(2)点M 在线段EF 上,试确定点M 的位置,使平面MCD 与平面EAB 所成的二面角的余弦值为34.解 (1)证明:因为平面ABCD ⊥平面ADFE ,平面ABCD ∩平面ADFE =AD ,EA ⊥AD ,EA ⊂平面ADFE ,所以EA ⊥平面ABCD ,又CD ⊂平面ABCD ,所以EA ⊥CD , 在△ADC 中,CD =1,AD =2,∠ADC =60°, 由余弦定理得,AC = 1+4-2×1×2cos60°=3, 所以AC 2+CD 2=AD 2,所以CD ⊥AC .又EA ⊥CD ,EA ∩AC =A ,所以CD ⊥平面ACE , 又CD ⊂平面ECD ,所以平面ECD ⊥平面ACE . (2)以C 为坐标原点,以CA ,CD 所在直线分别为x 轴、 y 轴,过点C 且平行于AE 的直线为z 轴,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,0,0),B ⎝ ⎛⎭⎪⎫32,-12,0,D (0,1,0),E (3,0,2),F (0,1,1),AB →=⎝ ⎛⎭⎪⎫-32,-12,0,AE →=(0,0,2),CD→=(0,1,0),FE →=(3,-1,1),CF →=(0,1,1),设FM →=λFE →=(3λ,-λ,λ)(0≤λ≤1),则CM→=CF →+FM →=(3λ,1-λ,1+λ).设平面EAB 的一个法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AE →=0,即⎩⎨⎧-32x 1-12y 1=0,2z 1=0,取x 1=1,得m =(1,-3,0).设平面MCD 的一个法向量为n =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧n ·CD →=0,n ·CM →=0,得⎩⎨⎧y 2=0,3λx 2+(1-λ)y 2+(1+λ)z 2=0,令x 2=1+λ,得n =(1+λ,0,-3λ),因为平面MCD 与平面EAB 所成的二面角的余弦值为34,所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=|1+λ|24λ2+2λ+1=34, 整理得8λ2-2λ-1=0,解得λ=12或λ=-14(舍去),所以点M 为线段EF 的中点时,平面MCD 与平面EAB 所成的二面角的余弦值为34.一、单项选择题1.直线l 的方向向量a =(1,-3,5),平面α的法向量n =(-1,3,-5),则有( )A .l ∥αB .l ⊥αC .l 与α斜交D .l ⊂α或l ∥α答案 B解析 因为a =(1,-3,5),n =(-1,3,-5),所以a =-n ,a ∥n .所以l ⊥平面α.选B .2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( )A .45°B .135°C .45°或135°D .90° 答案 C解析 ∵cos 〈m ,n 〉=m ·n |m ||n |=12=22,∴〈m ,n 〉=45°.∴二面角为45°或135°.故选C .3. 如图所示,已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是上底面A 1B 1C 1D 1和侧面ADD 1A 1的中心,则EF 和CD 所成的角是( )A .60°B .45°C .30°D .135°答案 B解析 以D 为原点,分别以射线DA ,DC ,DD 1为x 轴、y 轴、z 轴的非负半轴建立如图所示的空间直角坐标系Dxyz ,设正方体的棱长为1,则D (0,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫12,12,1,F ⎝ ⎛⎭⎪⎫12,0,12,EF →=⎝ ⎛⎭⎪⎫0,-12,-12,DC →=(0,1,0),∴cos 〈EF →,DC →〉=EF →·DC →|EF →||DC →|=-22,∴〈EF →,DC →〉=135°,∴异面直线EF 和CD 所成的角是45°.故选B .4.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,BB 1=4,则直线BB 1与平面ACD 1所成角的正弦值为( )A .13B .33C .63D .223答案 A解析 如图所示,建立空间直角坐标系Dxyz .则A (2,0,0),C (0,2,0),D 1(0,0,4),B (2,2,0),B 1(2,2,4),AC →=(-2,2,0),AD 1→=(-2,0,4),BB 1→=(0,0,4). 设平面ACD 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎨⎧-2x +2y =0,-2x +4z =0, 取x =2,则y =2,z =1,故n =(2,2,1)是平面ACD 1的一个法向量,设直线BB 1与平面ACD 1所成的角是θ,则sin θ=|cos 〈n ,BB 1→〉|=|n ·BB 1→||n ||BB 1→|=49×4=13.故选A .5.△ABC 的顶点分别为A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 等于( )A .5B .41C .4D .2 5答案 A解析 ∵A (1,-1,2),B (5,-6,2),C (1,3,-1),∴AB→=(4,-5,0),AC →=(0,4,-3).∵点D 在直线AC 上,∴设AD →=λAC →=(0,4λ,-3λ),由此可得BD→=AD →-AB →=(0,4λ,-3λ)-(4,-5,0)=(-4,4λ+5,-3λ).又BD →⊥AC →,∴BD →·AC →=-4×0+(4λ+5)×4+(-3λ)×(-3)=0,解得λ=-45.因此BD →=(-4,4λ+5,-3λ)=⎝ ⎛⎭⎪⎫-4,95,125.可得|BD→|= (-4)2+⎝ ⎛⎭⎪⎫952+⎝ ⎛⎭⎪⎫1252=5.6. (2020·安徽六安一中质检)如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为( )A . 2B . 3C .2D .22答案 A解析 分别以CA ,CB ,CC 1所在的直线为x ,y ,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),设AD =a ,则点D 坐标为(1,0,a ),CD →=(1,0,a ),CB 1→=(0,2,2),设平面B 1CD 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CB 1→=0,n ·CD →=0,得⎩⎨⎧2y +2z =0,x +az =0,令z =-1,得n =(a,1,-1),又平面C 1DC 的一个法向量为m =(0,1,0).所以cos60°=m ·n |m ||n |,得1a 2+2=12,解得a =2,故选A .7. (2021·湖南湘潭高三月考)在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,如图,建立空间直角坐标系,则下列向量中是平面P AB 的法向量的是( )A .⎝ ⎛⎭⎪⎫1,1,12 B .(1,2,1)C .(1,1,1)D .(2,-2,1)答案 A解析 P A →=(1,0,-2),AB →=(-1,1,0),设平面P AB 的法向量为n =(x ,y,1),则⎩⎨⎧ x -2=0,-x +y =0.解得⎩⎨⎧x =2,y =2.∴n =(2,2,1).又⎝ ⎛⎭⎪⎫1,1,12=12n ,∴A 正确.8.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A .12 B .23 C .33 D .22答案 B解析 以A 为坐标原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧n 1·A 1D →=0,n 1·A 1E →=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎨⎧y =2,z =2.∴n 1=(1,2,2).又平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.故选B .二、多项选择题9.(2020·海口高考调研) 如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC =23AB =2,AB ⊥AC ,点D ,E 分别是线段BC ,B 1C 上的动点(不含端点),且EC B 1C =DCBC .则下列说法正确的是( )A .ED ∥平面ACC 1B .该三棱柱的外接球的表面积为68πC .异面直线B 1C 与AA 1所成角的正切值为32 D .二面角A -EC -D 的余弦值为413 答案 AD解析 在直三棱柱ABC -A 1B 1C 1中,四边形BCC 1B 1是矩形,因为ECB 1C =DC BC ,所以ED ∥BB 1∥CC 1,所以ED ∥平面ACC 1,A 正确;因为AA 1=AC =23AB =2,所以AB =3,因为AB ⊥AC ,所以BC =22+32=13,所以B 1C =13+4=17,易知B 1C 是三棱柱外接球的直径,所以三棱柱外接球的表面积为4π×⎝⎛⎭⎪⎫1722=17π,B 错误;因为AA 1∥BB 1,所以异面直线B 1C 与AA 1所成的角为∠BB 1C .在Rt △B 1BC 中,BB 1=2,BC =13,所以tan ∠BB 1C =BC BB 1=132,C 错误;二面角A -EC -D 即二面角A -B 1C -B ,以A 为坐标原点,以AB →,AC →,AA 1→的方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,可得平面AB 1C 的一个法向量为(2,0,-3),平面BB 1C 的一个法向量为(2,3,0),故二面角A -EC -D 的余弦值为2×213×13=413,D 正确.10. (2020·山东模拟)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,如图,E ,F ,G 分别为BC ,CC 1,BB 1的中点,则下列说法正确的是( )A .直线A 1G 与平面AEF 平行B .直线D 1D 与直线AF 垂直C .平面AEF 截正方体ABCD -A 1B 1C 1D 1所得截面的面积为98 D .点C 与点G 到平面AEF 的距离相等 答案 AC解析 如图,连接AD 1,D 1F ,因为A 1G ∥D 1F ,且A ,E ,F ,D 1在同一平面内,所以A 1G ∥平面AEF ,故A 正确;因为AF 与C 1C 相交且不垂直,D 1D 与C 1C 平行,所以直线D 1D 与直线AF 不垂直,故B 错误;平面AEF 截正方体ABCD -A 1B 1C 1D 1所得截面为等腰梯形AEFD 1,作EH ⊥AD 1,交AD 1于点H ,连接D 1E ,DE ,可得AE =52,AD 1=2,D 1E =1+54=32,所以在△AD 1E中,cos ∠D 1AE =1010,所以sin ∠D 1AE =31010,所以EH =52×31010=324,所以等腰梯形AD 1FE 的面积S =12×⎝ ⎛⎭⎪⎫2+22×324=98,故C 正确;以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,连接AG ,AC ,则可得平面AEF 的一个法向量为n =(2,1,2),AG →=⎝ ⎛⎭⎪⎫0,1,12,AC →=(-1,1,0),所以点G 到平面AEF 的距离d 1=|AG →·n ||n |=23,点C 到平面AEF 的距离d 2=|AC →·n ||n |=13,故D 错误.故选AC .三、填空题11. 如图所示,二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为________.答案60°解析∵CD→=CA→+AB→+BD→,∴|CD→|=(CA→+AB→+BD→)2= 36+16+64+2CA→·BD→= 116+2CA→·BD→=217.∴CA→·BD→=|CA→||BD→|cos〈CA→,BD→〉=-24.∴cos〈CA→,BD→〉=-12.又所求二面角与〈CA→,BD→〉互补,∴所求的二面角为60°.12. 正三棱柱(底面是正三角形的直棱柱)ABC-A1B1C1的底面边长为2,侧棱长为22,则AC1与侧面ABB1A1所成的角为________.答案 π6解析 以C 为原点建立如图所示的空间直角坐标系,得下列坐标:A (2,0,0),C 1(0,0,22).点C 1在侧面ABB 1A 1内的射影为点C 2⎝ ⎛⎭⎪⎫32,32,22.所以AC 1→=(-2,0,22),AC 2→=⎝ ⎛⎭⎪⎫-12,32,22,设直线AC 1与平面ABB 1A 1所成的角为θ,则cos θ=AC 1→·AC 2→|AC1→||AC 2→|=1+0+823×3=32.又θ∈⎣⎢⎡⎦⎥⎤0,π2,所以θ=π6.13.(2020·山西大同高三模拟)在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,且A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是________.答案 平行解析 MN →=MA 1→+A 1A →+AN →=13BA 1→+A 1A →+13AC →=13(BA →+AA 1→)+A 1A →+13(AB →+BC →)=23A 1A →+13BC →=23B 1B →+13BC →.∴MN →与B 1B →,BC →共面.又MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .14.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________.答案23解析 如图,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,13,F ⎝ ⎛⎭⎪⎫0,1,23,AE →=⎝ ⎛⎭⎪⎫0,1,13,AF →=⎝ ⎛⎭⎪⎫-1,1,23, 设平面AEF 的法向量为n =(x ,y ,z ),平面AEF 与平面ABC 所成的锐二面角为θ,由图知θ为锐角,由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,则z =-3,x =-1,则n =(-1,1,-3),平面ABC 的一个法向量为m =(0,0,-1),cos θ=|cos 〈n ,m 〉|=31111,tan θ=23.四、解答题15.(2020·山东省模拟考) 如图,四棱锥S -ABCD 中,底面ABCD 为矩形.SA ⊥平面ABCD ,E ,F 分别为AD ,SC 的中点,EF 与平面ABCD 所成的角为45°.(1)证明:EF 为异面直线AD 与SC 的公垂线;(2)若EF =12BC ,求二面角B -SC -D 的余弦值.解 (1)证明:以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长,建立如图所示的空间直角坐标系Axyz .设D (0,b,0),S (0,0,c ),则C (1,b,0),E ⎝ ⎛⎭⎪⎫0,b 2,0,F ⎝ ⎛⎭⎪⎫12,b 2,c 2,EF →=⎝ ⎛⎭⎪⎫12,0,c 2,AS →=(0,0,c ),AD→=(0,b,0). 因为EF 与平面ABCD 所成的角为45°,所以EF →与平面ABCD 的法向量AS →的夹角为45°.所以AS →·EF →=|AS →||EF →|cos45°, 即c 22=22×c ×14+c 24,解得c =1,故EF →=⎝ ⎛⎭⎪⎫12,0,12,SC →=(1,b ,-1), 从而EF →·SC →=0,EF →·AD →=0,所以EF ⊥SC ,EF ⊥AD .因此EF 为异面直线AD 与SC 的公垂线. (2)由B (1,0,0),BC →=(0,b,0), |EF→|=12|BC →|得b = 2. 于是F ⎝ ⎛⎭⎪⎫12,22,12,C (1,2,0),连接FB ,故FB →=⎝ ⎛⎭⎪⎫12,-22,-12,SC →=(1,2,-1),从而FB →·SC→=0,即FB ⊥SC .取CF 的中点G ,连接GD ,则G ⎝ ⎛⎭⎪⎫34,324,14,GD →=⎝ ⎛⎭⎪⎫-34,24,-14,从而GD →·SC→=0,即GD ⊥SC .因此〈FB→,GD →〉等于二面角B -SC -D 的平面角.cos 〈FB →,GD →〉=FB →·GD →|FB →||GD →|=-33.所以二面角B -SC -D 的余弦值为-33.16. (2020·全国卷Ⅱ)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.解 (1)证明:∵M ,N 分别为BC ,B 1C 1的中点, ∴MN ∥BB 1.又AA 1∥BB 1,∴AA 1∥MN .∵△A 1B 1C 1为等边三角形,N 为B 1C 1的中点, ∴A 1N ⊥B 1C 1.又侧面BB 1C 1C 为矩形,∴B 1C 1⊥BB 1. ∵MN ∥BB 1,∴MN ⊥B 1C 1.又MN ∩A 1N =N ,MN ,A 1N ⊂平面A 1AMN , ∴B 1C 1⊥平面A 1AMN .又B 1C 1⊂平面EB 1C 1F , ∴平面A 1AMN ⊥平面EB 1C 1F .(2)解法一:连接NP ,∵AO ∥平面EB 1C 1F ,平面AONP ∩平面EB 1C 1F =NP , ∴AO ∥NP .∵三棱柱上下底面平行,平面A 1AMN ∩平面ABC =AM ,平面A 1AMN ∩平面A 1B 1C 1=A 1N ,∴ON ∥AP .∴四边形ONP A 是平行四边形. ∴ON =AP ,AO =NP . 设△ABC 边长是6m (m >0), 则NP =AO =AB =6m .∵O 为△A 1B 1C 1的中心,且△A 1B 1C 1的边长为6m , ∴ON =13×6m ×sin60°=3m .∴ON =AP =3m . ∵BC ∥B 1C 1,B 1C 1⊂平面EFC 1B 1, ∴BC ∥平面EFC 1B 1.又BC ⊂平面ABC ,平面ABC ∩平面EFC 1B 1=EF , ∴EF ∥BC ,∴AP AM =EP BM ,∴3m 33m =EP 3m ,解得EP =m .在B 1C 1截取B 1Q =EP =m ,连接PQ ,故QN =2m . ∵B 1Q =EP 且B 1Q ∥EP ,∴四边形B 1QPE 是平行四边形,∴B 1E ∥PQ . 由(1)可知B 1C 1⊥平面A 1AMN ,故∠QPN 为B 1E 与平面A 1AMN 所成角. 在Rt △QPN 中,根据勾股定理可得PQ =QN 2+NP 2=(2m )2+(6m )2=210m , ∴sin ∠QPN =QN PQ =2m 210m=1010.∴直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 解法二:由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .由已知得AM ⊥BC ,以Q 为坐标原点,QA→的方向为x 轴正方向,QN →的方向为z 轴正方向,|MB →|为单位长,建立如图所示的空间直角坐标系Qxyz ,设QM =a ,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, ∴NP =AO =AB =2,∴PQ =233-a ,NQ = NP 2-PQ 2= 4-⎝ ⎛⎭⎪⎫233-a2, ∴B 10,1,4-⎝ ⎛⎭⎪⎫233-a 2 ,E ⎝ ⎛⎭⎪⎫233-a ,13,0,故B 1E →=233-a ,-23,-4-⎝ ⎛⎭⎪⎫233-a2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量, 故sin ⎝ ⎛⎭⎪⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉=n ·B 1E →|n ||B 1E →|=1010.∴直线B 1E 与平面A 1AMN 所成角的正弦值为1010.17.(2020·泰安三模)在四棱锥P -ABCD 中,△P AB 为等边三角形,四边形ABCD 为矩形,E 为PB 的中点,DE ⊥PB .(1)证明:平面ABCD ⊥平面P AB ;(2)设二面角A -PC -B 的大小为α,求α的取值范围.解 (1)证明:连接AE ,因为△P AB 为等边三角形,所以AE ⊥PB . 又DE ⊥PB ,AE ∩DE =E ,所以PB ⊥平面ADE ,所以PB ⊥AD . 因为四边形ABCD 为矩形,所以AD ⊥AB ,且AB ∩PB =B , 所以AD ⊥平面P AB .因为AD ⊂平面ABCD ,所以平面ABCD ⊥平面P AB .(2)以A 为坐标原点建立如图所示的空间直角坐标系Axyz ,不妨设PB =AB =P A =1,C (0,1,n ),则A (0,0,0),P ⎝ ⎛⎭⎪⎫32,12,0,B (0,1,0),由空间向量的坐标运算可得PC →=⎝ ⎛⎭⎪⎫-32,12,n ,AP →=⎝ ⎛⎭⎪⎫32,12,0,BP →=⎝ ⎛⎭⎪⎫32,-12,0.设平面BPC 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·PC →=0,m ·BP →=0,即⎩⎪⎨⎪⎧-32x 1+12y 1+nz 1=0,32x 1-12y 1=0,令x 1=1,则y 1=3,z 1=0,所以m =(1,3,0). 设平面P AC 的法向量为n =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·AP →=0,即⎩⎪⎨⎪⎧-32x 2+12y 2+nz 2=0,32x 2+12y 2=0,令x 2=1,则y 2=-3,z 2=3n ,所以n =⎝ ⎛⎭⎪⎫1,-3,3n .二面角A -PC -B 的大小为α,由图可知,二面角α为锐二面角, 所以cos α=|m ·n ||m ||n |=|1-3|1+3×1+3+3n 2=14+3n 2∈⎝⎛⎭⎪⎫0,12,所以α∈⎝ ⎛⎭⎪⎫π3,π2. 18.(2020·山东平邑一中模拟)请从下面三个条件中任选一个,补充在下面的横线上,并作答.①AB ⊥BC ;②FC 与平面ABCD 所成的角为π6;③∠ABC =π3.如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,P A ⊥平面ABCD ,且P A =AB =2,PD 的中点为F .(1)在线段AB上是否存在一点G,使得AF∥平面PCG?若存在,指出G在AB上的位置并给以证明;若不存在,请说明理由;(2)若________,求二面角F-AC-D的余弦值.解(1)在线段AB上存在中点G,使得AF∥平面PCG.证明如下:如图所示.设PC的中点为H,连接FH,GH,∵FH∥CD,FH=12CD,AG∥CD,AG=12CD,∴FH∥AG,FH=AG,∴四边形AGHF为平行四边形,则AF∥GH,又GH⊂平面PCG,AF⊄平面PCG,∴AF∥平面PCG.(2)选择①AB⊥BC:∵P A⊥平面ABCD,∴P A⊥BC,由题意,知AB,AD,AP两两垂直,以AB,AD,AP所在直线分别为x,y,z轴,建立空间直角坐标系,∵P A=AB=2,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),F(0,1,1),P(0,0,2),∴AF→=(0,1,1),CF→=(-2,-1,1),设平面F AC 的一个法向量为μ=(x ,y ,z ), ∴⎩⎪⎨⎪⎧μ·AF →=y +z =0,μ·CF →=-2x -y +z =0,取y =1,得μ=(-1,1,-1), 平面ACD 的一个法向量为v =(0,0,1), 设二面角F -AC -D 的平面角为θ, 由图可知,二面角θ为锐二面角, 则cos θ=|μ·v ||μ||v |=33,∴二面角F -AC -D 的余弦值为33. 选择②FC 与平面ABCD 所成的角为π6:∵P A ⊥平面ABCD ,取BC 中点E ,连接AE ,取AD 的中点M ,连接FM ,CM ,则FM ∥P A ,且FM =1,∴FM ⊥平面ABCD , FC 与平面ABCD 所成角为∠FCM , ∴∠FCM =π6,在Rt △FCM 中,CM =3,又CM =AE ,∴AE 2+BE 2=AB 2,∴BC ⊥AE , ∴AE ,AD ,AP 两两垂直,以AE ,AD ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,∵P A =AB =2,∴A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),E (3,0,0),F (0,1,1),P (0,0,2),∴AF→=(0,1,1),CF →=(-3,0,1), 设平面F AC 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·AF →=y +z =0,m ·CF →=-3x +z =0,取x =3,得m =(3,-3,3),平面ACD 的一个法向量为n =(0,0,1),设二面角F -AC -D 的平面角为θ,由图可知,二面角θ为锐二面角,则cos θ=|m ·n ||m ||n |=217.∴二面角F -AC -D 的余弦值为217.选择③∠ABC =π3:∵P A ⊥平面ABCD ,∴P A ⊥BC ,取BC 中点E ,连接AE ,∵底面ABCD 是菱形,∠ABC =60°,∴△ABC 是正三角形,∵E 是BC 的中点,∴BC ⊥AE ,∴AE ,AD ,AP 两两垂直,以AE ,AD ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,∵P A =AB =2,∴A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),E (3,0,0),F (0,1,1),P (0,0,2),∴AF→=(0,1,1),CF →=(-3,0,1), 设平面F AC 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·AF →=y +z =0,m ·CF →=-3x +z =0,取x =3,得m =(3,-3,3),平面ACD 的一个法向量为n =(0,0,1), 设二面角F -AC -D 的平面角为θ,由图可知,二面角θ为锐二面角,则cos θ=|m ·n ||m ||n |=217.∴二面角F -AC -D 的余弦值为217.。
高三一轮复习 立体几何的向量方法
基 础 梳 理
考 点 突 破
课 时 训 练
(1) 向量方法证明空间平行关系的基本途
径是: ①线线平行:直线与直线平行,只要证明它们的方向 向量平行. ②线面平行: a.用线面平行的判定定理,证明直线的方向向量与平 面内一条直线的方向向量平行; b.证明直线的方向向量与平面的法向量垂直.
基 础 梳 理
考 点 突 破
课 时 训 练
解析: 直线与平面平行,直线的方向向量和平面的法 向量垂直,经检验只有选项C中s·n=0,故选C. 答案:C
数学(人教A版 ·理科)
基 础 梳 理
考 点 突 破
课 时 训 练
2.(2012年高考陕西卷)如图所示,在空间直角坐标系 中有直三棱柱ABCA1B1C1,CA=CC1=2CB,则直线BC1与 直线AB1夹角的余弦值为( 5 A. 5 2 5 C. 5 ) 5 B. 3 3 D. 5
[ 思维导引 ]
(1) 建立空间直角坐标系后,把线面平行
转化为向量之间的平行与垂直关系;(2)可以使用基向量的
方法,也可以使用坐标系的方法,把线面垂直归结为向量
的计算.
数学(人教A版 ·理科)
基 础 梳 理
考 点 突 破
课 时 训 练
[ 证明]
(1) 建 立 如 图 所 示 的 空 间 直 角 坐 标 系 , 则
课 时 训 练
1.若直线l∥平面α,直线l的方向向量为s、平面α的法 向量为n,则下列结论正确的是( A.s=(-1,0,2),n=(1,0,-1) B.s=(-1,0,1),n=(1,2,-1) C.s=(-1,1,1),n=(1,2,-1) D.s=(-1,1,1),n=(-2,2,2) )
新课标2023版高考数学一轮总复习第6章立体几何第5节空间向量及其运算课件
2
解析:|E→F|2=
→ EF
2=(E→C+C→D+D→F)2
=E→C2
+C→D2+D→F2+
→→ 2(EC·CD
+E→C·D→F+C→D·D→F
)=12+22+12+2(1×2×cos
120°+0+
2×1×cos 120°)=2,所以|E→F|= 2,所以 EF 的长为 2.
02
关键能力·研析考点强“四翼”
B 解析:M→N=O→N-O→M=12(O→B+O→C)-23O→A=-23a+12b+12c.
2.在正方体 ABCD-A1B1C1D1 中,点 E 为上底面 A1C1 的中心.若 A→E=A→A1+xA→B+yA→D,则 x,y 的值分别为( )
A.1,1
B.1,12
向量的数量积运算有两条途径,一是根据数量积的定义,利 用模与夹角直接计算;二是利用坐标运算.
考向 2 空间数量积的应用 如图,已知平行六面体 ABCD-A1B1C1D1 中,底面 ABCD
是边长为 1 的正方形,AA1=2,∠A1AB=∠A1AD=120°. (1)求线段 AC1 的长; (2)求异面直线 AC1 与 A1D 所成角的余弦值; (3)求证:AA1⊥BD.
空间向量基本定理 空间向量 p,存在唯一的有序实数组(x,y,z),
使得 p=xa+yb+zc
设 O,A,B,C 是不共面的四点,则对平面 ABC
推论
内任一点 P,都存在唯一的三个有序实数 x,y, z,使O→P=xO→A+yO→B+zO→C,且 x+y+z=1
空间向量基本定理的 3 点注意 (1)空间任意三个不共面的向量都可构成空间的一个基底. (2)由于零与任意一个非零向量共线,与任意两个非零向量共面, 故零不能作为基向量. (3)基底选定后,空间的所有向量均可由基底唯一表示.
届数学一轮复习第八章立体几何第七节立体几何中的向量方法学案理含解析
第七节立体几何中的向量方法[最新考纲][考情分析][核心素养]1。
理解直线的方向向量与平面的法向量。
2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.3.能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理)。
4。
能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用。
主要通过空间角(异面直线所成角、直线与平面所成角、二面角)的求法考查向量方法应用,多为解答题第2问,分值为12分.1.直观想象2.逻辑推理3.数学运算‖知识梳理‖空间角的求法(1)求异面直线所成的角设a,b分别是两异面直线l1,l2的方向向量,则a与b的夹角βl1与l2所成的角θ范围(0,π)错误!错误!求法cos β=a·b|a||b|cos θ=|cos β|=|a·b||a||b|►常用结论两异面直线所成的角可以通过这两条直线的方向向量的夹角来求得,但二者不完全相等,当两方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角.(2)求直线与平面所成的角设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,则sin θ=错误!|cos<a,n〉|=错误!错误!.(3)求二面角的大小①如图①,AB,CD是二面角α-l-β的两条面内与棱l垂直的直线,则二面角的大小θ=错误!〈错误!,错误!>.②如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=错误!|cos〈n1,n2〉|,二面角的平面角大小是向量n1与n2的夹角(或其补角).►常用结论解空间角最值问题时往往会用到最小角定理cosθ=cosθ1cos θ2如图,若OA为平面α的一条斜线,O为斜足,OB为OA在平面α内的射影,OC为平面α内的一条直线,θ为OA与OC所成的角,θ1为OA与OB所成的角,即线面角,θ2为OB与OC所成的角,那么cos θ=cos θ1cos θ2。
高中数学:向量法解立体几何总结
向量法解立体几何1、直线的方向向量和平面的法向量⑴.直线的方向向量:若A、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量.⑵.平面的法向量:若向量n所在直线垂直于平面,则称这个向量垂直于平面,记作n ,如果n ,那么向量n叫做平面的法向量.⑶.平面的法向量的求法(待定系数法):①建立适当的坐标系.②设平面的法向量为n (x, y, z) .③求出平面内两个不共线向量的坐标a(a ,a ,a ), b (b ,b,b ) .1 2 3 1 2 3n a 0 ④根据法向量定义建立方程组.n b 0⑤解方程组,取其中一组解,即得平面的法向量.2、用向量方法判定空间中的平行关系⑴线线平行。
设直线l1,l2 的方向向量分别是a、b,则要证明l∥1 l ,只需证明a∥b,即2a kb (k R) .⑵线面平行。
设直线l 的方向向量是a,平面的法向量是u,则要证明l ∥,只需证明a u ,即a u 0 .⑶面面平行。
若平面的法向量为u,平面的法向量为v,要证∥,只需证u ∥v,即证u v.3、用向量方法判定空间的垂直关系⑴线线垂直。
设直线l1,l2 的方向向量分别是a、b,则要证明l1 l2 ,只需证明 a b,即a b 0 .⑵线面垂直①(法一)设直线l 的方向向量是a,平面的法向量是u ,则要证明l ,只需证明a∥u,即a u .②(法二)设直线l 的方向向量是a,平面内的两个相交向量分别为m、n,若a m 0, l .则 a n 0⑶面面垂直。
若平面的法向量为u ,平面的法向量为v,要证,只需证u v ,即证u v 0 .4、利用向量求空间角⑴求异面直线所成的角已知a,b为两异面直线,A,C 与B,D 分别是a,b上的任意两点,a,b所成的角为,AC BD则c os .AC BD⑵求直线和平面所成的角求法:设直线l 的方向向量为a,平面的法向量为u ,直线与平面所成的角为,a与u的夹角为,则为的余角或的补角a u 的余角.即有:sincos .a u⑶求二面角二面角的平面角是指在二面角l 的棱上任取一点O,分别在两个半平面内作射线AO l,B O l ,则AOB 为二面角l 的平面角.如图:ABlO BO A求法:设二面角l 的两个半平面的法向量分别为m、n ,再设m 、n的夹角为,二面角l 的平面角为,则二面角为m、n的夹角或其补角.根据具体图形确定是锐角或是钝角:如果是锐角,则cos cos m nm n,即arccosm nm n;如果是钝角,则cos cos m nm n,即arccosm nm n.5、利用法向量求空间距离⑴点Q到直线l 距离若Q为直线l 外的一点, P 在直线l 上,a 为直线l 的方向向量,b = PQ,则点Q到直线l距离为12 2h (| a || b |) (a b)|a|⑵点A 到平面的距离若点P 为平面外一点,点M 为平面内任一点,平面的法向量为n,则P 到平面的距离就等于MP 在法向量n方向上的投影的绝对值.即d MP cos n, MP MP n MPn MPn MPn⑶直线a与平面之间的距离当一条直线和一个平面平行时,直线上的各点到平面的距离相等。
高三一轮复习第六章 第五节立体几何中的向量方法
课时作业1.直线l的方向向量a=(1,-3,5),平面α的法向量n=(-1,3,-5),则有( ) A.l∥α B.l⊥αC.l与α斜交D.l α或l∥α【解析】 因为a=(1,-3,5),n=(-1,3,-5),所以a=-n,a∥n.所以l⊥平面α.选B.【答案】 B2.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为( )A.45°B.135°C.45°或135°D.90°【解析】 ∵cos〈m,n〉=m·n|m||n|=12=22,∴〈m,n〉=45°.∴二面角为45°或135°.故选C.【答案】 C3.如图所示,已知正方体ABCD A1B1C1D1中,E,F分别是上底面A1B1C1D1和侧面ADD1A1的中心,则EF和CD所成的角是( )A.60°B.45°C.30°D.135°【解析】 以D为原点,分别以射线DA,DC,DD1为x轴、y轴、z轴的非负半轴建立如图所示的空间直角坐标系D xyz,设正方体的棱长为1,则D(0,0,0),C(0,1,0),E(12,12,1),F(12,0,12),EF→=(0,-12,-12),DC→=(0,1,0),∴cos 〈EF → ,DC → 〉=EF → ·DC →|EF → ||DC →|=-22, ∴〈EF → ,DC → 〉=135°,∴异面直线EF 和CD 所成的角是45°.故选B .【答案】 B4.如图,在正四棱柱ABCD A 1B 1C 1D 1中,AB =2,BB 1=4,则直线BB 1与平面ACD 1所成角的正弦值为( )A .13B .33C .63D .223【解析】 如图所示,建立空间直角坐标系D xyz .则A (2,0,0),C (0,2,0),D 1(0,0,4),B (2,2,0),B 1(2,2,4),AC → =(-2,2,0),AD 1→ =(-2,0,4),BB 1→=(0,0,4).设平面ACD 1的法向量为n =(x ,y ,z ),则{n ·AC → =0,n ·AD 1→=0,即{-2x +2y =0,-2x +4z =0,取x =2,则y =2,z =1,故n =(2,2,1)是平面ACD 1的一个法向量,设直线BB 1与平面ACD 1所成的角是θ,则sin θ=|cos 〈n ,BB 1→ 〉|=|n ·BB 1→||n ||BB 1→|=49×4=13.故选A . 【答案】 A5.(2022·徐州二模)如图,在棱长为 1 的正方体ABCD A 1B 1C 1D 1中,点M 是AD 的中点,动点P 在底面正方形ABCD 内(不包括边界),若B 1P ∥平面A 1BM ,则C 1P 长度的取值范围是________.【解析】 以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 建系如图则M (12,0,0),A 1(1,0,1),B (1,1,0),B 1(1,1,1),C 1(0,1,1).设P (x ,y ,0)(0<x <1,0<y <1),则B 1P 的方向向量B 1P →=(x -1,y -1,-1)设平面A 1BM 的法向量n =(x 1,y 1,z 1),MA 1→ =(12,0,1),MB →=(12,1,0),{n ·MA 1→ =12x 1+z 1=0n ·MB → =12x 1+y 1=0,即{z 1=-12x 1y 1=-12x 1取x 1=2,则n =(2,-1,-1)若B 1P ∥平面A 1BM ,则n⊥B 1P →即n ·B 1P →=2(x -1)-(y -1)+1=2x -y =0,则y =2x又∵C 1P →=(x ,y -1,-1)∴C 1P →=(x ,2x -1,-1) 即|C 1P → |=x 2+(2x -1)2+(-1)2=5x 2-4x +2= 5(x -25)2+65 ∴0<x <1,0<y <1,y =2x ∴0<x <12∴65≤5(x -25)2+65<2即305≤|C 1P → |<2.【答案】 [305,2)6.如图所示,二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为________.【解析】 ∵CD → =CA → +AB → +BD →,∴|CD → |= (CA → +AB → +BD → )2 = 36+16+64+2CA → ·BD→ = 116+2CA → ·BD →=217. ∴CA → ·BD → =|CA → ||BD → |·cos 〈CA → ,BD →〉=-24. ∴cos 〈CA → ,BD → 〉=-12.又所求二面角与〈CA → ,BD → 〉互补,∴所求的二面角为60°. 【答案】 60°7.正三棱柱(底面是正三角形的直棱柱)ABC A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为________.【解析】 以C 为原点建立如图所示的空间直角坐标系,得下列坐标:A (2,0,0),C 1(0,0,22).点C 1在侧面ABB 1A 1内的射影为点C 2(32,32,22).所以AC 1→ =(-2,0,22),AC 2→=(-12,32,22),设直线AC 1与平面ABB 1A 1所成的角为θ,则cos θ=AC 1→ ·AC 2→|AC 1→ ||AC 2→|=1+0+823×3=32.又θ∈[0,π2],所以θ=π6.【答案】 π68.正方体ABCD A 1B 1C 1D 1的棱长为1,E ,F 分别为BB 1,CD 的中点,则点F 到平面A 1D 1E 的距离为________.【解析】 以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示.则A 1(0,0,1),E (1,0,12),F (12,1,0),D 1(0,1,1).∴A 1E → =(1,0,-12),A 1D 1→ =(0,1,0).设平面A 1D 1E 的一个法向量为n =(x ,y ,z ), 则{n ·A 1E →=0,n ·A 1D 1→=0,即{x -12z =0,y =0. 令z =2,则x =1.∴n =(1,0,2).又A 1F →=(12,1,-1),∴点F 到平面A 1D 1E 的距离为 d =|A 1F → ·n ||n |=|12-2|5=3510.【答案】 35109.(2022·广东汕尾高三期末)如图,在五面体ABCDEF 中,四边形ABCD 为矩形,AD ⊥ED ,CD ⊥EA 。
2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离
形,则在正四棱柱 ABCD - A 1 B 1 C 1 D 1中,异面直线 AK 和 LM 所成的角的大小为
(
D )
A. 30°
B. 45°
C. 60°
D. 90°
[解析] 根据题意还原正四棱柱的直观图,如图所示,取 AA 1的中点 G ,连接 KG ,
则有 KG ∥ LM ,所以∠ AKG 或其补角为异面直线 AK 和 LM 所成的角.由题知 AG =
A 1 C 1=5, BC 1=4 2 ,所以 cos
52 +52 −(4 2)2
9
1
∠ BA 1 C 1=
= < ,所以60°<
2×5×5
25
2
∠ BA 1 C 1<90°,则过点 D 1作直线 l ,与直线 A 1 B , AC 所成的角均为60°,即过一
点作直线,使之与同一平面上夹角大于60°的锐角的两边所在直线所成的角均成
2 z -1=0的交线,试写出直线 l 的一个方向向量 (2,2,1)
的余弦值为
65
9
.
,直线 l 与平面α所成角
[解析] 由平面α的方程为 x +2 y -2 z +1=0,可得平面α的一个法向量为 n =(1,
⑫ [0, ] ,二面角的
2
n1,n2>|.
范围是⑬
[0,π] .
易错警示
1. 线面角θ与向量夹角< a , n >的关系
π
2
π
2
如图1(1),θ=< a , n >- ;如图1(2),θ= -< a , n >.
图1
2. 二面角θ与两平面法向量夹角< n 1, n 2>的关系
图2(2)(4)中θ=π-< n 1, n 2>;图2(1)(3)中θ=< n 1, n 2>.
高考数学一轮复习第八篇立体几何第6讲空间向量及其运算课件理
第6讲 空间向量及其运算
【2013年高考会这样考】 1.考查空间向量的线性运算及其数量积. 2.利用向量的数量积判断向量的关系与垂直. 3.考查空间向量基本定理及其意义. 【复习指导】 空间向量的运算类似于平面向量的运算,复习时又对比论证, 重点掌握空间向量共线与垂直的条件,及空间向量基本定理的 应用.
面的充要条件是存在实数x,y使p=xa+yb. (3)空间向量基本定理:如果三个向量a,b,c 不共面 ,那么对 空间任一向量p,存在一个唯一的有序实数组x,y,z, 使 p=xa+yb+zc .
一种方法 用空间向量解决几何问题的一般方法步骤是: (1)适当的选取基底{a,b,c}; (2)用a,b,c表示相关向量; (3)通过运算完成证明或计算问题.
基础梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有 大小 和 方向 的量叫做空间向 量. (2)相等向量:方向 相同 且模相等 的向量. (3)共线向量:表示空间向量的有向线段所在的直线互 相 平行或重合 的向量. (4)共面向量:平行于 同一个平面 的向量.
2.空间向量的线性运算及运算律
→ AD
、
→ AA1
两两的夹角均为60°,且|
→ AB
|=1,|
→ AD
|=2,|
→ AA1
|=
3,则|A→C1|等于( ).
A.5 B.6 C.4 D.8
解析 设A→B=a,A→D=b,A→A1=c,则A→C1=a+b+c, A→C12=a2+b2+c2+2a·b+2b·c+2c·a=25,
因此|A→C1|=5. 答案 A
5.在四面体O-ABC中,O→A=a,O→B=b,O→C=c,D为BC的中 点,E为AD的中点,则O→E=________(用a,b,c表示). 解析 如图,O→E=12O→A+12O→D=12O→A+14O→B+14O→C=12a+14b+ 1 4c. 答案 12a+14b+14c
高考数学一轮总复习 第八章 8.8立体几何中的向量方法(二)求空间角和距离
(2)若点M在棱BC上,且二面角M-PA-C为30°,求PC与平 正弦值.
师生共研
题型三 求二面角
例3 (2018·达州模拟)如图,在梯形ABCD中,AB∥CD,A ∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是菱形
(1)求证:BF⊥AE;
(2)求二面角B-EF-D的平面角的正切值.
a与n的夹角为β,则sin θ=|cos β|= |a||n| .
3.求二面角的大小 (1)如图①,AB,CD分别是二面角α-l-β的两个面内与棱l垂 二面角的大小θ=〈A→B,C→D〉 .
(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α, 二面角的大小θ满足|cos θ|= |cos〈n1,n2〉|,二面角的平面角
(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与 二面角最大,并求此时二面角的余弦值.
谢谢
(1)证明:平面BEF⊥平面PEC;
(2)求二面角A-BF-C的余弦值.
技能提升练
13.如图,在四棱锥 S-ABCD 中,SA⊥平面 ABCD,底面 ABCD 为
∠BAD=90°,且 AB=4,SA=3.E,F 分别为线段 BC,SB 上的
满足BSFF=CBEE=λ,当实数
λ
9 的值为_1_6__时,∠AFE
解析 cos〈m,n〉=|mm|·|nn|=1·1 2= 22,即〈m,n〉=45
∴两平面所成二面角为45°或180°-45°=135°.
3.[P117A 组 T4(2)]如图,正三棱柱(底面是正三角形的直棱柱 底面边长为 2,侧棱长为 2 2,则 AC1 与侧面 ABB1A1 所成的角
题组三 易错自纠
高考数学一轮总复习第6章立体几何第6节立体几何中的向量方法__证明平行与垂直教师用书
第六节 立体几何中的向量方法——证明平行与垂直考试要求:1.理解直线的方向向量及平面的法向量,能用向量语言表述线线、线面、面面的平行和垂直关系.2.能用向量方法证明立体几何中有关直线、平面位置关系的判定定理.一、教材概念·结论·性质重现1.直线的方向向量与平面的法向量直线的方向向量直线的方向向量是指和这条直线平行( 或重合) 的非零向量,一条直线的方向向量有无数个平面的法向量直线l⊥平面α,取直线l的方向向量a ,我们称向量a为平面α的法向量.显然一个平面的法向量有无数个,它们是共线向量方向向量和法向量均不为零向量且不唯一.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔m·n=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥ βn∥m⇔n=λm α⊥βn⊥m⇔n·m=0二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)直线的方向向量是唯一确定的.( × )(2)平面的单位法向量是唯一确定的.( × )(3)若两平面的法向量平行,则两平面平行.( √ )(4)若两直线的方向向量不平行,则两直线不平行.( √ )(5)若a∥b,则a所在直线与b所在直线平行.( × )(6)若空间向量a平行于平面α,则a所在直线与平面α平行.( × ) 2.若直线l的方向向量a=(1,-3,5),平面α的法向量n=(-1,3,-5),则有( )A.l∥α B.l⊥αC.l与α斜交 D.l⊂α或l∥αB 解析:由a=-n知,n∥a,则有l⊥α.故选B.3.已知平面α,β的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则( )A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对C 解析:因为n1≠λn2,且n1·n2=2×(-3)+3×1+5×(-4)=-23≠0,所以α,β既不平行,也不垂直.4.如图,在正方体ABCD A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D 的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.垂直 解析:以A为原点,分别以AB,AD,AA1所在的直线为x轴、y轴、z轴建立空间直角坐标系(图略).设正方体的棱长为1,则A(0,0,0),M,O,N,AM·ON=·=0,所以ON与AM垂直.5.在空间直角坐标系中,已知A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是________.平行 解析:由题意得,AB=(-3,-3,3),CD=(1,1,-1),所以AB=-3CD,所以AB与CD共线.又AB与CD没有公共点,所以AB∥CD.考点1 利用空间向量证明平行问题——基础性如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:PB∥平面EFG.证明:因为平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD,所以AB,AP,AD两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0),则EF=(0,1,0),EG=(1,2,-1).设平面EFG的法向量为n=(x,y,z),则即令z=1,则n=(1,0,1)为平面EFG的一个法向量.因为PB=(2,0,-2),所以PB·n=0,所以n⊥PB.因为PB⊄平面EFG,所以PB∥平面EFG.本例中条件不变,证明:平面EFG∥平面PBC.证明:因为EF=(0,1,0),BC=(0,2,0),所以BC=2EF,所以BC∥EF.又因为EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,同理可证GF∥PC,从而得出GF∥平面PBC.又EF∩GF=F,EF⊂平面EFG,GF⊂平面EFG,所以平面EFG∥平面PBC.利用空间向量证明平行的方法线线平行证明两直线的方向向量共线线面平行(1)证明该直线的方向向量与平面的某一法向量垂直.(2)证明直线的方向向量与平面内某直线的方向向量平行面面平行(1)证明两平面的法向量为共线向量.(2)转化为线面平行、线线平行问题如图,在四棱锥P ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.求证:CM∥平面PAD.证明:由题意知,CB,CD,CP两两垂直,以C为坐标原点,CB所在直线为x轴,CD所在直线为y轴,CP所在直线为z轴建立如图所示的空间直角坐标系Cxyz.因为PC⊥平面ABCD,所以∠PBC为PB与平面ABCD所成的角,所以∠PBC=30°.因为PC=2,所以BC=2,PB=4,所以D(0,1,0),B(2,0,0),A(2,4,0),P(0,0,2),M,所以DP=(0,-1,2),DA=(2,3,0),CM=.设n=(x,y,z)为平面PAD的一个法向量,由得取y=2,得x=-,z=1,所以n=(-,2,1)是平面PAD的一个法向量.因为n·CM=-×+2×0+1×=0,所以n⊥CM.又CM⊄平面PAD,所以CM∥平面PAD.考点2 利用空间向量证明垂直问题——应用性如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE =2AB.求证:平面BCE⊥平面CDE.证明:设AD=DE=2AB=2a,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),C(2a,0,0),B(0,0,a),D(a,a,0),E(a,a,2a),所以BE=(a,a,a),BC=(2a,0,-a),CD=(-a,a,0),ED=(0,0,-2a).设平面BCE的法向量为n1=(x1,y1,z1),由n1·BE=0,n1·BC=0可得即令z1=2,可得n1=(1,-,2).设平面CDE的法向量为n2=(x2,y2,z2),由n2·CD=0,n2·ED=0可得即令y2=1,可得n2=(,1,0).因为n1·n2=1×+1×(-)=0,所以n1⊥n2,所以平面BCE⊥平面CDE.若本例中条件不变,点F是CE的中点,证明:DF⊥平面BCE.证明:由例2知C(2a,0,0),E(a,a,2a),平面BCE的法向量n1=(1,-,2).因为点F是CE的中点,所以f,所以DF=,所以DF=n1,所以DF∥n1,故DF⊥平面BCE.1.利用空间向量证明垂直的方法线线垂直证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示面面垂直证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示2.向量法证明空间垂直、平行关系时,是以计算为手段,寻求直线上的线段对应的向量和平面的基向量、法向量的关系,关键是建立空间直角坐标系(或找空间一组基底)及平面的法向量.如图,在四棱锥P ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)AE⊥CD;(2)PD⊥平面ABE.证明:以A为原点,AB,AD,AP所在直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系Axyz.设PA=AB=BC=1,则P(0,0,1).(1)因为∠ABC=60°,所以△ABC为正三角形,所以C,E.设D(0,y,0),由AC⊥CD,得AC·CD=0,即y=,则D,所以CD=.又AE=,所以AE·CD=-×+×=0,所以AE⊥CD,即AE⊥CD.(2)(方法一)由(1)知,D,P(0,0,1),所以PD=.又AE·PD=×+×(-1)=0,所以PD⊥AE,即PD⊥AE.因为AB=(1,0,0),所以PD·AB=0,所以PD⊥AB.又AB∩AE=A,AB,AE⊂平面AEB,所以PD⊥平面AEB.(方法二)由(1)知,AB=(1,0,0),AE=.设平面ABE的法向量为n=(x,y,z),则令y=2,则z=-,所以n=(0,2,-)为平面ABE的一个法向量.因为PD=,显然PD=n.因为PD∥n,所以PD⊥平面ABE,即PD⊥平面ABE.考点3 利用空间向量解决探索性问题——应用性如图,在正方体ABCD A1B1C1D1中,E是棱DD1的中点.在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.解:在棱C1D1上存在一点F(C1D1的中点),使B1F∥平面A1BE.证明如下:依题意,建立如图所示的空间直角坐标系,设正方体ABCDA1B1C1D1的棱长为1,则A1(0,0,1),B(1,0,0),B1(1,0,1),E,所以BA1=(-1,0,1),BE=.设n=(x,y,z)是平面A1BE的一个法向量,则由得所以x=z,y=z.取z=2,得n=(2,1,2).设棱C1D1上存在点F(t,1,1)(0≤t≤1)满足条件,又因为B1(1,0,1),所以B1F=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE⇔B1F·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为C1D1的中点.即说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.向量法解决与垂直、平行有关的探索性问题的思路在四棱锥PABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.(1)求证:EF⊥CD;(2)在平面PAD内是否存在一点G,使GF⊥平面PCB?若存在,求出点G坐标;若不存在,试说明理由.(1)证明:由题意知,DA,DC,DP两两垂直.如图所示,以DA,DC,DP所在直线分别为x轴、y轴、z轴建立空间直角坐标系.设AD=a,则D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),E,P(0,0,a),F,所以EF=,DC=(0,a,0).因为EF·DC=0,所以EF⊥DC,从而得EF⊥CD.(2)解:假设存在满足条件的点G,设G(x,0,z),则FG=.若使GF⊥平面PCB,则由FG·CB=·(a,0,0)=a=0,得x=.由FG·CP=·(0,-a,a)=+a=0,得z=0,所以点G坐标为,故存在满足条件的点G,且点G为AD的中点.。
高考数学复习立体几何中的向量方法
高考数学复习立体几何中的向量方法一、定义向量(Vector)是数量的一种,表示有方向和大小的量。
它是由两个实数构成的有序对,可以用一个点作为起点,另一个点作为终点去表示。
向量用大写字母表示,例如标准格式:$$\vec{A}=\left(\begin{array}{ccc}A_x\\A_y\\A_z\end{array}\right)$$ 其中A_x、A_y、A_z分别表示向量A的x轴、y轴、z轴的分量。
二、向量的加法和减法1、向量的加法:向量的加法指两个向量相加,相加的结果即为这两个向量的矢量和,而不是数字的和,表示为:$$\vec{A}+\vec{B}=\left(\begin{array}{ccc}A_x+B_x\\A_y+B_y\\A_z+B_z\end{array}\right)$$2、向量的减法:向量的减法指把第二个向量变成相反方向,然后与第一个向量进行加法,表示为:$$\vec{A}-\vec{B}=\left(\begin{array}{ccc}A_x-B_x\\A_y-B_y\\A_z-B_z\end{array}\right)$$三、向量的数乘1、向量的数乘指把向量乘以一个实数,表示为:$$k\vec{A}=\left(\begin{array}{ccc}k\cdot A_x\\k\cdot A_y\\k\cdot A_z\end{array}\right)$$四、向量的点积1、向量的点积是把两个向量乘以一个实数,表示为:$$\vec{A}\cdot \vec{B}=A_x\cdot B_x + A_y\cdot B_y + A_z\cdotB_z$$五、向量的叉积\vec{i} & \vec{j} & \vec{k}\\A_x&A_y&A_z\\B_x&B_y&B_z\end{array}\right,$$六、向量的应用1、在中学地理中可以通过向量的加减法求解地图上定点之间的距离;。
数学一轮复习第七章立体几何第7讲立体几何中的向量方法学案含解析
第7讲立体几何中的向量方法[考纲解读]1。
理解直线的方向向量及平面的法向量,并能用向量语言表述线线、线面、面面的平行和垂直关系.(重点)2.能用向量方法证明立体几何中有关线面位置关系的一些简单定理,并能用向量方法解决线线、线面、面面的夹角的计算问题.(难点)[考向预测]从近三年高考情况来看,本讲为高考必考内容.预测2021年高考将会以空间向量为工具证明平行与垂直以及进行空间角的计算.试题以解答题的形式呈现,难度为中等偏上。
1.用向量证明空间中的平行关系(1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔错误!v1∥v2⇔v1=λv2.(2)设直线l的方向向量为v,与平面α共面的两个不共线向量为v1和v2,则l∥α或l⊂α⇔存在两个实数x,y,使v=错误!x v1+y v2。
(3)设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔错误!v⊥u⇔错误!v·u=0。
(4)设平面α和β的法向量分别为u1,u2,则α∥β⇔错误!u1∥u2⇔u1=λu2。
2.用向量证明空间中的垂直关系(1)设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔错误!v1⊥v2⇔错误!v1·v2=0.(2)设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔错误!v∥u⇔错误!v=λu.(3)设平面α和β的法向量分别为u1和u2,则α⊥β⇔错误!u1⊥u2⇔错误!u1·u2=0。
3.两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则4.直线和平面所成角的求法如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sinφ=|cosθ|=错误!错误!,φ的取值范围是[0°,90°].5.求二面角的大小(1)如图①,AB,CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=□01〈错误!,错误!〉.(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cosθ|=错误!|cos<n1,n2〉|=错误!错误!,二面角的平面角大小是向量n1与n2的夹角(或其补角).1.概念辨析(1)若空间向量a平行于平面α,则a所在直线与平面α平行.()(2)两异面直线夹角的范围是(0°,90°],直线与平面所成角的范围是[0°,90°],二面角的范围是[0°,180°].()(3)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.()(4)若二面角α-a-β的两个半平面α,β的法向量n1,n2所成角为θ,则二面角α-a-β的大小是180°-θ.()答案(1)×(2)√(3)×(4)×2.小题热身(1)若直线l的方向向量为a=(1,0,2),平面α的法向量为n =(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交但不垂直答案B解析因为a=(1,0,2),n=(-2,0,-4),所以n=-2a,所以a∥n,所以l⊥α.(2)已知向量错误!=(2,2,1),错误!=(4,5,3),则平面ABC的单位法向量是()A。
高三数学复习课件:立体几何中的向量方法
=
解析
√3
√8
=
关闭
√6
4
.
答案
-10-
知识梳理
知识梳理
1
双基自测
2
3
4
5
3.
关闭
不妨令 CB=1,则 CA=CC1=2.
已知直三棱柱ABC-A
可得 O(0,0,0),B(0,0,1),C
1(0,2,0),A(2,0,0),B1(0,2,1),
1B1C1在空间直角坐标系中,如图所示,且
n1与n2的夹角的大小就是二面角的大小.
-5-
知识梳理
知识梳理
双基自测
1
2
3
4
-6-
5
4.利用空间向量求距离
(1)两点间的距离
设点 A(x1,y1,z1),点 B(x2,y2,z2),则
|AB|=||= (1 -2 )2 + (1 -2 )2 + (1 -2 )2 .
(2)点到平面的距离
(2)平面的法向量的确定:设 a,b 是平面 α 内两个不共线向量,n
· = 0,
为平面 α 的一个法向量,则可用方程组
求出平面 α 的一个
· = 0
法向量 n.
-8-
知识梳理
知识梳理
双基自测
1
2
3
4
5
1.下列结论正确的打“√”,错误的打“×”.
(1)直线的方向向量是唯一确定的. (
)
(2)平面的单位法向量是唯一确定的. (
√5
关闭
A ∴直线 BC1 与直线 AB1 夹角的余弦值为 .
5
解析
答案
-11-
知识梳理
立体几何中的向量方法——求空间角与距离-2023届高考数学一轮复习(新高考)
考点专练38:立体几何中的向量方法一、选择题1.在三棱锥A-BCD 中,平面ABD 与平面BCD 的法向量分别为n 1,n 2.若〈n 1,n 2〉=π3,则二面角A-BD-C 的大小为( ) A .π3 B .2π3 C .π3或2π3 D .π6或π32.如图,点A ,B ,C 分别在空间直角坐标系Oxyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2, 1, 2),设二面角C-AB-O 的大小为θ,则cos θ等于( )A .43B .53C .23D .-233.如图,在长方体ABCD-A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A .33535B . 277C .33D .244.在正方体ABCD-A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A .12B .23C .33D .225.在直三棱柱ABC-A 1B 1C 1中,AA 1=2,二面角B-AA 1-C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A .7B .6C .5D .26.(多选)设三棱锥V-ABC 的底面是正三角形,侧棱长均相等,P 是棱V A 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P-AC-B的平面角为γ,则α,β,γ大小关系正确的是() A.α>β B.α=βC.γ>β D.γ≥β二、填空题7.如图,在正方形ABCD中,EF∥AB.若沿EF将正方形折成一个二面角后,AE∶ED∶AD=1∶1∶2,则AF与CE所成角的余弦值为________→8.正四棱锥P-ABCD,底面四边形ABCD是边长为2的正方形,PA=5,其内切球为球G,平面α过AD与棱PB,PC分别交于点M,N,且与平面ABCD所成二面角为30°,则平面α截球G所得的图形的面积为___________三、解答题9.(2021·全国甲卷)已知直三棱柱ABC -A1B1C1中,侧面AA1B1B为正方形,AB =BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE;(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小?10.如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.(1)求证:平面EAC⊥平面PBC;(2)若二面角P-AC-E的余弦值为63,求a的值;(3)在(2)的条件下求直线PA与平面EAC所成角的正弦值.11.如图所示,在四棱锥P-ABCD中,四边形ABCD为平行四边形,AB⊥AC,PA⊥平面ABCD,且PA=AB=3,AC=2,点E是PD的中点.(1)求证:PB∥平面AEC.(2)在线段PB上(不含端点)是否存在一点M,使得二面角M-AC-E的余弦值为10 10若存在,确定M的位置;若不存在,请说明理由.12.如图,已知△ABC是以AC为底边的等腰三角形,将△ABC绕AB转动到△PAB位置,使得平面PAB⊥平面ABC,连接PC,E,F分别是PA,CA的中点.(1)证明:EF⊥AB;(2)在①S△ABC=33,②点P到平面ABC的距离为3,③直线PB与平面ABC所成的角为60°这三个条件中选择两个作为已知条件,求二面角E-BF-A的余弦值.13.请从下面三个条件中任选一个,补充在下面的横线上,并作答.①AB⊥BC,②FC与平面ABCD所成的角为π6,③∠ABC=π3.如图,在四棱锥P ABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PA =AB=2,PD的中点为F.(1)在线面AB上是否存在一点G,使得AF∥平面PCG?若存在,指出G在AB 上的位置并给以证明;若不存在,请说明理由.(2)若________,求二面角F-AC-D的余弦值.参考答案:一、选择题1.C2.C3.A4.B5.A6.AC 二、填空题7.答案:45 8.答案:π3 三、解答题9.(1)证明:因为侧面AA 1B 1B 为正方形,所以A 1B 1⊥BB 1.又BF ⊥A 1B 1,而BF ∩BB 1=B ,BF ⊂平面BB 1C 1C ,BB 1⊂平面BB 1C 1C ,所以A 1B 1⊥平面BB 1C 1C .又ABC -A 1B 1C 1是直三棱柱,BC =AB ,所以平面BB 1C 1C 为正方形. 取BC 中点为G ,连接B 1G ,EG . 因为F 为CC 1的中点,所以BF ⊥B 1G . 又BF ⊥A 1B 1,且EG ∥A 1B 1,所以BF ⊥EG .又B 1G ∩EG =G ,B 1G ⊂平面EGB 1D ,EG ⊂平面EGB 1D ,所以BF ⊥平面EGB 1D . 又DE ⊂平面EGB 1D ,所以BF ⊥DE .(2)解:因为侧面AA 1B 1B 是正方形,所以AB ∥A 1B 1,由(1)知,A 1B 1⊥平面BB 1C 1C , 所以AB ⊥平面BB 1C 1C .又BC ⊂平面BB 1C 1C ,所以AB ⊥BC .设B 1D =x ,以B 为原点,BA ,BC ,BB 1所在的直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则E(1,1,0),F(0,2,1),D(x,0,2),所以EF →=(-1,1,1),FD →=(x ,-2,1).易知,平面BB 1C 1C 的一个法向量可为n 1=(1,0,0).设平面DFE 的法向量n 2=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·FD →=0,即⎩⎪⎨⎪⎧-x 1+y 1+z 1=0,xx 1-2y 1+z 1=0.不妨取z 1=1,则x 1=32-x ,y 1=x +12-x,即n 2=⎝⎛⎭⎫32-x ,x +12-x ,1.设〈n 1,n 2〉=θ,则cos θ=⎪⎪⎪⎪⎪⎪32-x⎝⎛⎭⎫32-x 2+⎝⎛⎭⎫x +12-x 2+1=11+⎝⎛⎭⎫32-x -12⎝⎛⎭⎫32-x 2+1⎝⎛⎭⎫32-x 2.令32-x=t ,则cos θ=11+(t -1)2t 2+1t2=12t 2-2t+2=12()1t -122+32.当1t =12时,(cos θ)max =23=63,此时(sin θ)min =33. 故当B 1D =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小.10.(1)证明:因为PC ⊥平面ABCD ,AC ⊂平面ABCD ,所以AC ⊥PC . 因为AB =4,AD =CD =2,所以AC =22, 取AB 的中点为N ,则可得CN ∥AD ,则CN ⊥AB ,所以BC =CN 2+NB 2=22,所以AC 2+BC 2=AB 2,所以AC ⊥BC . 又BC ∩PC =C ,所以AC ⊥平面PBC .因为AC ⊂平面EAC ,所以平面EAC ⊥平面PBC .(2)解:以点C 为原点,CN →,CD →,CP →分别为x 轴、y轴、z 轴正方向,建立空间直角坐标系,则C(0,0,0),A(2,2,0),B(2,-2,0),设P(0,0,2a)(a>0),则E(1,-1,a),CA →=(2,2,0),CP →=(0,0,2a),CE →=(1,-1,a).设m =(x 0,y 0,z 0)为平面PAC 的法向量,则m ·CA →=m ·CP →=0,即⎩⎪⎨⎪⎧2x 0+2y 0=0,2az 0=0,取m =(1,-1,0).设n =(x ,y ,z)为平面EAC 的法向量,则n ·CA →=n ·CE →=0,即⎩⎪⎨⎪⎧x +y =0,x -y +az =0,取x =a ,y =-a ,z =-2,则n =(a ,-a ,-2). 依题意|cos 〈m ,n 〉|=|m ·n ||m ||n |=a a 2+2=63,则a =2. (3)解:由(2)可得n =(2,-2,-2),PA →=(2,2,-4).设直线PA 与平面EAC 所成角为θ,则sin θ=|〈PA →,n 〉|=|PA →·n ||PA →||n |=23,即直线PA 与平面EAC 所成角的正弦值为23.11.(1)证明:连接BD 交AC 于点F ,连接EF .在△PBD 中,由已知得EF ∥PB . 又EF ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .(2)解:由题意知,AC ,AB ,AP 两两垂直,所以以A 为坐标原点,AC ,AB ,AP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Axyz .则C(2,0,0),D(2,-3,0),P(0,0,3),B(0,3,0),E ⎝⎛⎭⎫1,-32,32. 设M(x 0,y 0,z 0),PM →=λ PB →(0<λ<1),则(x 0,y 0,z 0-3)=λ(0,3,-3),得M(0,3λ,3-3λ). 设平面AEC 的法向量为n 1=(x 1,y 1,z 1),由n 1·AE →=0,n 1·AC →=0,AE →=⎝⎛⎭⎫1,-32,32,AC →=(2,0,0),得⎩⎪⎨⎪⎧x 1-32y 1+32z 1=0,2x 1=0,取y 1=1,得n 1=(0,1,1).设平面MAC 的法向量为n 2=(x 2,y 2,z 2).由n 2·AM →=0,n 2·AC →=0,AM →=(0,3λ,3-3λ),AC →=(2,0,0),得⎩⎪⎨⎪⎧3λy 2+(3-3λ)z 2=0,2x 2=0,取z 2=1,得n 2=⎝⎛⎭⎫0,1-1λ,1.设二面角M-AC-E 的大小为θ.因为二面角M-AC-E 的余弦值为1010,所以θ为锐角,则cos θ=|n 1·n 2||n 1||n 2|=2-1λ2·⎝⎛⎭⎫1-1λ2+1=1010, 化简得9λ2-9λ+2=0,解得λ=13或λ=23.易知当λ=23时,θ为钝角,所以λ=13,所以PM →=13PB →.故存在点M ,当PM →=13PB →时,二面角M-AC-E 的余弦值为1010.12.(1)证明:如图(1),过点E 作ED ⊥AB ,垂足为D ,连接DF .由题意知,△PAB ≌△CAB ,易证△EDA ≌△FDA ,所以∠EDA =∠FDA =π2,即FD ⊥AB .因为ED ⊥AB ,ED ∩FD =D ,所以AB ⊥平面EFD . 又因为EF ⊂平面EFD ,所以EF ⊥AB .图(1)(2)解:过点P 作PO ⊥AB ,垂足为O ,连接CO ,则CO ⊥AB .因为平面PAB ⊥平面ABC ,所以PO ⊥平面ABC .以O 为坐标原点,以OA ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴建立如图(2)所示的空间直角坐标系.图(2)设AB =a ,∠ABC =θ,由条件①得S △ABC =12a 2sin θ=33,由条件②得PO =asin θ=3,由条件③得∠PBO =60°,即θ=120°.若选条件①②,可求得a =23,B(3,0,0),A(33,0,0),P(0,0,3),C(0,3,0). 因为E ⎝⎛⎭⎫332,0,32,f ⎝⎛⎭⎫332,32,0,所以BF →=⎝⎛⎭⎫32,32,0,BE →=⎝⎛⎭⎫32,0,32.设平面BEF 的一个法向量m =(x ,y ,z),由⎩⎪⎨⎪⎧m ·BF →=0,m ·BE →=0,得⎩⎨⎧32x +32y =0,32x +32z =0,取m =(-3,1,1),又易知平面BFA 的一个法向量n =(0,0,1), 故cos 〈m ,n 〉=m ·n |m ||n |=15=55,所以二面角E-BF-A 的余弦值为55.若选①③或②③均可求得a =23,下同.13.解:(1)在线段AB 上存在点G ,使得AF ∥平面PCG ,且G 为AB 的中点. 证明如下:设PC 的中点为H ,连接FH ,GH ,如图.易证四边形AGHF 为平行四边形, 则AF ∥GH .又GH ⊂平面PCG ,AF ⊄平面PGC ,所以AF ∥平面PGC . (2)选择①.因为PA ⊥平面ABCD ,所以PA ⊥AB ,PA ⊥AD . 由题意可知,AB ,AD ,AP 两两垂直,故以A 为坐标原点,AB →,AD →,AP →的方向分别为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.因为PA =AB =2,所以A(0,0,0),C(2,2,0),D(0,2,0),P(0,0,2),F(0,1,1), 所以AF →=(0,1,1),CF →=(-2,-1,1).设平面FAC 的法向量为u =(x ,y ,z),则⎩⎪⎨⎪⎧u ·AF →=0,u ·CF →=0,即⎩⎪⎨⎪⎧y +z =0,-2x -y +z =0.令y =1,则x=-1,z =-1,则u =(-1,1,-1). 易知平面ACD 的一个法向量为v =(0,0,2),设二面角F AC D 的平面角为θ,则cos θ=|u·v ||u||v |=33,即二面角F AC D 的余弦值为33. 选择②.设BC 中点E ,连接AE ,取AD 的中点M ,连接FM ,CM ,则FM ∥PA ,且FM =1. 因为PA ⊥平面ABCD ,所以FM ⊥平面ABCD ,FC 与平面ABCD 所成的角为∠FCM , 故∠FCM =π6.在直角三角形FCM 中,CM =3.又因为CM =AE ,所以AE 2+BE 2=AB 2, 所以BC ⊥AE ,所以AE ,AD ,AP 两两垂直.故以A 为坐标原点,AE →,AD →,AP →的方向分别为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.因为PA =AB =2,所以A(0,0,0),C(3,1,0),D(0,2,0),P(0,0,2),F(0,1,1),所以AF →=(0,1,1),CF →=(-3,0,1).设平面FAC 的法向量为u =(x ,y ,z),则⎩⎪⎨⎪⎧u ·AF →=0,u ·CF →=0,即⎩⎨⎧y +z =0,-3x +z =0.令x =3,则y =-3,z =3,则u =(3,-3,3).易知平面ACD 的一个法向量为v =(0,0,2). 设二面角F AC D 的平面角为θ,则cos θ=|u·v ||u||v |=217,即二面角FACD 的余弦值为217. 选择③.因为PA ⊥平面ABCD ,所以PA ⊥BC . 取BC 中点E ,连接AE .因为底面ABCD 是菱形,∠ABC =π3,所以△ABC 是正三角形.又E 是BC 的中点,所以BC ⊥AE ,所以AE ,AD ,AP 两两垂直.故以A 为坐标原点,AE →,AD →,AP →的方向分别为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.因为PA =AB =2,所以A(0,0,0),C(3,1,0),D(0,2,0),P(0,0,2),F(0,1,1),所以AF →=(0,1,1),CF →=(-3,0,1).设平面FAC 的法向量为u =(x ,y ,z),则⎩⎪⎨⎪⎧ u ·AF →=0,u ·CF →=0,即⎩⎨⎧y +z =0,-3x +z =0.令x =3,则y =-3,z =3,则u =(3,-3,3). 易知平面ACD 的一个法向量为v =(0,0,2),设二面角FAC D 的平面角为θ,则cos θ=|u·v ||u||v |=217,即二面角F AC D 的余弦值为217。
2022年新高考数学总复习:立体几何中的向量方法
2022年新高考数学总复习:立体几何中的向量方法知识点一两个重要的向量(1)直线的方向向量直线的方向向量是指和这条直线平行(或重合)的非零向量,一条直线的方向向量有__无数__个.(2)平面的法向量直线l ⊥平面α,取直线l 的方向向量,则这个向量叫做平面α的法向量.显然一个平面的法向量有__无数__个,它们是共线向量.知识点二空间位置关系的向量表示位置关系向量表示直线l 1,l 2的方向向量分别为n 1,n 2l 1∥l 2n 1∥n 2⇒n 1=λn 2l 1⊥l 2n 1⊥n 2⇔n 1·n 2=0直线l 的方向向量为n ,平面α的法向量为ml ∥αn ⊥m ⇔m ·n =0l ⊥αn ∥m ⇔n =λm 平面α、β的法向量分别为n 、mα∥βn ∥m ⇔n =λm α⊥βn ⊥m ⇔n ·m =0知识点三两条异面直线所成角的求法设两条异面直线a ,b 的方向向量分别为a ,b ,其夹角为θ,则cos φ=|cos θ|=__|a ·b ||a ||b |__(其中φ为异面直线a ,b 所成的角).知识点四直线和平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,向量e 与n 的夹角为θ,则有sin φ=|cos θ|=__|n ·e ||n ||e |__.知识点五求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉__.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=__|n 1·n 2||n 1||n 2|__,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).知识点六利用空间向量求距离(1)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为d =|AB →·n ||n |.(2)线面距、面面距均可转化为点面距进行求解.注意体积法在求点到平面距离时的应用.归纳拓展1.直线的方向向量的确定:l 是空间一直线,A ,B 是l 上任意两点,则AB →及与AB →平行的非零向量均为直线l 的方向向量.2.平面的法向量的确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求n ·a =0,n ·b =0.3.若二面角A -BC -D 的大小为α,平面ABC 内的直线l 与平面BCD 所成角为β,则α≥β,当l ⊥BC 时,取等号.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.(×)(2)平面的单位法向量是唯一确定的.(×)(3)若两平面的法向量平行,则两平面平行.(√)(4)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.(×)(5)两个平面的法向量所成的角是这两个平面所成的角.(×)(6)若空间向最a 平行于平面α,则a 所在直线与平面a 平行.(×)题组二走进教材2.(必修2P 111T3)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是__垂直__.[解析]以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴建立空间直角坐标系,如图所示.设正方体的棱长为1,则A (0,0,0),,1,12,0,AM →·ON →,1,-12,0,∴ON 与AM 垂直.3.(必修2P 117A 组T4)如图,在正三棱柱ABC -A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角是__π6__.[解析]分别取AC 、A 1C 1的中点D 、D 1,连接BD ,D 1D ,易知D 1D ⊥平面ABC ,且BD ⊥AC ,故以D 为坐标原点,AC 、DB 、DD 1所成的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.易知0,32,0C 1-12,0,2∴C 1B →=12,32,-2,设BC 1与侧面ACC 1A 1所成的角为θ,∵平面ACC 1A 1的一个法向量为n =(0,1,0),∴sin θ=|C 1B →·n |C 1B →|·|n ||=323×1=12,∴θ=π6.题组三走向高考4.(2020·新高考Ⅰ)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA垂直的平面,在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为(B)A .20°B .40°C .50°D .90°[解析]由题意作出如图所示的截面图,设所求角为α,由图易知α=40°,故选B .5.(2019·浙江)如图,已知三棱柱ABC-A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1A=A1C=AC,E,F分别是AC,A1B1的中点.(1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.[解析]解法一:(1)证明:连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC,又平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.所以BC⊥平面A1EF.因此EF⊥BC.(2)取BC的中点G,连接EG,GF,则四边形EGFA1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGFA1为矩形.由(1)得BC⊥平面EGFA1,则平面A1BC⊥平面EGFA1,所以EF在平面A1BC上的射影在直线A1G上.连接A1G交EF于O,则∠EOG是直线EF与平面A1BC所成的角,不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3.由于O 为A 1G 的中点,故EO =OG =A 1G 2=152,所以cos ∠EOG =EO 2+OG 2-EG 22EO ·OG=35.因此,直线EF 与平面A 1BC 所成角的余弦值是35.解法二:(1)证明:连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E -xyz .不妨设AC =4.则A 1(0,0,23),B (3,1,0),B 1(3,3,23),,32,C (0,2,0).因此,EF →,32,BC →=(-3,1,0).由EF →·BC →=0得EF ⊥BC .(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23).设平面A 1BC 的法向量为n =(x ,y ,z ).·n =0,1C ·n ,-3x +y =0,-3z =0.取n =(1,3,1),故sin θ=|cos 〈EF →,n 〉|=|EF →·n ||EF →|·|n |=45.因此,直线EF 与平面A 1BC 所成的角的余弦值为35.考点突破·互动探究考点一利用向量证明空间的平行与垂直——自主练透例1(2020·山东青岛胶州实验学校期中)如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,AB ∥CD ,AB ⊥BC ,AB =2,PA =PD =CD =BC =1,平面PAD ⊥平面ABCD ,E 为AD 的中点.(1)求证:PA ⊥BD ;(2)在线段AB 上是否存在一点G ,使得直线BC ∥平面PEG ?若存在,请证明你的结论;若不存在,请说明理由.[解析]取BA 的中点H ,连EH ,在梯形ABCD 中,由题意易知EH ⊥AD ,∵PA =PD ,E 为AD 的中点,∴PE ⊥AD ,又平面PAD ⊥平面ABCD ,∴PE ⊥平面ABCD ,∴PE ⊥EH ,PE ⊥AD ,∴AE 、EH 、EP 两两垂直,如图建立空间直角坐标系,则,00,-22,2,-22,0,E (0,0,0),-2,22,(1)PA →=(22,0,-22),BD →=(0,-2,0),∴PA →·BD →=22×0+0×(-2)0=0,∴PA →⊥BD →,即PA ⊥BD .(2)设线段AB 上存在点G 满足条件,则AG →=λAB →=(-2λ,2λ,0)(0≤λ≤1),EG →=AG →-AE →=(-2λ,2λ,0)-22,0,-2λ+22,2λ,且BC →=mEG →+nPE →,-22,-22,-2λm +22m ,2λm ,-22n+22m =-22,=-22,解得λ=14.∴存在点G ,当AG =14AB 时,BC ∥平面PEG .注:本题也可用几何法求解,或求平面PEG 的法向量n ,利用n ·BC →=0⇔n ⊥BC →⇔BC ∥平面PEG 判断解答.名师点拨](1)建立空间直角坐标时尽可能地利用图形中的垂直关系,要准确写出相关点的坐标,进而确定向量的坐标.(2)用向量法证平行问题的类型及常用方法线线平行证明两直线的方向向量共线线面平行①证明该直线的方向向量与平面的某一法向量垂直②证明该直线的方向向量与平面内某直线的方向向量平行③证明该直线的方向向量可以用平面内的两个不共线的向量表示面面平行①证明两平面的法向量平行(即为共线向量)②转化为线面平行、线线平行问题(3)利用向量法证垂直问题的类型及常用方法线线垂直问题证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直问题直线的方向向量与平面的法向量共线,或利用线面垂直的判定定理转化为证明线线垂直面面垂直问题两个平面的法向量垂直,或利用面面垂直的判定定理转化为证明线面垂直〔变式训练1〕如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.(1)求证:平面A 1B 1D ⊥平面ABD ;(2)求证:平面EGF ∥平面ABD .[证明]以B 为坐标原点,BA ,BC ,BB 1所在直线分别为x 轴,y 轴,z 轴建立如图所示空间直角坐标系,则B (0,0,0),D (0,2,2),B 1(0,0,4),E (0,0,3),F (0,1,4).设BA =a ,则A (a,0,0),1,A 1(a ,0,4).(1)因为BA →=(a,0,0),BD →=(0,2,2),B 1D →=(0,2,-2),所以B 1D →·BA →=0,B 1D →·BD →=0.所以B 1D →⊥BA →,B 1D →⊥BD →,即B 1D ⊥BA ,B 1D ⊥BD .又BA ∩BD =B ,所以B 1D ⊥平面ABD .因为B 1D ⊂平面A 1B 1D ,所以平面A 1B 1D ⊥平面ABD .(2)证法一:因为EG →1,EF →=(0,1,1),B 1D →=(0,2,-2),所以B 1D →·EG →=0,B 1D →·EF →=0.所以B 1D ⊥EG ,B 1D ⊥EF .因为EG ∩EF =E ,所以B 1D ⊥平面EGF .又由(1)知B 1D ⊥平面ABD ,所以平面EGF ∥平面ABD .证法二:∵GF →-a2,0,GF →=-12BA →,又GF ⊄平面ABD ,AB ⊂平面ABD ,∴GF ∥平面ABD ,同理EF ∥平面ABD ,又GF ∩EF =F ,GF ⊂平面EGF ,EF ⊂平面EGF ,∴平面EGF ∥平面ABD .考点二利用向量求空间的角——多维探究角度1向量法求异面直线所成的角例2(2020·豫南豫北精英对抗赛)在四面体ABCD 中,CA =CB =CD =BD =2,AB =AD =2,则异面直线AB 与CD 所成角的余弦值为(B)A .23B .24C .144D .-24[解析]取BD 的中点O ,连AO ,OC ,由CA =CB =CD =BD =2,AB =AD =2,得AO ⊥BD ,CO ⊥BD ,且OC =3,AO =1.在△AOC 中,AC 2=AO 2+OC 2,故AO ⊥OC ,又知BD ∩OC =O ,因此AO ⊥平面BCD ,以OB ,OC ,OA 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则A (0,0,1),B (1,0,0),C (0,3,0),D (-1,0,0),∴AB →=(1,0,-1),CD →=(-1,-3,0),设异面直线AB 与CD 所成角为θ,则cos θ=|AB →·CD →||AB →||CD →|=12×1+3=24,即异面直线AB 与CD 所成角的余弦值为24,故选B .名师点拨](1)求异面直线所成角的思路:①选好基底或建立空间直角坐标系;②求出两直线的方向向量v 1,v 2;③代入公式|cos 〈v 1,v 2〉|=|v ·v 2||v 1||v 2|求解.(2)两异面直线所成角的关注点:两异面直线所成角的范围是θ,π2,两向量的夹角的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.角度2向量法求线面角例3(2021·浙江联考)如图,底面ABCD 为菱形,AP ⊥平面ABCD ,AP ∥DE ,∠BAD =23π,PA =AD =2DE .(1)求证:BD ∥平面PEC ;(2)求直线DP 与平面PEC 所成角的正弦值.[解析]解法一:连AC 交BD 于O ,∵四边形ABCD 为菱形,∴AC ⊥BD ,又∠BAD =2π3,∴△ABC 为正三角形,以点O 为坐标原点,建立如图所示的空间直角坐标系.设PA =AD =2DE =2,则易得点C (0,1,0),D (-3,0,0),P (0,-1,2),E (-3,0,1),∴DP →=(3,-1,2),CP →=(0,-2,2),CE →=(-3,-1,1).设平面PEC 的法向量为n =(x ,y ,z ),·n =0,·n =0,2y +2z =0,-3x -y +z =0,令y =1,∴n =(0,1,1).(1)∵DB →=(23,0,0),∴DB →·n =0,即BD →⊥n ,又BD ⊄平面PCE ,∴BD ∥平面PCE .(2)设直线DP 与平面PEC 所成角为θ,∴sin θ=|cos 〈DP →,n 〉|=|DP →·n|DP →|·|n ||=14.即直线DP 与平面PEC 所成角的正弦值为14.解法二:(1)连接AC 交BD 于点O ,取PC 的中点G ,连接EG ,GO ,则G ,O分别为PC ,AC 的中点,故GO ∥PA ,且GO =12PA .∵AP ∥DE ,PA =2DE ,∴GO ∥DE ,GO =DE ,∴四边形EDOG 为平行四边形,∴EG ∥DO ,即EG ∥BD .又∵EG ⊂平面PEC ,BD ⊄平面PEC ,∴BD ∥平面PEC .(2)连接DP .∵AP ⊥平面ABCD ,∴AP ⊥AD ,AP ⊥AC ,∴△PAD ,△PAC 为直角三角形,且PA ⊥平面ABCD ,∵AP ∥DE ,∴DE ⊥平面ABCD ,∴DE ⊥CD ,∴△EDC 为直角三角形.又PA =AD =2DE ,不妨设PA =AD =2DE =2,∴DP =22,在直角梯形PADE 中,PE =5.∵底面ABCD 为菱形,DC =DA =2,∴EC =5,S △EDC =1.∵∠DAB =23π,∴AC =2.在Rt △PAC 中,PC =22,∴S △PEC =6,∵AP ∥DE ,∴AP ∥平面DCE ,∵V P -EDC =V A -EDC ,又V D -PEC =V P -EDC ,∴V D -PEC =V A -EDC ,过点A 作AH ⊥DC 于点H ,易得AH ⊥平面EDC ,AH =3.设点D 到平面PEC 的距离为h ,故13×6·h =13×3×1,∴h =22.设DP 与平面PEC 所成角为θ,∴sin θ=h DP =2222=14.名师点拨1.线面角涉及斜线的射影,故找出平面的垂线是解题的基本思路,而这往往正是解题难点所在,故常用向量法求解斜线与平面所成角的问题,关键是确定斜线的一个方向向量a 和平面的一个法向量b ,再通过计算线面角的向量公式sin θ=|cos 〈a ,b 〉|=|a ·b ||a ||b |(θ是斜线与平面所成的角)求解,要特别注意a 和b 的夹角与线面角的关系.2.利用空间向量解答立体几何问题的步骤(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为0列出方程组,求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角.注:用体积法求出点P 到平面α的距离h ,只需再求出|PA |,则可得直线PA 与平面α所成角的余弦值cos θ=h |PA |.通过本例两种解法可看出向量法在解决立体几何有关问题中的优越性.角度3向量法求二面角例4(2021·安徽合肥调研)在三棱锥P -ABC 中,BC ⊥平面PAB ,平面PAC ⊥平面ABC .(1)证明:PA ⊥平面ABC ;(2)若D 为PC 的中点,且PA =22AB ,AB =BC ,求二面角A -BD -C 的余弦值.[解析](1)证明:过点B 作BO ⊥AC 于O .∵平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC ,BO ⊂平面ABC ,∴BO ⊥平面PAC ,∴BO ⊥PA .又∵BC ⊥平面PAB ,PA ⊂平面PAB ,∴BC ⊥PA .又∵BC ∩BO =B ,BC ,BO ⊂平面ABC ,∴PA ⊥平面ABC .(2)∵AB =BC ,BO ⊥AC ,∴O 为BC 中点.又∵D 为PC 的中点,∴DO ∥PA .由(1)知,PA ⊥平面ABC ,∴DO ⊥平面ABC ,∴DO ⊥BO ,DO ⊥AO ,∴以O 为原点,以OA →,OB →,OD →所在方向为x ,y ,z 轴正方向,建立空间直角坐标系,如图.设AB=BC=2,则AC=2,PA=4,则O(0,0,0),A(1,0,0),C(-1,0,0),B(0,1,0),P(1,0,4),D(0,0,2).设平面ABD的法向量为n1=(x1,y1,z1),∴n1⊥AB→,n1⊥AD→,n1·AB→=0,n1·AD→=0,AB→=(-1,1,0),AD→=(-1,0,2),-x1+y1=0-x1+2z1=0.设z1=1得x1=2,y1=2,∴n1=(2,2,1),设平面BCD的法向量为n2=(x2,y2,z2),∴n2⊥CB→,n2⊥DB→,n2·CB→=0,n2·DB→=0,CB→=(1,1,0),DB→=(0,1,-2),x2+y2=0y2-2z2=0.令z2=1得x2=-2,y2=2,∴n2=(-2,2,1),∴cos〈n1,n2〉=n1·n2|n1||n2|=19.∵二面角A-BD-C的平面角θ是钝角,∴cosθ=-1 9.即二面角A-BD-C的余弦值为-1 9.注:(1)注意到AB、BC、PA两两垂直,故也可以BC为x轴、BA为y轴建立坐标系求解;(2)注意到△BCD≌△BAD,故作CH⊥BD于H,连AH,则AH⊥BD,∴∠AHC即为二面角A-BD-C的平面角,令AB=BC=2,易求得CH=AH=355,∴cos∠AHC=CH2+AH2-AC22CH·AH=-1 9.名师点拨利用向量法确定二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.(3)将二面角转化为线面角求解.如图要求二面角P -AB -C ,可作PH ⊥AB ,则二面角P -AB -C 的大小即为PH 与平面ABC 所成角的大小θ,PH 易求,可用体积法求P 到平面ABC 的距离h ,则sin θ=h |PH |.〔变式训练2〕(1)(角度1)(2018·江苏高考题改编)在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q分别为A 1B 1,BC 的中点,则异面直线BP 与AC 1所成角的余弦值为__31020__.(2)(角度2)(2021·广东广州广雅中学等三校联考)如图,在梯形ABCD 中,AB ∥CD ,AD =CD =CB =2,∠ABC =60°,矩形ACFE 中,AE =2,又BF =22.①求证:BC ⊥平面ACFE ;②求直线BD 与平面BEF 所成角的正弦值.(3)(角度3)(2019·课标Ⅰ)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.①证明:MN ∥平面C 1DE ;②求二面角A -MA 1-N 的正弦值.[解析](1)如图,在正三棱柱ABC -A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以{OB →,OC →,OO 1→}为基底,建立空间直角坐标系O -xyz .因为AB =AA 1=2,所以A (0,-1,0),B (3,0,0),C 1(0,1,2).因为P 为A 1B 1的中点,所以,-12,从而BP →-32,-12,AC 1→=(0,2,2).故|cos 〈BP →,AC 1→〉|=|BP →·AC 1→||BP →|·|AC 1→|=|-1+4|5×22=31020.因此,异面直线BP 与AC 1所成角的余弦值为31020.(2)证明:①在梯形ABCD 中,AB ∥CD ,AD =CD =CB =2,∠ABC =60°,∴四边形ABCD 是等腰梯形,∠ADC =120°,∴∠DCA =∠DAC =30°,∠DCB =120°,∴∠ACB =∠DCB -∠DCA =90°,∴AC ⊥BC (也可以利用余弦定理求出AC ,BC 再证明)又∵矩形ACFE 中,CF =AE =2,又BF =22,CB =2,∴CF 2+BC 2=BF 2,∴CB ⊥CF ,又∵AC ∩CF =F ,∴BC ⊥平面ACFE .②以点C 为坐标原点,以CA 所在直线为x 轴,以CB 所在直线为y 轴,以CF 所在直线为z 轴,建立空间直角坐标系.可得C (0,0,0),B (0,2,0),F (0,0,2),D (3,-1,0),E (23,0,2).∴EF →=(-23,0,0),BF →=(0,-2,2),BD →=(3,-3,0),设平面BEF 的法向量为n =(x ,y ,z ),n ·EF →=-23x =0n ·BF →=-2y +2z =0,令y =1,则x =0,z =1,∴n =(0,1,1),∴|cos 〈BD →,n 〉|=|BD →·n ||BD →|·|n |=64,∴直线BD 与平面BEF 所成角的正弦值是64.(3)①证法一:连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1綊DC ,可得B 1C 綊A 1D ,故ME 綊ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面EDC 1,所以MN ∥平面C 1DE .证法二:∵四边形ABCD 为菱形,∠BAD =60°,连BD .则△BCD 为正三角形,又E 为BC 的中点,∴DE ⊥BC ,又DD 1⊥平面ABCD ,∴DA 、DE 、DD 1两两垂直,如图建立空间直角坐标系,则MN →=(0,-3,0),ED →=(0,-3,0),∴MN →=ED →,∴MN ∥ED ,又MN ⊄平面ABCD ,ED ⊂平面ABCD ,∴MN ∥平面ABCD .②解法一:由已知可得DE ⊥DA .以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的法向量,·A 1M →=0,·A 1A →=0.x +3y -2z =0,4z =0.可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量,·MN →=0,·A 1N →=0.-3q =0,p -2r =0.可取n =(2,0,-1).于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,所以二面角A -MA 1-N 的正弦值为105.解法二:由题意易知,A 1M =22=AM ,又AA 1=4,∴A 1M 2+AM 2=AA 21,∴AM ⊥A 1M ,∴二面角A -MA 1-N 的大小即为AM 与平面A 1MN 所成角的大小θ,又A 1M =22,MN =3,A 1N =5,∴A 1N +MN 2=A 1M ,∴A 1N ⊥MN ,取AB 的中点H ,则DH ⊥AB ,且DH =3,∵平面ABB 1A 1⊥平面ABCD ,∴DH ⊥平面ABB 1A 1,∴A 1D 的中点N 到平面ABB 1A 1的距离为32,记A 到平面A 1MN 的距离为h ,∵VN -A 1AM =VA -A 1MN ,则233=156h ,∴h =45,∴sin θ=45×22=105,即二面角A -MA 1-N 的正弦值为105.考点三,利用向量求空间的距离——师生共研例5(2021·广东广州模拟)如图,在四棱锥P -ABCD 中,底面ABCD 的边长为2的菱形,∠BAD =60°,∠APD =90°,且PA =PD ,AD =PB .(1)求证:AD ⊥PB ;(2)求点A 到平面PBC 的距离.[解析](1)证明:取AD 的中点O ,连接OP ,OB ,BD ,因为底面ABCD 为菱形,∠BAD =60°,所以AD =AB =BD .因为O 为AD 的中点,所以BO ⊥AD .在△PAD 中,PA =PD ,O 为AD 的中点,所以PO ⊥AD .因为BO ∩PO =O ,所以AD ⊥平面POB .因为PB ⊂平面POB ,所以AD ⊥PB .(2)由题意及(1)易知OP =1,BO =3,PB =2,∴OP 2+BO 2=PB 2,∴OP ⊥OB ,∴OP 、OA 、OB 两两垂直,如图建立空间直角坐标系,则A (1,0,0),B (0,3,0),C (-2,3,0),P (0,0,1),∴AP →=(-1,0,1),PB →=(0,3,-1),PC →=(-2,3,-1),设平面PBC 的法向量为n =(x ,y ,z ),n ·PB →=3y -z =0n ·PC →=-2x +3y -z =0x =0z =3y ,不妨取y =1,则n =(0,1,3),∴点A 到平面PBC 的距离d =|AP →·n ||n |=32.另解(2)(体积法):∵PA =PD ,∠APD =90°,∴PO =12AD =1,又AD ⊥PB ,BC ∥AD ,∴BC ⊥PB ,记A 到平面PBC 的距离为h ,则由V A -PBC =V P -ABC 得23h =13×12×2×2sin 120°,∴h =32,即A 到平面PBC 的距离为32.〔变式训练3〕(2021·安徽合肥质检)如图,边长为2的等边△ABC 所在平面与菱形A 1ACC 1所在平面互相垂直,A 1C =3AC 1,M 为线段AC 的中点.(1)求证:平面BMC 1⊥平面A 1BC 1;(2)求点C 到平面A 1BC 1的距离.[解析](1)因为四边形A 1ACC 1为菱形,所以A 1C ⊥AC 1.又因为A 1C =3AC 1,所以∠ACC 1=60°,即△ACC 1为等边三角形.因为AC 1=CC 1,M 为线段AC 的中点,所以AC ⊥C 1M .因为AB =BC ,M 为线段AC 的中点,所以AC ⊥BM .又因为C 1M ∩BM =M ,所以AC ⊥平面BMC 1.又因为AC ∥A 1C 1,所以A 1C 1⊥平面BMC 1.又A 1C 1⊂平面A 1BC 1,所以平面BMC 1⊥平面A 1BC 1.(2)因为平面A 1ACC 1⊥平面ABC ,交线是AC ,且C 1M ⊥AC ,所以C 1M ⊥平面ABC .以M 为原点,MB ,MC ,MC 1分别为x ,y ,z 轴建立空间直角坐标系,如图所示:C (0,1,0),B (3,0,0),C 1(0,0,3),A 1(0,-2,3),则A 1C 1→=(0,2,0),BC 1→=(-3,0,3),CC 1→=(0,-1,3),设平面A 1BC 1的法向量为n =(x ,y ,z ),·A 1C 1→=2y =0·BC 1→=-3x +3z =0,令x =1,则n =(1,0,1),∴点C 到平面A 1BC 1的距离d =|CC 1→·n ||n |=32=62.名师讲坛·素养提升利用向量法解答立体几何中的探究型问题例6(2021·山东潍坊安丘市、诸城市、高密市联考)在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,BC ∥AD ,∠ADC =90°,BC =CD =12AD =1,E 为线段AD 的中点,过BE 的平面与线段PD ,PC 分别交于点G ,F .(1)求证:GF ⊥PA ;(2)若PA =PD =2,是否存在点G ,使得直线PB 与平面BEGF 所成角的正弦值为105,若存在,请确定G 点的位置;若不存在,请说明理由.[解析](1)因为BC =12AD ,且E 为线段AD 的中点,所以BC =DE ,又因为BC ∥AD ,所以四边形BCDE 为平行四边形,所以BE ∥CD ,又因为CD ⊂平面PCD ,BE ⊄平面PCD ,所以BE ∥平面PCD ,又平面BEGF ∩平面PCD =GF ,所以BE ∥GF ,又BE ⊥AD ,且平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,所以BE ⊥平面PAD ,所以GF ⊥平面PAD ,又PA ⊂平面PAD ,所以GF ⊥PA .(2)因为PA =PD ,E 为线段AD 的中点,所以PE ⊥AD ,又因为平面PAD ⊥平面ABCD ,所以PE ⊥平面ABCD ,以E 为坐标原点,EA →的方向为x 轴正方向,建立如图所示的空间直角坐标系E -xyz ;则P (0,0,1),B (0,1,0),E (0,0,0),D (-1,0,0),则PB →=(0,1,-1),BE →=(0,-1,0),DP →=(1,0,1),设DG →=λDP →(0≤λ≤1),得G (λ-1,0,λ),所以EG →=(λ-1,0,λ),设平面BEGF 的法向量为n =(x ,y ,z ),·n =0,·n =0.=0,λ-1)x +λz =0,不妨令x =λ,可得n =(λ,0,1-λ)为平面BEGF 的一个法向量,设直线PB 与平面BEGF 所成角为α,于是有sin α=|cos 〈n ,PB →〉|=|n ·PB →|n |·|PB →||=|λ-12λ2+(λ-1)2|=105;得λ=13或λ=-1(舍),所以存在点-23,0PB 与平面BEGF 所成角的正弦值为105.故G 为DP 的靠近D 点的三等分点.名师点拨对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.〔变式训练4〕(2021·福建龙岩质检)在四棱锥P -ABCD 中,底面ABCD 为直角梯形,∠ADC =∠BCD =90°,BC =1,PD =AD =2DC =2,∠PDA =60°,且平面PAD ⊥平面ABCD .(1)求证:BD ⊥PC ;(2)在线段PA 上是否存在一点M ,使二面角M -BC -D 的大小为30°?若存在,求出PM PA 的值;若不存在,请说明理由.[解析](1)过点P 在平面PAD 内作PO ⊥AD ,垂足为O ,连接BO 、OC ,∵平面PAD ⊥平面ABCD ,∴PO ⊥平面ABCD ,∴PO ⊥BD ,∵∠PDA =60°,PD =DA =2,∴△PDA 是等边三角形,∴OD =1=BC ,∵OD ∥BC ,∠BCD =90°,∴四边形OBCD 是正方形,∴BD ⊥OC ,∵OC ∩PO =O ,∴BD ⊥平面POC ,∵PC ⊂平面POC ,∴BD ⊥PC .(2)∵PO ⊥平面ABCD ,OB ⊥AD ,如图,建立空间直角坐标系O -xyz ,则B (0,1,0),C (-1,1,0),D (-1,0,0),P (0,0,3),A (1,0,0),假设在线段PA 上存在一点M ,使二面角M -BC -D 大小为30°,设PM →=λPA →(0≤λ≤1),BP →=(0,-1,3)则BM →=BP →+PM →=(λ,-1,3-3λ),BC →=(-1,0,0),设平面MBC 的法向量为m =(x ,y ,z ),·BM →=λx -y +(3-3λ)z =0·BC →=-x =0,取m =(0,3-3λ,1),又平面ABCD 的一个法向量n =(0,0,1),∵二面角M -BC -D 大小为30°,∴cos 30°=|m ·n ||m |·|n |=1(3-3λ)2+1=32,解得λ=23或λ=43(舍),∴在线段PA 上存在点M ,满足题设条件,且PM PA =23.。
高考理科数学一轮复习(教学指导)立体几何中的向量方法
第7讲 立体几何中的向量方法一、知识梳理1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θa 与b 的夹角β范围 ⎝⎛⎦⎤0,π2 [0,π] 求法cos θ=|a·b ||a||b |cos β=a·b|a||b |2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a·n ||a||n|. 3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).常用结论利用空间向量求距离 (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2.(2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →|=|AB →·n ||n |.二、教材衍化1.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.解析:cos 〈m ,n 〉=m ·n |m ||n |=11·2=22,即〈m ,n 〉=45°.所以两平面所成二面角为45°或180°-45°=135°.答案:45°或135°2.在正方体ABCD -A 1B 1C 1D 1中,E 是C 1D 1的中点,则异面直线DE 与AC 夹角的余弦值为________.解析:如图建立空间直角坐标系,设DA =1,A (1,0,0),C (0,1,0),E ⎝⎛⎭⎫0,12,1,则AC →=(-1,1,0),DE →=⎝⎛⎭⎫0,12,1,设异面直线DE 与AC 所成的角为θ,则cos θ=|cos 〈AC →,DE →〉|=1010.答案:10103.正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为________.解析:以C 为原点建立空间直角坐标系,如图所示,得下列坐标:A (2,0,0),C 1(0,0,22).点C 1在侧面ABB 1A 1内的射影为点C 2⎝⎛⎭⎫32,32,22.所以AC 1→=(-2,0,22),AC 2→=⎝⎛⎭⎫-12,32,22,设直线AC 1与平面ABB 1A 1所成的角为θ,则cos θ=|AC 1→·AC 2→||AC 1→||AC 2→|=1+0+823×3=32.又θ∈⎣⎡⎦⎤0,π2,所以θ=π6. 答案:π6一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)两直线的方向向量的夹角就是两条直线所成的角.( )(2)已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则a ∥c ,a ⊥b .( ) (3)已知向量m ,n 分别是直线l 的方向向量和平面α的法向量,若cos 〈m ,n 〉=-12,则直线l 与平面α所成的角为120°.( )(4)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为45°.( )答案:(1)× (2)√ (3)× (4)× 二、易错纠偏常见误区|K(1)异面直线所成角的取值范围出错; (2)二面角的取值范围出错;(3)直线和平面所成的角的取值范围出错.1.已知2a +b =(0,-5,10),c =(1,-2,-2),a·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.解析:由题意得,(2a +b )·c =0+10-20=-10,即2a ·c +b ·c =-10.因为a ·c =4,所以b ·c =-18,所以cos 〈b ,c 〉=b ·c|b |·|c |=-1812×1+4+4=-12,所以〈b ,c 〉=120°,所以两直线的夹角为60°.答案:60°2.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为________.解析:以A 为坐标原点,建立如图所示的空间直角坐标系,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0),所以A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎫1,0,-12.设平面A 1ED 的法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,解得⎩⎪⎨⎪⎧y =2,z =2,故n 1=(1,2,2).又平面ABCD 的一个法向量为n 2=(0,0,1),所以cos 〈n 1·n 2〉=23,故平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.答案:233.已知向量m ,n 分别是直线l 的方向向量、平面α的法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为________.解析:设l 与α所成的角为θ,则sin θ=|cos 〈m ,n 〉|=12,所以θ=30°.答案:30°异面直线所成的角(师生共研)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面P AC ;(2)若P A =AB ,求PB 与AC 所成角的余弦值. 【解】 (1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .因为P A ⊥平面ABCD ,所以P A ⊥BD . 又因为AC ∩P A =A ,所以BD ⊥平面P AC . (2)设AC ∩BD =O .因为∠BAD =60°,P A =AB =2,所以BO =1,AO =CO = 3.如图,以O 为坐标原点,建立空间直角坐标系,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0). 所以PB →=(1,3,-2),AC →=(0,23,0). 设PB 与AC 所成角为θ,则 cos θ=⎪⎪⎪⎪⎪⎪PB →·AC →|PB →||AC →|=622×23=64. 即PB 与AC 所成角的余弦值为64.用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系.(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量.(3)利用向量的夹角公式求出向量夹角的余弦值.(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.[提醒]注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.如图,在三棱锥P-ABC中,P A⊥底面ABC,∠BAC=90°.点D,E,N 分别为棱P A,PC,BC的中点,M是线段AD的中点,P A=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)已知点H在棱P A上,且直线NH与直线BE所成角的余弦值为721,求线段AH的长.解:如图,以A为原点,分别以AB→,AC→,AP→的方向为x轴,y轴,z轴的正方向建立空间直角坐标系.依题意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)证明:DE→=(0,2,0),DB→=(2,0,-2).设n=(x,y,z)为平面BDE的法向量,则⎩⎪⎨⎪⎧n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨设z =1,可取n =(1,0,1). 又MN →=(1,2,-1),可得MN →·n =0. 因为MN ⊆/平面BDE , 所以MN ∥平面BDE .(2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ), 进而可得NH →=(-1,-2,h ),BE →=(-2,2,2). 由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12.所以,线段AH 的长为85或12.直线与平面所成的角(师生共研)如图,在几何体ACD -A 1B 1C 1D 1中,四边形ADD 1A 1与四边形CDD 1C 1均为矩形,平面ADD 1A 1⊥平面CDD 1C 1,B 1A 1⊥平面ADD 1A 1,AD =CD =1,AA 1=A 1B 1=2,E 为棱AA 1的中点.(1)证明:B 1C 1⊥平面CC 1E ;(2)求直线B 1C 1与平面B 1CE 所成角的正弦值.【解】 (1)证明:因为B 1A 1⊥平面ADD 1A 1,所以B 1A 1⊥DD 1, 又DD 1⊥D 1A 1,B 1A 1∩D 1A 1=A 1,所以DD 1⊥平面A 1B 1C 1D 1,又DD 1∥CC 1,所以CC 1⊥平面A 1B 1C 1D 1. 因为B 1C 1平面A 1B 1C 1D 1,所以CC 1⊥B 1C 1.因为平面ADD 1A 1⊥平面CDD 1C 1,平面ADD 1A 1∩平面CDD 1C 1=DD 1,C 1D 1⊥DD 1, 所以C 1D 1⊥平面ADD 1A 1.经计算可得B 1E =5,B 1C 1=2,EC 1=3,从而B 1E 2=B 1C 21+EC 21,所以在△B 1EC 1中,B 1C 1⊥C 1E . 又CC 1,C 1E 平面CC 1E ,CC 1∩C 1E =C 1,所以B 1C 1⊥平面CC 1E .(2)如图,以点A 为坐标原点,建立空间直角坐标系,依题意得A (0,0,0),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0),则CE →=(-1,1,-1),B 1C →=(1,-2,-1).设平面B 1CE 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0,消去x 得y +2z =0, 不妨设z =1,可得m =(-3,-2,1)为平面B 1CE 的一个法向量, 易得B 1C 1→=(1,0,-1),设直线B 1C 1与平面B 1CE 所成角为θ, 则sin θ=|cos 〈m ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪m ·B 1C 1→|m |·|B 1C 1→|=⎪⎪⎪⎪⎪⎪-414×2=277, 故直线B 1C 1与平面B 1CE 所成角的正弦值为277.(1)利用向量求直线与平面所成的角有两个思路:①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.(2)若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2.[提醒] 求解直线和平面所成角,要注意直线的方向向量与平面法向量的夹角和所求角之间的关系,线面角的正弦值等于两向量夹角的余弦值的绝对值.(2020·蚌埠模拟)如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PD=PB ,H 为PC 上的点,过AH 的平面分别交PB ,PD 于点M ,N ,且BD ∥平面AMHN .(1)证明:MN ⊥PC ;(2)设H 为PC 的中点,P A =PC =3AB ,P A 与平面ABCD 所成的角为60°,求AD 与平面AMHN 所成角的正弦值.解:(1)证明:如图①,连接AC 交BD 于点O ,连接PO .因为四边形ABCD 为菱形,所以BD ⊥AC ,且O 为BD 的中点. 因为PD =PB ,所以PO ⊥BD , 因为AC ∩PO =O ,且AC ,PO 平面P AC ,所以BD ⊥平面P AC .因为PC平面P AC ,所以BD ⊥PC .因为BD ∥平面AMHN ,且平面AMHN ∩平面PBD =MN ,所以BD ∥MN , 所以MN ⊥PC .(2)由(1)知BD ⊥AC 且PO ⊥BD , 因为P A =PC ,且O 为AC 的中点, 所以PO ⊥AC ,所以PO ⊥平面ABCD ,因为P A 与平面ABCD 所成的角为∠P AO ,所以∠P AO =60°,所以AO =12P A ,PO =32P A .因为P A =3AB ,所以BO =36P A .以O 为坐标原点,OA →,OD →,OP →的方向分别为x 轴,y 轴,z 轴的正方向,建立如图②所示的空间直角坐标系,记P A =2,则O (0,0,0),A (1,0,0),B ⎝⎛⎭⎫0,-33,0,C (-1,0,0),D ⎝⎛⎭⎫0,33,0,P (0,0,3),H ⎝⎛⎭⎫-12,0,32,所以BD →=⎝⎛⎭⎫0,233,0,AH →=⎝⎛⎭⎫-32,0,32,AD →=⎝⎛⎭⎫-1,33,0. 设平面AMHN 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BD →=0,n ·AH →=0,即⎩⎨⎧233y =0,-32x +32z =0,令x =2,解得y =0,z =23,所以n =(2,0,23)是平面AMHN 的一个法向量. 记AD 与平面AMHN 所成角为θ,则sin θ=|cos 〈n ,AD →〉|=⎪⎪⎪⎪⎪⎪n ·AD →|n ||AD →|=34. 所以AD 与平面AMHN 所成角的正弦值为34.二面角(师生共研)(2019·高考全国卷Ⅰ)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A -MA 1N 的正弦值.【解】 (1)证明:连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1綊DC ,可得B 1C 綊A 1D ,故ME 綊ND , 因此四边形MNDE 为平行四边形,MN ∥ED . 又MN ⊆/平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥DA .以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0). 设m =(x ,y ,z )为平面A 1MA 的法向量, 则⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0.所以⎩⎪⎨⎪⎧-x +3y -2z =0,-4z =0.可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量,则⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0. 所以⎩⎪⎨⎪⎧-3q =0,-p -2r =0.可取n =(2,0,-1).于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,所以二面角A -MA 1N 的正弦值为105.利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.(2019·高考全国卷Ⅲ)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B -CG -A 的大小.解:(1)证明:由已知得AD ∥BE ,CG ∥BE , 所以AD ∥CG ,故AD ,CG 确定一个平面, 从而A ,C ,G ,D 四点共面. 由已知得AB ⊥BE ,AB ⊥BC , 故AB ⊥平面BCGE . 又因为AB平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H . 因为EH平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°, 可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0). 设平面ACGD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧CG →·n =0AC →·n =0,即⎩⎪⎨⎪⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取为m =(0,1,0), 所以cosn ,m=n ·m |n ||m |=32. 因此二面角B -CG -A 的大小为30°.利用空间向量求距离(2020·云南师范大学附属中学3月月考)如图,在直三棱柱ABC -A 1B 1C 1中,△ABC 是边长为2的正三角形,AA 1=26,D 是CC 1的中点,E 是A 1B 1的中点.(1)证明:DE ∥平面A 1BC; (2)求点A 到平面A 1BC 的距离. 【解】(1)证明:如图,取A 1B 的中点F ,连接FC ,FE . 因为E ,F 分别是A 1B 1,A 1B 的中点, 所以EF ∥BB 1,且EF =12BB 1.又在平行四边形BB 1C 1C 中,D 是CC 1的中点,所以CD ∥BB 1,且CD =12BB 1,所以CD ∥EF ,且CD =EF .所以四边形CFED 是平行四边形,所以DE ∥CF . 因为DE ⊆/平面A 1BC ,CF平面A 1BC ,所以DE ∥平面A 1BC .(2)法一:(等体积法)因为BC =AC =AB =2,AA 1=26,三棱柱ABC -A 1B 1C 1为直三棱柱,所以V 三棱锥A 1-ABC =13S △ABC ×AA 1=13×34×22×26=2 2.又在△A 1BC 中,A 1B =A 1C =27,BC =2,BC 边上的高h = A 1B 2-⎝⎛⎭⎫12BC 2=33, 所以S △A 1BC =12BC ·h =3 3.设点A 到平面A 1BC 的距离为d ,则V 三棱锥A -A 1BC =13S △A 1BC ×d =13×33×d =3d .因为V 三棱锥A 1-ABC =V 三棱锥A -A 1BC ,所以22=3d ,解得d =263,所以点A 到平面A 1BC 的距离为263.法二:(向量法)由题意知,三棱柱ABC -A 1B 1C 1是正三棱柱.取AB 的中点O ,连接OC ,OE .因为AC =BC ,所以CO ⊥AB .又平面ABC ⊥平面ABB 1A 1,平面ABC ∩平面ABB 1A 1=AB ,所以CO ⊥平面ABB 1A 1. 因为O 为AB 的中点,E 为A 1B 1的中点,所以OE ⊥AB ,所以OC ,OA ,OE 两两垂直.如图,以O 为坐标原点,以OA ,OE ,OC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,3),A (1,0,0),A 1(1,26,0),B (-1,0,0).则BA 1→=(2,26,0),BC →=(1,0,3). 设平面A 1BC 的法向量为n =(x ,y ,z ), 则由⎩⎪⎨⎪⎧n ⊥BA 1→,n ⊥BC →,可得⎩⎪⎨⎪⎧n ·BA 1→=2x +26y =0,n ·BC →=x +3z =0,整理得⎩⎪⎨⎪⎧x +6y =0,x +3z =0,令x =6,则y =-1,z =- 2.所以n =(6,-1,-2)为平面A 1BC 的一个法向量. 而BA →=(2,0,0),所以点A 到平面A 1BC 的距离d =|BA →·n ||n |=6×26+1+2=263.求解点到平面的距离可直接转化为求向量在平面的法向量上的射影的长.如图,设点P 在平面α外,n 为平面α的法向量,在平面α内任取一点Q ,则点P 到平面α的距离d =|PQ →·n ||n |.[提醒] 该题中的第(2)问求解点到平面的距离时,利用了两种不同的方法——等体积法与向量法,显然向量法直接简单,不必经过过多的逻辑推理,只需代入坐标准确求解即可.如图,△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =23,求点A 到平面MBC 的距离.解:如图,取CD 的中点O ,连接OB ,OM ,因为△BCD 与△MCD 均为正三角形,所以OB ⊥CD ,OM ⊥CD ,又平面MCD ⊥平面BCD ,平面MCD ∩平面BCD =CD ,OM 平面MCD ,所以MO ⊥平面BCD .以O 为坐标原点,直线OC ,BO ,OM 分别为x 轴,y 轴,z 轴,建立空间直角坐标系. 因为△BCD 与△MCD 都是边长为2的正三角形, 所以OB =OM =3,则O (0,0,0),C (1,0,0),M (0,0,3), B (0,-3,0),A (0,-3,23), 所以BC →=(1,3,0). BM →=(0,3,3).设平面MBC 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ⊥BC →,n ⊥BM →得⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x +3y =0,3y +3z =0,取x =3,可得平面MBC 的一个法向量为n =(3,-1,1). 又BA →=(0,0,23),所以所求距离为d =|BA →·n ||n |=2155.[基础题组练]1.将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,AC ︵长为2π3,A 1B 1︵长为π3,其中B 1与C 在平面AA 1O 1O 的同侧.则异面直线B 1C 与AA 1所成的角的大小为( )A.π6 B .π4C.π3D .π2解析:选B.以O 为坐标原点建系如图,则A (0,1,0),A 1(0,1,1),B 1⎝⎛⎭⎫32,12,1,C⎝⎛⎭⎫32,-12,0. 所以AA 1→=(0,0,1),B 1C →=(0,-1,-1), 所以cos 〈AA 1→,B 1C →〉=AA 1→·B 1C →|AA 1→||B 1C →|=0×0+0×(-1)+1×(-1)1×02+(-1)2+(-1)2=-22,所以〈AA 1→,B 1C →〉=3π4,所以异面直线B 1C 与AA 1所成的角为π4.故选B.2.如图,已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成的角的正弦值为( )A.33535B .277C.33D .24解析:选A.如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),所以DC 1→=(0,3,1),D 1E →=(1,1,-1),D 1C →=(0,3,-1).设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E →=0,n ·D 1C →=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,即⎩⎪⎨⎪⎧x =2y ,z =3y ,取y =1,得n =(2,1,3).因为cos 〈DC 1→,n 〉=DC 1→·n |DC 1→|·|n |=(0,3,1)·(2,1,3)10×14=33535,所以DC 1与平面D 1EC 所成的角的正弦值为33535,故选A.3.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217.则该二面角的大小为( )A .150°B .45°C .60°D .120°解析:选C.如图所示,二面角的大小就是〈AC →,BD →〉. 因为CD →=CA →+AB →+BD →,所以CD →2=CA →2+AB →2+BD →2+2(CA →·AB →+CA →·BD →+AB →·BD →) =CA →2+AB →2+BD →2+2CA →·BD →,所以CA →·BD →=12[(217)2-62-42-82]=-24.因此AC →·BD →=24,cos 〈AC →,BD →〉=AC →·BD →|AC →||BD →|=12,又〈AC →,BD →〉∈[0°,180°],所以〈AC →,BD →〉=60°,故二面角为60°.4.如图,正三棱柱ABC -A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为________.解析:设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1(0,3,2),F (1,0,1), E ⎝⎛⎭⎫12,32,0,G (0,0,2), B 1F →=(1,-3,-1),EF →=⎝⎛⎭⎫12,-32,1,GF →=(1,0,-1).设平面GEF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧EF →·n =0,GF →·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =(1,3,1)为平面GEF 的一个法向量,所以|cos 〈n ,B 1F →〉|=|1-3-1|5×5=35,所以B 1F 与平面GEF 所成角的正弦值为35.答案:355.如图所示,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =AE =2.(1)求证:BD ⊥平面ACFE ;(2)当直线FO 与平面BED 所成的角为45°时,求异面直线OF 与BE 所成角的余弦值的大小.解:(1)证明:因为四边形ABCD 是菱形, 所以BD ⊥AC .因为AE ⊥平面ABCD ,BD ⊂平面ABCD , 所以BD ⊥AE .又因为AC ∩AE =A ,AC ,AE ⊂平面ACFE . 所以BD ⊥平面ACFE . (2)以O 为原点,OA ,OB 所在直线分别为x 轴,y 轴,过点O 且平行于CF 的直线为z 轴(向上为正方向),建立空间直角坐标系,则B (0,3,0),D (0,-3,0),E (1,0,2),F (-1,0,a )(a >0),OF →=(-1,0,a ).设平面EBD 的法向量为n =(x ,y ,z ), 则有⎩⎪⎨⎪⎧n ·OB →=0,n ·OE →=0,即⎩⎪⎨⎪⎧3y =0,x +2z =0,令z =1,则n =(-2,0,1),由题意得sin 45°=|cos 〈OF →,n 〉|=|OF →·n ||OF →||n |=|2+a |a 2+1·5=22, 解得a =3或a =-13(舍去).所以OF →=(-1,0,3),BE →=(1,-3,2), cos 〈OF →,BE →〉=-1+610×8=54,故异面直线OF 与BE 所成角的余弦值为54. 6.(2020·湖北十堰4月调研)如图,在三棱锥P -ABC 中,M 为AC 的中点,P A ⊥PC ,AB ⊥BC ,AB =BC ,PB =2,AC =2,∠P AC =30°.(1)证明:BM ⊥平面P AC ; (2)求二面角B -P A -C 的余弦值.解:(1)证明:因为P A ⊥PC ,AB ⊥BC ,所以MP =MB =12AC =1,又MP 2+MB 2=BP 2,所以MP ⊥MB .因为AB =BC ,M 为AC 的中点,所以BM ⊥AC , 又AC ∩MP =M ,所以BM ⊥平面P AC .(2)法一:取MC 的中点O ,连接PO ,取BC 的中点E ,连接EO ,则OE ∥BM ,从而OE ⊥AC .因为P A ⊥PC ,∠P AC =30°,所以MP =MC =PC =1. 又O 为MC 的中点,所以PO ⊥AC .由(1)知BM ⊥平面P AC ,OP ⊂平面P AC ,所以BM ⊥PO . 又BM ∩AC =M ,所以PO ⊥平面ABC .以O 为坐标原点,OA ,OE ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示,由题意知A ⎝⎛⎭⎫32,0,0,B ⎝⎛⎭⎫12,1,0,P ⎝⎛⎭⎫0,0,32,BP →=⎝⎛⎭⎫-12,-1,32,BA →=(1,-1,0),设平面APB 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·BP →=-12x -y +32z =0,n ·BA →=x -y =0,令x =1,得n =(1,1,3)为平面APB 的一个法向量, 易得平面P AC 的一个法向量为π=(0,1,0),cos 〈n ,π〉=55, 由图知二面角B -P A -C 为锐角, 所以二面角B -P A -C 的余弦值为55. 法二:取P A 的中点H ,连接HM ,HB ,因为M 为AC 的中点,所以HM ∥PC ,又P A ⊥PC ,所以HM ⊥P A . 由(1)知BM ⊥平面P AC ,则BH ⊥P A , 所以∠BHM 为二面角B -P A -C 的平面角.因为AC =2,P A ⊥PC ,∠P AC =30°,所以HM =12PC =12.又BM =1,则BH =BM 2+HM 2=52, 所以cos ∠BHM =HM BH =55,即二面角B -P A -C 的余弦值为55.7.(2020·合肥模拟)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ∥平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值. 解:(1)证明:连接AC ,交BD 于点N ,连接MN , 则N 为AC 的中点,又M 为AE 的中点,所以MN ∥EC . 因为MN ⊆/平面EFC ,EC 平面EFC ,所以MN ∥平面EFC .因为BF ,DE 都垂直底面ABCD ,所以BF ∥DE . 因为BF =DE ,所以四边形BDEF 为平行四边形, 所以BD ∥EF .因为BD ⊆/平面EFC ,EF 平面EFC , 所以BD ∥平面EFC .又MN ∩BD =N ,所以平面BDM ∥平面EFC . (2)因为DE ⊥平面ABCD ,四边形ABCD 是正方形, 所以DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系.设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4),所以DB →=(2,2,0),DM →=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB →=0,n ·DM →=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量. 因为AE →=(-2,0,4),设直线AE 与平面BDM 所成的角为θ,则 sin θ=|cos 〈n ·AE →〉|=⎪⎪⎪⎪⎪⎪n ·AE →|n |·|AE →|=4515,所以直线AE 与平面BDM 所成角的正弦值为4515.[综合题组练]1.(2020·河南联考)如图所示,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,平面P AD ⊥平面ABCD ,△P AD 是边长为4的等边三角形,BC ⊥PB ,E 是AD 的中点.(1)求证:BE ⊥PD ;(2)若直线AB 与平面P AD 所成角的正弦值为154,求平面P AD 与平面PBC 所成的锐二面角的余弦值.解:(1)证明:因为△P AD 是等边三角形,E 是AD 的中点,所以PE ⊥AD . 又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PE 平面P AD ,所以PE ⊥平面ABCD ,所以PE ⊥BC ,PE ⊥BE .又BC ⊥PB ,PB ∩PE =P ,所以BC ⊥平面PBE ,所以BC ⊥BE . 又BC ∥AD ,所以AD ⊥BE . 又AD ∩PE =E 且AD ,PE平面P AD ,所以BE ⊥平面P AD ,所以BE ⊥PD .(2)由(1)得BE ⊥平面P AD ,所以∠BAE 就是直线AB 与平面P AD 所成的角. 因为直线AB 与平面P AD 所成角的正弦值为154, 即sin ∠BAE =154 ,所以cos ∠BAE =14. 所以cos ∠BAE =AE AB =2AB =14,解得AB =8,则BE =AB 2-AE 2=215.由(1)得EA ,EB ,EP 两两垂直,所以以E 为坐标原点,EA ,EB ,EP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则点P (0,0,23),A (2,0,0),D (-2,0,0),B (0,215,0),C (-4,215,0), 所以PB →=(0,215,-23),PC →=(-4,215,-23). 设平面PBC 的法向量为m =(x ,y ,z ), 由⎩⎪⎨⎪⎧PB →·m =0,PC →·m =0,得⎩⎪⎨⎪⎧215y -23z =0,-4x +215y -23z =0,解得⎩⎪⎨⎪⎧x =0,z =5y .令y =1,可得平面PBC 的一个法向量为m =(0,1,5). 易知平面P AD 的一个法向量为n =(0,1,0), 设平面P AD 与平面PBC 所成的锐二面角的大小为θ, 则cos θ=⎪⎪⎪⎪m ·n |m ||n |=⎪⎪⎪⎪⎪⎪(0,1,5)·(0,1,0)6×1=66. 所以平面P AD 与平面PBC 所成的锐二面角的余弦值为66.2.(2020·河南郑州三测)如图①,△ABC 中,AB =BC =2,∠ABC =90°,E ,F 分别为边AB ,AC 的中点,以EF 为折痕把△AEF 折起,使点A 到达点P 的位置(如图②),且PB =BE .(1)证明:EF ⊥平面PBE ;(2)设N 为线段PF 上的动点(包含端点),求直线BN 与平面PCF 所成角的正弦值的最大值.解:(1)证明:因为E ,F 分别为边AB ,AC 的中点,所以EF ∥BC .因为∠ABC =90°,所以EF ⊥BE ,EF ⊥PE ,又BE ∩PE =E ,所以EF ⊥平面PBE . (2)取BE 的中点O ,连接PO ,因为PB =BE =PE ,所以PO ⊥BE .由(1)知EF ⊥平面PBE ,EF平面BCFE ,所以平面PBE ⊥平面BCFE .又PO ⊂平面PBE ,平面PBE ∩平面BCFE =BE ,所以PO ⊥平面BCFE .过点O 作OM ∥BC 交CF 于点M ,分别以OB ,OM ,OP 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B ⎝⎛⎭⎫12,0,0,P ⎝⎛⎭⎫0,0,32,C ⎝⎛⎭⎫12,2,0, F ⎝⎛⎭⎫-12,1,0,PC →=⎝⎛⎭⎫12,2,-32, PF →=⎝⎛⎭⎫-12,1,-32,由N 为线段PF 上一动点,得PN →=λPF →(0≤λ≤1), 则可得N ⎝⎛⎭⎫-λ2,λ,32(1-λ),BN →=⎝ ⎛⎭⎪⎫-λ+12,λ,32(1-λ).设平面PCF 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧PC →·m =0,PF →·m =0,即⎩⎨⎧12x +2y -32z =0,-12x +y -32z =0,取y =1,则x =-1,z =3,所以m =(-1,1,3)为平面PCF 的一个法向量.设直线BN 与平面PCF 所成的角为θ,则sin θ=|cos 〈BN →,m 〉|=|BN →·m ||BN →|·|m |=25·2λ2-λ+1=25·2⎝⎛⎭⎫λ-142+78≤25·78=47035(当且仅当λ=14时取等号), 所以直线BN 与平面PCF 所成角的正弦值的最大值为47035. 3.(2020·山东淄博三模)如图①,已知正方形ABCD 的边长为4,E ,F 分别为AD ,BC 的中点,将正方形ABCD 沿EF 折成如图②所示的二面角,且二面角的大小为60°,点M 在线段AB 上(包含端点),连接AD .(1)若M 为AB 的中点,直线MF 与平面ADE 的交点为O ,试确定点O 的位置,并证明直线OD ∥平面EMC ;(2)是否存在点M ,使得直线DE 与平面EMC 所成的角为60°?若存在,求此时二面角M -EC -F 的余弦值;若不存在,说明理由.解:(1)因为直线MF平面ABFE ,故点O 在平面ABFE 内,也在平面ADE 内,所以点O 在平面ABFE 与平面ADE 的交线(即直线AE )上(如图所示).因为AO ∥BF ,M 为AB 的中点, 所以△OAM ≌△FBM ,所以OM =MF ,AO =BF ,所以AO =2. 故点O 在EA 的延长线上且与点A 间的距离为2. 连接DF ,交EC 于点N ,因为四边形CDEF 为矩形, 所以N 是EC 的中点.连接MN ,则MN 为△DOF 的中位线,所以MN ∥OD , 又MN平面EMC ,OD ⊆/ 平面EMC ,所以直线OD ∥平面EMC .(2)由已知可得EF ⊥AE ,EF ⊥DE ,又AE ∩DE =E ,所以EF ⊥平面ADE .所以平面ABFE ⊥平面ADE ,易知△ADE 为等边三角形,取AE 的中点H ,则易得DH ⊥平面ABFE ,以H 为坐标原点,建立如图所示的空间直角坐标系,则E (-1,0,0),D (0,0,3),C (0,4,3),F (-1,4,0),所以ED →=(1,0,3),EC →=(1,4,3).设M (1,t ,0)(0≤t ≤4),则EM →=(2,t ,0),设平面EMC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·EM →=0,m ·EC →=0⇒⎩⎪⎨⎪⎧2x +ty =0,x +4y +3z =0,取y =-2,则x =t ,z =8-t 3,所以m =⎝ ⎛⎭⎪⎫t ,-2,8-t 3为平面EMC 的一个法向量.要使直线DE 与平面EMC 所成的角为60°,则82t 2+4+(8-t )23=32,所以23t 2-4t +19=32,整理得t 2-4t +3=0, 解得t =1或t =3,所以存在点M ,使得直线DE 与平面EMC 所成的角为60°, 取ED 的中点Q ,连接QA ,则QA →为平面CEF 的法向量, 易得Q ⎝⎛⎭⎫-12,0,32,A (1,0,0),所以QA →=⎝⎛⎭⎫32,0,-32.设二面角M -EC -F 的大小为θ, 则|cos θ|=|QA →·m ||QA →|·|m |=|2t -4|3t 2+4+(8-t )23=|t -2|t 2-4t +19.因为当t =2时,cos θ=0,平面EMC ⊥平面CDEF ,所以当t =1时,cos θ=-14,θ为钝角;当t =3时,cos θ=14,θ为锐角.综上,二面角M -EC -F 的余弦值为±14.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即 F 到平面 SBC 的距离为
21 7.
由于 ED∥BC,所以 ED∥平面 SBC,E 到平面 SBC 的距离 d 也为
21 7.
设 AB 与平面 SBC 所成的角为 α,则 sinα=EdB=
21 7.
法二:以 C 为坐标原点,射线 CD 为 x 轴正半轴, 建立如图所示的空间直角坐标系 C-xyz. 则 D(1,0,0),A(2,2,0),B(0,2,0). 又设 S(x,y,z),则 x>0,y>0,z>0. (1)证明: AS =(xБайду номын сангаас2,y-2,z),BS =(x,y-2,z), DS =(x-1,y,z),
[例 3]四边形ABCD为正方形,PD⊥平面 ABCD PD∥QA,QA=AB=12PD (1)证明:平面 PQC⊥平面 DCQ; (2)求二面角 Q-BP-C 的余弦值.
解:以D为坐标原点,线段DA的长为 单位长度,射线DA为x轴的正半轴建 立空间直角坐标系D-xyz
(1)证明:依题意有Q(1,1,0),C(0,0,1),P(0,2,0). 则 DQ =(1,1,0), DC =(0,0,1),PQ=(1,-1,0). 所以 PQ·DQ =0, PQ·DC =0. 即PQ⊥DQ,PQ⊥DC.故PQ⊥平面DCQ. 又PQ 平面PQC,所以平面PQC⊥平面DCQ.
则l1∥l2⇔ v1∥v2 ⇔(a1,b1,c1)=k(a2,b2,c2)(k∈R). l1⊥l2⇔ v1⊥v2 ⇔a1a2+b1b2+c1c2=0.
l3 l1
l2
1.直线a,b的方向向量分别为a=(1,-1,2),b=(-2,2,-4),
则( )
A.a∥b或a与b重合
B.a⊥b
C.a与b相交但不垂直
则nn··SSAC==00,,
即
2x-2z=0, 2y-2z=0.
取 z= 2,得 n=(2,2, 2).
易知平面 ASD 的一个法向量为 DC =(0, 2,0). 设二面角 C-AS-D 的大小为 θ,
则 cosθ= n·DC = |n|| DC |
10 5.
即二面角 C-AS-D 的余弦值为
【2011山东理科】
1.(2012·六安月考)如图所示,已知正方形ABCD 和矩形ACEF所在的平面互相垂直,AB= 2, AF=1,M是线段EF的中点. 求证:(1)AM∥平面BDE; (2)AM⊥平面BDF.
证明:(1)建立如图所示的空间直角坐标系,
设 AC∩BD=N,连接 NE. 则点 N、E 的坐标分别为
D.a与b异面但不垂直
解析:∵a=(1,-1,2),b=(-2,2,-4),∴b=-2a, ∴a与b共线.即a∥ b或a与b重合.
(2)设直线l的方向向量为v=(a1,b1,c1),平面α的法向量为
n=(a2,b2,c2),则l∥α⇔ v⊥n ⇔a1a2+b1b2+c1c2=0.
l⊥α⇔v∥n ⇔(a1,b1,c1)=k(a2,b2,c2).
★第七节 立体几何中的向量方法★
预备知识:直线的方向向量、平面的法向量
z
B
2
o
A
y
x
实验幼儿园 高三数学组 徐美喆
一、利用直线的方向向量与平面的法向量,判定直线
与直线、直线与平面、平面与平面的平行和垂直. (1)设直线l1的方向向量v1=(a1,b1,c1),l2的方向向量v2=
(a2,b2,c2).
由| AS |=|BS |得
x-22+y-22+z2= x2+y-22+z2,
故x=1.
由| DS |=1得y2+z2=1,
又由| BS |=2得x2+(y-2)2+z2=4,
即y2+z2-4y+1=0,故y=12,z=
3 2.
于是S(1,12, 23), AS =(-1,-32, 23), BS =(1,-32, 23), DS =(0,12, 23), DS ·AS =0, DS ·BS =0. 故DS⊥AS,DS⊥BS,又AS∩BS=S, 所以SD⊥平面SAB.
(2)如图所示,以点 A 为坐标原点,建立空间 直角坐标系 A-xyz,则 A(0,0,0),P(0,0,2), B(1,0,0),C(1,2,0),D(0,2,0).∵AM⊥PD, PA=AD,∴M 为 PD 的中点,∴M 的坐标 为(0,1,1).∴ AC =(1,2,0), AM =(0,1,1), CD=(-1,0,0). 设平面 ACM 的一个法向量为 n=(x,y,z),
[例2] (2011·大纲版全国高考)如图,四棱 锥S-ABCD中,AB∥CD,BC⊥CD, 侧面SAB为等边三角形.AB=BC=2, CD=SD=1. (1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成的角的正弦值
解:法一(1)证明:取AB中点E,连接DE, 则四边形BCDE为矩形,DE=CB=2. 连接SE,则SE⊥AB,SE= 3. 又SD=1,故ED2=SE2+SD2, 所以∠DSE为直角. 由AB⊥DE,AB⊥SE,DE∩SE=E,得 AB⊥平面SDE,所以AB⊥SD. SD与平面SAB内的两条相交直线AB、SE都垂直. 所以SD⊥平面SAB.
解:(1)证明:因为EA⊥平面ABC,AC 平面ABC,所 以EA⊥AC,即ED⊥AC. 又因为AC⊥AB,AB∩ED=A, 所以AC⊥平面EBD. 因为BD 平面EBD, 所以AC⊥BD.
(2)如图,以D为原点,建立空间直角坐标系,则B(2,2,2), A(0,0,2),C(2,-2,2),D(0,0,0). 设n=(x,y,z)是平面BCD的法向量, 因为BC =(0,-4,0), 所以nn··BDCB==00,. 即- 2x+4y=2y+0,2z=0. 取z=-1,则n=(1,0,-1)是平面BCD的一个法向量.
AC =(0,2 3,0), BE =(-3, 3,2),
cos〈 AC , BE 〉= |
AC ·BE = AC ||BE | 2
36×4= 43,
即异面直线BE与AC所成的角的余弦值为 43.
【2012山东理科】
四边形ABCD是等腰梯,AB∥CD, ∠DAB=60°,FC⊥平面ABCD, AE⊥BD,CB=CD=CF (Ⅰ)求证:BD⊥平面AED (Ⅱ)求二面角F-BD-C的余弦值
法向量 n
(3)设平面α的法向量n1=(a1,b1,c1),
方向向量 V
β的法向量为n2=(a2,b2,c2),
则α∥β⇔ n1∥n2, α⊥β⇔ n1⊥n2 .
二.利用方向向量和法向量解决空间的夹角问n2 题 n1 (1)两直线的夹角 (2)直线与平面的夹角
(3)二面角的大小【余弦值】 z
例 3.已知向量 m,n 分别是直线 l 和平面 α 的H 方向向量、法G向量,
AB·a = AB |·|a|
21 7.
故AB与平面SBC所成的角的正弦值为
21 7.
3.在四棱锥 P-ABCD中,底面ABCD是矩形, PA⊥平面ABCD,PA=AD=2, AB=1,BM⊥PD于点M. (1)求证:AM⊥PD; (2)求直线CD与平面ACM所成角的余弦值.
解:(1)证明:∵PA⊥平面ABCD,AB⊂平面ABCD, ∴PA⊥AB. ∵AB⊥AD,AD∩PA=A, ∴AB⊥平面PAD. ∵PD 平面PAD,∴AB⊥PD, ∵BM⊥PD,AB∩BM=B, ∴PD⊥平面ABM. ∵AM 平面ABM,∴AM⊥PD.
= 3
9 2×3
2=12,即〈PD,BC 〉=60°,于是直线 PD 与 BC
所成的角等于 60°.
例:四棱锥 S-ABCD 的底面是正方形, SD⊥平面 ABCD,SD=2,AD= 2 则二面角 C-AS-D 的余弦值为________
【整理此题至资料上】
解析:如图,以 D 为原点建立空间直角坐标系 D-xyz. 则 D(0,0,0),A( 2,0,0),B( 2, 2,0),C(0, 2,0),S(0,0,2), 得 SA=( 2,0,-2), SC =(0, 2,-2). 设平面 ACS 的一个法向量为 n=(x,y,z),
( 22, 22,0)、(0,0,1).
∴ NE =(- 22,- 22,1).
又点A、M的坐标分别是(
2,
2,0)、( 22, 22,1),
∴ AM =(- 22,- 22,1).
∴ NE = AM 且NE与AM不共线.
∴NE∥AM.
又∵NE 平面BDE,AM 平面BDE.
∴AM∥平面BDE.
(2)由(1)知 AM =(- 22,- 22,1), ∵D( 2,0,0),F( 2, 2,1), ∴ DF =(0, 2,1). ∴ AM ·DF =0.∴ AM ⊥ DF . 同理 AM ⊥BF .又 DF∩BF=F, ∴AM⊥平面 BDF.
由 n⊥ AC ,n⊥ AM 可得xy++z2=y=0 0 , 令 z=1,得 x=2,y=-1.∴n=(2,-1,1). 设直线 CD 与平面 ACM 所成的角为 α,
则
sinα=||CCDD|·|nn||=
6 3.
∴cosα= 33,即直线 CD 与平面 ACM 所成角的余弦值为 33.
若
cos〈m,n〉=-12,则
l
E
与α
2
所成的角为
K
F
A.30°
B.60°
()
C.120°
D.150° o
C
y
A
B
x
例题:P-ABCD中,底面ABCD为直角梯形,AB∥CD, BA⊥AD,PA⊥平面ABCD,AB=AP=AD=3,CD=6 (1) 求PD与BC所成的角(2)求二面角C-PB-A的余弦值
可取 m=(1,1,1),所以 cos〈m,n〉=-
15 5.
故二面角 Q-BP-C 的余弦值为-
15 5.