6.2.函数在无穷远点的留数及其应用
留数及应用
(2) 无论 f (z) 在 z 0 是否有定义, 补充定义 f(z0)c0,则函数 f (z) 在 z 0 解析.
f(z0)lz iz0m f(z) f(z)Fc(0z,),zzz0z0
2) 可去奇点的判定 定理 若z0是f(z)的孤立奇, 则点以下三个条件等价:
1 1)(z
1)2
,
所以 : z1是函数的一,级极点
z 1是函数的二级极. 点
3. 本性奇点
如果洛朗级数中含有无穷多个z z0 的负幂项,
那么孤立奇点 z 0 称为 f (z) 的本性奇点.
例如, e1 z1z 11z 2 1z n ,
2 !
n !
含有无穷多个z的负幂项 (0z)
1
所以z 0为本性奇点 同时,lim e z 不存在. z 0
思考
z0是 z
sin z5
z 的几阶极点? (二阶极点)
注意: 不能以函数的表面形式作出结论 .
三、函数在无穷远点的性态
1. 定义 如果函数 f (z)在无穷远点 z的去心
邻域 Rz内解析, 则称点 为 f (z) 的孤
立奇点.
y
R
o
x
令变换t
1 z
: 则f(z)
f1t (t),规定此变换将:
(2)(3) 根据函数极限的性质,是显然的.
(3)(1)
由 (3 )设 , z 0 的 在 去 0 z 心 z 0内 邻 ,f(z) 域 M .
f(z)在 z0点 的 洛 f(z) 朗 cn级 (zz0)数 n,
n
cn2 1iC ( f(z 0) )n 1d ,(n 0 , 1 , 2 , )
第五章 留数理论及其应用
第五章 留数理论及其应用本章的中心问题是留数定理.借助第四章的讨论,我们引入留数概念并计算留数.我们即将看到柯西-古萨基本定理,柯西积分公式都是留数定理的特殊情况.作为留数定理的应用,我们可以把沿闭曲线的积分的计算转化为孤立奇点处的留数计算.对于高等数学中的一些定积分和广义积分,按过去的计算方法可能比较复杂,甚至难以算出结果,而用留数计算的方法则相对简便.因此留数定理在理论和实际应用中都具有重要意义.1. 留数的定义如果f (z )在z 0处解析,那么对于z 0的邻域中的任意一条简单闭曲线C ,都有()d 0Cf z z =⎰.如果z 0是f (z )的孤立奇点,那么对于解析圆环00z z δ<-<内包含z 0的正向简单闭曲线C ,上述积分只与f (z )和z 0有关,而与C 无关,但积分值不一定为零.现在我们来计算这个积分.由第四章定理4.12,f (z )在z 0的邻域内可展开成罗朗级数:()()nnn f z a z z ∞=-∞=-∑,其中101()d ,0,1,2,2π()n n Cf a n iz ξξξ+==±±-⎰特别地,11()d 2πCa f iξξ-=⎰.于是得到1()d 2πCf iaξξ-=⎰.因此a −1这个系数有它特殊的含义.我们把f (z )在z 0处的罗朗级数中(z −z 0)−1项的系数a −1称为f (z )在孤立奇点z 0处的留数,记为Res [f (z ),z 0]=a −1, (5.1) 即 Res[f (z ),z 0]=1()d 2πCf z z i⎰. (5.2)例5.1 求下列积分的值,其中C 为包含z =0的简单正向闭曲线.(1)3cos d Czz z -⎰ (2)12ed z Cz ⎰.解: (1)令f (z )=z −3cos z ,则z =0为f (z )的孤立奇点.又因cos z =2461,.2!4!6!z z z z -+-+<∞故 f (z )= 3311,0,24!6!z z z z z -+-+<<∞所以Res [f (z ),0]= 12-.(2) 令f (z )= 21e z ,则z =0为f (z )的孤立奇点.因为2e 1,,1!2!!nz n ξξξξ=++++<∞以21z ξ=代入上式,得 f (z )=1242111111,0.1!2!!nz z z n z +⋅+⋅+⋅+<<∞所以,Res[f (z ),0]=0.2. 留数定理 考察积分()d Cf z z ⎰,若闭曲线C 内仅含有f (z )的一个孤立奇点,则可利用公式(5.2)来求积分值.但是如果多于一个孤立奇点,则由下述的留数定理,可以把积分的计算转化成f (z )在C 中的各孤立奇点的留数的计算.定理5.1 留数定理设函数f (z )在区域D 内除有有限个孤立奇点z 1,z 2,…,z n 外处处解析,C 是D 内包围这些奇点的一条正向简单闭曲线,那么[]1()d 2πRes (),.nkk Cf z z i f z z ==∑⎰ (5.3)证明:如图 5.1所示,以z k 为圆心,作完全含在C 内且互不相交的正向小圆C k :|z −z k |=k δ,(k =1,2,…,n ),那么由复合闭路上的柯西积分定理,有12()d ()d ()d ()d .nCC C C f z z f z z f z z f z z =+++⎰⎰⎰⎰但[]()d 2πRes (),.1,2,,.kk C f z z i f z z k n ==⎰于是有[]1()d 2πRes (),knkk C f z z i f z z ==∑⎰.一般来说,求函数在其孤立奇点z 0处的留数只须求出它在以z 0为中心的圆环域内罗朗级数中(z −z 0)−1的系数a −1就可以了,但在很多情况下,函数在孤立奇点的罗朗展开式并不易得到,因此有必要讨论在不知道罗朗展开式的情况下计算留数的方法. 3. 留数的计算方法(1) 如果z 0为f (z )的m 级极点,那么[]()(){}010011Res (),lim ()1!m mm z z d f z z z z f z m dz--→=-- (5.4)证明:因为z 0是f (z )的m 级极点,故在z 0的邻域中有f (z )=()01()g z z z m-,图5.1其中g (z )在z 0处解析,且g (z 0) 0≠.于是f (z )= ()0000000()()1()(),!!n n nn m n n g z g z z z z z z z m n n ∞∞-==-=--∑∑ 其中(z −z 0)−1的系数为()10()1!m g z m --.又g (z )=(z −z 0)m f (z ),因而得到:()()(){}011001()1lim ().1!1!m m m z z g z d z z mf z m m dz---→=---从而(5.4})成立.特别地,当m =1时,我们有下面的结果. (2) 若z 0是f (z )的一级极点,那么Res 00[(),0]lim()().z z f z z z f z →=- (5.5)例5.2 求f (z )=252(1)z z z --分别在z =0和z =1的留数.解: 容易看到z =0是f (z )的一级极点,故由(5.5)得Res[f (z ),0] =21052lim ()lim2.(1)z z z z f z z →→-⋅==--而z =1是f (z )的二级极点,由(5.4)得Res[f (z ),1] =(){}22115(52)lim1()lim2.z z d z z z f z dzz→→---== 在某些情况下,下面的命题用起来更方便. (3) 设f (z )=00()()P z Q z ',P (z ),Q (z )在z 0都是解析的.如果P (z 0)0≠,Q (z 0)=0且Q '(z 0)0≠,那么z 0是f (z )的一级极点,因此有Res[f (z ),z 0]=00().()P z Q z ' (5.6)证明: 事实上,因为Q (z 0)=0及Q '(z 0) 0≠,所以z 0为Q (z )的一级零点,由11()()z Q z z z ϕ=-,其中()z ϕ在z 0解析且0()0z ϕ≠,于是 f (z )=1()()z P z z z ϕ-. 因为在z 0解析且00()()0z P z ϕ≠,故z 0为f (z )的一级极点.根据(5.5)式,有0000000000()()Res[(),]lim()()lim()lim()()()()()()lim .()()()z z z z z z z z P z P z f z z z z f z z z z z Q z Q z Q z P z P z Q z Q z Q z z z →→→→=-=-=--=='-例5.3 计算f (z )= e sin zz在z =0处的留数.解: 这时P (z )=e z ,Q (z )=sin z ,于是P (0)=1,Q (0)=0,Q '(0)=1. 由(5.6)式得Res[f (z ),0]=()0(0)P Q '=1. 上述的几种方法,实质上是把留数的计算变成了微分运算,从而带来了方便.但如果z 0是f (z )的本性奇点,我们没有像上面那种简单的留数计算公式,这时只能通过求f (z )的罗朗展开来得到f (z )在z 0的留数.有时候,对于级比较高的极点,或者求导比较复杂的函数,运用上面的公式也十分复杂,选择求罗朗展开或者其它方法可能更好些.例5.4 计算f (z )= 6sin z zz-在z =0处的留数. 解:因为35663sin 111[()]3!5!1111,3!5!z z z z z z z z z z-=--⋅+⋅+=⋅-⋅+所以Res 16sin 1,0.5!z z a z --⎡⎤==-⎢⎥⎣⎦此题若选择微分的方法,运算相对复杂一些,读者可做验算比较.例5.5 计算积分222d (1)(1)Czz zz -+⎰,这里C : |z –取正向.解:令f (z )=222(1)(1)zz z -+,则z 1=i , z 2=–i 为f (z )的两个一级极点,z 3=1,z 4=–1为f (z )两个二级极点.容易看出z 1,z 2,z 3位于C 的内部.由留数定理,31()d 2πRe [(),].kk Cf z z i s f z z ==∑⎰又Res [f (z ),i ]= 221lim()()lim.(1)()8z iz iz z i f z z z i →→-==-+同理Res [f (z ),–i ]=18. Res [f (z ),1] = 22211lim{(1)()}lim (1)(1)z z d d zz f z dz dz z z →→⎧⎫-=⎨⎬++⎩⎭323221311lim.(1)(1)8z z z z z z →---+==++ 于是111π()d 2π().8884Cif z z i =+-=⎰4. 在无穷远点的留数设函数f (z )在圆环域R <|z |<∞内解析,C 为这圆环域内绕原点的任何一条简单闭曲线,那么称f (z )沿C 的负向积分值1()d 2πCf z z i⎰称为f (z )在∞点的留数,记作Res [f (z ),∞]=1()d 2πCf z z i⎰. (5.7)这个积分值与C 无关,且根据公式(4.23)和(4.24)得Res[f (z ),∞]=111()d ()d ,2π2πCC f z z f z z b i i--==-⎰⎰(5.8)即f (z )在∞点的留数等于它在∞点的去心邻域R <|z |<∞内的罗朗展开式中z –1的系数的相反数.由(5.7)式,我们有下述定理.定理5.2 如果函数f (z )在扩充的复平面内只有有限个孤立奇点,那么f (z )在所有奇点(包括∞点)的留数之和为零.证明:取r 充分大,使f (z )的有限个孤立奇点z k (k =1,2,…,n )都在|z |<r 中. 由留数定理,得1()d 2πRes[(),]nk k z rf z z i f z z =<=∑⎰,其中积分取圆周的正项.由(5.8})式,得Res [f (z ),∞]=()d z rf z z <-⎰.于是就有Res[f (z ),∞]+1Res[(),]nkk f z z =∑=0.例5.6 判定z =∞是函数f (z )=223zz +的什么奇点?并求f (z )在∞点的留数. 解:因为 lim ()0,z f z →∞=所以∞点是可去奇点.又f (z )在复平面内仅有3i 和–3i 为一级极点,且Res[f (z ),3i ]= 3lim3z i z i →+ =1,Res [f (z ),–3i ]= 3lim3z i z i→--=1.故由定理5.2Res[f (z ),∞] = – Res [f (z ),3i ] – Res [f (z ), –3i ] = –1–1= –2.§5.2 留数在积分计算上的应用在高等数学中我们知道,有很多函数的原函数不能用初等函数来表达,因此,通过求原函数的办法求定积分或广义积分就受到限制.利用留数理论可以求一些重要的实函数的积分.下面我们分几种类型介绍怎样利用留数求积分的值.1. 形如()d R x x ∞-∞⎰的积分这里R (x )=()()P z Q z 为有理函数,P (x )=x m +a 1x m –1+…+a m , Q (x )=x n +b 1x n –1+…+b n , P (x ), Q (x )为两个既约实多形式,Q (x )没有实零点,且n –m ≥ 2.我们取复函数R (z )=()()P z Q z ,则除Q (z )的有限个零点外,R (z )处处解析.取积分路线如图5.2所示,其中C r 是以原点为中心,r 为半径的上半圆周,令r 足够大,使R (z )在上半平面上的所有极点z k (k =1,2,…,s )都含在曲线C r 和[–r , r ]所围成的区域内.由留数定理,得1()d ()d 2πRes[(),].rrskk rC R x x R z z i f z z =-+=∑⎰⎰当r 充分大时,右端的值与r 无关.又|R (z )|=111111111111.11m m m m n mn mnnn n a z a z a z a z b z b zb z b zzz----------++++++⋅≤⋅+++-++故存在常数M ,当|z |充分大时,有图5.2|R (z )| 2.n mM M zz-≤≤令z =i re θ,于是πππ20()d (e )e d (e )d πd 0()ri i i C R z z R r ri R r r M M r r r rθθθθθθ=≤≤=→→∞⎰⎰⎰⎰因此在(5.9)式中令r →∞得1()d 2πRes[(),].nk k R x x i R z z +∞-∞==∑⎰(5.10)例5.7 计算积分242d 109x x x x x +∞-∞-+++⎰.解:记R (z )= 242109x x x x -+++,则R (z )满足(5.10)式的条件,且R (z )在上半平面内有2个一级极点z 1=i 和z 2=3i .容易得到Res [R (z ),i ]=1i 16--, Res[R (z ),3i ]= 37i48-,因此 2421i 37i 5d 2πi[]π.109164812x x x x x +∞-∞-+---=+=++⎰例5.8 计算积分24d 1x x x +∞+⎰. 解:注意到R (x )=241x x +为偶函数,于是有224401d d .121x x x x x x +∞+∞-∞=++⎰⎰ 又R (z )的分母高于分子两次,在实轴上无奇点,在上半平面上有两个一级极点1)i i +-+,且Res[R (z)i +R (z1)i -+]= 由公式(5.10})有240d 2ππ.12x x x +∞==+⎰ 故得240d π.14x x x +∞=+⎰ 2. 形如()e d (0)ix R x x αα+∞-∞>⎰的积分这里R (x )是实轴上连续的有理函数,而分母的次数n 至少要比分子的次数m 高一次(n –m ≥1).这时有1()e d 2Re [e (),].sixix k k R x x i s R z z ααπ+∞=-∞=∑⎰(5.11)其中z k (k =1,2,…,s)是R (z )在上半平面的孤立奇点.事实上,如同类型1中处理的一样,取如图(5.2)的积分曲线C r ,当r 充分大,使z k (k =1,2,…,s)全落在曲线C r 与[–r , r ]所围成的区域内.于是 又n –m ≥1,故充分大的|z |,有|R (z )| M z≤. 因此sin cos 0πsin 0ππ2sin sin 0()e d (e )e d (e )e d e d 2e d .rizi r i r C i r r r R z z R r r R r r M M παθαθαθθαθαθαθθθθθ-+---=⋅≤⋅≤=⎰⎰⎰⎰⎰当π02θ≤≤时,2sin πθθ≥,所以有 ()2ππ2π()e d 2ed (1e ).2rizr r C M R z z M rθαααθ--≤=-⎰⎰ 于是,当r →∞时,()ed 0rizC R z z α→⎰,故(5.11})式成立.(5.11})还可以变形为1()cos ()sin d 2πRes[()e ,].siz k k R x xdx i R x x x i R z z ααα+∞+∞=-∞-∞+=∑⎰⎰ (5.12)例5.9 求积分2cos d 45xx x x +∞++⎰.解:设R (z )=2145x x ++,则R (z )的分母高于分子二次,实轴上无奇点,上半平面只有一个一级极点z = –2+i ,故2122()ed 2πRes[()e ,2]2πlim [(2)]()e e e2πlim2π.22ixiz izz iiz iz i R x x i R z i i z i R z i i z i i+∞→-+-∞--→-+=-+=--+==++⎰由公式(5.12}),有2cos d 45x x x x +∞-∞++⎰=Re[12e 2π2i i i --]=1πe cos 2.- 在上面两类型的积分中,都要求R (z )在实轴上无孤立奇点,这时我们取积分闭曲线为图5.2的形式.当R (z )在实轴上有奇点时,我们要根据具体情况,对积分曲线稍作改变.下面以例题说明如何计算此类型的积分.例5.10 计算积分sin d xx x+∞⎰的值. 解:取函数f (z )=e izz,并取围道如图5.3所示,在此围道中f (z )是解析的.由柯西积分定理,得e e e e d d d d 0.r Rr Rix iz ix izR C r C x z x z x z x x --+++=⎰⎰⎰⎰ 令x =–t ,则有e e e d d d .r r Rix it ixR R rx t x x t x ----==-⎰⎰⎰ 所以有e e e e d d d 0.R rRix ix iz izr C C x z z x z z --++=⎰⎰⎰ 即sin e e 2d d d 0.R rRiz izr C C x i x z z x z z ++=⎰⎰⎰现在来证明0e e lim d 0lim d π.R riz izR r C C z z i z z →∞→==-⎰⎰和 由于图5.3π2e ππsin 00sin 0e e d d e d π22e d (0,sin )2ππ(1e ),i R iR izR C R R z R z R Rθθθθθθθθθ---≤⋅==≤≤≥=-⎰⎰⎰⎰时所以e lim d 0.RizR C z z→∞=⎰ 又因为1e 11(),2!!iz n nz z i i z z z n zϕ-=+-+++=+ 其中ϕ(z )在z =0解析,且ϕ(0)=i .因此当|z |充分小时,可设|ϕ(z )|≤2.由于e d d ()d ,r r riz C C C z z z z z z ϕ=+⎰⎰⎰ 而πd e d πe r i i C z ir i z r θθθ==-⎰⎰ 和π()d (e)d 2π.Ri C z z r r r θϕϕθ≤≤⎰⎰故有0e lim d π.rizr C z i z →=-⎰ 综上所述,令R →∞,r →0,则有sin πd .2x x x +∞=⎰3. 形如2π(sin ,cos )d R θθθ⎰的积分这里R (x ,y )是两个变量x ,y 的有理函数,比如R (x ,y )= 2222641x y x y -+-.计算这种积分的一种方法是把它化为单位圆周上的积分.事实上,令z =e i θ,那么21111sin (e e )(),222i i z z i i z iz θθθ--=-=-=21111cos (e e )(),222i i z z i i z izθθθ-+=+=+=1d d .z izθ=从而原积分化为沿正向单位圆周的积分,即2π2201111d (cos ,sin )d [,]()d ,22z z z z zR R f z z z iz iz θθθ==+-==⎰⎰⎰其中f (z )=R [2211,22z z z iz +-]1iz⋅为z 的有理函数,且在单位圆周|z |=1上分母不为零,因而可用留数定理来计算.例5.11 计算积分2π4cos 4d θθ⎰. 解:令z =e (02π)i θθ≤≤,则4444cos 4()2z z θ-+=, 42π448441701111(1)cos 4d ()d d 216z z z z z z z iz i z θθ-==++==⎰⎰⎰ 在0z <<1内,被积函数的罗朗展开式为48179117(1)113.161648z z z z z ---+=+++故2π8441701(1)3cos 4d [2πRes[,0]]π.164z i i z θθ+==⎰ 总结上述的方法,我们发现,由于留数是与闭曲线上的复积分相联系的.因此利用留数来计算定积分需要有两个主要的转化过程:1) 将定积分的被积函数转化为复函数;2) 将定积分的区间转化为复积分的闭路曲线. 根据这种思路,我们可以计算更多的积分.比如,Fresnel 积分2cos d x x ∞⎰和2sin d x x ∞⎰.这两个积分在光学的研究中很有作用.取函数f (z )=2eix ,取积分围道如图5.4,因为f (z )在闭围道内解析,由柯西积分定理,有222e d e d e d 0.ix izix OABOABx z z ++=⎰⎰⎰当z 在OA 上时,z =x , 0≤x ≤r ,22e d e d .rix ixOAx x =⎰⎰当z 在AB 上时,z =r e i θ,0θ≤π4≤,此时4sin 2πθθ≥,所以2422πsin 2e e e.r iz rθθ--=≤故π42422ππe d ed (1e )0,().4r iz r ABz r r rθθ--≤⋅=-→→∞⎰⎰ 当z 在BO 上时,z =x 4πe i ,0,x r ≤≤πππ222444e 0e d ee d ee d .i ri i iz ix x BOrz x x -=⋅=-⎰⎰⎰ 令r →∞,于是(5.13})变为224e d 0ee d ,i ix x x x π∞∞-+-⎰⎰ 又2πe d xx ∞-=⎰, 因此22440πe d ee d e .2i i ix x x x ππ∞∞-==⎰⎰ 上式两边分别取实部和虚部,即得221πcos d sin d .x x x x ∞∞==⎰⎰ 小 结留数定义为:011Res[(),]()d 2πCf z z a f z z i-==⎰其中1a -是函数()f z 在0z 点的罗朗展开式的10()z z --的系数,C 是0z 的去心邻域0<0z z -<R 内的包含0z 的任意一条正向简单闭曲线.图5.4留数定理:若函数()f z 在区域D 内除了有限个孤立奇点21,,,n z z z -外处处解析,C是D 内包含这些起点的一条正向简单闭曲线,则有:1()d 2πRes[(),]nji fCf z z i f z z ==∑⎰.留数定理将积分路径内包含有限个孤立奇点的复积分的计算问题转化为对这些奇点的留数的计算. 如何计算留数,我们有下列方法:⑴ 一般方法:设0z 为函数()f z 的孤立奇点(无论是可去奇点、极点或本性奇点),将()f z 在0z 处展开为罗朗级数,并求出系数1a -,则有01Res[(),]f z z a -=.特别是当0z 为本性奇点时,这个方法是比较常用的方法.⑵ 一级极点情形:若0z 为()f z 的一级极点,则有00Res[(),]lim()()z z f z z z z f z →=-⑶ m 级极点情形:若0z 为()f z 的m 级极点,则有010011Res[(),]lim [()()]!m m m z z d f z z z z f z m dz--→=-⑷ 化为零点问题:若()f z =()()P z Q z ,()P z 和()Q z 在0z 点解析,且()P z ≠0,()Q z =0,'()Q z ≠0,则0z 为()f z 的一级极点,且有000()Res[(),]'()P z f z z Q z =当()f z 为函数时,这个方法是常用的方法.⑸ 可去奇点情形,若0z 是函数f (z )的可去奇点时,则有0Res[(),]0f z z =.无穷远点∞处的留数定义为:设()f z 在R ﹤z ﹤∞内解析,C 为该区域内的绕原点的任意一条正向简单闭曲线,则()f z 在孤立奇点∞处的留数为11Res[(),]()d 2πCf z a f z z i-∞==⎰.若()f z 在扩充复平面内只有有限个孤立奇点,则()f z 的所有奇点(包括无穷远点∞)的留数的总和等于零.应用留数定理,可以计算一些实积分,称为围道积分方法.重要介绍是下列三种类型的实积分:⑴()d R x x ∞-∞⎰; ⑵()ed ,0iaxR x x a ∞-∞>⎰;⑶2π(cos ,sin )d R x θθθ⎰.在利用围道积分时,主要做两方面的工作.一是找一个与所求积分的被积函数密切相关的复变函数()F z ;二是找一条合适的闭路曲线C ,使得在这条闭曲线所围成的区域D 内()F z 只有有限个孤立奇点. ()F z 沿着C 的积分与实积分紧密相关,这样就可以应用留数定理计算实积分.重要术语及主题留数 留数定理 扩充复平面 无穷远点的留数 留数计算 留数定理的应用习题五1.求下列函数的留数.⑴ 5e 1()zf z z -=在0z =处; ⑵ 11()e z f z -=在1z =处.2. 利用各种方法计算()f z 在有限孤立奇点处的留数. ⑴ 232()(2)z f z z z +=+; ⑵ 1()sin f z z z=.3. 利用罗朗展开式求函数21(1)sin z z+在∞处的留数. 4.求函数1()()m mz a z b --(,a b m ≠为整数)在所有孤立奇点(包括∞点)处的留数.5. 计算下列积分. ⑴tan πd Cz z ⎰, n 为正整数,C 为z =n 取正向;⑵10d ()(1)(3)Czz i z z +--⎰, C :z =2,取正向. 6. 计算下列积分.⑴ π0cos d 54cos m θθθ-⎰; ⑵2π20cos3d 12cos a a θθθ-+⎰ ,a >1; ⑶ +2222-d ,()()xx a x b ∞∞++⎰a >0,b >0: ⑷ 22220,()x x a ∞+⎰a >0: ⑸+222sin d ,()x xx x b β∞+⎰β>0, b >0: ⑹+22-e d ,ixx x a∞∞+⎰a >0: 7. 计算下列积分.⑴20sin 2d (1)xx x x ∞+⎰; *⑵ 21d 2πza z i zΓ⎰,其中Γ为直线Re x c =,c >0,0<a <1.。
留数理论
cos z dz . 例 3 计算积分 3 |z| 1 z
cos z 解: f ( z ) 3 只有一个三阶极点z 0 . z 由定理 6.2 得
1 1 3 cos z Re s f ( z ) ( z 3 ) z 0 , z 0 2 ( 3 1)! z
由留数定理得
所以,
Res f ( z ) c1
z a
1 d n 1 lim n1 [( z a )n f ( z )]. ( n 1)! z a dz
[证毕]
注:函数 f ( z ) 在 n 阶极点 a 处的留数也可用下列
极限形式表示:
1 Re s f ( z ) lim[( z a )n f ( z )]. za ( n 1)! z a
推论6.3 如果 a 为 f ( z )的一阶极点, 那末
Res f ( z ) ( z a ) f ( z ) z a .
z a
( 6 .4 )
推论6.4
如果 a 为 f ( z ) 的二阶极点, 那末
Res f ( z ) [( z a )2 f ( z )] z a .
z a
(6.5)
P(z) , P ( z ) 及 Q( z ) 在 a 都解析, 定理6.5 设 f ( z ) Q( z )
如果 P (a ) 0 , Q(a ) 0 , Q(a ) 0 , 那末 a 为
f ( z ) 的一阶极点, 则有 Res f ( z ) P (a ) . z a Q ( a )
证
因为 a 为 f ( z ) 的一阶极点,
P(z) 所以, Res f ( z ) lim ( z a ) f ( z ) lim z a z a Q( z ) Q(a ) z a za P (a ) . Q ( a )
(完整版)复变函数第六章留数理论及其应用知识点总结
第六章留数理论及其应用§1.留数1.(定理6.1 柯西留数定理):∫f(z)dz=2πi∑Res(f(z),a k)nk=1C2.(定理6.2):设a为f(z)的m阶极点,f(z)=φ(z) (z−a)n,其中φ(z)在点a解析,φ(a)≠0,则Res(f(z),a)=φ(n−1)(a) (n−1)!3.(推论6.3):设a为f(z)的一阶极点,φ(z)=(z−a)f(z),则Res(f(z),a)=φ(a) 4.(推论6.4):设a为f(z)的二阶极点φ(z)=(z−a)2f(z)则Res(f(z),a)=φ′(a)5.本质奇点处的留数:可以利用洛朗展式6.无穷远点的留数:Res(f(z),∞)=12πi∫f(z)dzΓ−=−c−1即,Res(f(z),∞)等于f(z)在点∞的洛朗展式中1z这一项系数的反号7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为a1,a2,…,a n,∞,则f(z)在各点的留数总和为零。
注:虽然f(z)在有限可去奇点a处,必有Res(f(z),∞)=0,但是,如果点∞为f(z)的可去奇点(或解析点),则Res(f(z),∞)可以不为零。
8.计算留数的另一公式:Res (f (z ),∞)=−Res (f (1t )1t 2,0)§2.用留数定理计算实积分一.∫R (cosθ,sinθ)dθ2π0型积分 → 引入z =e iθ注:注意偶函数二.∫P(x)Q(x)dx +∞−∞型积分1.(引理6.1 大弧引理):S R 上lim R→+∞zf (z )=λ则lim R→+∞∫f(z)dz S R=i(θ2−θ1)λ 2.(定理6.7)设f (z )=P (z )Q (z )为有理分式,其中P (z )=c 0z m +c 1z m−1+⋯+c m (c 0≠0)Q (z )=b 0z n +b 1z n−1+⋯+b n (b 0≠0)为互质多项式,且符合条件:(1)n-m ≥2;(2)Q(z)没有实零点于是有∫f (x )dx =2πi ∑Res(f (z ),a k )Ima k >0+∞−∞注:lim R→R+∞∫f(x)dx +R −R 可记为P.V.∫f(x)dx +∞−∞ 三. ∫P(x)Q(x)e imx dx +∞−∞型积分 3.(引理6.2 若尔当引理):设函数g(z)沿半圆周ΓR :z =Re iθ(0≤θ≤π,R 充分大)上连续,且lim R→+∞g (z )=0在ΓR 上一致成立。
留数
盐城工学院基础部应用数学课程组
目录
上页
下页
返回
结束
三、留数的计算、用留数定理求积分
ez 例2 求 f ( z ) 2 在 z 0 的留数. z
解 因为 z 0 是 f ( z )的 2级极点,
1 d 2 1 2 e z ez lim 21 z 2 所以 Res 2 , 0 z z (2 1)! z 0 dz
3.利用留数定理计算沿闭路复积分.
盐城工学院基础部应用数学课程组
目录
上页
下页
返回
结束
作业
习题五: 8(1)(2)(6);
9(1)(2);
盐城工学院基础部应用数学课程组
目录
上页
下页
返回
结束
三、在无穷远点的留数*
定义 设函数 f ( z )在圆环域 R z 内解析,
C为圆环域内绕原点的任何一条正向简单闭曲线, 1 那末积分 f ( z )dz 的值与无关, 则称此定值 2i C 1
盐城工学院基础部应用数学课程组
目录 上页 下页 返回 结束
利用留数定理计算复积分 ez 例4 计算积分 2 dz , C为正向圆周: z 2. z( z 1) C 解 z 0 为一级极点, z 1为二级极点,
e Res[ f ( z ), 0] lim z 2 z 0 z( z 1)
C C C
0 柯西-古萨基本定理
2ic1 ,其中c1为负幂项c1 ( z z0 )1的系数.
1 即 c1 f ( z )dz , 称 为 f ( z ) 在 z 0 的 留 数 . 2 i C
盐城工学院基础部应用数学课程组
留数定理及其应用
式,故 I = 2πi sin 0 = 0.
例3 I=
e1/z dz.
|z|=1
解 本题的被积函数 f (z) = e1/z 在圆周 |z| = 1 的内部有一个本性奇点 z = 0,它在
z = 0 处的 Laurent 展开式为 f (z) = e1/z = 1 + 1/z + . . . + 1/n!zn + . . .,故 Res f (0) =
n=−∞
则
cn
=
1 2πi
Γρ
(z
f (z) − a)n+1
dz.
令 n = −1,得
c−1
=
1 2πi
f (z) dz.
Γρ
与式 (1) 比较,即得
Res f (a) = c−1.
(2)
由此可知,可去奇点处的留数为 0. 注 有些书上直接用式 (2) 作为留数的定义,这与式 (1) 的定义显然是等价的.
数的问题.由上节可以看到,计算极点的留数主要涉及微分运算.对于本性奇点,必须作
Laurent 展开来计算其留数.作 Laurent 展开,通常归结为 Taylor 展开,而计算 Taylor 展
开式的系数也是微分运算问题.所以可以说,留数定理把积分运算转化成了比较容易的微分
运算,因此它为积分的计算提供了一项非常有用的技术.
§3 用留数定理计算围线积分
4
推论一(单极点的留数,第一公式) 若 a 是 f (z) 的单极点,则
Res f (a) = [(z − a)f (z)]|z=a.
(5)
推论二(二阶极点的留数) 若 a 是 f (z) 的二阶极点,则
Res f (a) = [(z − a)2f (z)] |z=a.
留数定理及其应用
a
对f(z)的假设:与第二,第三种类型积分相同,除了在实轴上有 一阶极点b外。 积分回路: 原积分路径上增加半圆CR ( R → ∞)及半圆 Cε (ε → 0) 已证明: lim f ( z )dz = 0
0 k =1
15
∞
n
若 f(x)为奇函数,则
0 + 2i ∫ f ( x) sin mxdx = 2π i ∑ ResF (bk )
0 k =1
∞
n
⇒ ∫ f ( x) sin mxdx = π ∑ ResF (bk )
0 k =1
∞
n
16
例:求 I = ∫
解:作函数
∞
0
cos mx dx (m > 0, a > 0) 2 2 x +a
第4章 留数定理及其应用
柯西公式: 设f(z)在单通区域D内解析,a为 1 f ( z) 则 f (a) = dz
2π i
的内点,
∫
L
z−a
注意:a为内一点,z在L上取值. 表明:解析函数f(z)在其解析区域内任一点的值可由沿 边界线的积分确定。
1
4.1
留数定理
residue 一、留数定理 若函数 f(z)在 D 内除有限个孤立奇点 bk 外解析,则
R 半圆 C R ( R → ∞)。 → ∞ 的原因:
10
∞
∞
(1) R → ∞ 时,z f(z)一致地趋于零; (2)可把f(z)在上半平面所有的奇点(只有有限个)都包围在L内。 留数定理:
复变函数第六章留数理论及其应用知识点总结
注 2:条件可减弱为:f(z)连续到边界 C,且沿 C 有 f(z)≠0 4.(辅角原理):
5.(定理 鲁歇(Rouche)定理):设 C 是一条周线,函数 f(z)及 (z)满足条 件:
(1)它们在 C 的内部均解析,且连续到 C;
(2)在 C 上,|f(z)|>| (z)|
则函数 f(z)与 f(z)+ (z)在 C 内部有同样多(几阶算几个)的零点,即
§2.用留数定理计算实积分
一. 注:注意偶函数
→ 引入
二.
型积分
1.(引理 大弧引理): 上
则
2.(定理)设
为互质多项式,且符合条件: (1)n-m≥2; (2)Q(z)没有实零点 于是有
注:
可记为
三.
型积分
3.(引理 若尔当引理):设函数 g(z)沿半圆周 上连续,且
在 上一致成立。则
2
4.(定理):设 (1)Q 的次数比 P 高; (2)Q 无实数解; (3)m>0 则有
(2)设 b 为 f(z)的 m 阶极点,则 b 必为函数 的一阶极点,并且
3
3.(定理 对数留数定理):设 C 是一条周线,f(z)满足条件: (1)f(z)在 C 的内部是亚纯的; (2)f(z)在 C 上解析且不为零。 则有
注 1:当条件更改为:(1)f 在 Int(C)+C 上解析;(2)C 上有 f≠0,有 ,即
,其中 P(z)及 Q(z)为互质多项式,且符合条件:
特别的,上式可拆分成: 及
四.计算积分路径上有奇点的积分 5.(引理 小弧引理):
于 上一致成立,则有
五.杂例 六.应用多值函数的积分
§3.辐角原理及其应用 即为:求解析函数零点个数 1.对数留数:
留数的定义留数定理留数的计算规则无穷远点的留数
( g ( z ) ( z ) p( z ) 在z0解析, 且 g ( z0 ) 0 )
则z0为f ( z)的一级极点,由规则
Re s[ f ( z ), z0 ] lim ( z z0 ) f ( z )
z z0
Re s[ f ( z ), z0 ] lim ( z z0 ) f ( z )
(5)
事实上,由条件
f ( z ) cm ( z z0 ) m c2 ( z z0 ) 2 c1 ( z z0 ) 1 c0 c1 ( z z0 ) , (cm 0)
以( z z0 )m 乘上式两边 ,得
( z z0 ) m f ( z ) cm cm1 ( z z0 ) c1 ( z z0 ) m1 c0 ( z z0 ) m
当 m = 1时,式(5)即为式(4).
p( z ) , Q( z ) p( z ), Q( z )在z0 处解析,
规则III 设f ( z )
p( z0 ) 0 , Q( z0 ) 0 , Q' ( z0 ) 0,则
z0 是f ( z )的一级极点 ,且 p( z0 ) Re s[ f ( z ), z0 ] Q' ( z 0 ) ( 6)
c k 1
n
k
]
(3)
证明
用互不包含 , 互不相交的正向简单闭 曲线ck (k 1,2,n),将 c内的弧立奇点zk 围绕,
由复合闭路定理得:
f ( z)dz
c
c1
f ( z )dz f ( z )dz f ( z )dz
c2 cn
第五章 留数
,即
R e s[ f ( z ), z 0 ] c 1
或 R e s [ f ( z ), z 0 ]
2 i
1
f ( z )d z
C
C是此圆环域内围绕 z 0 的任一条正向简单闭曲线.
2、留数的计算
(1) 如果 z 0 为 例如:
f (z)
的可去奇点, 则
R es[ f ( z ), z 0 ] 0 .
1、留数的定义
若z0 是 f (z)的孤立奇点,则 f (z) 在某圆环域
0 z z0
内可以展开为洛朗级数
f (z)
n
cn ( z z0 ) ,
n
上述展开式中负一次幂项的系数 c 1 称为
z0
f (z)
在
处的留数,记为
R e s f ( z ), z 0
1
f (z) ( z z0 )
n1
dz
( n 0 , 1, 2 , ),
C
c 1
2 i
1
f ( z )d z
C
C是此圆环域内围绕 z 0 的任一条正向简单闭曲线.
1、留数的定义
若z0 是 f (z)的孤立奇点,则 f (z) 在某圆环域
0 z z0
如果 z 0 为 f ( z ) 的 m 级极点, 则
1 lim d
m 1
R es[ f ( z ), z 0 ]
( m 1) ! z z 0 d z
[( z z 0 ) m 1
m
f ( z )].
说明
(1)当 m=1 时,上式即为
R e s [ f ( z ), z 0 ] lim ( z z 0 ) f ( z ).
复变函数 第五章 留数
m
g ( z ) , ) (
其中 g (z) = cm+ cm+1(zz0) + cm+2(zz0)2 +... , 在 |zz0|<d 内是解析的函数, 且 g (z0) 0 . 反过来, 当任何一个函数 f (z) 能表示为(*)的形式, 且 g (z0) 0 时, 则z0是 f (z)的m级极点.
c0=c1=...=cm1=0, cm0, 这等价于
f (n)(z0)=0, (n=0,1,2,...,m1), f (m)(z0)0 。
例如 z=1是f (z)=z31的零点, 由于 f '(1) = 3z2|z=1=3 0,
从而知 z=1是f (z)的一级零点.
由于f (z) = (zz0) m j (z)中的j (z)在z0解析, 且j (z0)0, 因
4.函数的零点与极点的关系
不恒等于零的解析函数 f (z)如果能表示成
f (z) = (zz0) m j (z), 其中j (z)在z0解析且j (z0) 0,
m为某一正整数, 则z0称为f (z)的m级零点.
例如当 f (z)=z(z1)3时, z=0与z=1是它的一级与三级零点.
根据这个定义, 我们可以得到以下结论:
例 3 对 m Z 讨论函数
m 0 : z 0 为解析点;
f (z)
e 1
z
z
m
在 z 0 处的性态。
m 1 : z 0 为可去奇点;
2 m m 1 1 z z z m 1 : f (z) m z 2! m! ( m 1 )! z
C C1 C2 Cn
留数及其应用对数留数与辐角原理
以(z - z0 )m 乘上式两边, 得 (z - z0 )m f (z) c-m c-m1(z - z0 ) c-1(z - z0 )m-1
c0(z - z0 )m
两边求m - 1阶导数得
d m-1 dzm-1
{(z
-
z0 )m
f
(z)}
(m
- 1)!c-1
m!(z
-
z0 )
d m-1
1
d m-1
Re
s[
f
( z ),
z0 ]
(m
-
1)!
lim
z z0
dz m -1
(z - z0 )m
f (z)
(5)
证明:由条件
f (z) c-m (z - z0 )-m c-2(z - z0 )-2 c-1(z - z0 )-1 c0 c1(z - z0 ) , (c-m 0)
f
( z )]
lim
z0
-
e-z
-1
例
函数
f(z)
1
e iz z
2在极点处的留数
解:因为函数 且
f (z)
e iz 1 z2
,有两个一阶极点
z
i
,
P(z) 1 eiz , Q'(z) 2z
有Res[ f z, i] eiz
- i
2z zi
2e
Res[ f z,-i] eiz
i e.
2z z-i 2
2z
5
-
1 10
Res[
f
z ,2]
lim( z
z2
-
2)
f
(z)
lim
z2
留数的定义留数定理留数的计算规则无穷远点的留数
由规则 II
z 2
f ( z )dz 2i Re s[ f ( z ),0] 2i Re s[ f ( z ),1] 0
例2
z 计算 4 dz , c : 正 向 z 2 c z 1
解 f ( z )有4个一级极点 : 1 , i 都在圆周 c内,
由规则 P( z) z 1 3 2 Q' ( z ) 4 z 4z
(ii) 若z z0为本性奇点
f ( z)
展开 n c ( z z ) Re s[ f ( z), z0 ] c1 n 0
(iii) 若z z0为极点时,求Re s[ f ( z), z0 ]有以下几条规则
规则I
若z0是f ( z)的一级极点 ,则
z z0
n 1 1 f ( z )dz f ( z )dz c 2i c k 1 2i n
D
c
z3 zn
z1 z2
Re s[ f ( z ), zk ]
k 1
n
故
f ( z)dz 2i Re s[ f ( z), z ]
c k 1 k
n
得证!
求沿闭曲线c的积分,归之为求在c中各孤立 奇点的留数。
利用定理简化计算: 由于 z i 为 f ( z)的10级极点,计算留数很繁!! 原式 2iRe s[ f ( z ),i] Re s[ f ( z ) , 1] 2iRe s[ f ( z ) , 3] Re s[ f ( z ) , ]
两边求m 1阶导数得 d m1 m ( z z ) f ( z ) (m 1)!c1 m!( z z0 ) 0 m 1 dz
6.2.函数在无穷远点的留数及其应用
1
f (z)dz, ( :| z | r)
2 i
为f(z)在点 ∞的留数,记作
Res f (z)
z
设f(z)在去心邻域N-{∞}:0≤r < | z | <+∞内
的洛朗展式为
f (z) c2z2 c1z1 c0 c1z cnzn
a 例3.2 设C是圆|z-a|<ρ,其中 是一个复数,ρ是一个正数,那么按反时针方向
2 i
k 1 zak
n
1
Res f (z)
f (z)dz 0
k 1 zak
n 2 i
1
Res f (z)
f (z)dz 0
n k 1 zak
2 i
故 Res f (z) Res f (z) 0
k1 zak
z
注意:若a为f(z)的可去奇点,则必有
Res f (z) 0 za
2 i
f (z)dz c1
注意比较含点∞的区域的柯西积分定理与此结论的异同.
定理6.6 z 如果f(z)在扩充 平面上只有有限个孤立奇点(包括无穷远点
a a ),设为 1, 2, a ∞ …, n, , 则f(z)在各点的留数总和 为零.
a a a 皆含于 证 以原点为圆心作圆周Г,使 1, 2,…, n,
所取的积分
dz 2 i,
(n 1)
C (z a)n 0,
(n 1的整数)
故
dz 2 i, n 1
zn
0,
n1
f (z) c2z2 c1z1 c0 c1z cnzn
及
dz zn
2 i,
0,
n 1可推出 n1
f (z)dz 2 i c1
留数定理及应用
留数及其应用摘 要数定理得知,计算函数)(z f 沿C 的积分,可归结为计算围线C 各孤立奇点处的留数之和.而留数又是该奇点处的罗朗级数的负一次幂的系数,因此我们只关心该奇点处罗朗留数理论是复积分和复级数理论相结合的产物,利用留数定理可以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文首先介绍留数定义及留数定理,然后针对具体不同的积分类型有不同的计算方法以及留数理论在定积分中的一些应用.关键词 留数定理;留数计算;应用引 言 对留数理论的学习不仅是前面知识的延伸,更为对原函数不易直接求得的定积分和反常积分的求法提供了一个较为方便的方法.一. 预备知识 孤立奇点1.设()f z 在点a 的把计算闭曲线上的积分值的问题转化为计算各个孤立奇点上的留数的问题,即计算在每一个孤立奇点处的罗朗展式中负幂一次项的系数1-C .在一般情况下,求罗朗展式也是比较麻烦的,因此,根据孤立奇点的不同类型,分别建立留数计算的一些简便方法是十分必要的. 1.1 若0z 为)(z f 的可去奇点则)(z f 在R z z <-<00某去心邻域解析,但在点a 不解析,则称a 为f 的孤立奇点.例如sin zz,1z e 以0=z 为孤立奇点.以0=z 为奇点,但不是孤立奇点,是支点.11sin z以0=z 为奇点(又由1sin0=z ,得1(1, 2...,)π==±±z k k 故0=z 不是孤立奇点)2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域,有1()()(),∞∞-===+-∑∑-nnnnn n f z c z a c z a 称()n=1∞-∑-nnc z a 为()f z 在点a 的主要部分,称()∞=-∑nnn z a c 为()f z 在点a 的正则部分,当主要部分为0时,称a 为()f z 的可去奇点; 当主要部分为有限项时,设为(1)11(0)()()------+++≠---m mm m m c c c c z a z a z a称a 为()f z 的m 级极点;当主要部分为无限项时,称a 为本性奇点.二. 留数的概念及留数定理 1. 留数的定义设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R <⋅<解析,则积分()()1:,02f z dz z a R i ρρπΓΓ⋅=<<⎰为()f z 在点a 的留数,记为:()Re z as f z =.2. 留数定理介绍留数定理之前,我们先来介绍复周线的柯西积分定理:设D 是由复周线012C C C C --=+++…n C -所围成的有界连通区域,函数()f z 在D 解析,在_D D C =+上连续,则()0Cf z dz =⎰.定理1[]1(留数定理) 设()f z 在周线或复周线C 所围的区域D ,除12,,a a …,n a 外解析,在闭域_D D C =+上除12,,a a …,n a 外连续,则( “大围”积分)()()12Re knz a k Cf z dz i s f z π===∑⎰. (1)证明 以k a 为心,充分小的正数k ρ为半径画圆周:k k z a ρΓ⋅=(1,2,k =…,n )使这些圆周及部均含于D ,并且彼此相互隔离,应用复周线的柯西定理得()()1knk Cf z dz f z dz =Γ=∑⎰⎰,由留数的定义,有()()2Re kkz a f z dz i s f z π=Γ=⎰.特别地,由定义得 ()2Re kkz a f z dz i s π=Γ=⎰,代入(1)式得()()12Re kn z a k Cf z dz i s f z π===∑⎰.定理2 设a 为()f z 的n 阶极点,()()()nz f z z a ϕ=-,其中()z ϕ在点a 解析,()0a ϕ≠,则()()()()11!n z aa Res f z n ϕ-==-.这里符号()()0a ϕ代表()a ϕ,且有()()()()11lim n n z aa z ϕϕ--→=. 推论3设a 为()f z 的一阶极点,()()()z z a f z ϕ=-, 则 ()()z aRes f z a ϕ==.推论4设a 为()f z 的二阶极点,()()()2z z a f z ϕ=-,则 ()()'z aRes f z a ϕ==.3. 留数的引理引理1 设()f z 沿圆弧:i R S z Re θ= (12θθθ≤≤,R 充分大)上连续,且()lim R zf z λ→+∞=于R S 上一致成立(即与12θθθ≤≤中的θ无关),则()()21limRS R f z dz i θθλ→+∞=-⎰.引理2(若尔当引理) 设函数()g z 沿半圆周:i R z Re θΓ= (0θπ≤≤,R 充分大)上连续,且()lim 0R g z →+∞=在R Γ上一致成立,则()()lim00Rimz R g z e dz m Γ→+∞=>⎰.引理3 (1)设a 为()f z 的n 阶零点,则a 必为函数()()'f z f z 的一阶极点,并且()()'z af z Res n f z =⎡⎤=⎢⎥⎣⎦; (2)设b 为()f z 的m 阶极点,则b 必为函数()()'f z f z 的一阶极点,并且 ()()'z bf z Res m f z =⎡⎤=-⎢⎥⎣⎦.三. 留数的计算1. 函数在极点的留数法则1:如果0z 为)(z f 的简单极点,则)()(lim ]),([Re 000z f z z z z f s z z -=-法则2:设)()()(z Q z P z f =,其中)(,)(z Q z P 在0z 处解析,如果0)(≠z P ,0z 为)(z Q 的一阶零点,则0z 为)(z f 的一阶极点,且)()(]),([Re 0z Q z P z z f s '=. 法则3:如果0z 为)(z f 的m 阶极点,则)]()[(lim !11]),([Re 01100z f z z dzd m z z f s m m m z z --=---)(.2. 函数在无穷远点的留数定理 1 如果)(z f 在扩充复平面上只有有限个孤立奇点(包括无穷远点在) 为∞,,,21n z z z ,则)(z f 在各点的留数总和为零.关于在无穷远点的留数计算,我们有以下的规则.法则 4: 211Re [,]Re [(),0]s f z s f z z∞=-⋅().例 1 求函数2()1ize f z z =+在奇点处的留数.解()f z 有两个一阶极点z i =±,于是根据(6.5)得2()Re (,)()22i P i e is f i Q i i e ===-'2()Re (,)()22i P i e is f i e Q i i ---==='-- 例 2 求函数3cos ()zf z z =在奇点处的留数. 解 ()f z 有一个三阶极点0z =,故由(6.7)得33001cos 11Re (,0)lim()lim(cos )222z z z s f z z z →→''=⋅=-=-四. 留数定理在定积分中的应用利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分.1. 形如()20cos ,sin f x x dx π⎰型的积分这里()cos ,sin f x x 表示cos ,sin x x 的有理函数,并且在[]0,2π上连续,把握此类积分要注意,第一:积分上下限之差为2π,这样当作定积分时x 从0经历变到2π,对应的复变函数积分正好沿闭曲线绕行一周.第二:被积函数是以正弦和余弦函数为自变量。
复变函数论钟玉泉第六章
z a
(a) f ( z) (a)
5
ez 例1 求 f ( z ) n 在 z 0 的留数. z
解
因为 z 0 是 f ( z )的 n阶极点,
1 d n1 n e z ez lim n1 z n 所以 Res n ,0 z 0 dz ( n 1 )! z z
其中C是绕z 正向(顺时针方向)一 周的围道, 在C外除可能为奇点外, f ( z )别无奇点。相应地, C 是在t平面上正向(逆时针方 向)绕t 0一周的围 道,在C 内除t 0可能为奇点外, f (1 / t )别无奇点。
1 1 1 dt Re sf () f ( z )dz f( ) 2 2i C 2i C t t
2aπ 2π a 2 b 2 2 b b2
2 2 (a a 2 b 2 ). b
19
dx 例2 计算 0 2 ( a 0). a sin x π π dx dx 解 0 a sin2 x 0 1 cos 2 x a 2 1 π d2 x 令 2x t, 0 1 cos 2 x 2 a 2 1 1 dz 1 2π dt 2 2 0 a 1 cos t 2 z 1 1 ( z 1) 2 z iz a 2 2 dz 2i 2 . z 1 z 2( 2a 1) z 1
1. 计算0 R(cos , sin )d
2
型积分. 型积分
3. 计算
2. 计算
P ( x ) Q ( x ) P ( x ) imx Q ( x )
dx
e dx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∫
Γ−
− 2π i , dz = n z 0,
n = 1 n ≠ 1
f ( z) = L+ c−2 z−2 + c−1 z −1 + c0 + c1 z + L+ cn zn + L
dz −2π i , n = 1 及∫ − n = 可推出 Γ z n≠1 0,
∫
z=∞
Γ
f (z) =L+ c−2z + c−1z + c0 + c1z +L+ cnz +L 1)在0 <| t |≤ 1 内的洛朗展式为 则f ( t r
n
再利用洛朗级数证明这个公式 设f ( z)在r ≤| z |< +∞内的洛朗展式为
−2 −1
1) = L+ c t 2 + c t + c + c t −1 +L+ c t −n +L f (t 0 1 n −2 −1 1) 1 =L+ c + c t−1 + c t−2 + c t−3 +L+ c t−n−2 +L f ( t t2 0 1 n −2 −1
15
I = 2π i[− Re s f (z)]
z=∞
Re s f (z) = −c−1
z=∞
I = 2π i ⋅ c−1
z 易知z = ∞是f ( z) = 2 的一阶零点 2 4 3 ( z + 1) ( z + 2)
15
∴c−1 = limzf (z) = lim
z→∞ z→∞
在∞ 的去心邻域内有 c −1 c −2 ∴ f (z) = + 2 +L z cz ∴ zf ( z ) = c−1 + −2 + L 16 z z
=∞
在去心邻域N-{ 设f(z)在去心邻域 ∞}:0≤r < | z | <+∞内 在去心邻域 的洛朗展式为
f (z) = L+ c−2z + c−1z + c0 + c1z +L+ cnz +L
n
−2
−1
是圆|z例 3.2 设 C是圆 -a|<ρ,其中 a 是一个 是圆 , 复数, 是一个正数 是一个正数, 复数 , ρ是一个正数, 那么按反时针方向 所取的积分 (n = 1) 2π i , dz ∫C (z − a)n = 0, (n ≠ 1的整数)
1 f ( z )dz = 0 =− ∫Γ 2π i
这也是定理6.6的特例 这也是定理 的特例. 的特例
计算函数在无穷远点留数的一个公式
1 , 则 ϕ(t ) = f (1) = f (z). 令 t = z t
考 虑 Res f ( z ) =
z=∞
Γ :| z |= r 或 z = re (θ : −π →π ) 1 或t = 1 eiϕ (ϕ : −π → π ) γ :| t |= r r 1
n
故
∑Res f (z) + Res f (z) = 0
k =1 z =ak z =∞
注意: 的可去奇点, 注意:若a为f(z)的可去奇点,则必有 为 的可去奇点
Res f ( z ) = 0
z=a
的可去奇点(解析点 若∞为f(z)的可去奇点 解析点 ,则不一 的可去奇点 解析点), 定有 R es f ( z ) = 0
k =1 z = ak
n
∫
Γ
1 ∑ Res f ( z ) − 2π i ∫Γ f ( z )dz = 0 z = ak k =1 n 1 ∑ Res f ( z ) + 2π i ∫Γ− f ( z )dz = 0 z = ak n k =1
n
f ( z )dz = 2π i ∑ Res f ( z ) z = ak k =1 n 1 ∫Γ f ( z )dz = ∑ Res f ( z ) z = ak 2π i k =1
复变函数论
Functions of One Complex Variable
湖南第一师范学院数理系
第六章 留数理论及其应用
§6.1 留数 §6.2 用留数定理计算实积分 §6.3 辐角原理及其应用
§6.1 留数
3.函数在无穷远点的留数 函数在无穷远点的留数
定义6.2 设∞为f(z)的一个孤立奇点 即f(z) 的一个孤立奇点,即 定义 的一个孤立奇点 在去心邻域N-{ 内解析,则称 在去心邻域 ∞}:0≤r < | z | <+∞内解析 则称 1 ∫ Γ − f ( z ) dz , ( Γ :| z |= ρ > r ) 2π i 的留数, 为f(z)在点 ∞的留数,记作 Res f ( z ) 在点 的留数 z =∞
(z +1) (z + 2) I = 2π i ⋅ c−1 = 2π i
2 2 4
3
=1
解法二
1 = 2 2 4 3 t (1 + t ) (1 + 2t )
1 1 1 f( ) 2 = 2 1 1 t t 2 3 t ( 2 + 1) ( 4 + 2) t t
1 15 t
1) 1 = −1 所以 Res f (z) = − Res f ( t t2 z=∞ t =0 I = 2π i[− Res f (z)] = 2π i[−(−1)] = 2π i
iθ
∫ 2π i
1
Γ
−
f ( z )dz , 其 中
变换 t = z 把圆 周Γ 变成圆 周γ . 同 时 把 区 域 r ≤| z |< +∞ 变 成 0 <| t |≤ 1 r
1 1 1)d(1) 故Res f (z) = ∫Γ− f (z)dz = 2πi ∫γ f ( t t z=∞ 2π i 1 1)d(1) = 1 1)(− 1 )dt = ∫γ f ( t t 2π i ∫γ f ( t t2 2π i 1 1 1 f (1) t 2 dt = − Res f (1) t 2 =− ∫γ t t t =0 2π i 1) 1 即 Res f ( z ) = − Res f ( t t 2 z =∞ t =0
z=∞
本讲结束Biblioteka 业第270页 页 3.(3)(4)
所以
1) 1 Res f ( z ) = −c−1 = − Res f ( t t 2 z =∞ t =0
例6.6 计算积分
z I =∫ dz 2 2 4 3 |z|=4 (z + 1) (z + 2) 解法一:七个孤立奇点, 解法一:七个孤立奇点, 六个 有限奇点均在积分曲线内部,只有∞ 有限奇点均在积分曲线内部,只有∞ 在其外部. 在其外部.
以原点为圆心作圆周Г, 证 以原点为圆心作圆周 ,使a1,a2, …, an , 皆含于 Г内部 , Г的外部 只有一 内部, 的外部 的外部只有一 , 内部 个奇点∞,由留数定理得 ,
∫
Γ
f ( z )dz = 2π i ∑ Res f ( z )
k =1 z = ak
n
Γ
a2
an
O
a1
∫
Γ
f ( z )d z = 2π i ∑ R e s f ( z )
z=∞
2z + 1 例如z = ∞是f ( z ) = 的可去奇点,但 z
Res f ( z ) = −1
z =∞
若f(z)是整函数,则 Res f ( z ) = 0 是整函数, 是整函数
z =∞
1 证 Res f (z) = ∫ − f (z)dz,(Γ:| z |= ρ) 明 z=∞ 2πi Γ
−
f ( z ) dz = − 2π i ⋅ c − 1
2π i ∫ 1
Γ
−
R es f ( z ) =
f ( z )d z = − c −1
注意比较含点∞的区域的柯西积分定理 注意比较含点 的区域的柯西积分定理 与此结论的异同. 与此结论的异同
定理6.6 如果 在扩充z平面上只有有 如果f(z)在扩充 定理 限个孤立奇点(包括无穷远点 包括无穷远点), 限个孤立奇点 包括无穷远点 , 设为 a1 , a2, …,an, ∞ , 则f(z)在各点的留数总和为零 在各点的留数总和为零. , 在各点的留数总和为零