概率统计试卷A及答案
概率论与数理统计试题-a_(含答案)
第一部分 基本题一、选择题(共6小题,每小题5分,满分30分。
在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错0分) 1. 事件表达式A B 的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生(C) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生答:选D ,根据A B 的定义可知。
2. 假设事件A 与事件B 互为对立,则事件A B ( )(A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1 (D) 是必然事件 答:选A ,这是因为对立事件的积事件是不可能事件。
3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布 (D) 自由度为2的F 分布答:选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的χ2分布。
4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) (A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)答:选C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计答:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。
概率统计试卷A及答案
概率统计试卷A及答案2010—2011—2概率统计试题及答案⼀、选择题(每题3分,共30分)1 11 .已知P(A) P(B) P(C) , P(AC) P(BC) , P(AB) 0 求事件A,B,C 4 16全不发⽣的概率1 3(A) 3(B)8(C)2 ?设A、B、C为3个事件?运算关系A B C表⽰事件___________ .(A)A、B、C⾄少有⼀个发⽣(B)A、B、C中不多于⼀个发⽣(C) A , B, C不多于两个发⽣(D) A,⽉,C中⾄少有两个发⽣3?设X的分布律为P{X k} 2 k (k 1,2,),贝U _________________________ .(A) 0的任意实数(B) 31(C) 3(D) 14. 设X为⼀个连续型随机变量,其概率密度函数为f(x),则f(x)必满⾜(A) 0 f (x) 1 ( B)单调不减(C) f (x)dx 1(D) lim f (x) 15. 对正态总体的数学期望⼙进⾏假设检验,如果在显著性⽔平=下接受H。
0,那么在显著性⽔平=下,下列结论正确的是:(A)必接受H。
( B)可能接受也可能拒绝H 0(C)必拒绝H。
( D)不接受,也不拒绝H。
6. 设随机变量X和丫服从相同的正态分布N(0,1),以下结论成⽴的是(A) 对任意正整数k,有E(X k) E(Y k)(B) X Y服从正态分布N(0,2)(C) 随机变量(X ,Y)服从⼆维正态分布(D) E(XY) E(X) E(Y) 7.若正态总体X 的⽅差D (X )1 2未知,检验期望E (X ) 0⽤的统计量是(C) x 0 (n 1) (D)x0 — 1 2n勺2 2X X kX X k1k 18.设⼆维随机变量(X,Y )服从G 上的均匀分布,G 的区域由曲线y x 2与参数落在区间(?1 , ?2 )之内的概率为1 参数落在区间(?1 , ?2)之外的概率为D )对不同的样本观测值,区间(?1 , ?2)的长度相同.、填空题(每题3分,共30 分)1 1 _ _1 n 2-(X i X)2( D)n i 1x 所围, 则(X ,Y )的联合概率密度函数为 (A) f(x,y) 6, (x,y) G0,其他(B) f(x ,y) 1/6, (x,y) G 0, 其他 (C) f(x,y) 2, (x,y) G 0,其他(D )f(x ,y) 1/2, (x,y) G 0, 其他 9 ?样本 X 1, X 2,,X n 来⾃总体N ( 2), 则总体⽅差 2的⽆偏估计为 A ) S 12 七 n (X i X)2( n 2 i 1S ;七(X i n 1 i 1X)2 S41 nf (X i X)10.设(2)是参数的置信度为1 的区间估计,则以下结论正确的是(A)x. n(n 1) (B)1n _2⼆x X kx 0 n- n 2 2 2x X kk 1C )区间( 2)包含参数的概率为11?设P(A) P(B) - , P(A B)—,则P(A|B)3 2 12?设⼀批产品共10件,其中8件正品,2件次品,从中任意抽取3件,则恰有1件是次品的概率是 __________ .13?已知随机变量X在[a, a]上服从均匀分布,且P{X 1}丄,则a _____________ . 3设随机变量X服从(0,3)上的均匀分布,则随机变量丫=X2在(0,9)的概率密度函数为____________ .4.设X ~ N(3,4),丫~N( 5,6),且X 与丫相互独⽴,则X 2Y ~ _____________ . 5?设随机变量X的数学期望为E(X) 、⽅差D(X) 2,则由切⽐雪夫不等式有P X —.4 ------------------6.设随机变量X的分布律为E(2X 1) __________ .7. 已知D(X) 25,D(Y) 36, (X,Y) 0.4,则D(X Y) _______________ .8. 设总体X服从参数为的泊松分布,X1 , X2 , , X100为来⾃总体的⼀个样本,则矩估计量为____________ .9. 设总体X服从正态分布N(m, s2),X1,X2, X3是来⾃总体X的⼀个样本,则X1,X X B的联合概率密度为___________ .10. 设总体X服从正态分布N(m, s2),其中s2未知,现从总体中抽取⼀容量为n的样本,则总体均值的置信度为1 的置信区间为 ________ .,X10是来⾃总体X的⼀个样本且X ~ N (0,0.52)求、设X1,X2,P i24 . ( 0.O5(9) 16 , 2.io(1O) 16,)i 1四、从⼀正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差.(已知:(2.33) 0.99, (2.06) 0.98 , t o.8(9) 0.261 ,t o.8(1O) 0.26)五、在肝癌诊断中,有⼀种甲胎蛋⽩法,⽤这种⽅法能够检查出95%勺真实患者,但也有可能将10%勺⼈误诊。
概率统计试卷A答案
概率统计试卷A答案(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--222009—2010学年第二学期闽江学院考试试卷(A )(注:()x Φ是标准正态分布的分布函数)一、单项选择题(18%=3%*6)1、在一个班级同学中选出一个班长,一个团支书;则事件“选出的班长是男生,选出的团支书是女生”的对立事件是( B ) A. “选出的班长是女生,选出的团支书是男生”; B. “选出的班长是女生或选出的团支书是男生”; C. “选出的班长是女生,选出的团支书是女生”;D. “选出的班长是男生,选出的团支书是男生”.2、随机变量2~(3,)X N σ,且有{36}0.4P X <<=,则{0}P X <=( A ).、随机变量,X Y 独立同分布,且{1}{1}0.5P X P X ===-=,则有( B ).A.{}1P X Y ==.B.{}0.5P X Y ==.C.{0}0.25P X Y +==D.{0}0.25P X Y ⋅==.4、设~()X P λ(泊松分布)且{2}2{1}P X P X ===, 则()E X =( D ) . A.1B.2C.3D.45、设连续型随机变量的分布函数和密度函数分别为(), ()F x f x ,则下列选项中正确的是( A )A. 0()1F x ≤≤B.0()1f x ≤≤C.{}()P X x F x ==D.{}()P X x f x == .6、设2~(,)X N μσ,其中μ已知,2σ未知, 1234,,,X X X X 为其样本. 下列各项不是统计量的是( C )A.4114i i X X ==∑B.142X X μ+-C.42211()ii K XX σ==-∑D.42211()3i i S X X ==-∑二、填空题 (21%=3%*7)1、某生做四题作业,设i A 表示该生第i 题做对,则事件“他前两题都没有做对而后两题没有都做错”可表示为 4123()A A A A .2、设A,B 为随机事件,A 与B 互不相容,{}0.2P B =,则()P AB = .3、袋中有50个球,其中20个黄球、30个白球,今有2人依次随机地从袋中各取一球,取后不放回,则第2个人取得黄球的概率为4、设随机变量~(12,0.5),~(18,0.4),X B Y B 且X 与Y 相互独立,则:()D X Y -=5、设随机变量X 的分布函数为20, 0(), 011 1x F x Ax x x <⎧⎪=⎨⎪<⎩≤≤,,则A = 1 ;6、设22~()n χχ,则有2()E χ= n337、设12,,,n X X X 是来自[2,]θθ-上的均匀分布总体的一个样本,则θ的矩估计量是 1X +三、计算题(一)(34%)1、(10%) 甲乙丙三人同时对飞机进行射击,三人击中的概率分别为,,,飞机被一人击中而被击落的概率为,被两人击中而被击落的概率为,若三人都击中,飞机必定被击落,求飞机被击落的概率.解:设i A 表示i 人击中飞机,i=1,2,3. B 表示飞机被击落。
2002-2003学年第一学期概率统计(A)期末考试试卷答案
2002-2003学年第一学期概率论与数理统计(A )期末考试试卷答案一.填空题(本题满分15分,共有5道小题,每道小题3分)请将合适的答案填在每题的空中 1.掷两颗骰子,已知两颗骰子的点数之和为6,则其中有一颗为1点的概率为________. 解:两颗骰子的点数之和为6共有5种可能情况:()()()()()1,5,2,4,3,3,4,2,5,1,而其中有一颗为1点有两种可能:()()1,5,5,1,因此所求概率(条件概率)为52. 应填:52. 2.设二维随机变量()Y X ,的联合密度函数为()()⎩⎨⎧<<<<--=其它042,206,y x y x k y x f 则=k ________. 解:由()1,=⎰⎰+∞∞-+∞∞-dxdy y x f ,得()()()⎰⎰⎰⎰⎰---=--==+∞∞-+∞∞-422024220626,1dy y x k dx y x k dy dxdy y x f()()[]k dy y y k 84624222=---=⎰所以,81=k . 应填:813.设总体()2,~σμNX ,()1021,,,X X X 是从X 中抽取的一个样本,样本量为10,则()1021,,,X X X 的联合概率密度函数()=1021,,,x x x g _________________________.解:由于总体()2,~σμNX ,所以总体X 的概率密度函数为()()⎭⎬⎫⎩⎨⎧--=222exp 21σμσπx x f ()+∞<<∞-x , 并且()1021,,,X X X 是从中抽取的一个样本,即()1021,,,X X X 是简单随机样本,所以样本中的n 个分量n X X X ,,,21 是独立同分布的随机变量,而且其分布与总体分布相同.因此样本()1021,,,X X X 的联合概率密度函数()()()()10211021,,,x f x f x f x x x g =()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--⎭⎬⎫⎩⎨⎧--⋅⎭⎬⎫⎩⎨⎧--=22102222212exp 212exp 212exp 21σμσπσμσπσμσπx x x ()()⎭⎬⎫⎩⎨⎧--=∑=10122210221exp 21i i x μσπσ ()()⎭⎬⎫⎩⎨⎧--=∑=101225221exp 21i i x μσπσ 应填:()()⎭⎬⎫⎩⎨⎧--∑=101225221exp 21i i x μσπσ. 4.设总体X其中10<<θ是未知参数,()n X X X ,,,21 是从中抽取的一个样本,则参数θ的矩估计量=θˆ__________________.解:()()()()θθθθθθθθθθ232134413122122222-=+-+-+=-⨯+-⨯+⨯=X E所以,()()X E -=321θ.将()X E 替换成样本均值X ,得参数θ的矩估计量为 ()X -=321ˆθ. 应填:()X -321.5.显著性检验是指____________________________________. 解:显著性检验是指只控制犯第Ⅰ类错误的概率,而不考虑犯第Ⅱ类错误的概率的检验. 应填:只控制犯第Ⅰ类错误的概率,而不考虑犯第Ⅱ类错误的概率的检验.二、选择题(本题共5小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内) 1.设随机变量()2,1~-N X ,()2,1~N Y ,而且X 与Y 不相关,令Y aX U +=,bY X V +=,且U 与V 也不相关,则有()A .0==b a ; ()B .0≠=b a ; ()C .0=+b a ; ()D .0=ab .【 】解:()()bY X Y aX V U ++=,cov ,cov()()()()()()()()Y bD Y X ab X aD Y Y b Y X ab X X a +++=+++=,cov 1,cov ,cov 1,cov再由于随机变量()2,1~-N X ,()2,1~N Y ,而且X 与Y 不相关,所以()2=X D ,()2=Y D ,()0,cov =Y X . 因此,()()b a V U +=2,cov .这表明:随机变量U 与V 不相关,当且仅当()()02,cov =+=b a V U ,当且仅当0=+b a . 应选:()C .2.对两台仪器进行独立测试,已知第一台仪器发生故障的概率为1p ,第二台仪器发生故障的概率为2p .令X 表示测试中发生故障的仪器数,则()=X E()A .21p p +; ()B .()()122111p p p p -+-; ()C .()211p p -+; ()D .21p p .【 】解:由于X 表示测试中发生故障的仪器数,所以X 的取值为2,1,0,并且X 的分布律为所以()()()()()21211221212111110p p p p p p p p p p X E +=⨯+-+-⨯+--⨯=. 应选:()A .3.若Y X ,ρ表示二维随机变量()Y X ,的相关系数,则“1,=Y X ρ”是“存在常数a 、b 使得{}1=+=bX a Y P ”的()A .必要条件,但非充分条件; ()B .充分条件,但非必要条件; ()C .充分必要条件; ()D .既非充分条件,也非必要条件.【 】解:由相关系数的性质,可知“1,=Y X ρ”是“存在常数a 、b 使得{}1=+=bX a Y P 的充分必要条件. 应选:()C .4.根据辛钦大数定律,样本均值X 是总体期望()μ=X E 的()A .矩估计量; ()B .最大似然估计量; ()C .无偏估计量; ()D .相合估计量.【 】解:辛钦大数定律指出:设{}n X 是独立同分布的随机变量序列,且()μ=n X E 存在,则对任意给定的0>ε,有01lim 1=⎭⎬⎫⎩⎨⎧≥-∑=∞→εμn i i n X n P , 即{}0lim =≥-∞→εμX P n这表明,样本均值X 是总体期望()μ=X E 的相合估计量. 应选:()D .5.设总体X 服从参数10=λ的泊松(Poisson )分布,现从该总体中随机选出容量为20一个样本,则该样本的样本均值的方差为()A . 1; ()B . 5.0; ()C . 5; ()D . 50.【 】解:由于总体服从参数10=λ的泊松(Poisson )分布,所以()10==λX D .又从该总体中随机选出容量为20一个样本,则若令X 是其样本均值,则()()5.02010===n X D X D . 应选:()B .三.(本题满分10分)某学生接连参加同一课程的两次考试.第一次考试及格的概率为p ,如果他第一次及格,则第二次及格的概率也为p ,如果他第一次不及格,则第二次及格的概率为2p. ⑴ 求他第一次与第二次考试都及格的概率. ⑵ 求他第二次考试及格的概率.⑶ 若在这两次考试中至少有一次及格,他便可以取得某种证书,求该学生取得这种证书的概率. ⑷ 若已知第二次考试他及格了,求他第一次考试及格的概率. 解:设{}该学生第一次考试及格=A ,{}该学生第二次考试及格=B . 则由题设,()p A P =,()p A B P =,()2p B A P =. ⑴ ()()()2p A B P A P AB P ==.⑵ ()()()()()()()21212p p p p p A B P A P A B P A P B P +=-+=+=. ⑶ ()()()()()()23212p p p p p p AB P B P A P B A P -=-++=-+=⋃. ⑷ ()()()()p pp p p B P AB P B A P +=+==12212.四.(本题满分10分)设顾客在某银行等待服务的时间X (单位:分钟)是服从5=θ的指数分布.某顾客在窗口等待服务,若等待时间超过10分钟,他便离开.⑴ 求某次该顾客因等待时间超过10分钟而离开的概率.⑵ 若在某月中,该顾客来到该银行7次,但有3次顾客的等待时间都超过10分钟,该顾客是否有理由推断该银行的服务十分繁忙. 解:由于随机变量X 服从5=θ的指数分布,所以X 的概率密度函数为()⎪⎩⎪⎨⎧≤>=-00515x x ex f x. ⑴ {}{}135335283.05110102105105==-==≥=-+∞-∞+-⎰e e dx e X P P x x分钟顾客等待时间超过 ⑵ 设Y 表示该顾客在一个月内等待时间超过10分钟的次数,则()2,7~-e b Y .所以,()()()048494457.013423237=-==--e eC Y P .这表明,()3=Y 是一个小概率事件,由于小概率事件在一次试验中是几乎不可能发生的,现在发生了.因此该顾客有理由推断该银行的服务十分繁忙. 五.(本题满分10分)一射手进行射击,击中目标的概率为p ()10<<p ,射击直至击中2次目标时为止.令X 表示首次击中目标所需要的射击次数,Y 表示总共所需要的射击次数. ⑴ 求二维随机变量()Y X ,的联合分布律.⑵ 求随机变量Y 的边缘分布律.⑶ 求在n Y =时,X 的条件分布律.并解释此分布律的意义. 解:⑴ 随机变量Y 的取值为 ,4,3,2;而随机变量X 的取值为1,,2,1-n ,并且(){}次第次,第二次命中目标在第一次命中目标在第n m P n Y m X P ===, 2211p q p q p q n m n m ----=⋅=, (其中p q -=1) ()1,,2,1;,4,3,2-==n m n .⑵ ()()()221122111,p q n p q n Y m X P n Y P n n m n n m --=--=-======∑∑,() ,4,3,2=n . 即随机变量Y 的边缘分布律为()()221p q n n Y P n --== () ,4,3,2=n .⑶ 由于()()()()111,2222-=-=======--n p q n p q n Y P n Y m X P n Y m X P n n 因此在n Y =时,X 的条件分布律为 ()11-===n n Y m X P ()1,,2,1-=n m 这表明,在n Y =的条件下,X 的条件分布是一个“均匀”分布.它等可能地取值1,,2,1-n .六.(本题满分10分)一食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而一只蛋糕的价格是一个随机变量,它取1元、2.1元、5.1元各个值的概率分别为3.0、2.0、5.0.某天该食品店出售了300只蛋糕.试用中心极限定理计算,这天的收入至少为395元的概率. (附表:标准正态分布()x Φ的数值表:解:设k X 表示该食品店出售的第k 只蛋糕的价格()300,,2,1 =k ,则k X 的分布律为所以,()29.15.05.12.02.13.01=⨯+⨯+⨯=k X E ,()713.15.05.12.02.13.012222=⨯+⨯+⨯=k X E , 所以,()()()[]0489.029.1713.1222=-=-=k k k X E X E X D .因此,30021,,,X X X 是独立同分布的随机变量,故()()()()⎪⎪⎪⎪⎪⎭⎫⎝⎛-<--=⎪⎭⎫ ⎝⎛≥∑∑∑∑∑∑======3001300130013001300130013951395k k k k k k k k k k k k X D X E X D X E X P X P ⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯-<⨯⨯--=∑=0489.030029.130********.030029.130013001k k X P ()0183.09817.0109.2109.20489.030029.130013001=-=Φ-=⎪⎪⎪⎪⎭⎫ ⎝⎛<⨯⨯--=∑=k k X P .七.(本题满分10分) 设总体X 的密度函数为()()⎩⎨⎧≤>=+-cx cx x c x f 01θθθ. 其中0>c 是已知常数,而1>θ是未知参数.()m X X X ,,,21 是从该总体中抽取的一个样本,试求参数θ的最大似然估计量. 解:似然函数为()()()()()121111+-=+-====∏∏θθθθθθθn n n ni i n i i x x x c x c x f L所以,()()∑=+-+=ni ixc n n L 1ln 1ln ln ln θθθθ.所以,()∑=-+=ni i x c n nL d d 1ln ln ln θθθ.令:()0ln =θθL d d ,即0ln ln 1=-+∑=n i i x c n nθ, 得到似然函数的唯一驻点cxnni iln ln 1-=∑=θ.所以参数θ的最大似然估计量为cXnni iln ln ˆ1-=∑=θ.八.(本题满分10分) 设总体()21,~σμNX ,总体()22,~σμN Y ,()m X X X ,,,21 是从总体X 中抽取的一个样本,()n Y Y Y ,,,21 是从总体Y 中抽取的一个样本.并且随机变量n m Y Y Y X X X ,,,,,,,2121相互独立.记21S 是样本()m X X X ,,,21 的样本方差,22S 是样本()n Y Y Y ,,,21 的样本方差.再设()()21122212-+-+-=n m S n S m S W证明:2W S 是2σ的无偏估计.解:由于总体()21,~σμNX ,()m X X X ,,,21 是从总体X 中抽取的一个样本,所以()()1~12221--m S m χσ.又由于总体()22,~σμNY ,()n Y Y Y ,,,21 是从总体Y 中抽取的一个样本,所以()()1~12222--n S n χσ.所以,()()()()()222122212211111σσσσσ-=⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎭⎫ ⎝⎛-⋅=-m S m E S m E Sm E , ()()()()()222222222221111σσσσσ-=⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎭⎫ ⎝⎛-⋅=-n S n E S n E S n E . 所以, ()()()⎥⎦⎤⎢⎣⎡-+-+-=21122212n m S n S m E S E W()[]()[]22211121S n E S m E n m -+--+=()()[]2221121σσσ=-+--+=n m n m 所以,()()21122212-+-+-=n m S n S m SW是2σ的无偏估计.九.(本题满分10分)检验某批矿砂中的含镍量,随机抽取7份样品,测得含镍量百分比分别为:67.2 33.3 69.3 01.3 98.3 15.3 69.3假设这批矿砂中的含镍量的百分比服从正态分布,试在05.0=α下检验这批矿砂中的含镍量的百分比为25.3.(附表:t 分布的分位点表:()9432.1605.0=t ()4469.26025.0=t ()8946.1705.0=t ()3646.27025.0=t解:设X 表示这批矿砂中的含镍量的百分比,则()2,~σμNX .25.3:0=μH ()25.3:1≠μH由于总体方差未知,故用检验统计量n SX T 25.3-=当0H 成立时,()1~25.3--=n t n SX T .由于显著性水平05.0=α,7=n ,所以()4469.26025.0=t .因此检验的拒绝域为()⎭⎬⎫⎩⎨⎧≥-=4469.225.3:,,,7211n sx x x x W由样本观测值,得36.3=x ,455668007.0=s 所以,4469.2638694486.0745*******.025.336.325.3<=-=-n sx 所以,不拒绝0H ,可以认为这批矿砂中的含镍量的百分比为25.3.。
概率论与数理统计 期末试卷及答案 A
第 1 页 共 5 页班级 姓名 准考证号‥‥‥‥‥‥密‥‥‥‥‥‥封 ‥‥‥‥‥ 线 ‥‥‥‥内 ‥‥‥‥‥不 ‥‥‥‥‥准 ‥‥‥‥‥答 ‥‥‥‥‥题 ‥‥‥‥‥‥期末考试试卷 参考答案学年学期: 课程名称: 《概率论与数理统计》 适用专业:(满分:100分 时间:120分钟)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的备选项中选择符合题目要求的,请将其代码填涂在答题卡上相应的位置,错涂、多涂或未涂均无分。
1.设二项分布的随机变量,其数学期望与方差之比为4:3,则该分布的参数p =( ).A .0.5B .0.25C .0.75D .不能确定2.设随机变量X 与Y 的关系为21Y X =+,如果()D X =2,则()D Y =( ).A .4B .6C .8D .103.若X 服从区间[]2,6上的均匀分布,则{23}P x <<=( ).A .0.2B .0.75C .0.5D .0.254.若随机变量X 的期望EX 存在,则()E aX b +=( ).A .aEXB .2a EXC .aEX b +D .2a EX b +5.当随机变量X 的可能值充满( )时,则()cos f x x =可以成为随机变量X 的密度函数.A .π[0,]2B .π[,π]2C .[0,π]D .3π7π[,]226.矿砂中铜含量服从正态分布),(~2σμN X ,2μσ,未知,现从总体中抽取样本521,,,X X X ,5115i i X X ==∑,52211()5i i S X X ==-∑,在显著水平α下检验00:μμ=H ,则所取的统计量为( ).A .5/0σμ-X B .5/0S X μ- C .4/0σμ-X D .4/0S X μ-7.事件表达式A B +的表示( ).A .事件A 与事件B 同时发生 B .事件A 发生但事件B 不发生C .事件B 发生但事件A 不发生D .事件A 与事件B 至少有一个发生8.样本空间S 中的事件A 与B 相互独立的充要条件是( ). A .A B S += B .()()()P AB P A P B =C .AB =∅D .()()()P A B P A P B +=+9.设1X 、2X 是总体X 的样本,则下列统计量不是总体X 的期望的无偏估计量的是( ).A .1XB .121233X X + C .121()2X X + D .121()3X X +10.任何一个连续型随机变量X 的密度函数()f x 一定满足( ).A 卷第 2 页 共 5 页‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 密 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 封 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 线‥‥‥‥‥‥‥‥‥‥‥‥‥A .0()1f x ≤≤B .() d 1f x x +∞-∞=⎰C .在定义域内单调不减D .lim ()1x f x →+∞= 11.袋中有5球,3新2旧,从中任取一球,无返回的取两次,A =第一次取新球,B =第二次取新球.求P (B|A )=( ).A .12B .23C .35D .1312.已知事件A 和B 互不相容,()0,()0P A P B >>,下式成立的是( ). A .()()()P A B P A P B =+ B .()()()P AB P A P B =C .()1P A B =D .()0P AB >13.若随机变量2(,),3,1,X N EX DX μσ==则11}P X ≤≤={-( ).A .2(1)1A Φ-、 B .(4)(2)B Φ-Φ、C .(4)(2)Φ--Φ-C 、 D .(2)(4)Φ-ΦD 、 14.参数为λ的指数分布的方差是( ).A .1λB .2λC .λD .21λ15.设X 为连续型随机变量,则{1}P X ==( ). A .1B .0C .不能确定D .以上都不对二、判断题(本大题共5小题,每小题2分,共10分)判断正误,正确代码为A ,错误代码为B ,请将正确的答案代码涂在答题卡相应的题号下。
02级概率统计期末考试试题A及答案
1. 0.5 2. 1 - (a + b ) 3. N (0, 1) 4. 8 9 5. éê 4.412 , 5.588 ùú ë û
二、单项选择题(本题满分 15 分,每题 3 分)
1. C 2. A 3. D 4. C 5. B
三、 (本题满分 12 分)
(2) 因为 x 与 h 相互独立,则知 p
ij
= pi⋅ ⋅ p⋅ j …………………………………2 分
ì öæ 3 ö ï 1 æ1 ï P22 = = ç ç + a ÷ç ÷ç + b ÷ ÷ = p2⋅ ⋅ p⋅2 ï ï ç ÷ç ÷ 4 4 8 è øè ø 故有 í ………………………………4 分 ï 11 ï a +b = ï ï 24 ï î
一、填空题(本题满分 15 分,每题 3 分) 1.设 P (A) = 0.4, P (A È B ) = 0.7 , 且 A 和 B 既相容又相互独立, 则 P (B ) = 2.若 P {x > x 1 } = 1 - a , P {x £ x 2 } = 1 - b ,其中 x1 < x 2 ,则有 .
P {x1 < x £ x 2 } =
.
3.设服从正态分布的随机变量 X 的期望 E (X ) ,方差 D (X ) 均存在,且 D (X ) 不等于零, 则标准化随机变量Y =
X - E (X ) D (X )
服从
.
4.已知正常男性成人的血液中,每毫升白细胞数平均是 7300 ,标准差为 700 ,利用切比 雪 夫 不 等 式 估 计 每 毫 升 男 性 成 人 血 液 中 含 白 细 胞 数 在 5200 至 9400 之 间 的 概 率
18-19-2概率统计A(A卷)答案
南京林业大学试卷(A 卷)(答案)课程 概率统计A 2018~2019学年第2学期3分,共15分),A B ,若0()1,0()1P A P B <<<<,且(|)1P A B =,则(|)P B A = 1 . X 的概率密度为()f x ,且()3E X =,则(1)()x f x dx +∞-∞-=⎰2 .X ~(0,1)N ,Y ~(2,1)N -,且X 和Y 独立,21Z X Y =-+,则2()E Z = 14 . X ~2(,)N μσ,12,,,n X X X (1n >)为其样本,X 和2S 分别是样本均值和样本μ的置信度为1α-的置信区间为/2/2((1),(1))X n X n αα-+-.y a bx =+,通过对样本观测值计算得y bˆ1.6,3,3===,则y 关于x 的线性回归方程是 3 1.8y x =-. 3分,共15分),A B 为任意事件,则关于()P AB 有( D ).)()()P AB P A ≥ (B )()()()P AB P A P B = )()()()P AB P A P B ≥+ (D )1()[()()]2P AB P A P B ≤+ X 的分布函数为()F x ,12,X X 为其样本,又{}12max ,Y X X =,则Y 的分布函数为 A ).)2()F y (B )2[1()]F y - (C )21()F y - (D )1()F y -设随机变量X 的概率密度是21,0()20,xe xf x -⎧>⎪=⎨⎪⎩其它,用切比雪夫不等式估计概率(|2|3)P X =-≥,有( C ).题号 一 二 三 四 总分 得分(A )59p ≤(B )59p ≥ (C )49p ≤ (D )49p ≥ 4.设总体X ~(,1)N μ,12,,,n X X X (1n >)为其样本,X 是样本均值,则以下统计量服 从2χ分布的是( D ). (A )1()nii Xμ=-∑ (B )212()n X X - (C )2()X μ- (D )21()ni i X X =-∑5.在假设检验问题中,显著性水平α意义是( A ). (A )在0H 成立的条件下,经检验0H 被拒绝的概率 (B )在0H 成立的条件下,经检验0H 被接受的概率 (C )在0H 不成立的条件下,经检验0H 被拒绝的概率 (D )在0H 不成立的条件下,经检验0H 被接受的概率 三、计算下列各题(第1-5题每题12分,第6题10分,共70分)1.设随机变量X 的分布律为21312XPa b-,且()0E X =.试求:(1),a b 的值;(2)X 的分布函数;(3)()D X .解:(1)由()130,1/2E X a b a b =-++=+=解得1/4a b ==,从而X 的分布律2131/21/41/4XP -(4分)(2)0,21/2,21()3/4,131,3x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩(8分)(3)()0E X =,222()9/2,()()()9/2 4.5E X D X E X E X ==-==. (12分)2.设随机变量,X Y 相互独立,且X 的分布律为12(0),(1)33P X P X ====,Y 的概率密度2,01()0,y y f y <<⎧=⎨⎩其他,求:(1)(())P Y E Y ≤;(2)3()2P X Y +≤.解: (1)12/32()22/3,(())24/9E Y y dy P Y E Y ydy ==≤==⎰⎰,(6分)(2)333((0)(|0)(1)(|1)222P X Y P X P X Y X P X P X Y X +≤==+≤=+=+≤=13211211()()132323342P Y P Y =≤+≤=⨯+⨯=. (12分)3.对于上题中的随机变量Y ,求2Z Y =的概率密度()Z f z . 解:由于2(01)z y y =<<严格单调,反函数y =连续可导且z y '=()(0,1)R Z = (6分)由公式得011,01()0,0,Z z z f z ⎧<<<<⎧⎪==⎨⎨⎩⎪⎩其他其他. (12分)4.设(,)X Y 的概率密度,01,1(,)0,xk x y ey f x y ⎧<<<<⎪=⎨⎪⎩其它,求:(1)k 的值;(2)求关于X和Y 的边缘概率密度,并判断X 与Y 是否独立;(3)求(2)P Y <.解:(1)由规范性111/21ekxdx dy k y==⎰⎰得2k =; (4分)(2)12()(,)2eX xf x f x y dy dy x y+∞-∞===⎰⎰,(01)x <<, 1021()(,)Y x f y f x y dx dx y y+∞-∞===⎰⎰,(1)y e <<, 由于(,)()()X Y f x y f x f y =, 故X 与Y 相互独立; (8分)(3)(2)P Y <12:211(,)2ln 2D y f x y d xdx dy yσ<===⎰⎰⎰⎰. (12分)5.设总体X 的概率密度233,0(,)0,x x f x θθθ⎧<<⎪=⎨⎪⎩其他,其中θ为未知参数,又设12,,,nX X X 为来自总体X 容量为n 的样本,试求:(1)θ的矩估计量ˆθ;(2)θ的最大似然估计量ˆLθ.解:(1)31333()4E X x dx θθμθ===⎰,解得143θμ=,从而4ˆ3X θ=; (6分)(2)22331133()nnni ini i x L xθθθ====∏∏,1ln ()ln 33ln 2ln nii L n n xθθ==-+∑,由于ln ()30d L nd θθθ=-<,故()L θ单调减少,又0,max(),1,2,,i i x x i n θθ<<>= ,故12ˆmax(,,,)L nX X X θ= . (12分)6.某厂生产的某种铝材长度X ~2(,)N μσ,其均值μ设定为240cm .现从该厂抽取9件产品,测得239.5x =cm ,20.16s =,试判断该厂这批铝材的长度是否满足设定要求?(取0.05α=).(附:0.05(8) 1.86t =,0.025(8) 2.31t =) 解:由题意,即在0.05α=下检验假设00:240H μμ==vs 10:H μμ≠(2分)检验统计量X T =,拒绝域/2||(1)T t n α-(7分)又0.025239.5240|| 3.75(8) 2.310.4/3t t -==>=,从而拒绝0H ,认为不满足设定要求.(10分)。
概率统计A试题 答案 06-07(秋)
θ1 = ( X 1 + X 2 + X 3 ) ,θ 2 =
有效.
1 3
1 1 1 X 1 + X 2 + X 3 ,都是期望 EX 的无偏估计,但 θ 1 比 θ 2 2 3 6
(是)
二、填空题:(每格 3 分,共计 15 分) 6、设 P ( A) = 0.5 , P( B )=0.4 , P ( B | A) = 0.8 ,则 P( A ∪ B) = 0.7 . 7、已知事件 A 与 B 满足条件 P( AB) = P( A B ) ,且 P( B) = p ,则 P ( A) = 1 − p .
(1) 置信区间 ( X −
评分参考 (1) 写出密度函数(5 分) ; 。 (2) 得到 P ( S ≤ s) (2×5=10 分)
s n
tα / 2 (n − 1), X +
s n
tα / 2 (n − 1)) (4 分) ;
(2) 计算正确(3 分) ; (3) 拒绝域 s > k =
2
σ 02
草
稿
纸
14、 X , Y 是独立同分布的随机变量, U = X + Y , = X − Y , 设 而 V 那么 U 和 V (A)一定不独立 (C)相关系数一定为零 四、计算题:(15 分×3=45 分) (B)一定独立 (D)相关系数一定不为零
15. 已知一批产品中 90%是合格品,检查时,一个合格品被误认为是次品的概率为 0.05,一个次品被误认为是合格品的概率为 0.02,求(1)一个产品经检查后被认为 是合格品的概率; (2)一个经检查后被认为是合格品的产品确是合格品的概率.
2 2 2 χ 0.05 (16) = 26.296, χ 0.05 (15) = 24.996, χ 0.025 (15) = 27.488.
福州大学《概率论与数理统计》试卷A及答案
福州大学《概率论与数理统计》试卷A附表: (Φ 2.5)=0.9937, (Φ3)=0.9987,09.2)19(025.0=t一、 单项选择(共18分,每小题3分)1.设随机变量X 的分布函数为()F x ,则以下说法错误的是( ) (A )()()F x P X x =≤ (B )当12x x <时,12()()F x F x < (C )()1,()0F F +∞=-∞= (D )()F x 是一个右连续的函数 2.设,A B 独立,则下面错误的是( )(A) B A ,独立 (B) B A ,独立 (C) )()()(B P A P B A P = (D)φ=AB 3. 设X 与Y 相互独立,且31)0()0(=≥=≥Y P X P ,则=≥)0},(max{Y X P ( ) (A )91 (B )95 (C )98 (D )314. 设128,,,X X X 和1210,,,Y Y Y 分别是来自正态总体()21,2N -和()2,5N 的样本,且相互独立,21S 和22S 分别为两个样本的样本方差,则服从(7,9)F 的统计量是( )(A )222152S S (B ) 212254S S (C )222125S S (D )222145S S5. 随机变量)5.0,1000(~B X ,由切比雪夫不等式估计≥<<)600400(X P ( ) (A)0.975 (B)0.025 (C)0.5 (D) 0.256.设总体),(~2σμN X ,n X X X ,,,21 为X 的一组样本, X 为样本均值,2s 为样本方差,则下列统计量中服从)(2n χ分布的是( ).(A) 1--n s X μ (B) 22)1(σs n - (C) n s X μ- (D)∑=-ni iX122)(1μσ学院 专业 级 班 姓 名 学 号二.填空题(每空3分,共30分)1.某互联网站有10000个相互独立的用户,若每个用户在平时任一时刻访问网站的概率为0.2,则用中心极限定理求在任一时刻有1900-2100个用户访问该网站的概率为 .2. 已知c B A P b b B P a A p =≠==)(),1()(,)( ,则=)(B A P ,)(B A P = .3. 在区间)1,0(上随机取两点Y X ,,则Y X Z -=的概率密度为 . 4.设随机变量]2,1[~U X ,则23+=X Y 的概率密度()Y f y = .5.当均值μ未知时,正态总体方差2σ的置信度为α-1的置信区间是6.设随机变量 n X X X ,,,21相互独立且同分布,它的期望为μ,方差为2σ,令∑==n i i n X n Z 11,则对任意正数ε,有{}=≥-∞→εμn n Z P lim .7. 设)1(~P X (泊松分布),则==))((2X E X P .8. 设921,,,X X X 是来自总体]1,3[~N X 的样本,则样本均值X 在区间]3,2[取值的概率为 9. 设随机变量X 的分布为()()1,2,k P X k p k λ===,则λ= .三、计算题(每小题8分,共16分)1.城乡超市销售一批照相机共10台,其中有3台次品,其余均为正品,某顾客去选购时,超市已售出2台,该顾客从剩下的8台任购一台,求 (1)该顾客购到正品的概率.(2)若已知顾客购到的是正品,则已出售的两台都是次品的概率是多少?2.设顾客在银行的窗口等待服务的时间X (单位:min)服从参数为0.2的指数分布.假设某顾客在窗口等待时间超过10min 就离开.又知他一周要到银行3次,以Y 表示一周内未等到服务而离开窗口的次数,求).1(≥Y P四、计算题(每小题8分,共24分)1. 设二维随机变量),(Y X 的联合分布律为,),(22-===n qp n Y m X P ;,2,1 =m;,2,1 ++=m m n ,10<<p 1=+q p ,求关于X 与Y 的边缘分布律.2.设随机变量),(Y X 满足,1)0(==XY P 且X 与Y 边缘分布为,41)1(=±=X P ,21)0(==X P ,21)1()0(====Y P Y P XY Y X ρ相关系数求,,并判别X 与Y 是否相互独立?3. 设二维随机变量),(Y X 服从区域G 上的均匀分布,其中G 是由2,0=+=-y x y x 与0=y 所围成的三角形区域,求条件概率密度)(y x f Y X .五、计算题(每小题6分,共12分)1.总体X 的概率密度函数为⎪⎩⎪⎨⎧<<=-其它,010,1)()1(x x x f θθθ,其中为未知参数0>θ,nX X X ,,,21 为总体X 的简单随机样本,求(1)θ的极大似然估计量θˆ. (2)证明θˆ是θ的无偏估计.2.设某厂生产的电灯泡的寿命X 服从正态分布),(2σμN ,现测试了20只灯泡的寿命,算得样本均值1832=X (小时),样本方差4972=S (小时),问2000=μ(小时)这个结论是否成立()05.0=α?概率统计试题A 参考答案一.选择题1.B2.D3.B4.D5.A6.D 二.填空题1、0.9874 2.b bc b c ---1,3.⎩⎨⎧<<-=-=其他010)1(2)(z z z f Y X Z 4.⎪⎩⎪⎨⎧≤≤=其他08531)(y y f Y 5.))1()1(,)1()1((2212222-----n s n n s n ααχχ6.07.e218.0.4987 9.p p -1三.计算题1. 解: 设B={顾客买到的是正品},=i A {售出的两台有i 台次品},2,1,0=i,157)(210270==C C A P ,157)(21017131==C C C A P 151)(2=A P⑴107871518615785157)()()(2=⨯+⨯+⨯==∑=i i i A B P A P B P ⑵12110787151)()()(22=⨯==B P B A P B A P2..解:(1) 0.2102(15|5)(10)P X X P X e e -⨯->>=>==(2) 因为0.2102(10)P X ee -⨯->==假设Y 表示三次等待不到服务而离开窗口的次数,由题意得2~(3,)Y B e - 23(1)1(0)1(1)P Y P Y e -≥=-==--四.计算题1. 2211(),1,2,n m n m P X m p q pq m +∞--=+====∑122221()(1),2,3,n n n m P Y n p q n p q n ---====-=∑2. .由题可得(0)0P XY ≠=,因此联合分布律容易得出显然由 (1,1)0(1)(1)1/8P X Y P X P X =-==≠=-==,所以,X Y 不独立。
(A)概率统计参考答案与评分标准
2010—2011学年第二学期闽江学院考试试卷(A )一、单项选择题(20%=2%*10) 得分1、 事件A 与B 互相对立的充要条件是( C ).(本题考核:事件之间的关系) (A )()()()P AB P A P B =; (B )()0()1P AB P A B == 且; (C )AB A B =∅=Ω 且; (D )AB =∅.2、 事件A 与B 和的对立事件A B +=( B ). (本题考核:事件之间的运算)(A )A B +;(B )AB ;(C )AB ; (D )AB AB +.3、 下列说法错误的是( D ). (本题考核:概率论的基本概念)(A )随机变量可以取负值;(B )随机变量的分布函数不可以取负值; (C )随机变量的密度函数不可以取负值; (D )随机变量的数学期望不可以取负值.4、 设离散型随机变量(,)X Y 的联合分布律为XY 12311/61/91/1821/3αβ且,X Y 相互独立,则( A ). (本题考核:二维离散型边缘分布与独立性) (A )2/9,1/9αβ==; (B )1/9,2/9αβ== ; (C )1/6,1/6αβ== ; (D )8/15,1/18αβ==. 5、 设随机变量2~(,)X N μσ,那么当 σ 增大时,{}P X μσ-<=( C ).(A )增大;(B )减少; (C )不变; (D )增减不定.(本题考核:正态分布的标准化,容易误解,有一定难度)6、 设12()()F x F x 与分别为随机变量1X 与2X 的分布函数.为了使得12()()()F x aF x bF x =-还是某一随机变量的分布函数,在下列给定的各组数值中应取( A ). (本题考核:分布函数的性质) (A )32,55a b ==-; (B )22,33a b ==;(C )13,22a b == ;(D )13,22a b ==-.7、 设随机变量~(3,)X B p ,且{1}{2}P X P X ===, 则()E X =( C ) .(A)1/2; (B)1; (C)3/2; (D)3/4.(本题考核:常用分布及其数字特征)8、 关于随机变量,X Y 的数学期望与方差,下列等式总成立的是( A ). (A)(234)2()3()4E X Y E X E Y -+=-+;(B)(234)2()3()E X Y E X E Y -+=-; (C)(234)2()3()4D X Y D X D Y -+=-+; (D)(234)4()9()D X Y D X D Y -+=+. (本题考核:数学期望与方差的性质)9、 设12(,,,)n X X X 为总体2(1,2)N 的一个样本,X 为样本均值,则下列结论中正确的是( D ). (本题考核:常用统计量的概念)(A )1~()2/X t n n-; (B )1~(0,1)2X N -; (C )1~(0,1)2/X N n-;(D ) 2211(1)~()4ni i X n χ=-∑.10、 设2~(,)X N μσ,其中μ已知,2σ未知, 12,,,n X X X …为其样本. 则下列( A )不是统计量. (本题考核:统计量的概念)(A)X μσ- (B)X Sμ-(C)211()ni i X X n =-∑(D)211()ni i X n μ=-∑二、填空题 (21%=3%*7) 得分11、 甲,乙,丙三人各射一次靶,记A =“甲中靶”,B =“乙中靶”,C =“丙中靶”.则用这三个事件的运算表示事件:“三人中至少两人中靶”=AB AC BC ++.(本题考核:事件的运算)12、 一批产品由45件正品、5件次品组成,现从中任取3件产品,其中恰有1件次品的概率为2145535099(0.2526)392C C C ≈或.(本题考核:古典概型)本题考核:概率统计中的基本概念,基本公式与基本性质.本题考核:概率统计中的基本概念,基本公式与基本性质.13、 已知()0.5P A =,()0.6P B =,()0.8P B A =,()P AB =0.3. (本题考核:概率的计算公式)14、 设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k === ,则A =1/5.(本题考核:分布律的性质)15、 已知随机变量X 的密度为()f x =,010,ax b x +<<⎧⎨⎩其它, 且{0.5}5/8P X >=,则a =1,b =1/2 . (本题考核:密度函数的性质与应用) 16、 设2~(2,)X N σ,且{24}0.3P X <<=,则{0}P X <=0.2. (本题考核:正态分布的图象特点与应用)17、 设随机变量(,)X Y 的联合分布律为:(,)(1,0)(1,1)(2,0)(2,1)0.40.2X Y P a b若()0.8E XY =,则cov(,)X Y =0.1.(本题考核:二维离散型随机变量函数的分布与协方差计算。
11-12概率统计A(答案).doc
东莞理工学院(本科)试卷(A卷)2011 -2012学年第二学期一'填空题(共70分每空2分)1、A、B是两个随机事件,已知P(A) = 0.3 , P(B) = 0.5。
若A与B互不相容,则P(A + J B)= 08;若A与B相互独立,则P(A + B)= 0.65 ;若P(A-B) = 0.1,则P( A | B ) = 0.42、一个袋子中有大小相同的红球3只,白球2只,若从中不放回地任取2只,设X为取到的白球的个数,则P(X = 1) = 0.6 , EX =0,83、三个人独立破译一个密码,他们单独破译的概率分别为丄,丄,丄,则此密码3 4 5能被破译的概率为0. 6 。
4、在区间[0,1]±等可能任取两个数,则这两个数之和小于彳的概率为彳。
5、已知某对夫妇有三个小孩,在已知至少有一个女孩的条件下,至少还有一个男孩的概率为°。
2_6、有甲乙两台设备生产相同的产品,甲生产的产品占60%,次品率为10%;乙生产的产品占40%,次品率为20%。
(1)若随机地从这批产品中抽出一件,抽到次品的概率为0.14 ; (2)若随机地从这批产品中抽出一件,检验出为次品,则该次品属于甲厂生产的概率是°。
2_7、、某公司业务员平均每见两个客户可以谈成一笔生意,他一天见了六个客户,设他谈成的生意为X笔,则X服从的分布为B(6, 0.5),他正好谈成两笔生意的概率为d, DX = 1. 5 o648、设顾客在某银行的窗口等待的服务时间X (以分钟计)服从指数分布E(5), X的密度函数为y = 2x + i的概率密度函数为:f y(y)=<V-12 1< v<30,其它。
囂『则,X的密度Q-x~3 ,则参数&的矩估其它-、0.2e~a2t, /〉0 j(t) = <0, ?<0若等待超过10分钟他就离开,他去一次银行没办成事就离开的概率为£2;他一个月要去银行5次,则他至少有一次没办成事就离开的概率为1-(1-eV9、假设某公路上每分钟通过的汽车数可以用泊松(Poisson)分布P(10)来描述。
概率论与数理统计-A-11-1期末考试试卷答案
《概率论与数理统计》试卷A(考试时间:90分钟; 考试形式:闭卷)(注意:请将答案填写在答题专用纸上,并注明题号。
答案填写在试卷和草稿纸上无效)一、单项选择题(本大题共20小题,每小题2分,共40分)1、A ,B 为二事件,则A B =()A 、AB B 、A BC 、A BD 、A B2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生~3、A 、B 为两事件,若()0.8P A B =,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A =4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P A B P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥*6、设离散型随机变量X 的分布列为《其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15B 、14C 、4D 、5 8、设X ~)1,0(N,密度函数22()xx ϕ-=,则()x ϕ的最大值是() A 、0 B 、1 CD、 9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!kp k e k k -==,则下式成立的是() A 、3EX DX == B 、13EX DX ==C 、13,3EX DX == D 、1,93EX DX ==]10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y +=12、设随机变量X 的分布列为: 则常数c=() A 、0 B 、1 C 、14 D 、14-13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12 D 、-114、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36(15、当X 服从( )分布时,EX DX =。
《概率统计》期末考试题(有答案)
《概率论》期末 A 卷考试题一 填空题(每小题 2分,共20 分)1.甲、乙两人同时向一目标射击,已知甲命中的概率为0.7,乙命中的概率为0。
8,则目标被击中的概率为( ).2.设()0.3,()0.6P A P AB ==,则()P AB =( ).3.设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x a x x F ,则=a ( ),()6P X π>=( ).4.设随机变量X 服从参数为2=λ的泊松分布,则=-)1(2X E ( )。
5.若随机变量X的概率密度为236()x X p x -=,则(2)D X -=( )6.设Y X 与相互独立同服从区间 (1,6)上的均匀分布,=≥)3),(max(Y X P ( )。
7.设二维随机变量(X ,Y )的联合分布律为X Y 1 2 •i p0 a 121 61 131b 则 ( ), ( ).a b ==8.设二维随机变量(X ,Y )的联合密度函数为⎩⎨⎧>>=--其它00,0),(2y x ae y x f yx ,则=a ( )9.若随机变量X 与Y 满足关系23X Y =-,则X 与Y 的相关系数XY ρ=( )。
10。
设二维随机变量)0,4,3,2,1(~),(N Y X ,则=-)52(Y X D ( ).二.选择题(每小题 2分,共10 分)1.设当事件C B 和同时发生时事件A 也发生,则有( )。
)()()(1)()()()(1)()()()()()()(C B P A P d C P B P A P c C P B P A P b BC P A P a =-+≤-+≥=2.假设事件B A 和满足1)|(=B A P ,则( ). (a ) B 是必然事件 (b )0)(=-A B P (c) B A ⊂ (d ) 0)|(=B A P 3.下列函数不是随机变量密度函数的是( ).(a )sin 0()20 x x p x π⎧<<⎪=⎨⎪⎩,,其它 (b ) ⎩⎨⎧<<=其它0102)(x x x p(c) sin 0()0 x x p x π<<⎧=⎨⎩,,其它 (d) ⎩⎨⎧<<=其它103)(2x x x p4.设随机变量X 服从参数为2=λ的泊松分布,则概率==)(EX X P ( ).112211()()2 () ()222a eb ec ede ---- 5.若二维随机变量(X ,Y )在区域{(,)/01,01}D x y x y =<<<<内服从均匀分布,则1()2P X Y X ≥>=( )。
(完整版)大学概率论与数理统计试题库及答案a
<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件。
试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。
则P(B)A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===⋅⋅⋅则A=______________7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<=13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。
大学概率论与数理统计试题库及答案a
< 概率论> 试题、填空题1. 设A、B C是三个随机事件。
试用A、B C分别表示事件1) A、B、C至少有一个发生2) A、B、C中恰有一个发生3) A、B、C不多于一个发生2•设A、B 为随机事件,P (A)=0.5 , P(B)=0.6 , P(B A)=0.8。
则P(B U A)=3.若事件A和事件B相互独立「 P(A)= , P(B)=0.3 , P(A U B)=0.7,则4•将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词中,则它是甲射中的概率为设X 〜N(2, 2),且P{2 x 4} 0.3 ,则P{x 0} SCIENCE勺概率5.甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6 和0.5 ,现已知目标被命6.设离散型随机变量X 分布律为P{X k} 5A(1/2)k(k 1,2,)则A=7. 已知随机变量X的密度为f(x)ax b,0 :0,其它1,且P{x1/2} 5/8 ,则8.9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80,则该射手的命81中率为10.若随机变量在(1, 6)上服从均匀分布,则方程x+仁0有实根的概率是311.设P{X 0,Y 0} , P{X 0} P{Y 0} 则P{max{ X,Y} 0}12.用(X,Y )的联合分布函数F (x,y )表示P{a b,Y c}13.用(X,Y )的联合分布函数F (x,y )表示P{X a,Y b}14. 设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y )关于X的边缘概率密度在x = 1 处的值为____________________ 。
15. ___________________________________________________ 已知X ~ N( 2,0.42),贝yE(X 3)2 = ________________________________________16. 设X ~ N(10,0.6),Y ~N(1,2),且X 与Y 相互独立,则D(3X Y) ______________17.设X的概率密度为f(x) -^e x V2,则D(X)=18.设随机变量X1, X2, X3相互独立,其中X在[0 , 6]上服从均匀分布,X2服从正态分布N(0, 22) , X3服从参数为=3的泊松分布,记Y=X —2X2+3X3,则D( Y) = ________________19.设D(X) 25,D Y 36, xy0.4,则D(X Y) ____________________________ 20.设X1,X2, ,X n,是独立同分布的随机变量序列,且均值为,方差为2,那么当n充分大时,近似有X〜_________ 或—--------- 〜 ___________ 。
南京工业大学《概率统计》课程试题A及参考答案
南京工业大学概率统计课程考试试题(A 、闭)(江浦)(第二学期)1.假设P (A )=0.4, P (A ∪B )=0.7,那么(1)若A 与B 互不相容,则P (B )= ______ ;(2)若A 与B 相互独立,则P (B )= ____ 。
2.将英文字母C,C,E,E,I,N,S 随机地排成一行,那么恰好排成英文单词SCIENCE 的概率为____________。
3.设随机变量X 的概率密度为442e 1)(-+-=x xx f π,则=2EX 。
4.设随机变量X 与Y 相互独立,且均服从参数为0.6的0-1分布,则{}Y X p ==______。
5.某人有外观几乎相同的n 把钥匙,只有一把能打开门,随机地取出一把开门,记X 为直到把门打开时的开门次数,则平均开门次数为__________。
6.设随机变量X 服从)21,8(B (二项分布), Y 服从参数为3的泊松分布,且X 与Y 相互独立,则)32(--Y X E =__________;)32(--Y X D =__________。
7.设总体X ~),(2σμN , (X 1,X 2,…X n )是来自总体X 的样本,已知2111)(∑-=+-⋅n i i i X Xc 是2σ的无偏估计量,则=c 。
二、选择题(每题3分,计9分)1.当事件A 和B 同时发生时,必然导致事件C 发生,则下列结论正确的是( )。
(A )P (C )≥ P (A )+ P (B )1- (B )P (C )≤P (A )+ P (B )1- (C )P (C )=P (A ⋃B ) (D )P (C )= P (AB )2.设X 是一随机变量,C 为任意实数,E X 是X 的数学期望,则( )。
(A )E (X -C )2=E (X -E X )2 (B ) E (X -C )2≥E (X -E X )2 (C ) E (X -C )2 <E (X -E X )2 (D ) E (X -C ) 2 = 03.设总体X ~),(2σμN , (X 1,X 2, X 3)是来自总体X 的样本,则下列估计总体X 的均值μ的估计量中最好的是( )。
4概率论与数理统计试卷A及答案
概率论与数理统计试卷A一、 单项选择(每小题3分,共18分) 1.事件表达式AB 的意思是 ( )A . 事件A 与事件B 同时发生B. 事件A 与B 都不发生C . 事件A 与B 至少一个不发生 D. 事件A 与事件B 至少有一个发生2、设A B ⊂,则下面正确的等式是 ( )A .)(1)(A P AB P -= B. )()()(A P B P A B P -=-C .)()|(B P A B P = D. )()|(A P B A P =.3. 随机变量(X , Y )的联合分布函数为(,)F x y ,则(X , Y )关于X 的边缘分布函数)(x F X 为( ) A .(,)F x +∞ B .(,)F x -∞C .(,)F y -∞D .(,)F y +∞4. 把3个球随机地放入3个盒子中,每个球放入各个盒子的可能性是相同的,设X 、Y 分别表示放入第一个、第二个盒子中的球的个数,则在1=Y 的条件下1=X 的概率为 ( ) A .21 B .31 C .41D .32 5. 已知12,,,n X X X L 是来自总体2~(,)X N μσ的样本,其中μ未知,而0σ>已知,则下列关于12,,,n X X X L 的函数不是统计量的是( )A .()222121n X X X n +++L B.()2221221n X X X σ+++L C. ()()()22212n X X X μμμ-+-++-L D. 12max{,,,}n X X X L6. 设X 为总体)4,3(~N X 中抽取的样本(4321,,,X X X X )的均值, 则)51(<<-X P =( ) A .)4(Φ B .)4()2(-Φ-ΦC .)4()2(Φ-ΦD .以上都不对学院 专业 级 班 姓 名 学 号二.填空题(每空2分,共32分)1. 两人相约于8时至9时之间在某地会面,先到者等候另一个人20分钟后即可离开,则两人能够会面的概率为 .2. 设随机变量X 的分布函数为()1xAF x e-=+,则A = ; X 的概率密度为_______; ()0P X ≤=_______3.将一根长为a 的细绳随意剪成两段,则有一段长度是另一段长度3倍以上的概率为_______.4.设随机变量(X , Y )的联合概率密度为 (),0,0(,)0,x y e x y f x y -+⎧>>=⎨⎩其它则2YX Z +=的概率密度为________________. 5.设随机变量n X X X ,,,21Λ相互独立,并且服从同一分布,数学期望为μ,方差为2σ,令11ni i X X n ==∑,则)(X E = , )(X D = 。
福州大学《概率统计》期末试卷A及答案
福州大学《概率统计》期末试卷A一、单项选择(共15分,每小题3分) 1. 设()0,(|)1P B P A B >=,则必有 。
(A )()()P A B P A ⋃> (B )()()P A B P B ⋃> (C )()()P A B P A ⋃=(D )()()P A B P B ⋃=2. 设随机变量X 的方差为16,根据契比雪夫不等式有{}10)(<-X E X P 。
(A )16.0≤ (B )16.0≥ (C )84.0≤ (D )84.0≥3. 设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-< 则必有 。
(A )12σσ< (B )12σσ>(C )12μμ<(D )12μμ>4.设~(1,4)X N ,2~(1)Y n χ-,X 与Y 独立,( ).(A) 自由度为1-n 的t 分布 (B) 自由度为n 的2χ分布 (C) 自由度为n 的t 分布 (D) 自由度为1-n 的2χ分布5.设0,1,0,1,1为来自两点分布总体(1,)B p 的样本观察值,则p 的矩估计值( ) (A) 4/5; (B)3/5; (C)2/5; (D)1/5.二.填空题(每空3分,共30分)1. 已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P ,条件概率8.0)(=A B P ,则)(B A P 为____2. . 设随机变量)1.0,3(~B X ,则12-=X Y 的数学期望为 .3. 随机变量,X Y 相互独立且服从同一分布,3/)1()()(+====k k Y P k X P ,1,0=k ,则()P X Y ==.4. 设一个汽车站上,某路公共汽车每5分钟有一辆车到达,乘客在5分钟内任一时间到达汽车站是等可能的,求在汽车站候车的5个乘客中有3个乘客等待时间超过4分钟的概率为____5.设n X X X ,...2,1是来自正态分布),(2σμN 的样本,且2σ未知,X 是样本均值,则检验假设0100:;:μμμμ≠=H H 所用统计量是 ,它服从 分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010—2011—2概率统计试题及答案
一、选择题(每题3分,共30分)
1 1
1 .已知P(A) P(B) P(C) , P(AC) P(BC) , P(AB) 0 求事件A,B,C 4 16
全不发生的概率
1 3
(A) 3(B)8(C)
2 •设A、B、C为3个事件•运算关系A B C表示事件___________ .
(A)A、B、C至少有一个发生(B)A、B、C中不多于一个发生
(C) A , B, C不多于两个发生(D) A,月,C中至少有两个发生
3•设X的分布律为P{X k} 2 k (k 1,2,),贝U _________________________ .
(A) 0的任意实数(B) 3
1
(C) 3(D) 1
4. 设X为一个连续型随机变量,其概率密度函数为f(x),则f(x)必满足
(A) 0 f (x) 1 ( B)单调不减
(C) f (x)dx 1(D) lim f (x) 1
5. 对正态总体的数学期望卩进行假设检验,如果在显著性水平=下接受
H。
0,那么在显著性水平=下,下列结论正确的是
:
(A)必接受H。
( B)可能接受也可能拒绝H 0
(C)必拒绝H。
( D)不接受,也不拒绝H。
6. 设随机变量X和丫服从相同的正态分布N(0,1),以下结论成立的是
(A) 对任意正整数k,有E(X k) E(Y k)
(B) X Y服从正态分布N(0,2)
(C) 随机变量(X ,Y)服从二维正态分布
(D) E(XY) E(X) E(Y) 7.若正态总体X 的方差D (X )
1 2
未知,检验期望E (X ) 0用的统计量是
(C) x 0 (n 1) (D)
x
0 — 1 2
n
勺
2 2
X X k
X X k
1
k 1
8.设二维随机变量(X,Y )服从G 上的均匀分布,G 的区域由曲线y x 2与
参数落在区间(?1 , ?2 )之内的概率为1 参数落在区间(?1 , ?2)之外的概率为
D )对不同的样本观测值,区间(?1 , ?2)的长度相同.
、填空题(每题3分,共30 分)
1 1 _ _
1 n 2
-(X i X)2( D)
n i 1
x 所围, 则(X ,Y )的联合概率密度函数为 (A) f(x,y) 6, (
x,y) G
0,其他(B) f(x ,y) 1/6, (x,y) G 0, 其他 (C) f(x,y) 2, (x,y) G 0,其他(D )
f(x ,y) 1/2, (x,y) G 0, 其他 9 •样本 X 1, X 2,
,X n 来自总体N ( 2), 则总体方差 2的无偏估计为 A ) S 12 七 n (X i X)2
( n 2 i 1
S ;
七(X i n 1 i 1
X)2 S4
1 n
f (X i X)
10.设(
2
)是参数 的置信度为1 的区间估计,则以下结论正确的是
(A)
x
. n(n 1) (B)
1
n _
2
㊁
x X k
x 0 n
- n 2 2 2
x X k
k 1
C )区间( 2)包含参数 的概率为1
1•设P(A) P(B) - , P(A B)—,则P(A|B)
3 2 1
2•设一批产品共10件,其中8件正品,2件次品,从中任意抽取3件,则恰有
1件是次品的概率是 __________ .
1
3•已知随机变量X在[a, a]上服从均匀分布,且P{X 1}丄,则a _____________ .
3
设随机变量X服从(0,3)上的均匀分布,则随机变量丫=X2在(0,9)的概
率密度函数为____________ .
4.设X ~ N(3,4),丫~N( 5,6),且X 与丫相互独立,则X 2Y ~ _____________ . 5•设随机变量X的数学期望为E(X) 、方差D(X) 2,则由切比雪夫不
等式有P X —.
4 ------------------
6.设随机变量X的分布律为
E(2X 1) __________ .
7. 已知D(X) 25,D(Y) 36, (X,Y) 0.4,则D(X Y) _______________ .
8. 设总体X服从参数为的泊松分布,X1 , X2 , , X100为来自总体的一个
样本,则矩估计量为____________ .
9. 设总体X服从正态分布N(m, s2),X1,X2, X3是来自总体X的一个样本,则
X1,X X B的联合概率密度为___________ .
10. 设总体X服从正态分布N(m, s2),其中s2未知,现从总体中抽取一容量
为n的样本,则总体均值的置信度为1 的置信区间为 ________ .
,X10是来自总体X的一个样本且X ~ N (0,0.52)求、设X1,X2,
P i24 . ( 0.O5(9) 16 , 2.io(1O) 16,)
i 1
四、从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值
之差的绝对值在4以上,求总体的标准差.
(已知:(2.33) 0.99, (2.06) 0.98 , t o.8(9) 0.261 ,t o.8(1O) 0.26)
五、在肝癌诊断中,有一种甲胎蛋白法,用这种方法能够检查出95%勺真实患者,
但也有可能将10%勺人误诊。
根据以往的记录,每10 000人中有4人患有肝癌,试求:
(1)某人经此检验法诊断患有肝癌的概率;
(2)已知某人经此检验法检验患有肝癌,而他确实是肝癌患者的概率.
2 15
六、设总体X有分布律 2 1 5,其中0 a 0.25为待估参数,X,人,…,
3a 1 4a a
人为来自总体X的样本,求a的矩估计量.
七、某工厂生产一种产品,每件标准重量为
100 kg ,设机器生产的产品重量服
从正态分布,且由长期经验知道=0.9 kg. 且保持不变,某天开工后,为
检查机器工作是否正常,随机抽取9件,称得其净重为(单位:kg
问该天机器工作是否正常?(a =.
(已知:U0.05 1 -65, u 0.025 1.96 , 10.025 (8) 2.306 , t°.05(8) 1.86 ,
t°.025(9) 2.262 , t°.05(9) 1.833)
答案:
4 10
口 0.99
五、令B “被检验者患有肝癌”,A “用该检验法诊断被检验者患有肝癌” 那么,P(A| B) 0.95, P(A | B) 0.10, P(B) 0.0004
(1) P( A) P(B)P(A|B) P(B )P(A| B )
0.0004 0.95 0.9996 0.1 0.10034
P(B)P(A| B)
P(B)P(A | B) P(B)P(A | B) 0.0004 0.95
0.0004 0.95 0.9996 0.1
10
10
三、P
i
X i 2 4
X i 2
1
P{Yj 16}
查表得:
0.10
(10)
16,
由此得所求概率得 10
X i 2
i 1
0.10.
四、由已知,设X~N(
2
), 且 P{'X
4} 0.02 ,
X ~ N(,
2
10)
0.02 P{'X
4}
4 / . 10
(2.33)
0.99 , 口0
2.33 ,
5.43
P(B| A)
0.0038
六、E(X) 2 3a 1 (1 4a)
5 a 1 5a X 4分
则a 的矩估计量为
?」 8分
5
七、设产品重量为X ,由已知X ~ N ( , 0.92),
检验统计量:U X /^0~N(0'1) u_} {|U | U 0.025} {U| 1.96}
2
所以拒绝H 0,即机器工作不正常要停机调整
提出假设: H o
:
100 ; H ,:
100
拒绝域:W {U
9, x
99.3 98.7 100.5
100.66
100.66 100
0.66
0.3 2.2 1.96。