巨磁电阻传感器

合集下载

巨磁阻传感器灵敏度计算公式

巨磁阻传感器灵敏度计算公式

巨磁阻传感器灵敏度计算公式巨磁阻传感器是一种相当有趣且实用的装置,在现代科技中发挥着重要作用。

要了解它的灵敏度计算公式,咱们得先搞清楚一些基本概念。

巨磁阻传感器的灵敏度,简单来说,就是它对磁场变化的响应程度。

灵敏度越高,意味着它能更敏锐地感知到磁场的微小变化。

在计算巨磁阻传感器的灵敏度时,通常会用到一些物理量和公式。

比如说,我们要考虑到电阻的变化量、磁场的变化量以及一些与材料特性相关的参数。

公式大致是这样的:灵敏度(S)等于电阻的变化量(ΔR)除以磁场的变化量(ΔB)。

这里边电阻的变化量,可不是随随便便就能确定的。

它需要通过精确的测量仪器来获取。

我记得有一次在实验室里,我们为了测量一个巨磁阻传感器的电阻变化量,那可是费了好大的劲儿。

当时,整个实验室里的小伙伴们都紧张兮兮的。

我们小心翼翼地连接着各种线路,眼睛紧紧盯着仪器上的数据。

稍微有一点风吹草动,都能让我们的心提到嗓子眼儿。

那时候,真的是连大气都不敢喘一下,就怕影响了测量结果。

经过反复的调试和测量,终于得到了比较准确的电阻变化量数据。

那种成就感,真的没法形容。

再说磁场的变化量,这也不是个简单的事儿。

得有专门产生磁场的设备,还得能精确控制磁场的大小和方向。

在实际应用中,不同类型的巨磁阻传感器,其灵敏度可能会有所不同。

这取决于传感器的材料、结构还有制造工艺等等。

比如说,有些传感器是用多层薄膜结构制造的,这种结构就能大大提高灵敏度。

而要提高巨磁阻传感器的灵敏度,也有不少方法。

比如优化材料的选择和制备工艺,改进传感器的结构设计等等。

总之,巨磁阻传感器灵敏度的计算公式虽然看起来简单,但背后涉及到的东西可多着呢。

要真正理解和运用好它,还需要我们不断地学习和实践。

希望大家在探索这个有趣的领域时,都能有所收获,发现更多的奇妙之处!。

巨磁电阻的应用

巨磁电阻的应用

参考文献

[1] 钟喜春,曾德长,魏兴钊,顾正飞. 巨磁电阻材料的研究 与应用[J]. 金属功能材料. 2002(03) [2] 赵燕平,由臣,宁保群. 巨磁电阻材料及应用[J]. 天津理 工学院学报. 2003(03) [3] 于广华,朱逢吾,赖武彦. 巨磁电阻材料及其在汽车传感 技术中的应用[J]. 新材料产业. 2003(08)
三巨磁电阻材料的应用现状1巨磁电阻传感器2巨磁阻磁记录读出磁头3巨磁电阻随机存储器mram1巨磁电阻传感器巨磁电阻传感器采用惠斯登电桥和磁屏蔽技术传感器基片上镀了一层很厚的磁性材料这层材料对其下方的巨磁电阻形成屏蔽不让任何外加磁场进入屏蔽的电阻器
一、巨磁电阻效应的定义
所谓巨磁电阻效应,是指材料的电阻率将受磁化状态 的变化而呈现显著改变的现象。一般定义为 GMR=[(P0-PH)/P0]×100% 其中,PH为在磁场H作用下材料的电阻率,P0指无外磁场作 用下材料的电阻率.
三、巨磁电阻材料的应用现状
1、巨磁电阻传感器 2、巨磁阻磁记录读出磁头 3、巨磁电阻随机存储器(MRAM)
1、巨磁电阻传感器
巨磁电阻传感器采用惠斯登 电桥和 磁屏蔽技术,传感器基 片上镀了一层很厚的磁性材料, 这层材料对其下方的巨磁电阻形 成屏蔽,不让任何外加磁场进入 屏蔽的电阻器。惠斯材料上方,受外加磁 场影响是电阻减少,而R2和R4 在磁性材料下方,被屏蔽阻值不 变。


巨磁电阻传感器由于具有巨大的GMR值和较大的磁场 灵敏度,表现出更强的竞争能力。 它大大提高传感器的分辨率,灵敏度、精确性等指标, 特别是在微弱磁场的传感方面,如可用于伪钞识别器等方 面,则显出更大的优势。更广泛的应用是各类运动传感器, 如对位置、速度、加速度、角度、转速等的传感,在机电 自动控制、汽车工业和航天工业等方面有广泛的应用。

与巨磁电阻效应有关的实例

与巨磁电阻效应有关的实例

与巨磁电阻效应有关的实例巨磁电阻效应在现代科技领域中有着广泛的应用,它不仅在磁存储器、磁传感器等领域发挥着重要作用,还在生物医学、环境监测等方面展现出巨大的潜力。

本文将以几个实例来介绍巨磁电阻效应的应用。

一、磁传感器磁传感器是一种能够测量和检测磁场的设备,巨磁电阻效应在磁传感器中得到了广泛应用。

例如,在汽车领域,磁传感器可以用于测量车辆的速度、方向和位置,以实现导航、自动驾驶等功能。

而巨磁电阻效应的磁传感器具有灵敏度高、响应速度快、尺寸小等优点,因此被广泛应用于汽车行业。

二、磁存储器磁存储器是计算机中常用的存储设备,而巨磁电阻效应的磁阻器件在磁存储器中发挥着重要作用。

磁存储器通过改变磁阻器件的电阻来存储和读取数据。

当外加磁场改变磁阻器件的磁化方向时,电阻值也会发生变化。

利用这种巨磁电阻效应,可以实现高密度、高速度的数据存储和读取,提高计算机的性能。

三、生物医学应用巨磁电阻效应在生物医学领域也有着广泛的应用。

例如,在磁共振成像(MRI)中,可以利用巨磁电阻效应的磁传感器来感知人体内的微弱磁场变化,从而实现对人体组织和器官的成像。

此外,巨磁电阻效应还可以用于生物传感器,用于检测生物分子、细胞等微小物质的浓度和活性,有助于疾病的早期诊断和治疗。

四、环境监测巨磁电阻效应在环境监测中也发挥着重要作用。

例如,利用巨磁电阻效应的磁传感器可以测量地震、气候变化等自然灾害的磁场变化,从而提供预警和监测信息。

此外,巨磁电阻效应还可以用于测量和监测水质、空气质量等环境因素,有助于环境保护和资源管理。

巨磁电阻效应在磁传感器、磁存储器、生物医学和环境监测等领域都有着广泛的应用。

它的出现和发展不仅改变了现代科技的面貌,也为人们的生活和工作带来了便利和创新。

随着科技的进步和巨磁电阻效应的不断优化,相信它的应用领域还将不断扩展和深化,给人们的生活带来更多的惊喜和便利。

巨磁电阻传感器的研究与应用

巨磁电阻传感器的研究与应用

高 、可靠性 好 、测量 范 围宽 、抗 恶劣 环境 、体 积 小 等 优 点 ,有 很 好 的应用 前 景 。但 由于 G R 感器 M传
S udy a t nd Applc to fGi n a ne o e i tveSe o i a i n O a tM g t r s si ns r
YUE n M E1J n ZHE G i n— o g ZHU a Yu , u , N Ja y n , Ch o




层 间 耦 合 特 性 钙 钛 矿 氧 化 物 的多层膜 自旋 阀多层膜 颗粒型多层膜 型 多层膜

如今 , 巨磁 电阻效应 传 感器 已广 泛应 用 于非 接 触位 置测 量 、交通速 度 检测 、 生物探 测 、 电力系 统 等 多种 领域 。G R 感器 —— 一类 新 的磁 电阻 传 M传
( co lfEeti l gn eig S uha t nvri, ajn 10 6 C ia S h o lc c ier , o tes iest N nig2 9 , hn ) o r a En n U y 0
Abs r c :I t o uc i n wa d o t e wo k ng p i c p e ha a t rsi s a d p e e tsud i a i n o i n g e O e itV e s r t a t n r d to s ma e t h r i rn i l ,c r c e i t n r s n t y st to fg a tma n t r ss i e s n o . c u Th spa e e c i e o n e lg n t o ss c h tt e g a t a n t r ssi e s n o sa p i d t e s r u a u e , n o o i p rd s rb d s me i t li e tme h d u h t a i n g e o e i t e s r h m V wa p l m a u e b s b rc r n a d s n. e o t

巨磁阻(GMR)生物传感器读出电路关键技术研究

巨磁阻(GMR)生物传感器读出电路关键技术研究

巨磁阻(GMR)生物传感器读出电路关键技术研究
巨磁阻(GMR)生物传感器是一种用于检测生物分子的新型传感器,具有高灵敏度、快速响应和可重复使用等优点。

然而,要实现高精度的生物分子检测,需要设计和优化读出电路来提高传感器的性能。

首先,巨磁阻传感器的读出电路需要具备高放大增益和低噪声特性。

为了实现高放大增益,可以采用差分放大器电路来放大传感器输出信号。

差分放大器可以有效地抑制共模噪声,并提高信号的可靠性。

同时,通过使用低噪声放大器和滤波器来降低电路噪声,可以提高传感器的信噪比,从而提高传感器的灵敏度和检测精度。

其次,巨磁阻传感器的读出电路需要具备高速采样和处理能力。

由于生物分子的检测通常需要实时监测,因此读出电路需要能够快速采集和处理传感器输出的信号。

可以采用高速模拟-数字转换器(ADC)和数字信号处理器(DSP)来实现快速的信号采集和处理。

高速ADC可以将传感器输出的模拟信号转换为数字信号,而DSP可以对数字信号进行实时处理和分析,从而提高传感器的响应速度和检测效率。

此外,巨磁阻传感器的读出电路还需要具备低功耗和小尺寸的特点。

为了实现低功耗,可以采用低功耗的集成电路和优化的
电源管理技术。

同时,通过采用微型化的电子元件和集成化的电路设计,可以实现读出电路的小尺寸化,从而方便传感器的集成和应用。

综上所述,巨磁阻生物传感器的读出电路关键技术包括高放大增益和低噪声特性、高速采样和处理能力,以及低功耗和小尺寸化。

这些关键技术的研究和优化将有助于提高巨磁阻生物传感器的性能,推动其在生物医学和环境监测等领域的应用。

GMR磁场传感器的工作原理

GMR磁场传感器的工作原理

GMR磁场传感器的工作原理巨磁电阻(GMR)效应是1988年发现的一种磁致电阻效应,由于相对于传统的磁电阻效应大一个数量级以上,因此名为巨磁电阻(Giant Magnetoresistanc),简称GMR。

1. 巨磁电阻(GMR)原理,见图一。

巨磁电阻(GMR)效应来自于载流电子的不同自旋状态与磁场的作用不同,因而导致的电阻值的变化。

这种效应只有在纳米尺度的薄膜结构中才能观测出来。

赋以特殊的结构设计这种效应还可以调整以适应各种不同的性能需要。

2. 巨磁电阻(GMR)传感器原理,见图二。

巨磁电阻(GMR)传感器将四个巨磁电阻(GMR)构成惠斯登电桥结构,该结构可以减少外界环境对传感器输出稳定性的影响,增加传感器灵敏度。

工作时图中“电流输入端”接5V~20V的稳压电压,“输出端”在外磁场作用下即输出电压信号。

3. 巨磁电阻(GMR)传感器性能,见图三,表一。

图三所示为巨磁电阻(GMR)传感器在外场中的性能曲线,表明该传感器在±200Oe的磁场范围类有较好的线性。

表一所示为国际上各公司生产的巨磁电阻(GMR)传感器的性能对照,表中标注有(库万军)处为本公司产品。

对比表明本公司的产品无论灵敏度或线性范围都有较大的优越性,而且本公司产品性能仍在不停的丰富和完善过程中。

更为重要的是,本公司产品采用特殊的结构,适宜于采用半导体集成化规模生产,因此生产成本低。

图3巨磁电阻(GMR)传感器在外场下的性能曲线表一各公司巨磁电阻(GMR)传感器性能对照灵敏度(mV/V*Oe)线性范围(Oe)结构及材料偏磁技术IBM 0.8 ±25 SPIN-VALVE 设置电流NVE 0.45 ±135 Co/Cu多层膜外置偏磁铁Honeywell 1 ±6 NiFe film(AMR)EPFL-CH 0.024 ±150 聚磁通霍尔元件INESC 0.6 ±30 SPIN-VALVE 设置电流INESC (库万军)0.21 ±135 NiFe/CoFe/Cu多层膜CoFe/CoPt双层膜INESC (库万军)0.17 ±200 NiFe/CoFe/Cu多层膜CoPt膜(两矫顽力)INESC(库万军)1.3 ±20 SPIN-VALVE 两次沉积INESC(库万军)探测磁场X-Y分量的集成元件INESC(库万军)数字、脉冲型3. 产品使用说明a.巨磁电阻(GMR)传感器作为一种有源器件,其工作必须提供5~20V的直流电源。

巨磁电阻传感器原理

巨磁电阻传感器原理

巨磁电阻传感器原理今天咱们来唠唠巨磁电阻传感器这个超酷的东西。

你可别一听“传感器”就觉得它是那种干巴巴、特别难懂的玩意儿,其实它背后的原理就像一场微观世界里的小冒险呢。

咱们先从电阻说起吧。

你知道电阻就像是电流在电路里跑步的时候遇到的小阻碍。

平常的电阻呢,就是按照它自己的规律,根据材料啊、长度啊、横截面积这些因素来决定自己有多大的阻力。

但是巨磁电阻可就不一样啦,它呀,就像是一个对磁场特别敏感的小机灵鬼。

想象一下,在巨磁电阻的微观世界里,有好多好多的电子在跑来跑去。

当没有磁场的时候呢,这些电子就按照自己的节奏在材料里穿梭,就像一群小蚂蚁在平地上乱逛。

可是一旦有磁场出现,哇塞,就像是一阵神奇的风刮过来了。

这个磁场会让电子的运动轨迹发生变化呢。

那些原本自由自在的电子,就像是被一只无形的大手给指挥着,开始朝着特定的方向偏移。

这时候,你就会发现一个超级有趣的现象。

由于电子的运动被磁场这么一搅和,电流通过这个材料的时候就变得更容易或者更难了,这就导致了电阻的变化。

如果把这个材料做成传感器,就可以通过测量电阻的变化来知道磁场的情况啦。

你看啊,在巨磁电阻传感器里,这种对磁场的敏感程度可是非常厉害的。

就好像它有一双超级敏锐的小眼睛,能够察觉到磁场非常微小的变化。

比如说,在我们的硬盘里,就用到了巨磁电阻传感器。

硬盘里面有很多小磁区,每个磁区的磁场方向就代表着0或者1这样的数据。

巨磁电阻传感器就像一个小小的侦探,它能够准确地感知到这些磁区的磁场变化,然后把这个信息转化成电信号,这样电脑就能知道硬盘里存储的是什么数据啦。

而且哦,巨磁电阻传感器在汽车上也有大用场呢。

汽车的速度传感器有时候就会用到它。

汽车轮子一转,就会产生磁场的变化,巨磁电阻传感器就能捕捉到这个变化,然后告诉汽车的电脑,车子现在跑得多快呀。

再说说它的材料吧。

通常是一些特殊的多层结构材料。

就像是给电子们建造了一个特别的小房子,不同的楼层有不同的作用。

当磁场来敲门的时候,这些电子在不同的楼层之间的互动就会发生改变,从而影响电阻。

gmr传感器工作原理

gmr传感器工作原理

gmr传感器工作原理GMR传感器工作原理引言:GMR(Giant Magneto Resistance)传感器是一种基于巨磁电阻效应的传感器,具有高灵敏度、快速响应和低功耗等优点。

它在磁传感领域得到了广泛应用,如磁存储器、磁头以及磁传感器等。

本文将介绍GMR传感器的工作原理及其应用。

一、巨磁电阻效应巨磁电阻效应是指在某些特殊材料中,当外加磁场改变时,材料电阻发生明显变化的现象。

这种效应是由于磁场改变引起材料内部磁矩方向发生变化,从而影响电子的运动和散射,导致电阻的改变。

其中最具代表性的材料是由铁、铁氧体和铬等多层薄膜组成的磁多层结构。

二、GMR传感器的结构GMR传感器通常由两个平行排列的磁多层结构组成,中间夹有一层非磁性金属薄层。

其中一个磁多层结构被称为固定层,其磁矩方向固定不变;另一个磁多层结构被称为自由层,其磁矩方向可以受外界磁场影响而改变。

当没有外界磁场作用时,自由层的磁矩方向与固定层垂直,导致电阻最大。

而当外界磁场作用于自由层时,自由层的磁矩方向会发生改变,使得电阻值发生变化。

三、GMR传感器的工作原理当GMR传感器暴露在外界磁场中时,自由层的磁矩方向会发生变化。

这种磁矩方向变化会导致自由层和固定层间电子的散射发生改变,从而影响电阻的大小。

当自由层的磁矩方向与固定层平行时,电阻最小;当自由层的磁矩方向与固定层垂直时,电阻最大。

通过测量电阻的变化,我们可以确定外界磁场的大小和方向。

四、GMR传感器的应用1. 磁存储器:GMR传感器被广泛应用于硬盘驱动器中,用于读取磁盘上的数据。

它可以实现更高的磁道密度和更高的数据存储容量。

2. 磁头:GMR传感器也被用作磁头,用于读取磁带、软盘等磁介质上的数据。

3. 磁传感器:GMR传感器可以用于测量和检测磁场,例如地磁传感器、指南针和磁力计等领域。

4. 生物医学:GMR传感器可以应用于生物医学领域,用于检测生物磁场或监测生物信号。

结论:GMR传感器是一种利用巨磁电阻效应实现磁场检测的传感器,具有高灵敏度和快速响应的特点。

巨磁电阻效应在电子领域的应用

巨磁电阻效应在电子领域的应用

巨磁电阻效应在电子领域的应用在电子领域中,巨磁电阻效应(GMR)已经被广泛应用。

具有较好的灵敏度、可靠性和高速度的巨磁电阻传感器已应用于很多领域,例如医疗、化学、物理等领域。

本文将讨论巨磁电阻效应在电子领域中的应用及其未来趋势。

一、巨磁电阻效应的发现巨磁电阻效应(GMR)是指某些材料在磁场作用下其电阻产生显著变化的现象。

1998年的物理诺贝尔奖获得者尔·安德森和约翰·范·魏希隆德是最早发现巨磁电阻效应的人。

他们最开始做的工作是将两种磁性材料分别放置在两个磁头间,当它们之间通过磁场时,电阻会随之发生变化。

二、巨磁电阻传感器的应用巨磁电阻传感器广泛应用于磁存储器领域,如硬盘、磁带等,其中最主要的应用是让硬盘的存储容量得到了大幅提升。

巨磁电阻传感器还被应用于磁传感器。

在磁传感器中,它可以用于检测地磁变化、测量电流、线圈和磁场等方面。

大量实验表明,巨磁电阻传感器具有以下几方面的优点:1. 灵敏度高。

巨磁电阻传感器具有很高的灵敏度,可以检测到极小的磁场变化。

2. 响应速度快。

与其他传感器相比,巨磁电阻传感器的响应速度较快。

3. 可靠性好。

巨磁电阻传感器中不会产生机械摩擦等损坏因素,因此其使用寿命较长且更加可靠。

三、巨磁电阻效应的新应用巨磁电阻传感器已经被广泛应用于磁存储器、磁传感器中。

同时,巨磁电阻效应的研究也正在向新的方向拓展,例如在自动驾驶领域中的应用。

在自动驾驶中,车辆需要依靠传感器收集外部环境信息。

目前,使用场景更多的是激光雷达和视觉传感器,但巨磁电阻传感器也可作为一种选择,它可以帮助车辆检测低频磁场,例如地磁场等,从而实现更加精准的定位和环境感知。

此外,巨磁电阻效应还可以用于生物医学领域。

在生物医学领域中,巨磁电阻传感器可以帮助科学家们测量细胞的磁场。

通过研究细胞中的磁场,可以更准确地了解细胞发生的各种生物化学反应的具体机理,从而研发新的药物或治疗方式。

四、总结巨磁电阻效应的发现和应用推动了电子领域的发展。

基于巨磁电阻效应的电流传感器

基于巨磁电阻效应的电流传感器

基于巨磁电阻效应的电流传感器自动控制元件及线路新型传感器介绍一、器件概述GMR电流传感器是一类利用GMR效应测量电流的装置。

按照测量原理,GMR电流传感器可分为开环传感器和闭环传感器。

开环式GMR电流传感器通过直接测量长直导线上电流产生的磁场来测量电流。

如图2所示,电流方向与传感器的敏感轴方向正交,电流产生的磁场方向与敏感轴方向平行。

假设流经导线的电流为I,传感器距离导线的距离为d。

当电流变化时,磁场随之变化,GMR的电阻也发生变化,利用电桥结构将电阻的变化输出为一个电压信号。

由于GMR电阻和磁场之间具有线性变化规律,输出的电压正功能作用比于被测电流,从而实现电流信号的测量功能。

相比于开环式传感器,闭环式GMR电流传感器多了一个由运放和反馈线圈组成的反馈回路,如图3所示。

其工作原理为:GMR元件放置在环形铁心的空隙中,让被测电流I所产生的磁通Φ集中穿过GMR元件,由于GMR效应在GMR元件的电压端上产生电压U,此电压再经放大输送到磁芯的补偿线圈,在补偿线圈中即产生磁通Φ,当磁通完全补偿被测电流产生的磁通Φ时,电流I0就能通过取样电阻R上的电压U反映出,而待测电流I也可以通过U 测出。

运用该磁场反馈方法可改善传感器的线性度,并增宽动态测量范围。

然而,集成反馈线圈的方法会使器件能耗大量增加,并使器件工艺更加复杂。

此外,由开环式GMR电流传感器的测量原理可知,其输出电压信号正比于被测电流,同时正比于流经GMR传感器的电流。

一般情况下,GMR电桥的输入电阻可视为恒定,输出信号正比于被测电流与电桥输入电压的乘积。

输入电压恒定时,GMR传感器为电流传感器;当输入电压为被测元件的电压时,GMR传感器可作为功率传感器使用,如图4 所示。

二、功能作用GMR电流传感器具有广阔的应用前景。

其与传统电磁式电流互感器相比,具有能够测量直流到高频(MHz量级)的电流信号、测量范围宽、灵敏度高和体积小等优点,尤其是GMR能够测量直流电流,这对于直流输电系统中换流站中直流的监测极为有利;与Hall 元件相比,其体积较小,灵敏度高,且具有更好的温度稳定性,能够适应电网环境温度的剧烈变化;与新型光纤电流传感器相比,其结构简单、制造简便且造价低廉,便于大规模推广使用。

巨磁阻传感器原理及应用

巨磁阻传感器原理及应用
巨磁阻传感器原理及应用
目录
• 巨磁阻传感器原理 • 巨磁阻传感器的应用领域 • 巨磁阻传感器的发展趋势 • 巨磁阻传感器的挑战与解决方案 • 巨磁阻传感器的未来展望
01 巨磁阻传感器原理
巨磁阻效应
巨磁阻效应
当电流在某些特殊材料的薄膜中流动时,磁场对电流的影响会变得异常大,这种现象被称 为巨磁阻效应。
04 巨磁阻传感器的挑战与解 决方案
温度稳定性问题
总结词
温度稳定性是巨磁阻传感器的重要性能指标,直接影响到传感器的测量精度和使用寿命。
详细描述
巨磁阻传感器在高温环境下,其磁阻值会发生变化,导致测量结果失真。为了解决这一问题,可以采 用温度补偿技术,通过在传感器中加入温度传感器和温度补偿电路,对温度变化引起的磁阻值变化进 行修正,提高传感器的温度稳定性。
尺寸
减小巨磁阻传感器的尺寸有助于集成 到更小的设备中,从而推动其在物联 网、智能穿戴等领域的应用。
集成化和智能化
集成化
将多个巨磁阻传感器集成到一个芯片上,可以实现多轴磁场测量,提高测量效 率和精度。
智能化
通过与微处理器等智能芯片集成,巨磁阻传感器可以实现自动校准、数据存储 和无线传输等功能,提高其实用性和便利性。
磁性编码器
总结词
巨磁阻传感器在磁性编码器中用于检测旋转或线性运动的物体的位置和速度。
详细描述
磁性编码器利用磁性材料和巨磁阻传感器的结合,检测旋转或线性运动物体的磁 场变化,并将其转换为电信号。巨磁阻传感器的高灵敏度和稳定性使得磁性编码 器广泛应用于各种运动控制系统,如电机控制、机器人等。
磁性随机存取存储器(MRAM)
交叉轴效应和线性范围限制
总结词
交叉轴效应和线性范围限制是巨磁阻传感器在实际应 用中面临的常见问题。

巨磁电阻(GMR)磁场传感器的工作原理

巨磁电阻(GMR)磁场传感器的工作原理

巨磁电阻(GMR)磁场传感器的工作原理磁电阻(GMR)效应是1988 年发现的一种磁致电阻效应,由于相对于传统的磁电阻效应大一个数量级以上,因此名为巨磁电阻(Giant Magnetoresistanc),简称GMR。

1. 巨磁电阻(GMR)原理,见图一。

巨磁电阻(GMR)效应来自于载流电子的不同自旋状态与磁场的作用不同,因而导致的电阻值的变化。

这种效应只有在纳米尺度的薄膜结构中才能观测出来。

赋以特殊的结构设计这种效应还可以调整以适应各种不同的性能需要。

反铁磁耦合时(外加磁场为0)处于高阻态的导电输出特性,电阻:R1/2外加磁场使该磁性多层薄膜处于饱和状态时(相邻磁性层磁矩平行分布),而电阻处于低阻态的导电输出特性,电阻:R2*R3/(R2+R3),R2R1R3 图1、利用两流模型来解释GMR 的机制2. 巨磁电阻(GMR)传感器原理,见图二。

巨磁电阻(GMR)传感器将四个巨磁电阻(GMR)构成惠斯登电桥结构,该结构可以减少外界环境对传感器输出稳定性的影响,增加传感器灵敏度。

工作时图中“电流输入端”接5V~20V的稳压电压,“输出端”在外磁场作用下即输出电压信号。

图2(1):惠斯凳电桥在磁场传感器应用中的原理图2(2):惠斯凳电桥中R1 和R2 在外加磁场作用下的变化情况3. 巨磁电阻(GMR)传感器性能,见图三,表一。

图三所示为巨磁电阻(GMR)传感器在外场中的性能曲线,表明该传感器在±200Oe的磁场范围类有较好的线性。

图3:巨磁电阻(GMR)在外加磁场下的性能曲线表一各公司巨磁电阻(GMR)传感器性能对照4.产品使用说明 a . 巨磁电阻(GMR)传感器作为一种有源器件,其工作必须提供5~20V 的直流电源。

而且该电源的稳定性直接影响传感器的测试精度,因此要求以稳压电源提供;使用中也应避免过电压供电; b .巨磁电阻(GMR)传感器作为一种高精度的磁敏传感器,对使用磁环境也有一定的要求,其型号选用应根据使用环境的磁场大小来决定; c. 巨磁电阻(GMR)传感器对磁场的灵敏度与方向有关。

与巨磁电阻效应有关的实例

与巨磁电阻效应有关的实例

与巨磁电阻效应有关的实例巨磁电阻效应是指在磁场作用下,材料的电阻发生变化的现象。

这种现象被广泛应用于磁传感器、磁存储器、磁阻隔离器等领域。

下面将介绍一些与巨磁电阻效应有关的实例。

1. 磁阻传感器磁阻传感器是一种利用巨磁电阻效应测量磁场的传感器。

它由一个磁敏感元件和一个电路组成。

当磁场作用于磁敏感元件时,它的电阻会发生变化,电路会输出一个与磁场强度成正比的电信号。

磁阻传感器具有灵敏度高、响应速度快、体积小等优点,被广泛应用于汽车、电子设备、医疗器械等领域。

2. 磁阻隔离器磁阻隔离器是一种利用巨磁电阻效应实现电气隔离的器件。

它由两个磁敏感元件和一个隔离层组成。

当输入信号通过一个磁敏感元件时,它的电阻会发生变化,输出信号通过另一个磁敏感元件时,它的电阻也会发生相应的变化。

由于隔离层的存在,输入信号和输出信号之间实现了电气隔离。

磁阻隔离器具有高精度、高速度、高可靠性等优点,被广泛应用于工业自动化、电力电子等领域。

3. 磁阻存储器磁阻存储器是一种利用巨磁电阻效应实现信息存储的器件。

它由一个磁敏感元件和一个磁性介质组成。

当磁场作用于磁敏感元件时,它的电阻会发生变化,这个变化可以被读取出来,从而实现信息的存储和读取。

磁阻存储器具有存储密度高、读写速度快、功耗低等优点,被广泛应用于计算机、移动设备等领域。

总之,巨磁电阻效应是一种重要的物理现象,它在磁传感器、磁阻隔离器、磁阻存储器等领域得到了广泛应用。

随着科技的不断发展,巨磁电阻效应的应用前景将会更加广阔。

GMR巨磁电阻传感器 (模拟输出)使用说明 Ver2

GMR巨磁电阻传感器 (模拟输出)使用说明 Ver2

地磁场强度大约是0.5高斯,50uT,即 50000nT
备注: 1. 单位A/m,磁场强度H的单位最先是由磁荷理论定义出的导出量,最终化简的单位为A/m
(由基本单位A和m来表示的导出单位),国际单位制SI有七个基本单位(长度m、质量 Kg、时间s、电流A、热力学温度K、物质的量mol以及发光强度单位cd),除此之外其它 物理量的单位由七个基本单位导出。 2. 单位Oe(奥斯特)--纪念物理学家奥斯特而给出的别名1Oe=12.56kA/m Oe是磁场 强度单位,G(Gauss)是磁感应强度单位, 在空气中,1 Oe=1Gs (等价关系),1 Oe产生 的磁感应强度即为1 Gs,即空气的磁导率是1,磁导率的定义是B/H,因此在空气中, B/H=1,其他介质则不是 3. 单位T 磁感应强度B的单位属于导出单位,本应由基本单位表示,但用T来表示,是为了 纪念物理学家Tesla(特斯拉)给出的“别名”。
低阻态
图 3 示意图
高阻态
图 4 两种取向电子在多层膜中不同散射对磁电阻的影响 当加入外磁场 H 后,与外磁场反向的磁矩将趋向外磁场方向,当外场达到一定值时,所有铁磁 层中的磁矩方向变得基本一致(图 3b)。则自旋方向与磁矩方向相同的电子受到的电阻很小
(为 2R0 ) , 反之电阻很大(为 2R) ,并联结果如图 4b 所示,总电阻为 R 总=2 R R0 /(R+R0) 此时的总电阻比上述 H=0 时的要小得多,于是在外磁场下,产生了巨磁阻效应。
D
4.80 5.00
0.189
0.196
E
3.80 4.00
0.150
0.157
、 Peter 和 Albert 因发现巨磁阻现象而获得 2007 年诺贝尔奖
Fe/Cr 多层膜磁电阻变化曲线 巨磁阻效应是由于金属多层膜中电子自旋相关散射造成的。来自于载流电子的不同自旋 状态与磁场的作用不同,因而导致电阻值的变化。在不加磁场( H= 0) 情况下的多层膜( Fe/ Cr) N 中,当非磁层厚度合适时,两个相邻铁磁层会产生反铁磁耦合,即一层中原子磁矩基本沿同一 方向排列,而相邻层原子的磁矩反平行排列,如图 3(a)所示。两种电子所受到的总电阻,是如 图 4(a)所示的并联电阻情况。R 是自旋取向电子在受到相同方向磁矩散射时的电阻总和, R0 是受到反方向磁矩散射时的电阻总和,两种电子的总电阻是它们的关联结果 R 总= (R+R0)/2

巨磁电阻角度传感器的研制1

巨磁电阻角度传感器的研制1

巨磁电阻角度传感器的研制陈家新(安徽大学物理与材料科学学院,安徽合肥 230039)摘要:传感器是一种技术密集,多学交叉的产品,传感器技术的发展水平标志着现在化工业技术和生产力发展的高低,并直接影响着世界各国在科技,经济,工业生产以及军事等领域中的竞争力。

近年来,传感器技术的主要研究方向,一是基础研究方面,研究新发现与新效应,开发新材料和新工艺,二是实现传感器的微型化,集成化和智能化,因此本论文主要介绍巨磁电阻效应的发现,巨磁电阻效应的原理以及应用,并重点对巨磁电阻角度传感器的工作原原理以及研制进行深刻的分析。

关键词:巨磁电阻;角度传感器;自旋阀,磁场。

Preparation of giant magnetoresistance angular sensorChen Jia-xin(School of Physics & Material Science, Anhui University, Hefei 230039, China)Abstract Introduction discovery of giant magnetoresistance, giant magnetoresistance effect and the application of the principles and priorities of the original principle of the GMR angle sensor and the development will be described.Keywords giant magnetoresistance;angle sensor;spin valve;magnetic field1 背景随着工业化的迈进,传感器因为自身具有鲁棒性能高,非接触式测量,能在恶劣的环境下工作的特点而备受欢迎,21世纪是信息的时代,信息技术对科技和社会的发展的推动作用越来越大,而传感器则是获取自然和生产领域中信息的主要途径。

巨磁电阻效应及其传感器的原理

巨磁电阻效应及其传感器的原理

巨磁阻效应及其传感器的原理和应用一、概述对于物质磁电阻特性的研究由来已久,早在20世纪40年代人们就发现了磁电阻效应。

所谓磁电阻是指导体在磁场中电阻的变化,通常用电阻变化率Δr/r 描述。

研究发现,一般金属导体的Δr/r很小,只有约10-5%;对于磁性金属或合金材料(例如坡莫合金),Δr/r可达(3~5)%。

所谓巨磁电阻(GMR)效应,是指某些磁性或合金材料的磁电阻在一定磁场作用下急剧减小,而Δr/r急剧增大的特性,一般增大的幅度比通常的磁性与合金材料的磁电阻约高10倍。

利用这一效应制成的传感器称为GMR传感器。

1、分类GMR材料按其结构可分为具有层间偶合特性的多层膜(例如Fe/Cr)、自旋阀多层膜(例如FeMn/FeNi/Cu/FeNi)、颗粒型多层膜(例如Fe-Co)和钙钛矿氧化物型多层膜(例如AMnO3)等结构;其中自旋阀(spinvalve)多层膜又分为简单型和对称型两类;也有将其分为钉扎(pinning)和非钉扎型两类的。

2、巨磁电阻材料的进展1986年德国的Grunberg和C.F.Majkrgak等人发现了Y/Gd、Y/Dy和Fe/Cr/Fe多层膜中的层间偶合现象。

1988年法国的M.N.Baibich等人首次在纳米级的Fe/Cr多层膜中发现其Δr/r在4.2K低温下可达50%以上,由此提出了GMR 效应的概念,在学术界引起了很大的反响。

由此与之相关的研究工作相继展开,陆续研制出Fe/Cu、Fe/Ag、Fe/Al、Fe/Au、Co/Cu、Co/Ag、Co/Au……等具有显著GMR效应的层间偶合多层膜。

自1988年发现GMR效应后仅3年,人们便研制出可在低磁场(10-2~10-6T)出现GMR效应的多层膜(如[CoNiFe/CoFe/AgCu/CoFe/CoNiFe]n)。

1992年人们利用两种磁矫顽力差别大的材料(例如Co和Fe20Ni80)制成Co/Cu/Fe20Ni80/Cu多层膜,他们发现,当Cu层厚度大于5nm时,层间偶合较弱,此时利用磁场的强弱可改变磁矩的方向,以自旋取向的不同来控制膜电阻的大小,从而获得GMR效应,故称为自旋阀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The magnetoresistance is the change of electrical resistance of a conductor when subjected to an external magnetic field. In bulk ferromagnetic conductors, the leading contribution to the magnetoresistance is due to the anisotropic magnetoresistance (AMR) discovered in 1857 by W. Thomson (Lord Kelvin) (Proc. R. Soc. London A8, 546 (1857)). This originates from the spin-orbit interaction, which leads to a different electrical resistivity for a current direction parallel or perpendicular to the magnetization direction. As a magnetic field is applied, misoriented magnetic domains tend to align their magnetization along the field direction, giving rise to a resistance change of the order of a few percent. Magnetoresistive effects are of great interest for industrial applications, and the AMR has been applied for making magnetic sensors and read-out heads for magnetic disks. Until 1988, the 130 years old AMR remained the most important contribution to the magnetoresistance of ferromagnets. The situation at that time is best summarized by the following pessimistic quotation, taken from an authorative treatise on magnetic sensor technology written in 1988: “More t han t wo decades of research and development have established the principle of magnetoresistive sensors. (...). It is doubtful, however, whether magnet oresist ive layers t hemselves will be improved considerably in t he coming years.”(From“Sensors, A Comprehensive Survey, Vol. 5: Magnetic Sensors”, VCH (1989)).It was therefore a great sensation when, in 1988, Albert Fert and Peter Grünberg independently discovered that a much greater magnetoresistive effect (hence dubbed “giant magnetoresistance” or GMR) can be obtained in magnetic multilayers. These systems essentially consist of an alternate stack of ferromagnetic (e.g., Fe, Co, Ni, and their alloys) and non-ferromagnetic (e.g., Cr, Cu, Ru, etc.) metallic layers. Each individual layer in these multilayers is only a few atomic layers thick. Fert and Grünberg discovered that when the relative orientation of the magnetization of the successive ferromagnetic layers is changed from antiparallel to parallel by applying an external magnetic field, the electrical resistance of the multilayers is reduced by as much as 50% as shown schematically in Figure 1.Fig. 1. Schematic description of the giant magnetoresistance effect. Blue curve:magnetization of the multilayer versus applied magnetic field. Red curve:electricalresistance of the multilayer. The insets indicate the magnetic configuration of themultilayer in zero field and at positive and negative saturation fields.The phenomenon of GMR results from a combination of two physically distinct new effects. The first one is the very fact that the electrical resistance of the multilayer varies considerably as the configuration is switched from parallel (P) to antiparallel (AP). This effect arises as a consequence of the spin-dependent scattering of electrons in ferromagnetic layers, which in the 70’s has been intensively studied by Albert Fert in bulk ferromagnets and ferromagnetic alloys. This effect is shown schematically in Figure 2.The second important new effect is the antiferromagnetic interlayer exchange coupling (discovered by Peter Grünberg in 1986), which leads to an antiparallel orientation of the magnetizations of successive ferromagnetic layers in absence of an external field; this effect allows one (by applying an external magnetic field) to effectively switch from the AP configuration to the P configuration, and thus to reveal the GMR phenomenon.Fig. 2. Schematic description of the spin-dependent scattering mechanism for thegiant magnetoresistance. Electrons are strongly scattered in magnetic layers withmagnetizations (white arrows) antiparallel to their spin (black arrows), and weaklyscattered in magnetic layers with magnetizations parallel to their spin. This results ina short-circuit effect in the P configuration, where half of the electrons are seldomscattered, yielding a lower net resistance.The GMR has originally been discovered in the “current-in-plane” (CIP) configuration, which is the easiest to study experimentally. Later, it was shown that an even larger effect takes place in the “current-perpendicular-to-plane” (CPP) configuration.3. Scientific contributions of Albert FertLong before the discovery of giant magnetoresistance, the study of spin-polarized electronic transport in magnetic materials has been a major research topic of Albert Fert. In the 70’s, together with I.A. Campbell, he performed pioneering studies on the resistivity of ferromagnetic alloys (Phys. Rev. Lett. 21, 1190 (1968)∗; J. de Physique C1-32, 1 (1971); J. Phys. F 6, 849 (1976)). In these studies, he developed the concepts of spin-dependent currents (originally suggested by Mott), of spin-dependent resistivity and spin-dependent scattering, which later became the key conceptual ingredients of the GMR effect.∗The references marked in blue are linked via internet to the corresponding paper. Depending on the online subscription of your institution, you may either have access to the full text or only to the abstract.In the mid-80’s, Albert Fert started working on magnetic multilayers, and his experience with spin-polarized transport in magnetic alloys prompted him to focus on their electronic transport properties. He soon realized that the effect of spin-dependent scattering would give rise to magnetoresistance effects of unprecedented magnitude, provided one finds a mean to switch the relative orientation of the magnetization of successive magnetic layers in a multilayer from parallel to antiparallel. That this idea was indeed correct was further suggested by observations of J.-P. Renard’s group who reported small but striking anomalies in the resistivity of uncoupled Co/Au magnetic multilayers at the coercive field (Physica Scripta T19, 405 (1987); Phys. Rev. B 37, 668 (1988)). The missing link for obtaining a strong magnetoresistance was provided by exploiting Grünberg’s discovery of antiferromagnetic exchange coupling in magnetic multilayers (Phys. Rev. Lett. 57, 2442 (1986)).In 1988, Albert Fert and his coworkers discovered a giant magnetoresistance effect (about 50% change in resistance) in Fe/Cr multilayers (see Figure 3) (Phys. Rev. Lett. 61, 2472 (1988)). Fert’s article reporting the discovery of the giant magnetoresistance has been cited about 2500 times in the literature. The same effect was also discovered independently and simultaneously by Peter Grünberg (Phys. Rev. B 39, 4828 (1989)) (see next Section). Later on, by using more complex multilayers comprising materials of suitable spin-asymmetric scattering, Fert and his coworkers were able to produce an inverse GMR effect (Phys. Rev. Lett. 72, 408 (1994)).Besides the experimental discovery of the GMR, Albert Fert was also very active in developing theoretical concepts to explain the GMR effect. Together with P.M. Levy and S.F. Zhang, he worked out the first quantum mechanical theory of the GMR (Phys. Rev. Lett.65, 1643 (1990)). He also proposed a theory of the CPP-GMR (Phys. Rev. B 48, 7099 (1993)) (now a classic known as the Valet-Fert model), in which he pointed out the importance of spin-flip processes and of the concept of spin accumulation. Those ideas were confirmed experimentally by investigating the magnetoresistance of multilayered nanowires in collaboration with L. Piraux (Appl. Phys. Lett. 65, 2484 (1994)).Albert Fert and his coworkers also made important contributions on the topic of tunneling magnetoresistance: they were the first to show that the tunneling magnetoresistance can reach huge values when the electrodes consist of half-metallic materials (J. Magn. Magn. Mater.199,1 (1999)) and that the sign and amplitude of the tunneling magnetoresistanceratio do not only depend on the electrodes, but also on the barrier material (Science286, 507 (1999)).From the theoretical point of view, Albert Fert (together with J. Barnas) considered the interplay between tunneling magnetoresistance and the Coulomb blockade in magnetic nanostructures and predicted striking new effects (Phys. Rev. Lett. 80, 1058 (1998)), thereby opening a new direction of development for single electron transistors (SET).Fig.3.Giant magnetoresistance of Fe/Cr multilayers, reported by Albert Fert’s group(Phys. Rev. Lett. 61, 2472 (1988)).Most recently, Albert Fert’s group addressed the problem spin-current-induced magnetic switching (Appl. Phys. Lett. 78, 3663 (2001)), one of the new hot topics in spin-electronics.4. Scientific Contributions of Peter GrünbergPrior to 1986 Peter Grünberg had a long-standing record of improving the growth and of characterizing the properties of magnetic layers. In particular he developed the Brillouin scattering technique to such a precision, that he could detect surface magnons and standing spinwaves down to monolayer thicknesses. Based on this experience, he started studying the exchange coupling of two ferromagnetic iron layers separated by non-magnetic metallic interlayers. This culminated 1986 in the pioneering letter (Phys. Rev. Lett.57, 2442 (1986)) reporting the discovery of interlayer exchange coupling in transitionmetal systems. Using Brillouin scattering he could unambiguously show that two Fe layers separated by a Cr interlayer couple for certain Cr thicknesses antiparallel to each other and can be aligned parallel to each other by applying an external magnetic field. All previous experiments had obtained only ferromagnetic coupling due to Fe “pinholes” penetrating the Cr layers.Fig. 4. Giant magnetoresistance of Fe/Cr/Fe bilayers, reported by Peter Grünberg’sgroup (Phys. Rev. B 39, 4828 (1989)). Upper panel: Magnetization curve (theBrillouin spectra in inset show the AP configuration of Fe layers in zero field). Lowerpanel:Electrical resistance (the lower curve shows the much smaller AMR of a singleFe layer).This discovery initiated substantial experimental and theoretical studies. Two years later, Peter Grünberg and his co-workers discovered, independently and simultaneously with the Fert group, the Giant Magnetoresistance (GMR) effect in Fe/Cr layers (Phys. Rev. B 39, 4828 (1 March 1989), received there already 31 May, 1988). Contrary to Fert, who studied an Fe/Cr multilayer, Grünberg investigated an Fe/Cr/Fe trilayer and obtained therefore a smaller GMR value of 1.5 % at room temperature (see Figure 4). Grünberg’spapers reporting the discoveries of the antiferromagnetic interlayer coupling (1986) and of the giant magnetoresistance (1989) have received more than 800 and 650 citations, respectively.While Albert Fert directly offered in his publication the correct explanation of the GMR effect in terms of spin-dependent scattering, Peter Grünberg immediately realized the prospect of interesting technological applications and applied for a patent, firstly (1988) in Germany (DE 3820475), then in Europe (0346817) and the USA (4,949,039). It turned out to be a very comprehensive patent, which has been acknowledged worldwide by all major companies, and which is now seen as the key patent for Magnetoelectronics. How farsighted Grünberg’s ideas were, shows up by the long time span of seven years, before first license fees came in. How important the patent is, shows up in the strong increase of license fees, which up to 2001 amounted to a total of 10.5 million $. At present there exist worldwide about thousand patents in the field of Magnetoelectronics/Spin-electronics. This best characterizes the rich technological harvest expected in this field, all originating from the discovery of the GMR effect.The antiparallel arrangement of the two ferromagnetic layers, which is essential for the GMR effect, can also be realized in the non-coupling case, as was demonstrated by Grünberg and co-workers (Phys. Rev. B 42, 8110 (1990)) as well as C. Dupas et al. (J. Appl. Phys. 67, 5680 (1990)) and T. Shinjo et al. (J. Phys. Soc. Japan 59, 3061 (1990)) by using hard and soft magnetic layers. Another realization consists in using an antiferromagnet in direct contact, known as “exchange biasing”. In the literature these systems are referred to as “spin valve systems”, although there is no difference with respect to the GMR effect.Another important contribution of Grünberg, this time achieved in collaboration with the group of A. Hubert, was the discovery of the bi-quadratic coupling (phys. stat. sol. (a) 125, 635 (1991)). This is an anharmonic exchange interaction being quadratic in the scalar product M1.M2 of the two moments and is particularly important for layered systems. It can favor a 90° alignment of the magnetic layers and shows up in a region of spacer thicknesses between the ferro- and antiferromagnetic coupling. There are several other important contributions by Peter Grünberg. For instance, he was one of the firsts toobserve the short period of interlayer coupling in Fe/Cr and first reported multiperiodic oscillatory coupling in Fe/Au/Fe systems.Present work of Grünberg includes silicon and silicide interlayers (Phys. Rev. Lett., 87, 157202 (2001)) which can mediate surprisingly strong antiferromagnetic interlayer coupling.5. Emergence of a new field: Spin ElectronicsIn the aftermath of the discovery of the giant magnetoresistance, a tremendous research activity has been initiated, both in academic and industry institutes, involving several thousands of researchers worldwide, in order to exploit the potential revealed by Fert and Grünberg. A number of important discoveries, which will be briefly reviewed below, followed rapidly. This new field of research has been named spin electronics (also magnetoelectronics, or spintronics). In its most precise definition, spin electronics refers to new phenomena of electronic transport, in which the spin of the electron plays a central active role (in contrast to conventional electronics, for which the electron spin is essentially irrelevant). In practice, a somehow looser definition is frequently accepted (including new phenomena not directly related to transport). While it is fair to mention that some of the topics listed below already started before 1988, the discovery of the GMR undoubtedly contributed in a decisive manner to reveal their great potential and to reach their full impact.Oscillatory interlayer exchange couplingThe most spectacular development in the field of interlayer exchange coupling is due to S.S.P. Parkin who discovered that the interlayer coupling exhibits a remarkable oscillatory behavior as a function of the interlayer thickness (Phys. Rev. Lett. 64, 2304 (1990);Phys. Rev. Lett. 67, 3598 (1991)). This discovery stimulated an important experimental and theoretical activity. It culminated with impressive experiments by J. Unguris et al.(Phys. Rev. Lett. 67, 140 (1991);Phys. Rev. Lett. 79, 2734 (1997)). Theoretically, this effect, which is related to the Ruderman-K ittel-K asuya-Yosida (RK K Y) interaction between magnetic impurities in a non-magnetic metal, could be successfully interpreted as a quantum size effect due to spin-dependent electron confinement, and excellentquantitative agreement between theoretical predictions and experimental observations was obtained. From the practical point of view, the oscillatory interlayer coupling provides an outstanding tool for the quantum engineering of the magnetic properties of multilayers.Tunneling magnetoresistanceGiant magnetoresistance effects have also been found in systems comprising an insulating tunneling junction sandwiched between two ferromagnetic metallic electrodes. Early pioneering investigations on the problem of spin-dependent tunneling were performed in the 70’s by P.M. Tedrow and R. Meservey (Phys. Rev. B 7, 318 (1973)), by M. Jullière (Phys. Lett. 54A, 225(1975)), and by S. Maekawa and U. Gäfvert (IEEE Trans. Magn.18, 707 (1982)). However, they attracted little attention for more almost 20 years. Renewed interest was triggered recently, on one hand by the progress in technology (allowing to fabricate reliable and reproducible tunnel junctions without pinholes), and on the other hand by the discovery of GMR in metallic multilayers. Large magnetoresistance in magnetic tunnel junctions were observed at room temperature by J.S. Moodera (Phys. Rev. Lett. 74, 3273 (1995)) and T. Miyazaki (J. Magn. Magn. Mater. 139, L231 (1995)), followed by many other groups. On the theoretical point of view, the mechanism was explained on the basis of a simple model originally proposed by Jullière, and later developed by other authors. Modern theoretical approaches, based upon sophisticated ab initio methods now allow accurate quantitative predictions. The industrial potential of the tunneling magnetoresistance will be presented in the next Section below.Colossal magnetoresistanceIn 1994, S. Jin et al. discovered an even larger magnetoresistive effect in mixed valence manganese perovskites (Science264, 413 (1994)). The change of resistance under magnetic field reaches several orders of magnitudes in this class of materials, so that the effect was dubbed colossal magne oresis ance (CMR). Although the materials were known since the 50’s, and in spite of important pioneering contributions by Zener and de Gennes, their extraordinary magnetoresistive property remained elusive for almost half a century. The discovery of the CMR attracted a considerable attention, and a large part of the scientific community working on high-temperature superconductivity moved to this newfield. This class of materials reveals an exceptionally rich variety of physical properties, in which electronic correlations, spin and orbital ordering play an essential role.Half-metallic materialsThe efficiency of spin electronic effects depend strongly on the degree of spin-polarization of the density of states of the magnetic materials at the Fermi energy: the higher the spin-polarization, the stronger the magneto-electronic effects. It is therefore of great interest to find materials with a high spin-polarization. In 1983, de Groot et al. theoretically predicted the existence of a new class of materials, called half-metallic ferromagnets, in which one spin-subband is metallic and the other spin-subband is insulating (Phys. Rev. Lett. 50, 2024 (1983)). Those materials therefore have 100% spin-polarization at Fermi energy. Soon after the discovery of the GMR, the interest of half-metallic ferromagnets for spin-electronics became obvious. Half-metallic character was first confirmed experimentally for CrO2(Phys. Rev. Lett. 59, 2788 (1987);Phys. Rev. Lett. 86, 5585 (2001)). Enhanced magnetoresistance was indeed reported for half-metallic CrO2 (Science278, 1607 (1997)).Magnetic semiconductorsIn order to fully exploit the potential of spin electronics, it is desirable to have some materials that are simultaneously semiconducting and magnetic. As soon as this was realized, people started to search actively for magnetic semiconductors with high Curie temperature (ideally, the latter should be well above 300 K). Major progress in this field was achieved by the group of H. Ohno, who reached a Curie temperature of 110 K in (Ga,Mn)As (Science281, 951 (1998)) and proved the possibility of an electric control of the Curie temperature by means of a gate voltage (Nature408, 944 (2000)). Intense research (both experimental and theoretical) on this problem, which is considered to be of major importance, is currently going on.Spin injectionWhen electrons are injected from a ferromagnet into a non-magnetic material they can retain their spin polarization over a certain distance. This effect is called spin-injection and can be used to create new electronic devices. This was first demonstrated by M. Johnsonwho, after some pioneering work in the mid-80’s (Phys. Rev. Lett. 55, 1790 (1985)), succeeded in operating an all-metal bipolar spin t ransist or(Science260, 320 (1993)). Later on, a great effort was devoted to performing spin injection from a metallic ferromagnet into a semiconductor. This turned out to be extremely difficult, and an important obstacle was indicated; nevertheless, very recently, H.J. Zhu et al. (Phys. Rev. Lett.87, 016601 (2001)) and A.T. Hanbicki et al. (Appl. Phys. Lett. 80, 1240 (2002)) could overcome this problem and demonstrated successful spin-injection from Fe into GaAs.Spin injection into a semiconductor from a magnet ic semiconductor was alsodemonstrated by R. Fiederling et al. (Nature402, 787 (1999)) and by Y. Ohno et al. (Nature402, 790 (1999)), but this requires very low temperatures and/or an external magnetic field.Spin transport in semiconductorsA further aspect of great importance is whether spin-polarized electrons can be transported through semiconductors without losing their spin polarization. Major progress on this problem was achieved in particular by the group of D.D. Awshalom who demonstrated that electrons can retain their spin polarization over unexpectedly long times and distances (Science277, 1284 (1997);Nature411, 770 (2001);Science292, 2458 (2001)).Magnetic switching induced by spin-currentIn 1996, J.C. Slonczewski (J. Magn. Magn. Mater. 159, L1 (1996)) and L. Berger (Phys. Rev. B 54, 9353 (1996)) theoretically pointed out that a spin-polarized current driven through a magnetic multilayer creates a torque on the magnetic layers, which can lead to a magnetization reversal. This provides a completely new method for writing information in a magnetic memory. The prediction was first confirmed experimentally by E.B. Myers et al. (Science285, 867 (1999)), J.A. Katine et al. (Phys. Rev. Lett. 84, 3149 (2000)), and F.J. Albert et al. (Appl. Phys. Lett. 77, 3809 (2000)).6. Industrial ApplicationsIt is unusual that a basic effect like GMR leads in less than a decade after discovery to commercial applications. A decisive step for applications was Parkin’s discovery that GMR with a large magnetoresistance ratio at room temperature can be obtained in multilayers prepared by sputtering (Phys. Rev. Lett. 66, 2152 (1991);Appl. Phys. Lett. 58, 2710 (1991)). Magnetic field sensors based on GMR were already introduced as soon as 1996 by Non-Volatile Electronics and in 1997 by Siemens, aiming at applications in mechanical and automotive industries for monitoring machinery operations. For instance, if a GMR-sensor is placed close to a rotating ferrous gear, the moment direction of the soft magnetic sensor layer can switch every time a gear tooth passes the sensor, if the field induced by the gear exceeds a critical value. Such sensors can be used as a contactless potentiometer or to measure angles or distances. There are many other interesting applications of GMR sensors, e.g. in connection with a highly magnetostrictive layer as strain sensor or as actuator, or as magnetocouplers for the galvanic separation of signals, presently the domain of optocouplers. A particular interesting application is the use in biochips. Here magnetic particles are coated with a suitable antibody that will only bind to a specific analyte (virus, bacteria, etc.). By using an array of GMR sensors individually coated with the specific antibody of interest, the analyte will bind to the sensor, carrying with it the magnetic particle, the magnetic fringing field of which will rotate the magnetization of the sensor layer and thus change the resistance.The most important application of GMR sensors is the use as read-out heads in computer hard-disk drives (see Figure 5), being introduced in 1997 by IBM. These sensors have now replaced the AMR (Anisotropic Magnetoresistance) - based heads, because the GMR effect is larger and moreover scales better. At present they have a storage density of more than 50 Gbit/in2 (see Figure 6) and a total market volume of around $ 1 billion per year. Another fascinating invention of IBM is the Microdrive. The latest model packs 1 Gbyte of storage capacity on a disk the size of an U.S. quarter (see Fig. 7). These miniature devices aim at another mass market, i.e. handheld electronic products like digital cameras, video cameras, personal digital assistants (PDAs), etc.Fig. 5. Schematic description of a GMR read head for magnetic disks.Fig. 6. Recent evolution of the storage density of magnetic disks.Fig. 7. IBM’s ``quarter dollar´´ 1 GB Microdrive.At present the most ambitious project with potentially large economic impact is the use of magnetic tunnel junctions as non-volatile magnetic random access memories (MRAM). The present semiconductor-based memories (DRAM, SRAM, ...) are nonpermanent (volatile) and the information is lost, when the computer is switched off. An MRAM consists of two perpendicular arrays of conducting wires being connected by a tunnel junction at the crossing points (see Figure 8). The wires allow both to read the information stored in the junctions by the TMR effect as well as to switch the magnetization by the magnetic field induced by the currents. In addition to being non-volatile, MRAMs have some further advantages with respect to DRAMS, such as lower energy consumption and higher scalability, which make them particularly well suited for computers and mobile phones. The total market, at which the MRAM development aims, is huge; alone the volume of DRAM was $ 29 billion in 2000. Industrial MRAM projects exist in the USA, in Europe (Infineon in collaboration with IBM) and Japan (Hitachi, Toshiba and NEC).The two leading companies, IBM/Infineon and Motorola, plan to introduce first commercial MRAM products in 2004. In parallel to these projects also GMR-based MRAMs have been developed for aerospace applications, primarily because of their radiation hardness. Also high-density GMR-MRAM for computer applications are in development, but the TMR-based MRAMs seem to be more promising.Fig. 8. Schematic description of a magnetic random access memory (MRAM).With GMR read-out heads in widespread use and MRAM devices soon to reach the market, there are many more visionary projects, which could have a strong impact on our future electronics. The TMR or GMR sensor is already a simple logic gate, where the two magnetizations can be used to define its function as an AND, OR, NAND or NOR gate. For a set of such magnetoresistive elements, these functions can then be altered, ``on the fly´´, by merely resetting the magnetization on the appropriate elements, which could form the basis of a reprogrammable logic technology. This would basically result in a universal processor, which can be optimized for any calculational step. There are even more visionary ideas, e.g. for quantum computing. Only time can show how these visions can be transformed into real products, leading to a true spin electronics industry.SummaryThe Giant Magnetoresistance effect found independently by Albert Fert and Peter Grünberg represents the most important achievement in the field of magnetism during the last decades. It has led to a whole series of important discoveries and opened the door for a new field: spin electronics. Within the unusually short time of seven years, the fundamental discovery turned into commercially available products with huge market share. Without doubt spin electronics will be a major topic in the physics of the 21st century and will have a strong impact on information technology.。

相关文档
最新文档