数字电路第三章

合集下载

数字电路讲义 第三章

数字电路讲义 第三章

是构成数字电路的基本单元之一
CMOS 集成门电路 用互补对称 MOS 管构成的逻辑门电路。
TTL 集成门电路 输入端和输出端都用 三极管的逻辑门电路。
CMOS Complementary Metal-Oxide-Semiconductor TTL 即即 Transistor-Transistor Logic 按功能特点不同分 普通门 输出 三态门 CMOS (推拉式输出) 开路门 传输门 EXIT
E
B UBE(sat) iB ≥ IB(sat) E C
三极管 截止状态 等效电路
UCE(sat)
三极管 饱和状态 等效电路
EXIT
逻辑门电路
开关工作的条件
截止条件 uBE < Uth 可靠截止条件为 uBE ≤ 0
VCC U CE(sat) RC VCC RC
饱和条件
iB > IB(Sat)
逻辑门电路
[例] 下图中,已知 ROFF 800 ,RON 3 k,试对应 输入波形定性画出TTL与非门的输出波形。
A 3.6 V 0.3 V
逻辑0 (a)
逻辑1
O Ya t
(b)
解:图(a)中,RI = 300 < ROFF 800 相应输入端相当于输入低电平, O 也即相当于输入逻辑 0 。 Yb 不同因此 TTLY 系列, R R 不同。 ON、 OFF UOH 。 a 输出恒为高电平 图(b)中,RI = 5.1 k > RON 3 k 相应输入端相当于输入高电平, O 也即相当于输入逻辑 1 。 Yb A 1 A 因此,可画出波形如图所示。
0. 3 O
t
EXIT
逻辑门电路
二、三极管的动态开关特性

数字电路第三章习题答案

数字电路第三章习题答案
S 1 S 0(A B A B )
数字电路第三章习题答案
3-10
F S 1 A S 0 B A S 0 B A B S 0 A B S 1 S 0 A B F F S 1 A S 0 B A S 0 B A B S 0 A B S 1 S 0 A B
数字电路第三章习题答案
3-11
试用六个与非门设计一个水箱控制电路。图为水箱示意图。A、B、C是三个电极。 当 电极被水浸没时,会有信号输出。水面在A,B间为正常状态,点亮绿灯G;水面在B、 C间或在A以上为异常状态,点亮黄灯Y;水面在C以下为危险状态.点亮红灯R。
3531736半加器的设计1半加器真值表2输出函数3逻辑图输入输出被加数a加数b4逻辑符号31837ab改为用与非门实现函数表达式变换形式
3-1 分析图示电路,分别写出M=1,M=0时的逻辑函数表达式
即M=1时,对输入取反,M=0时不取反。
数字电路第三章习题答案
3-2 分析图示补码电路,要求写出逻辑函数表达式,列出真值表。
3-10 试用与非门设计一个逻辑选择电路。
S1、S0为选择端,A、B为数据输入端。 选择电路的功能见下表。选择电路可 以有反变量输入。
数字电路第三章习题答案
3-10
F S 1 A S 0 B A S 0 B A B S 0 A B S 1 S 0 A B F F S 1 A S 0 B A S 0 B A B S 0 A B S 1 S 0 A B FS 1 S 0A B S 1 S 0(A B )S 1 S 0(A BA)B
数字电路第三章习题答案
3-5
Ai 0 0 0 0 1 1 1 1
Si Ai BiCi Ai BiCi Ai BiCi Ai BiCi

数字电路基础知识

数字电路基础知识

第三章 数字电路基础知识1、逻辑门电路(何为门)2、真值表3、卡诺图4、3线-8线译码器的应用5、555集成芯片的应用一. 逻辑门电路(何为门)在逻辑代数中,最基本的逻辑运算有与、或、非三种。

每种逻辑运算代表一种函数关系,这种函数关系可用逻辑符号写成逻辑表达式来描述,也可用文字来描述,还可用表格或图形的方式来描述。

最基本的逻辑关系有三种:与逻辑关系、或逻辑关系、非逻辑关系。

实现基本逻辑运算和常用复合逻辑运算的单元电路称为逻辑门电路。

例如:实现“与”运算的电路称为与逻辑门,简称与门;实现“与非”运算的电路称为与非门。

逻辑门电路是设计数字系统的最小单元。

1.1.1 与门“与”运算是一种二元运算,它定义了两个变量A 和B 的一种函数关系。

用语句来描述它,这就是:当且仅当变量A 和B 都为1时,函数F 为1;或者可用另一种方式来描述它,这就是:只要变量A 或B 中有一个为0,则函数F 为0。

“与”运算又称为逻辑乘运算,也叫逻辑积运算。

“与”运算的逻辑表达式为:F A B =⋅ 式中,乘号“.”表示与运算,在不至于引起混淆的前提下,乘号“.”经常被省略。

该式可读作:F 等于A 乘B ,也可读作:F 等于A 与B 。

由“与”运算关系的真值表可知“与”逻辑的运算规律为:00001100111⋅=⋅=⋅=⋅= 表2-1b “与”运算真值表简单地记为:有0出0,全1出1。

由此可推出其一般形式为:001A A AA A A⋅=⋅=⋅=实现“与”逻辑运算功能的的电路称为“与门”。

每个与门有两个或两个以上的输入端和一个输出端,图2-2是两输入端与门的逻辑符号。

在实际应用中,制造工艺限制了与门电路的输入变量数目,所以实际与门电路的输入个数是有限的。

其它门电路中同样如此。

1.1.2 或门“或”运算是另一种二元运算,它定义了变量A 、B 与函数F 的另一种关系。

用语句来描述它,这就是:只要变量A 和B 中任何一个为1,则函数F 为1;或者说:当且仅当变量A 和B 均为0时,函数F 才为0。

数字电路第三章习题与答案

数字电路第三章习题与答案

第三章集成逻辑门电路一、选择题1. 三态门输出高阻状态时,()是正确的说法。

A.用电压表测量指针不动B.相当于悬空C.电压不高不低D.测量电阻指针不动2. 以下电路中可以实现“线与”功能的有()。

A.与非门B.三态输出门C.集电极开路门D.漏极开路门3.以下电路中常用于总线应用的有()。

A.TSL门B.OC门C. 漏极开路门D.CMOS与非门4.逻辑表达式Y=AB可以用()实现。

A.正或门B.正非门C.正与门D.负或门5.TTL电路在正逻辑系统中,以下各种输入中()相当于输入逻辑“1”。

A.悬空B.通过电阻2.7kΩ接电源C.通过电阻2.7kΩ接地D.通过电阻510Ω接地6.对于TTL与非门闲置输入端的处理,可以()。

A.接电源B.通过电阻3kΩ接电源C.接地D.与有用输入端并联7.要使TTL与非门工作在转折区,可使输入端对地外接电阻RI()。

A.>RONB.<ROFFC.ROFF<RI<ROND.>ROFF8.三极管作为开关使用时,要提高开关速度,可( )。

A.降低饱和深度B.增加饱和深度C.采用有源泄放回路D.采用抗饱和三极管9.CMOS数字集成电路与TTL数字集成电路相比突出的优点是()。

A.微功耗B.高速度C.高抗干扰能力D.电源范围宽10.与CT4000系列相对应的国际通用标准型号为()。

A.CT74S肖特基系列B. CT74LS低功耗肖特基系列C.CT74L低功耗系列D. CT74H高速系列11.电路如图(a),(b)所示,设开关闭合为1、断开为0;灯亮为1、灯灭为0。

F 对开关A、B、C的逻辑函数表达式()。

F1F 2(a)(b)A.C AB F =1 )(2B A C F += B.C AB F =1 )(2B A C F +=C. C B A F =2 )(2B A C F += 12.某TTL 反相器的主要参数为IIH =20μA ;IIL =1.4mA ;IOH =400μA ;水IOL =14mA ,带同样的门数( )。

数字电路教案-阎石-第三章-逻辑门电路

数字电路教案-阎石-第三章-逻辑门电路

第3章逻辑门电路3.1 概述逻辑门电路:用以实现基本和常用逻辑运算的电子电路。

简称门电路.用逻辑1和0 分别来表示电子电路中的高、低电平的逻辑赋值方式,称为正逻辑,目前在数字技术中,大都采用正逻辑工作;若用低、高电平来表示,则称为负逻辑。

本课程采用正逻辑。

获得高、低电平的基本方法:利用半导体开关元件的导通、截止(即开、关)两种工作状态.在数字集成电路的发展过程中,同时存在着两种类型器件的发展。

一种是由三极管组成的双极型集成电路,例如晶体管-晶体管逻辑电路(简称TTL电路)及射极耦合逻辑电路(简称ECL电路).另一种是由MOS管组成的单极型集成电路,例如N-MOS逻辑电路和互补MOS(简称COMS)逻辑电路。

3。

2 分立元件门电路3。

3.1二极管的开关特性3.2.2三极管的开关特性NPN型三极管截止、放大、饱和3种工作状态的特点工作状态截止放大饱和条件i B=0 0<i B<I BS i B>I BS工作特点偏置情况发射结反偏集电结反偏u BE〈0,u BC〈0发射结正偏集电结反偏u BE>0,u BC〈0发射结正偏集电结正偏u BE〉0,u BC〉集电极电流i C=0 i C=βi B i C=I CSce间电压u CE=V CC u CE=V CC-i C R cu CE=U CES=0.3Vce间等效电阻很大,相当开关断开可变很小,相当开关闭合3.2。

3二极管门电路1、二极管与门2、二极管或门u A u B u Y D1D20V 0V 0V 5V 5V 0V 5V 5V0V4。

3V4。

3V4.3V截止截止截止导通导通截止导通导通3。

2.4三极管非门3。

2。

5组合逻辑门电路1、与非门电路2、或非门电路3.3 集成逻辑门电路一、TTL与非门1、电路结构(1)抗饱和三极管作用:使三极管工作在浅饱和状态。

因为三极管饱和越深,其工作速度越慢,为了提高工作速度,需要采用抗饱和三极管。

构成:在普通三极管的基极B和集电极C之间并接了一个肖特基二极管(简称SBD)。

数字电子技术 第三章 组合逻辑电路

数字电子技术 第三章 组合逻辑电路

2021/6/10
23
3.2.2 二进制编码器
由于每次操作只有一个输入信号,即输入IR、IY、IG 具有互斥性,根据表3.5,将输出变量取值为1对应的输入 变量相加,可得输出Y1、Y0与输入IR、IY、IG之间的逻辑 关系表达式如下。
Y0 = IR + IG Y1 = IY + IG
对Y1、Y0两次取非,得
5. 断开开关S1、S2,观察发光二极管的发光情况,记 录观察到的结果。
2021/6/10
39
3.3.1 任务描述
图3.18所示是开关S1闭合、S2断开时,观察到的现象。
2021/6/10
图3.18 闭合S1、断开S2时观察到的现象
40
3.3.2 二进制译码器
1. 译码器的基本功能 二进制译码真值表如表3.11所示。
2021/6/10
27
3.2.2 二进制编码器
表中的“×”号表示:有优先级高的输入信号输入时, 优先级低的输入信号有输入还是无输入,不影响编码器的 输出。
2021/6/10
28
3.2.2 二进制编码器
3. 集成8线-3线优先编码器 集成8线-3线优先编码器74LS148、74LS348的引脚排 列完全相同,如图3.12(a)所示。
第四步,判断逻辑电路的逻辑功能。其方法是:根据
真值表进行推理判断。在实际应用中,当逻辑电路很复杂
时,一般难以用简明扼要的文字来归纳其逻辑功能,这时
就用真值表来描述其逻辑功能。
2021/6/10
7
3.1.2 组合逻辑电路的分析
2. 分析举例 【例3.1】 试分析图3.1所示电路的逻辑功能。
解:画出图3.1所示电路的逻辑图如图3.4所示。

数电第三章讲解

数电第三章讲解

(1) 传输门组成的异或门
B=0
A
B
TG1断开, TG2导通
L=A B=1
TG1导通, TG2断开
L=A
TG1
L
TG2
2. 传输门的应用
(2) 传输门组成的数据选择器
C=0
X
TG1导通, TG2断开
L=X
C=1
Y
TG2导通, TG1断开
C
L=Y
VDD TG1 L
TG2
3.3 CMOS逻辑门电路的不同输出结构及参数
3.3.1 CMOS逻辑门电路的保护和缓冲电路 3.3.2 CMOS漏极开路和三态门电路 3.3.3 CMOS逻辑门电路的重要参数
3.3.1 输入保护电路和缓冲电路
采用缓冲电路能统一参数,使不同内部逻辑集成逻辑门电路 具有相同的输入和输出特性。
VDD
vi
基本逻辑
vo
功能电路
输入保护缓冲电路 基本逻辑功能电路 输出缓冲电路
异或门电路324cmos传输门双向模拟开关5v0v电路tg逻辑符号5v0v1传输门的结构及工作原理tp2vttn2v的变化范围为0到5v0v5v0v到5vgsp5v0v到5v5到0v开关断开不能转送信号c00vc15v5v0v5v0v2v5v2v5vgsn5vtg1断开tg2导通tg1导通tg2断开tg1导通tg2断开tg2导通tg1断开tg2tg133cmos逻辑门电路的不同输出结构及参数331cmos逻辑门电路的保护和缓冲电路332cmos漏极开路和三态门电路333cmos逻辑门电路的重要参数331输入保护电路和缓冲电路基本逻辑功能电路基本逻辑功能电路输入保护缓冲电路输出缓冲电路采用缓冲电路能统一参数使不同内部逻辑集成逻辑门电路具有相同的输入和输出特性

数电第三章门电路

数电第三章门电路
15
§3.4 TTL门电路
数字集成电路:在一块半导体基片上制作出一个 完整的逻辑电路所需要的全部元件和连线。 使用时接:电源、输入和输出。数字集成电 路具有体积小、可靠性高、速度快、而且价 格便宜的特点。
TTL型电路:输入和输出端结构都采用了半导体晶 体管,称之为: Transistor— Transistor Logic。
输出高电平
UOH (3.4V)
u0(V)
UOH
“1”
输出低电平
u0(V)
UOL
UOL (0.3V)
1
(0.3V)
2 3 ui(V)
1 2 3 ui(V)
阈值UT=1.4V
传输特性曲线
理想的传输特性 28
1、输出高电平UOH、输出低电平UOL UOH2.4V UOL 0.4V 便认为合格。 典型值UOH=3.4V UOL 0.3V 。
uA t
uF
截止区: UBE< 死区电压, IB=0 , IC=ICEO 0 ——C、 E间相当于开关断开。
+ucc
t
4
0.3V
3.2.3MOS管的开关特 恒流区:UGS>>Uth , UDS
性: +VDD
0V ——D、S间相当于 开关闭合。
R
uI
Uo
Ui
NMO S
uO
夹断区: UGS< Uth, ID=0 ——D、S间相当于开关断开。
3.3.4 其它门电路
一、 其它门电路
其它门电路有与非门、或非门、同或门、异或门等等,比如:
二、 门电路的“封锁”和“打开”问题
A B
&
Y
C
当C=1时,Y=AB.1=AB

电子技术 数字电路 第3章 组合逻辑电路

电子技术 数字电路 第3章 组合逻辑电路

是F,多数赞成时是“1”, 否则是“0”。
0111 1000 1011
2. 根据题意列出真值表。
1101 1111
(3-13)
真值表
ABCF 0000 0010 0100 0111 1000 1011 1101 1111
3. 画出卡诺图,并用卡 诺图化简:
BC A 00
00
BC 01 11 10
010
3.4.1 编码器
所谓编码就是赋予选定的一系列二进制代码以 固定的含义。
一、二进制编码器
二进制编码器的作用:将一系列信号状态编制成 二进制代码。
n个二进制代码(n位二进制数)有2n种 不同的组合,可以表示2n个信号。
(3-17)
例:用与非门组成三位二进制编码器。 ---八线-三线编码器 设八个输入端为I1I8,八种状态,
全加器SN74LS183的管脚图
14 Ucc 2an 2bn2cn-1 2cn
2sn
SN74LS183
1 1an 1bn 1cn-11cn 1sn GND
(3-39)
例:用一片SN74LS183构成两位串行进位全加器。
D2
C
D1
串行进位
sn
cn
全加器
an bn cn-1
sn
cn
全加器
an bn cn-1
1 0 1 1 1 AB
AC
F AB BC CA
(3-14)
4. 根据逻辑表达式画出逻辑图。 (1) 若用与或门实现
F AB BC CA
A
&
B
C
&
1 F
&
(3-15)
(2) 若用与非门实现

阎石《数字电路》课后习题答案详解第三章答案

阎石《数字电路》课后习题答案详解第三章答案

第三章3.1 解:由图可写出Y 1、Y 2的逻辑表达式:BCAC AB Y C B A C B A C B A ABC BC AC AB C B A ABC Y ++=+++=+++++=21)(真值表:3.2 解:AY A Y A Y A Y Z comp A A A Y A A A A Y A Y A Y Z comp ======++=+=====43322114324323232210001,,,时,、,,,时,、, 真值表:3.3解:3.4解:采用正逻辑,低电平=0,高电平=1。

设水泵工作为1,不工作为0,由题目知,水泵工作情况只 有四种:全不工作,全工作,只有一个工作真值表:图略3.5 解:设输入由高位到低位依次为:A 4、A 3、A 2、A 1, 输出由高位到地位依次为:B 4、B 3、B 2、B 13.6 1111100000310对应编码为:,对应编码为:A A3.7解:此问题为一优先编码问题,74LS148为8-3优先编码器,只用四个输入端即可,这里用的是7~4,低4位不管;也可用低4位,但高位必须接1(代表无输入信号);用高4位时,低4位也可接1,以免无病房按时灯会亮。

3.8(图略)3.9 解: 3.11解:3.10解:3.12解:3.13解:3.14 由表知,当DIS=INH=0时DBCACDBACDBACB ADCBADCBAZCBADAAADAAADAAADAAADAAADAAADAAADAAAY+++++=+ ++++++=得:、、代入712612512412312212112123.15 PQNMPQNMQPMNQPNMZ+++=3.16 解:4选1逻辑式为:,,,,,,,,,,,的表达式,知:对比110104512)(1)(1)()(1)()(76543210012===========+++++=D D D D D D D D D D D C A B A A A DC B A ABC BC AD C B A C AB D C B A Y(3.17图)(3.18图)3.18解:方法同上题,只是函数为三变量,D 只取0或1即可,,,,,,,,,则有:,,取1010011076543210012===========D D D D D D D D C A B A A A3.19 解:设A 、B 、C 为三个开关,每个有两种状态0、1,若三个全为0则灯灭Y=0;否则,Y =1分析:全为0时灯灭;任何一个为1,则灯亮。

数字电路第三章习题与答案

数字电路第三章习题与答案

第三章集成逻辑门电路一、选择题1、三态门输出高阻状态时,( )就是正确的说法。

A、用电压表测量指针不动B、相当于悬空C、电压不高不低D、测量电阻指针不动2、以下电路中可以实现“线与”功能的有( )。

A、与非门B、三态输出门C、集电极开路门D、漏极开路门3.以下电路中常用于总线应用的有( )。

A、TSL门B、OC门C、漏极开路门D、CMOS与非门4.逻辑表达式Y=AB可以用( )实现。

A、正或门B、正非门C、正与门D、负或门5.TTL电路在正逻辑系统中,以下各种输入中( )相当于输入逻辑“1”。

A、悬空B、通过电阻2、7kΩ接电源C、通过电阻2、7kΩ接地D、通过电阻510Ω接地6.对于TTL与非门闲置输入端的处理,可以( )。

A、接电源B、通过电阻3kΩ接电源C、接地D、与有用输入端并联7.要使TTL与非门工作在转折区,可使输入端对地外接电阻RI( )。

A、>RONB、<ROFFC、ROFF<RI<ROND、>ROFF8.三极管作为开关使用时,要提高开关速度,可( )。

A、降低饱与深度B、增加饱与深度C、采用有源泄放回路D、采用抗饱与三极管9.CMOS数字集成电路与TTL数字集成电路相比突出的优点就是( )。

A、微功耗B、高速度C、高抗干扰能力D、电源范围宽10.与CT4000系列相对应的国际通用标准型号为( )。

A、CT74S肖特基系列B、 CT74LS低功耗肖特基系列C、CT74L低功耗系列D、 CT74H高速系列11.电路如图(a),(b)所示,设开关闭合为1、断开为0;灯亮为1、灯灭为0。

F 对开关A、B、C的逻辑函数表达式( )。

F1F 2(a)(b)A.C AB F =1 )(2B A C F +=B.C AB F =1 )(2B A C F +=C. C B A F =2 )(2B A C F +=12.某TTL 反相器的主要参数为IIH =20μA;IIL =1、4mA;IOH =400μA;水IOL =14mA,带同样的门数( )。

数电-第三章逻辑门电路

数电-第三章逻辑门电路
典型时序逻辑电路
了解和掌握常见时序逻辑电路的原理和应用,如寄存器、 计数器、顺序脉冲发生器等。
可编程逻辑器件应用
1 2
可编程逻辑器件简介
了解可编程逻辑器件的基本概念和分类,如PAL、 GAL、CPLD、FPGA等。
可编程逻辑器件编程
学习使用相应的开发工具和编程语言,对可编程 逻辑器件进行编程和配置,实现特定的逻辑功能。
典型组合逻辑电路
了解和掌握常见组合逻辑电路的 原理和应用,如编码器、译码器、
数据选择器、比较器等。
时序逻辑电路分析与设计
时序逻辑电路分析
分析时序逻辑电路的工作原理,包括触发器的状态转换、 时钟信号的作用等,进而理解电路的功能。
时序逻辑电路设计
根据实际需求,设计实现特定功能的时序逻辑电路。包括 确定输入、输出变量,选择适当的触发器类型,画出状态 转换图或时序图等步骤。
数电-第三章逻辑门 电路
• 逻辑门电路基本概念 • 基本逻辑门电路 • 复合逻辑门电路 • 逻辑门电路应用 • 逻辑门电路实验与仿真 • 逻辑门电路总结与展望
目录
Part
01
逻辑门电路基本概念
逻辑门定义与分类
逻辑门定义
逻辑门是数字电路中的基本单元 ,用于实现基本的逻辑运算功能 ,如与、或、非等。
逻辑符号为带有小圆圈的与门符号。
或非门电路
01
02
03
或非门逻辑功能
实现输入信号的逻辑或操 作,并取反输出结果。
或非门符号
逻辑符号为带有小圆圈的 或门符号。
或非门真值表
输入全为0时,输出为1; 输入有1时,输出为0。
异或门电路
异或门逻辑功能
实现输入信号的异或操作, 即输入信号相同时输出为0, 不同时输出为1。

数字集成电路设计 第3章 器件1

数字集成电路设计 第3章 器件1


四、VT 的影响因素 1、当考虑衬底接负偏压时 Vs=|-2VF+VSB|= |2VF+VBS|
因为当衬底接负偏压时,会使得发生强 反型时的Vs增加,这要求要有更大的VT 才能满足这一效果。所以,衬底接的负 偏压越多,VT 增加

0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 -2.5 -2 -1.5 VBS (V) -1 -0.5 0
Qi ( x) Cox [VGS V ( x) VT ]
根据电流是载流子的漂移速度和所存在电荷的积,可得:
I D n ( x)Qi ( x)W
又因为:
dV n un ( x) un dx
I D dx unCoxW (VGS V VT )dV



在沟道的全长L上积分得到晶体管的电压-电 流关系: ID = k’n W/L [(VGS – VT)VDS – VDS2/2] k’n = nCox = nox/tox 当VDS的值较小时,公式中的平方项可以忽 略,于是我们可以看到ID和VDS 之间的线性 关系,此时工作的区域称为电阻区或线性 区,表现出来的特点是它在源区和漏区之 间表现为一条连续的导电沟道。
Transistor in Linear Mode
Assuming VGS > VT
VGS
S
G D n+
- V(x) +
VDS
ID
n+
x
B The current is a linear function of both VGS and VDS

在沿沟道的X处,电压为V(x),在X点处栅至沟 道的电压等于VGS –V(x),并假设这一电压沿整 个沟道都超过VT ,那么在X处所感应出的每单 位面积的沟道电荷可表示为:

数字电子技术基础:第三章 逻辑门电路

数字电子技术基础:第三章 逻辑门电路

逻辑符号
C
vI /vO
TG
vO /vI
C
C
υo/ υI
2. CMOS传输门电路的工作原理
vI /vO
5V到+5V
C
+5V
TP +5V vO /vI
5V TN
5V
C
设TP:|VTP|=2V, TN:VTN=2V
I的变化范围为-5V到+5V。
c=0=-5V, c =1=+5V
1)当c=0, c =1时 GSN= -5V (-5V到+5V)=(0到-10)V
在由于电路具有互补对称的性质,它的开通时间与关 闭时间是相等的。平均延迟时间:<10 ns。
动态功耗
CMOS反相器的PD与f和 2 VDD
CMOS反相器从一个稳定状态转变到另一个稳定状态时所产生的功耗
PD=PC+PT
分布电容CL充放电引起的功耗: PC CL fVD2D
CMOS管瞬时交替导通引起的功耗:PT CPD fVD2D
74标准系列 74LS系列
74AS系列
74LVC 74VAUC 低(超低)电压 速度更加快 与TTL兼容 负载能力强 抗干扰 功耗低
74ALS
3.1 概述
门电路:实现基本逻辑/复合逻辑运算的单元电路
逻辑状态的描述—— 正逻辑:高电平→1,低电平→0 负逻辑:高电平→0,低电平→1
缺点:功耗较大/速度较慢
VDD VIH(min) I OH(total) I IH(total)
… …
I0H(total) &1
+V DD RP
&
&1
IIH(total) &

数电第三章门电路知识点总结

数电第三章门电路知识点总结

数电第三章门电路知识点总结
数电第三章——门电路
1.杂志半导体特点
在杂质半导体中,多数载流子的浓度主要取决于掺入的杂质浓度;而小数载流子的浓度主要取决于温度。

杂质半导体,无论是N型还是P型,从总体上看,仍然保持着电中性。

2.CMOS与非门
P并N串
3.CMOS或非门
P串N并
4.CMOS传输门
5.三态门
三态分别是导通、截止、高阴态。

是有一个控制端,如果控制端设置为某个值(1或0),会让输入端无论输入什么都是不通的(有些情况是通的,就是状态不改变),这就叫高阻态,在图中由一个三角形表示。

6.TTL与CMOS优缺点
TL电路的优点是开关速度较高,抗干扰能力较强,带负载的能力也比较强,缺点是功耗较大。

CMOS电路具有制造工艺简单、功耗小、输入阻抗高、集成度高、电源电压范国宽等优点,其主要缺点是工作速度稍低,但随着集成工艺的不断改进,CMOS电路的工作速度已有了大幅度的提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

V V CC
CE ( Sat )
RC
V V V CC
CE ( Sat )
CC
i = ≈ C
R R C
C
vO= vCE(Sat) ≈0.3V
正偏
正偏
很小
3-11
3.1.1 晶体三极管开关特性
晶体三极管的瞬态开关特性
晶体三极管在饱和状态与截止状态之 间转换时呈现的开关特性称为瞬态开关 特性
晶体三极管从截止状态转向饱和状态 所需时间称为开通时间ton (包括延迟时 间td和上升时间tr);从饱和状态转向截 止状态所需时间称为关断时间toff (包括 存储时间ts和下降时间tf)
3-10
3.1.1 晶体三极管开关特性
晶体三极管的稳态开关特性
工作状态

偏置
件 基极电流
集电极电流 特
C-E 间压降
B-C 结状态 点 B-E 结状态
C-E 间电阻
截止 vBE≤ 0.5V,vB< vC
iB≈0
iC≈0
vO= vCE ≈ VCC
反偏 反偏 很大
饱和
vBE≥ 0.7V,vB> vC
iB ≥ IBS=
R

0
v
❖开关断开时,通过开关的电流 i=0,开关两
端点间呈现的的电阻为无穷大
❖ 开关闭合时,开关两端的电压为 v= 0,开
关两端点间呈现的的电阻为零
❖ 开关的接通或断开动作瞬间完成
❖ 上述开关特性不受其它因素(如温度等)影响
3-5
3.1.1 晶体二极管开关特性
晶体二极管的稳态开关特性
iD D

v
iD 硅二极管 iD
VD=0.7V
锗二极管
VD=0.3V
0
vD
0
vD
iD
0
vD
rD VD
模拟电子电路 中晶体二极管 的等效电路
VD
数字电路中晶 体二极管的等 效电路
完全理想化晶 体二极管的等 效电路
3-7
3.1.1 晶体二极管开关特性
晶体二极管的瞬态开关特性
电路处于瞬变状态下,二极管呈现的 特性称为瞬态开关特性
+12V
D1 A
B D2
C D3
F=ABC
与门
D1 A
D2 B
C D3
-12V
F=A+B+C
或门
3-9
3.1.2 晶体三极管开关特性
晶体三极管作为开关元件时,其优点 在于具有增益,可以用基极微小信号控 制集电极和发射极间的通、断,并具有 一定的带负载能力
晶体三极管作为开关元件时,电路大 多连接成共发射极组态,总是工作在饱 和状态和截止状态,而放大状态仅仅是 一种过渡状态
晶体二极管在导通和截止间转换时, 呈现的瞬态开关特性,其内在机理在于 二极管的等效势垒电容和结电容的充、 放电过程,即电荷的积累和消散过程需 要一定时间。常用正向恢复时间和反向 恢复时间来表征二极管的开关速度
3-8
3.1.1 晶体二极管开关特性
晶体二极管的开关应用
限幅电路和 钳位电路(自学)
二极管门电路
3-18
3.2.1 晶体管-晶体管逻辑门电路
A、B、C中至少有一个为低电平时
130W
T3
推拉式 输出级
A
T1
T2
D4
Y
B
T4
保护 C
R3
二极管
1kW
输入级 D1 D2 D3
中间级
输出级
3-17
3.2.1 晶体管-晶体管逻辑门电路
TTL与非门CT5410/7410的特点
多发射极晶体管的作用是 +5V
实现与运算
+5V
R1

A
B1
C1
A
B
B
T1
C
C
推拉式输出级有助于提高开关速度和 增强电路带负载能力
74系列(民用):电源电压 (5±0.25)V, 使用 环境温度范围 0℃~+70 ℃
TTL门电路的标称逻辑高电平是3.6V 逻辑低电平是0.3V
3-16
3.2.1 晶体管-晶体管逻辑门电路
TTL与非门CT5410/7410典型电路 VCC
多发射极
R1 4kW
晶体管
R2 1.6kW
(+5V) R4
截止条件是: 饱和条件是:
iB
vBE i1
V≤L0
VL R1
VBB R2
R1
i2≥
I BS
VCC 0.7 RC
i1
VH
0.7 R1
i2
0.7 VBB R2
3-14
3.2 TTL集成逻辑门 TTL(Transistor-Transistor
Logic)
即晶体管-晶体管逻辑电路,数字电 路中一类最常见的双极型集成逻辑门。
3-12
3.1.1 晶体三极管开关特性
晶体三极管的开关应用
晶体三极管反相器(非门)
+VCC
vO
Cj
vI
R1
RC vO VCC
放 大




R2
-VBB
0.3V 0 电压传输特性
vI
3-13
3.1.1 晶体三极管开关特性
晶体三极管的开关应用
晶体三极管反相器正常工作条件
设输入高、低电平分别是VH和VL则
3-2
3.1 晶体管的开关特性
晶体管是电子电路中最常见的半导体 器件。在逻辑门电路中,晶体二极管、 三极管及MOS管都工作在开关状态,利 用它们的接通状态和断开状态或输出低 电平和高电平分别表示二值逻辑的0和1。 在电路中,晶体管处于接通、断开状态 时,以及在两种状态之间转换时所呈现 的特性称为晶体管的开关特性
第 3章 集成逻辑门
3.1 晶体管的开关特性 3.2 TTL集成逻辑门 3.4 MOS逻辑门 3.5 CMOS电路
3-1
用以实现基本逻辑关系的电子电路称为 逻辑门电路
常用的逻辑门有与门、或门、非门等 本章是全课程的器件基础,介绍基本 开关元件的开关特性和最常用的TTL集 成逻辑门及CMOS集成逻辑门的工作原 理和主要外部特性
iD

R
VZ IS 0 Vth
vD
当晶体二极管反偏截止时,iD=-IS≠0;正 偏导通时,vD=Vth≈0.7V≠0;在截止和导通之间 转换时决不可能在瞬间完成; 而且iD和vD都 还会随温度等环境条件的变化而变化,显然
晶体二极管不是理想开关
3-6
3.1.1 晶体二极管开关特性
晶体二极管稳态开关特性近似分析
3-3
3.1.1 晶体二极管开关特性
具有接通或断开电路功能的元件称为 开关,它所具有的伏安特性就是开关特 性
晶体二极管是一种开关元件,在一定 条件下可以近似当成一个理想开关来分 析。但是在严格的电路分析时或高速开 关电路中则不能当成理想开关
3-4
3.1.1 晶体二极管开关特性
理想开关特性
i

S
Vi
3-15
3.2.1 晶体管-晶体管逻辑门电路
常见的TTL门电路系列有: ❖标准通用系列 CT54/74××系列 ❖高速系列 CT54H/74H××系列 ❖肖特基系列 CT54S/74S××系列 ❖低耗肖特基系 CT54LS/74LS××系列
54系列(军用):电源电压 (5±0.5)V,使用环 境温度范围-55℃~+125 ℃
相关文档
最新文档