备考2020中考数学一轮专题复习学案18 三角形

合集下载

中考数学第一轮复习三角形学案

中考数学第一轮复习三角形学案

yEB三角形班级: 姓名: 【考点目标】了解三角形的角平分线,中线、高的定义。

理解三角形的三边关系、稳定性、内角和定理。

【教学重难点】利用三角形性质计算和证明。

【课前练习】1.以下列各组线段长为边,能组成三角形的是( ) A .1cm ,2cm ,4 cm B .8 crn ,6cm ,4cm C .12 cm ,5 cm ,6 cm D .2 cm ,3 cm ,6 cm2. 1.在下列长度的四根木棒中,能与3cm ,7cm 两根木棒围成一个三角形的( )A .7cmB .4cmC .3cmD .10cm3.等腰三角形的两边长分别为5 cm 和10 cm ,则此三角形的周长是( )A .15cmB .20cmC .25 cmD .20 cm 或25 cm 4.一个三角形三个内角之比为1:1:2,则这个三角形的三边比为_______.5. 已知D 、E 分别是ΔABC 的边AB 、BC 的中点,F 是BE 的中点.若面ΔDEF 的面积是10,则ΔADC 的面积是多少?二:【例题】例1如图,CE 是ABC D 的外角ACD Ð的平分线,若35B ?o ,60ACE?o ,求∠A 度数。

例2.已知,如图,∠xoy=900,点A 、B 分别在射线Ox,Oy 上移动,BE 是∠ABy 的平分线,BE 的反向延长线与∠OAB 的平分线相交于C 点,试问∠ACB 的大小是否发生变化?如果保持不变,请给出证明;如果随点A 、B 移动发生变化,请求出变化范围。

ABDE图235°60°【课堂练习】1.两根木棒的长分别为7cm 和10cm ,要选择第三根棒,将它钉成一个三角形框架,那么第三根木棒长xcm 的范围是__________2.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( ) A .等腰三角形 B .直角三角形 C .锐角三角形 D .钝角三角形3.若等腰三角形两边长a和b满足|a-3︱+4 b =0则此三角形周长为______.4.三角形的下列线段中能将三角形的面积分成相等两部分的是( ) A 高 B 中线 C 角平分线 D 中位线5.如图,DE 是△ABC 的中位线, F 是DE 的中点,BF 的延长线交AC 于点H ,求AH :HE6.如图,D 是△ABC 的边BC 上任意一点,E 、F 分别是线段AD 、CE 的中点,且△ABC 的面积为24cm 2,求△BEF 的面积.【课后训练】1.下列每组数分别是三根小木棒、的长度,用它们能摆成三角形的一组是()A.1cm,2cm,3cm B.3cm,4cm,5cmC.5cm,7cm,13cm D.7cm,7cm,15cm2.在ΔABC中,AC=5,中线AD=4,则AB边的取值范围是()A.1<AB<9 B.3<AB<13C.5<AB<13 D.9<AB<133.三角形中,最多有一个锐角,至少有_____个锐角,最多有______个钝角(或直角),三角形外角中,最多有______个钝角,最多有______个锐角.4.过△ABC的顶点C作边AB的垂线,如果这条垂线将∠ACB分为50°和20°的两个角,那么∠A、∠ B中较大的角的度数是________.5.如图,△ABC中,∠C=90○,点E在AC上,ED⊥AB,垂足为D,且ED平分△ABC的面积,则AD:AC.6.如图所示,在△ABC中,∠A=50°,BO、CO分别平分∠ABC和∠ACB.求∠BOC的度数.7. 已知:△ABC的两边AB=3cm,AC=8cm.(1)若第三边BC长为偶数,求BC的长;(2)若第三边BC长为整数,求BC的长8.已知:如图,正△ABC的边长为a,D为AC边上的一个动点,延长 AB至 E,使 BE=CD,连结DE,交BC 于点P.(1)求证:PD=PE;(2)若D为AC的中点,求BP的长.9. 已知△ABC,(1)如图1-1-27,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=1902A ??;(2)如图1-1-28,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=12A Ð;(3)如图1-1-29,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=1902A ??。

中考数学全等三角形的复习课教学设计

中考数学全等三角形的复习课教学设计

全等三角形复习〔第1课时〕泰安六中苏晓林一、教材分析:本节课是全等三角形全章复习课,首先帮助学生理清全等三角形全章知识脉络,进一步了解全等三角形概念,理解性质、判定与运用;其次对学生所学全等三角形知识进展查缺补漏,再次通过拓展延伸以习题训练,提高学生综合运用全等三角形解决问题能力,并对中考对全等三角形考察方向有一个初步感知,为以后复习指明方向。

在练习过程中,要注意强调知识之间相互联系,使学生养成以联系与开展观点学习数学习惯.二、学情分析在知识上,学生经历全等三角形全章学习,对全等三角形性质、判定以及应用根本掌握,初步具有整体认识,但由于间隔时间有点长所以遗忘较多,全等三角形是学习初中几何根底与工具也是中考必考内容。

对全等三角形综合应用以及全章知识脉络形成正是以上各种能力综合表达,教学中要充分发挥学生主体作用,通过复习学生在全等三角形计算、证明对学生推理能力、发散思维能力与概括归纳能力将有所提高.三、教学目标1.进一步了解全等三角形概念,掌握三角形全等条件与性质;会应用全等三角形性质与判定解决有关问题.2.在题组训练过程中,引导学生总结出全等三角形解题模型,培养学生归纳总结能力,使学生体会数形结合思想、转化思想在解决问题中作用.3.培养学生把已有知识建立在联系思维习惯,并鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流与合作。

四、教学重难点重点:全等三角形性质与判定应用.难点:能理解运用三角形全等解题根本过程。

五、教法与学法以“自助探究〞为主,以小组合作、练习法为辅;在具体教学活动中,要给予学生充足时间让学生自主学习,先形成自己全等三角形知识认知体系,尝试完成练习;给予学生充足空间展示学习结果,通过讨论交流、学生互评、教师最后点评方式实现本节课教学目.六、教具准备多媒体课件,七、课时安排2课时八、教学过程本节课是全等三角形全章复习课,本节课我主要采用学生“练后思〞模式,帮助学生搜整?全等三角形?全章知识脉络,建构知识网络,通过根底训练、概念变式练习、典例探究、拓展应用等活动进展查缺补漏与拓展延伸;借助“根底了题目-变式题目-典型题目-拓展题目〞五个梯次递进教学活动达成教学目标,使用多媒体课件展示教学思路,引导学生思维方向,实现课堂教学最优化。

2020年中考数学专题复习教学案--动手操作题(附答案)

2020年中考数学专题复习教学案--动手操作题(附答案)
【分析与解答】本题开放性较强,可以充分发挥我们的想象力,答案千变万化,如图15就是一种作图方案:以O为位似中心把Rt△OAB放大2倍→沿y轴翻折→向右平移4个单位→向上平移5个单位.
同步测试4
(2020最新模拟·南宁)已知 在平面直角坐标系中的位置如图16所示.画出 绕点 按顺时针方向旋转 .
【答案】旋转后的图形如图17.
动手操作题
近年来中考数学试题加强了对学生动手操作能力的考查,出现了一类新题型--动手操作题.这类试题能够有效地考查学生的实践能力、创新意识和直觉思维能力.解决这类问题需要通过观察、操作、比较、猜想、分析、综合、抽象和概括等实践活动和思维过程,灵活运用所学知识和生活经验,探索和发现结论,从而解决问题.
5.将任意三角形剪切可以拼成一个与此三角形面积相等的矩形.
方法如下(如图23—1):
请你类似上面图示的方பைடு நூலகம்,解答下列的问题:
(1)对任意三角形(如图23—2),设计一种与上例不同的方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形.
(2)对任意四边形(如图23—3),设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.
【答案】1.
类型二:图形拼接型动手操作题
图形拼接问题,就是将已知的若干个图形重新拼合成符合条件的新图形.
例2(2020最新模拟·安徽)如图5,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非正方形).请画出拼成的矩形的简图.
【分析与解答】我们观察图5中的4块图形各边之间的对应关系,找出能拼接在一起的边,如图6就是一种拼接方法.
中考数学试题中动手操作题可分为图形折叠型动手操作题、图形拼接型动手操作题、图形分割型动手操作题和作图型动手操作题等四种类型.

(精品人教版)2020年中考数学专题复习卷 三角形(含解析)

(精品人教版)2020年中考数学专题复习卷 三角形(含解析)

三角形一、选择题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。

2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值范围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<9【答案】D【解析】:如图∵▱ABCD,AC=8,BD=10,∴OB=BD=5,OC=AC=4∴5-4<BC<5+4,即1<BC<9故答案为:D【分析】根据平行四边形的性质求出OB、OC的长,再根据三角形三边关系定理,建立不等式组,求解即可。

3.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A. 80°B. 100°C. 120°D. 140°【答案】B【解析】如图,延长BC交AD于点E,∵∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,∴∠BCD=∠A+∠B+∠D,∵∠A=50°,∠B=20°,∠D=30°,∴∠BCD=50°+20°+30°=100°,故答案为:B.【分析】延长BC交AD于点E,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,所以∠BCD=∠A+∠B+∠D,由已知可得∠BCD=50°+20°+30°=100°。

4.如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A. 105°B. 115°C. 125°D. 135°【答案】C【解析】:∵BE∥AF,∴∠B=∠A=35°.∵DC⊥BE,∴∠DCB=90°,∴∠ADC=90°+35°=125°.故答案为:C.【分析】由平行线的性质可得∠B=∠A=35°,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=90°+35°=125°。

中考数学一轮《三角形全等证明的基本类型与方法》教学案考

中考数学一轮《三角形全等证明的基本类型与方法》教学案考

三角形全等证明的基本类型与方法三角形全等证明题怎么写,要注意什么?有没有什么套路可循?现将初中阶段常见的几种三角形全等证明题类型及思想方法分类说明.一、弄清三角形全等证明题的基本类型从苏科版数学八年级上册第一章和第二章中证明题的梳理归纳中发现按题目给定条件可将三角形全等证明题大致分为四种类型.具体如下:1.条件(图形)中隐含公共线段案例 1 已知:如图,点、、、在同一直线上,,,.(1)求证:;(2)判断与的位置关系并说明理由.2.条件(图形)中隐含公共角案例2 已知,如图,和都是等边三角形,且点、、在一条直线上.与相交于点,与相交于点,与相交于点.(1)求证:;(2)求的度数;(3)判断的形状并证明.分析 问题(1)要证明,我们仔细观察几何图形不难发现有两个三角形的形状大小完全一样,由此启发我们想到只要证明即可.问题(2)怎么证明呢?还是先找到,然后认真观察几何图形,很容易猜想到是等腰三角形或等边三角A F E C AB CD =BE DF =AF CE =ABE CDF ≅ABCD ABC ECD B C D AC BE G AD CE F AD BE O BE AD =AOB ∠CGF BE AD =ACD BCE ≅CGF CGF形,通过观察发现可以通过旋转得到;或者△通过旋转得到.先得等腰三角形,再找一个角是,得到等边三角形结论.这一类型的几何证明关键是图形观察能力与数形结合能力.3.两角与另外某一角的和相等案例3 如图,是经过顶点的一条直线,.、分别是直线上两点.且.直线经过内部时,请解决下面两个问题:(1)如图1,若;且,求的度数(2)如图2,若,观察问题(1)中与两角关系,并添加一个与应满足的条件 ,使.结合添加的条件,证明:.分析 问题(1)学生经过计算后对“两个角与另外一个角和相等,那么这两个角相等”这样的等量代换关系也会有更深刻的认识,为解决后续问题(2)积累经验.如将题目改变一下:“如图3,直线经过的外部,,请提出关于、、三条线段数量关系的合理猜想,直接写出结论,不需证明.”变式后题目的形式发生变化,但基本思路方法不变,故提醒学生借鉴上一题的解题策略运用类比思想解决问题.二、三角形全等证明方法的一般步骤要求一边读题一边根据题意、对照图形把题目中的已知条件和求证的结论,尽量用自己的语言说出来,明确题目已经告诉了什么.弄清哪些是直接条件(证明结论时候可以直接拿来使用的条件,如证明三角形全等可以直接用的边或角,直接拿来证明两直线平行的同位角相等之类条件),分清哪些是间接条件(不能被用来直接应用的,需要转化为直接条件的条件),找出图形中隐藏的条件(如案例1中的公共边,案例2中的的公共角).2.猜想与整理如案例2,仔细观察图形发现有两个三角形的形状大小完全一致,即全等.再发现这类证明题每个问题都蕴含着:某两个角与其中的一个角的度数之和都等于同一个角度,然后通过BCG ACF CGE CFD 60︒CD BCA ∠C CA CB =E F CD BEC CFA α∠=∠=∠CD BCA ∠CBE ACF ≅BCA α∠=∠α∠0180BCA ︒<∠<︒α∠BCA ∠α∠BCA ∠CBE ACF ∠=∠CEB AFC≅CD BCA ∠BCA α∠=∠EF BE AF EF ACE ∠等量代换得到某两个角相等.如或.这里虽然没有真正意义上的公共角,但通过与另外两个角和相等,就可以根据等量代换得到另两个角相等.3.整理分析思路,书写证明过程通过添加条件,运用找到的关系,转化得到三角形中另一组相等角,然后将三角形全等三组条件按全等类型归纳好,即可证得全等并解决后续问题4.检查比较难的证明题,不能像上面那样直接4步骤就可以了,要综合进行步骤1、2,由问题入手大胆猜测,这种类型问题多数要运用三种基本图形变换,运用转化思想将一条边或一个角变换到另一个位置后构造全等图形.BCE ACF α∠+∠=∠180α-∠180BCE ACF BCE CBE α∠+∠=∠+∠=-∠。

中考数学全景透视一轮复习学案三角形

中考数学全景透视一轮复习学案三角形
(3)三角形的高:从三角形的一个顶点向它的对边(或其延长线)引垂线,顶点和垂足间的线段叫做三角形的高.
(4)三角形的中位线:连接三角形两边的中点的线段。
2.三角形的边角关系
(1)三角形边与边的关系:三角形中两边之和大于第三边;三角形任意两边之差小于第三边;
(2)三角形中角与角的关系:三角形三个内角之和等于180o.
5.在ΔABC中,AC=5,中线AD=4,则AB边的取值范围是()
A.1<AB<9 B.3<AB<13
C.5<AB<13 DCD中,AB∥CD,CB⊥AB,△ABD是等边
三角形,若AB=2,则CD=_______,BC=_________.
7.如图所示,在△ABC中,∠A=50°,BO、CO分别平分
三:【课后训练】
1.下列每组数分别是三根小木棒、的长度,用它们能摆成三角形的一组是()
A.1cm,2cm,3cm B.3cm,4cm,5cm
C.5cm,7cm,13cm D.7cm,7cm,15cm
2.过△ABC的顶点C作边AB的垂线,如果这条垂线将∠ACB分为50°和20°的两个角,那么∠A、∠B中较大的角的度数是________.
(3)如图1-1-29,若P点是外角 CBF和 BCE的角平分线的交点,则 P= 。
10.已知:如图,正△ABC的边长为a,D为AC边上的一个动点,延长AB至E,使BE=CD,连结DE,交BC于点P.
(1)求证:PD=PE;
(2)若D为AC的中点,求BP的长.
四:【课后小结】
布置作业
地纲
教后记
3.如图,OE是∠AOB的平分线,CD∥OB交OA于C,交OE于D,
∠ACD=50o,则∠CDE的度数是()
A.175°B.130°C.140°D.155°

中考一轮复习第18讲《等腰三角形》讲学案

中考一轮复习第18讲《等腰三角形》讲学案

中考数学一轮复习第18讲《等腰三角形》【考点解析】知识点一、等腰三角形的性质【例1(·贵州安顺·3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【分析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.【点评】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程是正确解答本题的关键.【变式】(·黑龙江哈尔滨·3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【考点】等腰直角三角形.【分析】①如图1根据已知条件得到PB=BC=1,根据勾股定理即可得到结论;②如图2,根据已知条件得到PC=BC=1,根据勾股定理即可得到结论.【解答】解:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.知识点二、等腰三角形的内角的计算【例2】(新疆乌鲁木齐)等腰三角形的一个外角是60°,则它的顶角的度数是.【答案】120°.【分析】本题主要考虑与这个外角相邻的内角是顶角或是底角,利用内角和定理即可得解. 【解析】等腰三角形一个外角为60°,那相邻的内角为120°,三角形内角和为180°,如果这个内角为底角,内角和将超过180°,所以120°只可能是顶角.故答案为:120°.【点评】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和应用,此题的关键是熟练掌握三角形内角和定理.【变式】如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE= °.【答案】15.【解析】∵AB=AC,∠A=50°,∴∠ACB=∠ABC=12(180°﹣50°)=65°.∵将△ABC折叠,使点A落在点B处,折痕为DE,∠A=50°,∴∠ABE=∠A=50°.∴∠CBE=∠ABC﹣∠ABE=65°﹣50°=15°.知识点三、等腰三角形的多解问题【例3】(·湖北武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8【考点】等腰三角形的判定;坐标与图形性质【答案】A【解析】构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除。

中考数学专题复习导学案直角三角形(含答案)

中考数学专题复习导学案直角三角形(含答案)

中考数学专题练习19《直角三角形》【知识归纳】1.直角三角形的定义有一个角是的三角形叫做直角三角形2.直角三角形的性质(1)直角三角形的两个锐角;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的;(3)在直角三角形中,斜边上的中线等于斜边的3.直角三角形的判定(1)两个内角的三角形是直角三角形;(2)一边上的中线等于这条边的的三角形是直角三角形4.勾股定理及逆定理勾股定理:如果直角三角形两条直角边分别为a,b,斜边为c,那么逆定理:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是三角形【基础检测】1.(·广西百色·3分)如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.6 C.6 D.122.(·贵州安顺·3分)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B. C. D.3.(广西南宁3分)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米 B.5cos36°米 C.5tan36°米 D.10tan36°米4.(海南3分)如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C 落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.35.(·四川南充)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC 的中点,则DE的长为()A.1 B.2 C.D.1+6. (·浙江省湖州市·4分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是.7. (·湖北随州·3分)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN= .8.(·湖北荆州·10分)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【达标检测】一.选择题1.(•毕节市)(第5题)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,, B. 1,, C. 6,7,8 D. 2,3,42.(•青岛,第4题3分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A. B. 2 C.3 D. +23. 如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个4.如图,在△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,连接AE,若CE=5,AC=12,则BE的长是A.5 B.10 C.12 D.135.(·湖北荆门·3分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.106. 在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )A.120° B.90° C.60° D.30°7. 已知等腰三角形ABC中,腰AB=8,底BC=5,则这个三角形的周长为( )(第11题图)A. 21B. 20C. 19D. 188.(·四川宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2 C.3 D.29.(·湖北荆州·3分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B. C. D.二.填空题10.(湖北省鄂州市,15,3分)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10 cm.11.(·四川宜宾)在平面直角坐标系内,以点P(1,1)为圆心、为半径作圆,则该圆与y轴的交点坐标是.12.(·四川内江)如图4,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=______.13. (·湖北武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA =55,则BD的长为_______.14. 如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,=1.73).15. (·江西·3分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.DO CEBA图4三.解答题16.(江西,23,10分)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是(填序号即可)①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧..作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程;●类比探索:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:.17.(·湖北咸宁)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.【知识归纳答案】1.直角三角形的定义有一个角是 90°的三角形叫做直角三角形2.直角三角形的性质(1)直角三角形的两个锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半3.直角三角形的判定(1)两个内角和为90°的三角形是直角三角形;(2)一边上的中线等于这条边的一半的三角形是直角三角形4.勾股定理及逆定理勾股定理:如果直角三角形两条直角边分别为a,b,斜边为c,那么a2+b2=c2逆定理:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形【基础检测答案】1.(·广西百色·3分)如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.6C.6D.12【考点】含30度角的直角三角形.【分析】根据30°所对的直角边等于斜边的一半求解.【解答】解:∵∠C=90°,∠A=30°,AB=12,∴BC=12sin30°=12×=6,故答选A.2.(·贵州安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B. C. D.【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.3.(广西南宁3分)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米 B.5cos36°米 C.5tan36°米 D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.4.(海南3分)如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C 落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.3【考点】翻折变换(折叠问题).【分析】根据折叠的性质判定△EDB是等腰直角三角形,然后再求BE.【解答】解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB是等腰直角三角形,∴BE=BD=×3=3,故选D.【点评】本题考查了翻折变换,还考查的知识点有两个:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、等腰直角三角形的性质求解.5.(四川南充)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为()A.1 B.2 C.D.1+【分析】由“30度角所对的直角边等于斜边的一半”求得AB=2BC=2.然后根据三角形中位线定理求得DE=AB.【解答】解:如图,∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC=2.又∵点D、E分别是AC、BC的中点,∴DE是△ACB的中位线,∴DE=0.5 AB=1.故选:A.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.6. (浙江省湖州市·4分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是 5 .【考点】作图—基本作图;直角三角形斜边上的中线;勾股定理.【分析】首先说明AD=DB,利用直角三角形斜边中线等于斜边一半,即可解决问题.【解答】解:由题意EF是线段AB的垂直平分线,∴AD=DB,Rt△ABC中,∵∠ACB=90°,BC=6,AC=8,∴AB===10,∵AD=DB,∠ACB=90°,∴CD=AB=5.故答案为5.7. (湖北随州·3分)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN= 3 .【考点】三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定与性质.【分析】连接CM,根据三角形中位线定理得到NM=CB,MN∥BC,证明四边形DCMN是平行四边形,得到DN=CM,根据直角三角形的性质得到CM=AB=3,等量代换即可.【解答】解:连接CM,∵M、N分别是AB、AC的中点,∴NM=CB,MN∥BC,又CD=BD,∴MN=CD,又MN∥BC,∴四边形DCMN是平行四边形,∴DN=CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=3,∴DN=3,故答案为:3.8.(湖北荆州·10分)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【分析】(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AO B=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE= AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论.【解答】解:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠FAD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=BC=AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.【点评】本题考查了切线的判定,平行四边形的性质,直角三角形的性质,等边三角形的判定和性质,连接OB构造等边三角形是解题的关键.【达标检测答案】一.选择题1.(•毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是() A.,, B. 1,, C. 6,7,8 D. 2,3,4【解析】勾股定理的逆定理..知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【解答】解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.(•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A. B. 2 C.3 D. +2【解析】含30度角的直角三角形.根据角平分线的性质即可求得CD的长,然后在直角△BDE 中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.故选C .【点评】本题考查了角的平分线的性质以及直角三角形的性质,30°的锐角所对的直角边等于斜边的一半,理解性质定理是关键.3. 如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( )A .2个B .3个C .4个D .5个 【答案】D【解析】在△ABC 中,∠A=36°,AB=AC ,求得∠ABC=∠C=72°,且△ABC 是等腰三角形. 因为BD 是△ABC 的角平分线 所以∠ABD=∠DBC=36° 所以△ABD 是等腰三角形. 在△BDC 中有三角形的内角和求出∠BDC=72° 所以△BDC 是等腰三角形.所以BD=BC=BE 所以△BDE 是等腰三角形.所以∠BDE=72°, 所以∠ADE=36°, 所以△ADE 是等腰三角形.共5个. 故选D .4.如图,在△ABC 中,∠C=90°,AB 的垂直平分线交AB 于D ,交BC 于E ,连接AE ,若CE=5,AC=12,则BE 的长是 A .5B .10C .12D .13【解答】解:∵AD 是△ABC 的角平分线,DE ⊥AB ,∠C=90°, ∴CD=DE=1,又∵直角△BDE 中,∠B=30°, ∴BD=2DE=2, ∴BC=CD+BD=1+2=3.【答案】D.【解析】在Rt△CAE中,CE=5,AC=12,由勾股定理得:2213AE AC CE=+=又DE是AB的垂直平分线,∴BE=AE=13.故选D.5.(湖北荆门·3分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选C.6. 在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )A.120° B.90° C.60° D.30°【答案】D.【解析】根据直角三角形两锐角互余列式计算即可得解:(第11题图)∵直角三角形中,一个锐角等于60°,∴另一个锐角的度数=90°﹣60°=30°.故选D.7. 已知等腰三角形ABC中,腰AB=8,底BC=5,则这个三角形的周长为( )A. 21B. 20C. 19D. 18【答案】A.【解析】由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解:∵8+8+5=21.∴这个三角形的周长为21.故选A.8.(四川宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2C.3 D.2【考点】旋转的性质.【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用勾股定理求出B、D两点间的距离.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.9.(湖北荆州·3分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC 的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B. C. D.【分析】先根据勾股定理的逆定理判断出△ABC的形状,再由锐角三角函数的定义即可得出结论.【解答】解:∵由图可知,AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,且∠ACB=90°,∴cos∠ABC==.故选D.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.二.填空题10.(湖北省鄂州市,15,3分)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10 cm.【解析】直角三角形斜边上的中线.【解答】连接OP,根据直角三角形斜边上的中线等于斜边的一半可得OP的长,画出的圆的半径就是OP长.【点评】解:连接OP,∵△AOB是直角三角形,P为斜边AB的中点,∴OP=AB,∵AB=20cm,∴OP=10cm,故答案为:10.11.(四川宜宾)在平面直角坐标系内,以点P(1,1)为圆心、为半径作圆,则该圆与y轴的交点坐标是(0,3),(0,﹣1).【考点】坐标与图形性质.【分析】在平面直角坐标系中,根据勾股定理先求出直角三角形的另外一个直角边,再根据点P的坐标即可得出答案.【解答】解:以(1,1)为圆心,为半径画圆,与y轴相交,构成直角三角形,用勾股定理计算得另一直角边的长为2,则与y轴交点坐标为(0,3)或(0,﹣1).故答案为:(0,3),(0,﹣1).12.(四川内江)如图4,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE ⊥BC,垂足为点E,则OE=______.[答案]12 5[考点]菱形的性质,勾股定理,三角形面积公式。

江苏省句容市中考数学第一轮复习 特殊三角形学案(无答案)

江苏省句容市中考数学第一轮复习 特殊三角形学案(无答案)

“特殊三角形”班级姓名日期【复习目标】1.掌握等腰三角形的两腰相等、底角相等、三线合一以及判定方法;2.掌握直角三角形的两个锐角互余、斜边上的中线等于斜边的一半、300所对的直角边等于斜边的一半、勾股定理及其逆定理以及直角三角形的判定方法。

【重点难点】等腰三角形与直角三角形的性质与判定。

灵活应用等腰三角形与直角三角形的性质与判定解决问题。

【课前热身】1.已知等腰三角形两边长3和4,则等腰三角形周长为___ ___.2.已知等腰三角形的一个角为50°,那么它的底角为____ __°.3. 如图,在△ABC中,AB=AC,AD⊥BC,若∠BAD=20°,则∠BAC= °;(第3题图)(第4题图)(第5题图)(第7题图)4. 如图,△ABC为等边三角形,延长BC至E,使CE=CD,连接DE,则∠E=_ _°;5. 如图,在△ABC中,∠ACB=90°,D为AB的中点,AC=6cm,BC=8cm,则AB= cm,CD= cm.6. 下列各组数,可以作为直角三角形的三边长的是()A.8,12,20 B..2,3,4 C. 8,10,6 D. 5,13,15.7. 如图,在△ABC中,∠A=90°,∠C=75°,AC=2cm,DE垂直平分BC,则BE= cm;8. 如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=O C.(1)上述条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.知识梳理:一.等腰三角形性质:1.等腰三角形的两腰_________;底角__________;2.等腰三角形底边上的______,底边上的________,顶角的_______重合,简称;判定:1. 有两条边相等的三角形是_________.2. 有两个角相等的三角形是_________.3.一个角等于的等腰三角形是等边三角形.二.直角三角形的性质:1. 直角三角形两锐角________.2. 直角三角形中30°所对的直角边等于斜边的________.3. 直角三角形中,斜边的中线等于斜边的______.4. 勾股定理:_________________________________________.判定:勾股定理的逆定理:_________________________________________________.【例题教学】例1.如图,在△ABC中,∠B=60°,AD、CE分别为BC、AB边上的高,F为AC的中点,判断△DEF的形状,并说明理由;AFED CB例2. 已知点A(3,4)在直线OA上,(1)求OA的长度;(2)在x轴上找一点D,使得△OAD为等腰三角形,求点D的坐标。

2022年中考数学一轮复习学案-第18课时 三角形基础知识

2022年中考数学一轮复习学案-第18课时 三角形基础知识

第18课时 三角形基础知识学习目标掌握三角形中边、角及相关线段的概念,正确运用相关性质和判定解决问题. 一.小题唤醒1.如图,过△ABC 的顶点B ,作AC 边上的高,以下作法正确的是( ).2. 已知三角形其中两边长为4=a ,7=b ,则第三边c 的长度可以是 .3. 如图,方格中的点A 、B 、C 、D 、E 称为“格点”,以这5个格点中的任意3点为顶点,一共可以画 个三角形,其中 是直角三角形, 钝角三角形, 锐角三角形, 是等腰三角形.4.等腰三角形的一边长为3㎝,另一边长是5㎝,则它的第三边长为 . 5.在△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD = 度.6 . 如图在△ABC 中AD 是角平分线BE 是中线,∠BAD =400则∠CAD = 若AC =6cm 则AE = . 一个多边形的每一个外角都是72°,那么这个多边形的内角和为 ,一个多边形的每一个内角是144,则它是 边形. 二.体系建构EDCB三.典型例题例1.如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°.求∠DAC 的度数.例2.如图,P 是等边三角形ABC 内的一点,连结P A 、PB 、PC ,•以BP 为边作∠PBQ =60°,且BQ =BP ,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.(2)若P A :PB :PC =3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由.例3.如图,∠ABC =90°,D 、E 分别在BC 、AC 上,AD ⊥DE ,且AD =D E ,点F 是AE 的中点,FD 与AB 相交于点M .(1)求证:∠FMC =∠FCM ;(2)AD 与MC 垂直吗?并说明理由.4321D CB A四.当堂训练*1. 已知一个三角形三个内角度数的比是1:5:6,则其最大内角度数为 .*2.如图,在△ABC 中,BD 平分∠ABC ,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .若∠A =60°,∠ABD =24°,则∠ACF 的度数为 .*3.在△ABC 中,∠B ,∠C 的平分线BE ,CD 相交于点F ,∠ABC =42°, ∠A =60°,则∠BFC = .*4.已知三角形的两边长分别为3、4,则第三边x 的取值范围是 ;当x = 时,该三角形是直角三角形.*5.等腰△ABC 的周长为21,底边BC = 5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为( )A .13B .14C .15D .1 **6.如图,在△ABC 中,∠B =63°,∠C =51°,AD 是BC 边上的高,AE 是∠BAC 的平分线,求∠DAE 的度数.五.课后巩固*1.已知△ABC 中,∠B 是∠A 的2倍,∠C 比∠A 大20°,则∠A 的度数是 .*2.如图,点D 在△ABC 边BC 的延长线上,CE 平分∠ACD ,∠A =80°, ∠B =40°,则∠ACE 的大小是 度.*3.如图,在△ABC 中,∠B =46°,∠C =54°,AD 平分∠BAC ,交BC 于点D ,DE ∥AB ,交AC 于点E ,则∠ADE 的大小是 .第2题 第3题**4.如图,AD为△ABC 的中线,BE 为三角形ABD 中线,⑴∠ABE =15°,∠BAD =35°,求∠BED 的度数;ED ABC第5题⑵在△BED 中作BD 边上的高;⑶若△ABC 的面积为60,BD =5,则点E 到BC 边的距离为多少?**5. 如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D .(1)求证:AE =CD :(2)若AC =12cm ,求BD 的长.ED CBA。

2020年中考数学一轮专题复习 等腰三角形综合运用 单元检测(含答案)

 2020年中考数学一轮专题复习 等腰三角形综合运用 单元检测(含答案)

等腰三角形综合运用 单元检测一、单选题1.如图,坐标平面内一点A (2,﹣1),O 为原点,P 是x 轴上的一个动点,如果以点P 、O 、A 为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为(A .2B .3C .4D .52.已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形B.一般的等腰三角形C.等边三角形D.等腰钝角三角形3.如图,△ABC 的面积等于6,边AC=3.现将△ABC 沿AB 所在直线翻折,使点C 落在直线AD 上的C ’处。

点P 在直线AD 上,则线段BP 的长不可能是( ) A.3B.4C.5D.64.7. 如图,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( A .1︰1︰1 B .1︰2︰3C .2︰3︰4D .3︰4︰5C5.若实数m 、n满足等式|2|0-m ,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( )A .12B .10C .8D .66.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( )A. 4㎝B. 6㎝C. 10㎝D. 不能确定7.如图,等边三角形ABC 边长是定值,点O 是它的外心,过点O 任意作一条直线分别交AB ,BC 于点D ,E .将△BDE 沿直线DE 折叠,得到B DE 'V ,若B D ',B E '分别交AC 于点F ,G ,连接OF ,OG ,则下列判断错误的是( )A .△ADF ≌△CGEB .△B’FG 的周长是一个定值C .四边形FOEC 的面积是一个定值D .四边形OGB'F 的面积是一个定值8.如图,在□ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E 。

中考数学专题复习学案 三角形中位线 (含答案)

中考数学专题复习学案  三角形中位线 (含答案)

中考复习之三角形中位线定义::连结三角形两边中点的线段叫做三角形的中位线一、与中点有关的概念三角形中线的定义:三角形顶点和对边中点的连线三角形中线的相关定理:直角三角形斜边的中线等于斜边的一半等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半二、常见的题型题型一:求线段的长例1、已知:如图,E、D、F分别为AB、BC、CA的中点.(1)若AC=10cm,则DE= 5 cm. (2)若EF=6cm,则CB= 12 cm.(3)若AB=10,AC=12,BC=8,则△DEF的周长 15练习:1.已知△ABC的周长为50cm,中位线DE=8cm,中位线EF=10cm,则另一条中位线DF的长是()A.5cmB. 7cmC. 9cmD. 10cm【答案】B3.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()A.50°B. 60°C. 70°D. 80°【答案】C3.如图,在△ABC中,E,D,F分别是AB、BC、CA的中点,AB=6,AC=4,则四边形AEDF的周长是()A. 10B. 20C. 30D. 40【答案】B4.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A. 20B. 16C. 12D. 8 【答案】D题型二:证明线段的倍分问题例1.如图,△ABC 中,AB=AC,AD 是中线,BE=CF.(1)求证: △BDE ≌△CDF;(2)当∠B=60°时,G 、H 分别是AB 、AD 的中点,求证:GH=14AB证明:(1)∵AB=AC ∴∠ B=∠ C ∵AD 为中线,∴BD=CD 又∵EB=FC ∴△BDE ≌△CDF(2)∵AB=AC ∴△ABC 为等腰三角形,又∵∠B=60°,∴△ABC 为等边三角形 ∴BC=AB ∵G 、H 分别是AB 、AD 的中点 ∴GH=21BD=14BC 又∵BC=AB 所以GH=41AB. 练习:如图,在△ABC 中,AB=AC,延长AB 到D,使BD=AB,E 为AB 中点,连结CE 、CD , 求证:CD=2EC证明:延长CE 使EF=CE=1/2CF 即 CF=2CE ∵∠AEC=∠BEF E 是AB 中点,即AE=BE CE=EF∴△ACE ≌△BFE(SAS) ∴BF=AC ∠FBE=∠A ∵AB=AC ∴∠ABC=∠ACB∵∠FBC=∠FBE+∠ABC=∠A+∠ABC ∠DBC=∠A+∠ACB ∴∠FBC=∠DBC∵BD=BA∴BF=BD∵BC=BC∠FBC=∠DBC∴△BCF≌△BCD(SAS)∴CF=CD∴CD=2CE题型三:常规辅助线的添加一:利用角平分线+垂直,构造等腰三角形如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.【解析】1)证明:在△ABN和△ADN中,∵12AN ANANB AND ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABN≌△ADN,∴BN=DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,DN=NB,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.1.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A.12 B.14 C.16 D.18【答案】B2.如图,在△ABC中,AB=8,AC=6,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A.1 B.2 C. 3 D.7【答案】A3.如图,△ABC中,BD平分∠ABC,且AD⊥BD,E为AC的中点,AD=6cm,BD=8cm,BC=16cm,则DE的长为()cm.【答案】3如图,△ABC中,AB=8cm,AC=5cm,AD平分∠BAC,且AD⊥CD,E为BC中点,则DE=()A.3 B.5 C.2.5 D.1.5【答案】D二:取中点构造中位线如图,在四边形ABCD 中,AD=BC ,20,110,,,CBD BDA E F P ∠=︒∠=︒分别是AB 、CD 、BD 的中点,探索PF 与EF 的数量关系.证明:连接PE ,20,11090CBD BDA EPF ∠=︒∠=︒⇒∠=︒,易得EF =.三:借助平行四边形的性质1. 如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若AC+BD=24cm ,△OAB 的周长是18cm ,则EF 的长为________cm .【答案】∵四边形ABCD 是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12厘米,∵△OAB的周长是18厘米,∴AB=6厘米,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=1/2AB=3厘米.题型三借助平行四边形的性质边AB、BC的中点,G、H为AC的两个三等分点,连接EG、例3.如图,(1)E,F为ABCFH,并延长交于D,连接AD、CD.求证:四边形ABCD是平行四边形.【答案】如图,E、F分别为△ABC的边AB、BC的中点,G、H是AC上的三等分点。

2020年中考数学压轴题专题1 直角三角形的存在性问题学案(原版+解析)

2020年中考数学压轴题专题1 直角三角形的存在性问题学案(原版+解析)

专题一直角三角形的存在性问题【考题研究】这类问题主要是已知直角三角形的一边(即直角三角形的两个点确定),求解第三点。

这类问题主要是和动点问题结合在一起,主要在于考查学生的探寻能力和分类研究的推理能力,也是近几年来各市地对学生能力提高方面的一个考查。

【解题攻略】解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.在平面直角坐标系中,两点间的距离公式常常用到.怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点).【解题类型及其思路】当直角三角形存在时可从三个角度进行分析研究:(1)当动点在直线上运动时,常用的方法是①121k k⋅=-,②三角形相似,③勾股定理;(2)当动点在曲线上运动时,情况分类如下,第一当已知点处作直角的方法①121k k⋅=-,②三角形相似,③勾股定理;第二是当动点处作直角的方法:寻找特殊角【典例指引】类型一【确定三角形的形状】典例指引1.(2019·辽宁中考模拟)已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为2个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.【举一反三】(2019·淮滨县王店乡教育管理站中考模拟)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.类型二【确定点的坐标】典例指引2.19.(2019·江西中考模拟)已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n 上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【举一反三】如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的函数表达式;(2)如图1,点E(x,y)为抛物线上一点,且﹣5<x<﹣2,过点E作EF△x轴,交抛物线的对称轴于点F,作EH△x轴于点H,得到矩形EHDF,求矩形EHDF周长的最大值;(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.类型三【确定动点运动的时间】典例指引3.已知二次函数y=ax2+bx-2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.(1)求实数a,b的值;(2)如图①,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F5AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由;②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.【举一反三】(2018·河北中考模拟)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.【新题训练】1.(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.2.(2019·福建师范大学附属中学初中部初三月考)如图,抛物线y =mx 2+nx ﹣3(m ≠0)与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C ,直线y =﹣x 与该抛物线交于E ,F 两点.(1)求点C 坐标及抛物线的解析式.(2)P 是直线EF 下方抛物线上的一个动点,作PH ⊥EF 于点H ,求PH 的最大值.(3)以点C 为圆心,1为半径作圆,⊙C 上是否存在点D ,使得△BCD 是以CD 为直角边的直角三角形?若存在,直接写出D 点坐标;若不存在,请说明理由.3.(2019·四川中考真题)如图,顶点为(3,3)P 的二次函数图象与x 轴交于点(6,0)A ,点B 在该图象上,OB 交其对称轴l 于点M ,点M 、N 关于点P 对称,连接BN 、ON . (1)求该二次函数的关系式.(2)若点B 在对称轴l 右侧的二次函数图象上运动,请解答下列问题:①连接OP ,当12OP MN =时,请判断NOB ∆的形状,并求出此时点B 的坐标. ②求证:BNM ONM ∠=∠.4.(2018·贵州中考真题)如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.5.(2018·四川中考真题)如图①,已知抛物线y =ax 2+bx +c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x =2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m .(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.6.(2019·云南中考模拟)已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P,使PA+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;(3)设点M在抛物线的对称轴上,当△MAC是直角三角形时,求点M的坐标.7.(2019·黑龙江中考模拟)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A (﹣1,0)B(3,0)两点,与y轴交于点C.(1)求抛物线y=ax2+2x+c的解析式:;(2)点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;(3)①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.8.(2019·广西中考模拟)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,抛物线与x轴的另一交点为B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.9.(2019·山东中考模拟)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=12 DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.10.(2019·山东中考模拟)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 做PE ∥x 轴交抛物线于点E ,连结DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.11.(2019·陕西中考模拟)如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P ,使△POB 与△POC 全等?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标.12.(2019·山东中考模拟)如图,已知直线AB 经过点(0,4),与抛物线y =14x 2交于A ,B 两点,其中点A 的横坐标是2-.(1)求这条直线的函数关系式及点B 的坐标.(2)在x 轴上是否存在点C ,使得△ABC 是直角三角形?若存在,求出点C 的坐标,若不存在请说明理由.(3)过线段AB 上一点P ,作PM ∥x 轴,交抛物线于点M ,点M 在第一象限,点N (0,1),当点M 的横坐标为何值时,MN +3MP 的长度最大?最大值是多少?13.(2019·河北中考模拟)已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y 轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.14.(2019·河南中考模拟)如图所示,菱形ABCD位于平面直角坐标系中,抛物线y=ax2+bx+c经过菱形的三个顶点A、B、C,已知A(﹣3,0)、B(0,﹣4).(1)求抛物线解析式;(2)线段BD 上有一动点E ,过点E 作y 轴的平行线,交BC 于点F ,若S △BOD =4S △EBF ,求点E 的坐标;(3)抛物线的对称轴上是否存在点P ,使△BPD 是以BD 为斜边的直角三角形?如果存在,求出点P 的坐标;如果不存在,说明理由.15.(2019·临沭县青云镇青云初级中学中考模拟)如图,直线y =x +2与抛物线y =ax 2+bx +6(a ≠0)相交于A (,)和B (4,m ),点P 是线段AB 上异于A 、B 的动点,过点P 作PC ⊥x 轴于点D ,交抛物线于点C .(1)求抛物线的解析式;(2)是否存在这样的P 点,使线段PC 的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;(3)求∆PAC 为直角三角形时点P 的坐标.16.(2019·江西中考模拟)如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线249y x bx c =-++经过A 、C 两点,与AB 边交于点D . (1)求抛物线的函数表达式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ =CP ,连接PQ ,设CP =m ,△CPQ 的面积为S .①求S 关于m 的函数表达式,并求出m 为何值时,S 取得最大值; ②当S 最大时,在抛物线249y x bx c =-++的对称轴l 上若存在点F ,使△FDQ 为直角三角形,请直接写出所有符合条件的F 的坐标;若不存在,请说明理由.专题一直角三角形的存在性问题【考题研究】这类问题主要是已知直角三角形的一边(即直角三角形的两个点确定),求解第三点。

中考数学专题复习 三角形(等腰三角形、等边三角形)练习试题

中考数学专题复习 三角形(等腰三角形、等边三角形)练习试题

币仍仅州斤爪反市希望学校3、三角形〔等腰三角形、等边三角形〕知识点〔3〕有一个角是 的等腰三角形是等边三角形【能力训练】1、用长度为8cm ,9cm ,10cm 的三条线段_______构成三角形.〔•填“能〞或“不能〞〕2、现有2cm 、4cm 、4cm 、8cm 长的四根木棒,任意选取三根组成一个三角形,那么可以组成三角形的个数为 。

3、三角形三边长为3,4,假设第三边长为偶数,那么第三边长为_______4、三角形的三个外角中,钝角的个数最多有______个,锐角最多_____个.5、一个三角形三个内角度数的比是2∶3∶4,那么这个三角形是 三角形。

6、如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DE=6cm ,那么BC=_____cm.7、如图,在Rt △ABC 中,∠C =40º,AC ∥BD ,那么∠ABD =__________。

8、如图,△ABC 的边BC 的垂直平分线MN 交AC 于D ,假设AC =6cm ,AB =4cm ,那么△ADB 的周长=___。

9、如下列图,BO ,CO 分别是∠ABC ,∠ACB 的两条角平分线,∠A=100°,那么∠BOC 的度数为〔 〕. A .80° B .90° C .120° D .140°10、如图工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据〔 〕。

A.两点之间线段最短 B.矩形的对称性 C.矩形的四个角都是直角 D.三角形的稳定性11、小华在 中问小明:“一个三角形三边长分别是4,9,12,如何求这个三角形的面积?小明提示说:“可通过作最长边上的高来求解.〞小华根据小明的提示作出的图形正确的选项是〔 〕 12、等腰三角形的两边长分别为4和9,那么第三边长为 . 13、等腰△ABC 中,AB=AC ,∠B=60°,那么∠A =_____B CA D DA B N C M 6题7题 8题9题 10题14、假设等腰三角形的一个内角是80◦,那么它的底角是 。

2020年九年级数学中考复习学案:正方形的蝴蝶三角形模型的构建,应用及其变式

2020年九年级数学中考复习学案:正方形的蝴蝶三角形模型的构建,应用及其变式

正方形的蝴蝶三角形模型的构建,应用及其变式摘要:建模解题是数学学习一种最基本的学习途径和最有效的学习方法,是基于构建主义理论的一种主动学习过程,是对现象和过程进行合理的抽象和量化,然后应用数学公式进行模拟和验证的一种模式化思维。

不同知识,不同条件,不同特点,可以构建不同数学模型,为数学灵活解题提供灵活解题方法。

正方形是一种重要的特殊四边形,也是重要的考题载体之一,而正方形中的一个重要的图形---蝴蝶三角形也日益成为考题的焦点,下面就结合2019年的考题构建一种正方形解题模型--蝴蝶三角形模型,并通过模型的应用,模型的变式,掌握模型的特点,为其他模型的构建提供模本。

关键词:构建主义,建模思想,变式。

《义务教育数学课程标准(2011边版)》第7页中给出了建立数学模型思想的地位:模型思想是学生体会和理解数学与外部世界联系的基本途径[1]。

鉴于数学建模的重要性,学会构建模型,并灵活运用模型解题成为数学学习的重要手段。

下面就向大家介绍一种正方形解题模型的构建,应用和变式,供学习时借鉴。

一、正方形蝴蝶三角形模型的构建如图1,在正方形ABCD中,点E,F分别在BC,CD 上,BE=CF,连接AE,BF二线交于点G,称△ABE和△BCF构成的图形为正方形ABCD的蝴蝶三角形。

蝴蝶三角形具有如下性质:性质1:蝴蝶三角形是全等三角形即△ABE≌△BCF。

性质2:斜边AE,BF的关系是AE=BF且AE⊥BF。

性质3:三角形ABG的面积等于四边形GECF的面积。

性质4:四边形ABFD的面积等于四边形AECD的面积。

性质5:设正方形的边长为a,BE=CF=b,则AE=BF=√a2+b2;BG=√a2+b2,GF=√a2+b2-√a2+b2。

二、蝴蝶三角形性质的证明(1)因为四边形ABCD是正方形,所以AB=BC,∠ABE=∠BCF=90°,因为BE=CF,所以△ABE≌△BCF;(2)因为△ABE≌△BCF,所以AE=BF,∠BAE=∠CBF ,因为∠BAE+∠BEA=90°,所以∠CBF+∠BEA=90°,所以∠BGE=90°即AE⊥BF。

新课改2020年中考备考数学总复习分类训练学案系列 - 几何综合(三角形四边形)

新课改2020年中考备考数学总复习分类训练学案系列 - 几何综合(三角形四边形)

新课改2020年中考备考数学总复习分类训练学案系列几何综合(三角形四边形)典题探究例1如图,点C 在线段AB 上,△DAC 和△DBE 都是等边三角形. (1) 求证:△DAB ≌△DCE ;(2) 求证:DA ∥EC .例2如图,平行四边形ABCD 的对角线AC 、BD 交于点O ,AC ⊥AB ,AB =2,且AC ︰BD =2︰3. (1) 求AC 的长; (2) 求△AOD 的面积.例3已知:如图,OP 平分∠MON ,点A 、B 分别在OP 、ON 上,且OA =OB ,点C 、D 分别在OM 、OP 上,且∠CAP =∠DBN .求证:AC =BD .例4 如图,在四边形ABCD 中,∠D =90°,∠B =60°,AD =6,AB,AB ⊥AC ,在CD 上选取一点E ,连接AE ,将△ADE 沿AE 翻折,使点D 落在AC 上的点F 处. 求(1)CD 的长; (2)DE 的长.五、演练方阵A 档(巩固专练)O3已知:如图,AB=AE ,∠1=∠2,∠B=∠E. 求证:BC=ED.4如图,已知菱形ABCD ,AB=AC ,E 、F 分别是BC 、AD 的中点,连接AE 、CF(1)证明:四边形AECF 是矩形; (2)若AB=8,求菱形的面积。

5已知:如图,在△ABC 中,AB =AC ,点D 是BC 的中点,作∠EAB =∠BAD ,AE 边交CB 的延长线于点E ,延长AD 到点F ,使AF =AE ,连结CF . 求证:BE =CF .6如图,四边形ABCD 是矩形,点E 在线段CB 的延长线上,连接DE 交AB 于点F ,∠AED =2∠CED ,点G 是DF 的中点.D12DA CB(1)求证:∠CED =∠DAG ;(2)若BE =1,AG =4,求sin AEB 的值.7.如图,点C 、B 、E 在同一条直线上, AB ∥DE ∠ACB=∠CDE ,AC=CD .求证:AB=CD .8一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°, ∠E =45°,∠A =60°,AC =10,试求CD 的长.9如图,在△ABC 中,AD 是BC 边上的中线,分别过点C 、B 作射线AD 的垂线段,垂足分别为E 、F .求证:BF=CE .10将一副三角板如图拼接:含30°角的三角板(△ABC )的长直角边与含45°角的三角板(△ACD )的斜边恰好重合.已知AB =23,P 是AC 上的一个动点,连接DP . (1)当点P 运动到∠ABC 的平分线上时,求DP 的长;(2)当点P 在运动过程中出现PD =BC 时,求此时∠PDA 的度数;B 档(提升精练)EDCBADEA1 如图,在△ABC 中,AD ⊥AB ,AD =AB ,AE ⊥AC ,AE = AC . 求证:BE =CD .2 已知:如图,在□ABCD 中,∠BAD ,∠ADC 的平分线AE ,DF 分别与线段BC 相交于点E ,F ,AE 与DF 相交于点G . (1)求证:AE ⊥DF ;(2)若AD =10,AB =6,AE =4,求DF 的长.3 已知:如图,AB =AC ,点D 、E 分别在AB 、AC 上,且使AE =AD .求证:∠B =∠C .4如图,在矩形ABCD 中,AB =3,BC△DCE 是等边三角形,DE 交AB 于点F ,求△BEF的周长.5已知:如图,点A 、E 、B 在同一条直线上,AC ∥DB ,AB =BD ,AC =BE .求证:BC =DE .6.如图,在四边形ABCD 中,∠A =∠ADC =120º,AB =AD ,E 是BC 的中点,DE =15,DC =24,求四边形ABCD 的周长.G AEBCDFECA D BA DFEB C ABCDEDCE AB7.已知:如图,在△ABC 中,AD 是中线,分别过点B作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F 证:BE =CF .8.如图,四边形ABCD 中,AB = AD ,∠BAD =90°,∠CBD =30°,∠BCD =45°,若AB =22.求四边形ABCD 的高.9已知:如图,过正方形ABCD 的顶点B 作直线BE 平行于对角线AC ,AE=AC (E ,C 均在AB的同侧).求证:∠CAE=2∠BAE .10.已知:如图,在△ABC 中,AB=AC,延长AB 到点D ,使BD=AB,取AB 的中点E ,连结CD 和CE.求证: CD=2CE .ABCDE DCBAC 档(跨越导练)1已知:如图,E 、F 为BC 上的点,BF=CE ,点A 、D 分别在BC的两侧,且AE ∥DF ,AE =DF . 求证:AB ∥CD .2如图,在平行四边形ABCD 中,AD = 4,∠B =105º,E 是BC 边的中点,∠BAE =30º,将△ABE 沿AE 翻折,点B 落在点F 处,连接FC ,求四边形ABCF 的周长.3已知:如图,在Rt △ABC 中,∠BAC=90°,AC=2AB ,点D 是AC 的中点,以AD 为斜边在△ABC 外作等腰直角三角形AED ,连结BE 、EC .试猜想线段BE 和EC 的数量关系及位置关系,并证明你的猜想.4如图,将□ABCD 的边DC 延长到点E ,使CE=DC ,连接AE ,交BC 于点F .若∠AFC=2∠D ,连结AC 、BE.求证:四边形ABEC 是矩形.5已知:如图,点E ,F 分别为□ABCD 的边BC ,AD 上的点,且12∠=∠. 求证:AE=CF .ACDE6已知:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME⊥CD 于点E .(1)求证:AM =2CM ;(2)若12∠=∠,CD =ME 的值.7已知:如图,点C 、D 在线段AB 上,E 、F 在AB 同侧,DE 与CF 相交于点O ,且AC =BD ,AE =BF ,A B ∠=∠.求证:DE =CF .8如图,四边形ABCD 中,AB ∥CD ,AB =13,CD =4,点E 在边AB 上,DE ∥BC .若CB CE =,且3t a n =∠B ,求四边形ABCD 的面积.9已知:如图,B C E ,,三点在同一条直线上,AC DE ∥,AC CE =,B D ∠=∠.求证:ABC CDE △≌△.A C D BEFOADBC10.如图,四边形ABCD 中, CD=2, 90=∠BCD , 60=∠B , 30,45=∠=∠CAD ACB ,求AB 的长.三角形四边形答案四、典题探究例1:证明:(1)如图1.∵△DAC 和△DBE 都是等边三角形,∴DA =DC ,DB =DE , ∠ADC =∠BDE =60º .∴∠ADC +∠CDB =∠BDE +∠CDB , 即∠ADB =∠CDE . 在△DAB 和△DCE 中,⎪⎩⎪⎨⎧=∠=∠=,,,DE DB CDE ADB DC DA∴ △DAB ≌△DCE. (2)∵△DAB ≌△DCE ,∴ ∠A =∠DCE=60° . ∵∠ADC=60°,∴ ∠DCE =∠ADC .∴DA ∥EC .例2:解:(1)如图2.∵平行四边形ABCD 的对角线AC 、BD 交于点O ∴OA = 12AC ,OB = 12BD .∵AC ︰BD =2︰3, ∴OA ︰OB =2︰3 .设OA =2x (x >0),则OB =3x .∵AC ⊥AB ,∴∠BAC =90°.在Rt △OAB 中,OA 2+AB 2=OB 2. ∵AB =2, ∴(2x )2+22=(3x )2 . 解得x =±255(舍负).DABCABCDE图1∴AC =2OA = 855.(2)∵平行四边形ABCD 的对角线AC 、BD 交于点O ,∴OB =OD .∴S △AOD = S △AOB = 12 AO ·AB = 12×455×2= 455.例3:证明:∵OP 平分∠MON ,∴∠COA =∠DOB . ∵∠CAP =∠DBN , ∴CAO DBO ∠=∠. ∵OA =OB ,∴COA ∆≌DOB ∆. ∴AC =BD .例4:解:(1)∵AB ⊥AC ,∴∠BAC =90°. ∵∠B=60°,AB =3, ∴AC =10.∵∠D =90°,AD =6, ∴CD =8.(2)由题意,得∠AFE =∠D=90°,AF=AD =6, EF=DE .∴∠EFC =90°, ∴FC =4.设DE =x ,则EF=x ,CE=8-x .在Rt △EFC 中,由勾股定理,得 2224(8)x x +=-. 解得x =3. 所以DE =3.五、演练方阵A 档(巩固专练)1证明:AB ∥EC ,∴.A DCE ∠=∠ ………………………1分 在△ABC 和△CDE 中,,,,B EDC A DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CDE .………………………4分 ∴.BC DE = ………………………5分2解:过点A 作AF ⊥BD 于F .∵∠CDB =90°,∠1=30°,∴∠2=∠3=60°. ………………………1分 在△AFB 中,∠AFB =90°. ∵∠4=45°,AB =,∴AF =BF=.………………………2分 在△AFE 中,∠AFE =90°.∴1,2EF AE ==.………………………3分 在△ABD 中,∠DAB =90°.∴DB =∴1DE DB BF EF =--=.………………………4分∴1131)222ADE S DE AF ∆-=⋅=⨯= 34(1)四边形ABCD 是菱形AB BC ∴= 又AB AC = E ∴是BC 的中点AE BC ∴⊥ ……………………………….1分0190∴∠=E 、F 分别是AD 、BC 的中点11 , EC=BC 22AF AD ∴=菱形AECF ∴A D ∥BC∴AF ∥EC∴四边形AECF 是平行四边形………………2分又0190∠=∴四边形AECF 是矩形………………………3分(2)在Rt ABE 中228AE ==16.1212,.......................2........................................................................4....................................BAD BAD BAC EAD AB AE B EABC AED BC ED ∠=∠∴∠+∠=∠+∠∠=∠=∠=∠∴≅∴=即分又,分............................................5分=8s ∴⨯菱形5证明:∵ AB =AC ,点D 是BC 的中点,∴ ∠CAD =∠BAD . 又∵ ∠EAB =∠BAD ,∴ ∠CAD =∠EAB . 在△ACF 和△ABE 中,,,,AC AB CAF BAE AF AE =⎧⎪∠=∠⎨⎪=⎩∴ △ACF ≌△ABE . ∴ BE =CF .6解:(1)证明:∵ 矩形ABCD ,∴ AD ∥BC .∴ ∠CED =∠ADE .又∵点G 是DF 的中点, ∴ AG =DG .∴ ∠DAG =∠ADE .∴ ∠CED =∠DAG .(2) ∵ ∠AED =2∠CED ,∠AGE =2∠DAG , ∴ ∠AED =∠AGE . ∴ AE =AG . ∵ AG =4, ∴ AE =4.在Rt △AEB 中,由勾股定理可求AB∴sin AB AEB AE ∠== 7证明:∵AB ∥DE∴∠ABC=∠E ∵∠ACB=∠CDE ,AC=CD ∴△ABC ≌△CED ∴AB=CD8解:过点B 作BM ⊥FD 于点M . 在△ACB 中,∠ACB =90°, ∠A =60°,AC =10,∴∠ABC =30°, BC =AC tan 60°, ∵AB ∥CF ,∴∠BCM =30°.∴1sin 302BM BC =⋅︒==cos3015CM BC =⋅︒==-------4分在△EFD 中,∠F =90°, ∠E =45°, ∴∠EDF =45°,∴MD BM ==∴15CD CM MD =-=-.9证明:∵CE ⊥AF ,FB ⊥AF∴∠DEC =∠DFB =90° 又∵AD 为BC 边上的中线 ∴BD =CD又∵∠EDC =∠FDB ∴△BFD ≌△CED ∴BF=CE10解:(1)在Rt △ABC 中,AB =23,∠BAC =30°∴BC =3,AC =3. 如图(1),作DF ⊥AC∵Rt △ACD 中,AD =CD ∴DF =AF =CF =23 ∵BP 平分∠ABC ∴∠PBC =30° ∴CP =BC·tan30°=1 ∴PF =21∴DP =22DF PF +=210.(2)当P 点位置如图(2)所示时,根据(1)中结论,DF =23,∠ADF =45° 又PD =BC =3∴cos ∠PDF =PDDF =23∴∠PDF =30°∴∠PDA =∠ADF -∠PDF =15°当P 点位置如图(3)所示时,同(2)可得∠PDF =30°. ∴∠PDA =∠ADF +∠PDF =75°B 档(提升精练)1证明:∵AD ⊥AB ,AE ⊥AC ,∴∠DAB=∠EAC =90°.∴∠DAB+∠1=∠EAC+∠1. 即∠DAC=∠EAB . 又∵AD=AB ,AE=AC , ∴△DAC ≌△EAB (SAS). ∴CD = BE .2(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥DC .∴∠BAD +∠ADC=180°. ∵AE 、DF 分别平分∠BAD 、∠ADC , ∴111,222BAD ADC ∠=∠∠=∠ .∴112()902BAD ADC ∠+∠=∠+∠=︒ .∴∠AGD=90°.∴AE ⊥DF .(2)由(1)知:AD ∥BC ,且BC= AD = 10,DC =AB =6,∠1=∠3,∠2=∠4 . ∴∠1=∠AEB ,∠2=∠DFC . ∴∠3=∠AEB ,∠4=∠DFC . ∴BE=AB =6,CF=DC =6. ∴BF =4.∴EF =2. ∵AD ∥BC ,∴△EFG ∽△ADG . ∴15EG EF AG AD ==. 1DBCEA4321GAE B CDF∴145EGEG =-.∴EG=23.∴AG=103.由(1)知∠FGE=∠AGD=90°, 由勾股定理,得DG=3,FG=3.∴DF=.3证明:在△ABE 和△AC D 中∵ .AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,,∴△ABE ≌△ACD (SAS ).∴B C ∠=∠.4解:∵矩形ABCD ,△DCE 是等边三角形,∴30ADF ECB ∠=∠=o ,3ED EC ==, 在Rt △ADF 中,90A ∠=o,AD =∴tan AFADF AD∠=,tan 303==o , ∴1AF =,∴312FB AB AF =-=-=,2FD =, ∴321EF ED DF =-=-=, 过点E 作EG CB ⊥,交CB 的延长线于点G .在Rt △ECG 中,90EGC ∠=o ,3EC =,30ECG ∠=o, ∴1322EG EC ==,cos GCECG EC∠=, 第15题图E C AG 第20题图A BDEFcos 303GC ==o,∴GC =∴GB GC BC =-== 由勾股定理得,222EB EG GB =+,∴EB =∴△BEF 的周长=3EF FB EB ++= . 5证明:∵AC ∥DB ,∴∠BAC =∠DBA .在△BAC 与△DBE 中,,,,AB BD BAC DBA AC BE =⎧⎪∠=∠⎨⎪=⎩∴△BAC ≌△DBE . ∴BC =DE .6解:如图,过点A 作AF ⊥BD 于F .∵∠BAD =120°,AB =AD ,∴∠ABD =∠ADB =30°.∵∠ADC =120°, ∴∠BDC =∠ADC -∠ADB =12030︒-︒=90°. 在Rt △BDC 中,∠BDC =90°,DE =15,E 是BC 的中点,DC =24, ∴BC=2DE =30.∴18BD =. ∵AD =AB ,AF ⊥BD ,∴1118922DF BD ==⨯=.在Rt △AFD 中,∵∠AFD =90°,∠ADB =30°,∴9cos cos 30DF DF AD AB ADB =====∠︒∴四边形ABCD 的周长=AB +AD +DC +BC 243054=+++=+7证明:∵在△ABC 中,AD 是中线,∴BD =CD ,-------------- 1分 ∵CF ⊥AD ,BE ⊥AD , ∴∠CFD =∠BED =90° , 在△BED 与△CFD 中, ∠BED =∠CFD ,A BDEFB AE CD∠BDE =∠CDF ,- BD =CD , ∴△BED ≌△CFD ,∴BE =CF .8解:过点C 作CE ∥DB ,交AB 的延长线于点E .∴∠ACE =∠COD =60°. 又∵DC ∥AB , ∴四边形DCEB 为平行四边形. ∴BD =CE ,BE = DC =3,AE =AB +BE =8+3=11. 又∵DC ∥AB ,AD =BC , ∴DB =AC =CE .∴△ACE 为等边三角形.∴AC =AE =11, ∠CAB =60°.过点C 作CH ⊥AE 于点H .在Rt △ACH 中, CH =AC ·sin ∠CAB =11×23.∴梯形ABCD9证明:过A 作AG ⊥BE 于G ,连结BD 交AC 于点O ,∴ AGBO 是正方形. ∴ AG=AO=21AC =21AE ∴ ∠AEG=30°. ∵ BE ∥AC ,∴ ∠CAE =∠AEG = 30 º. ∴ ∠BAE = 45º – 30º = 15º . ∴ ∠CAE = 2∠BAE .10证明:∵ E 是AB 中点,可设:AE = BE = x∵ AB = AC ,BD = AB ,则有AC = 2x ,AD = 4x∴12AE AC AC AD == 又∵ ∠A = ∠A , ∴ △AEC ∽△ACD ∴21CD CE = ∴ CD = 2 CE.FE DCBAC 档(跨越导练)1证明:∵AE ∥DF ,∴∠AEB =∠DFC . ………………………………………………………………1分∵BF =CE ,∴BF +EF =CE +EF .即BE =CF . ………………………………………………………………………2分 在△ABE 和△DCF 中,AE DF AEB DFC BE CFì=ïïï??íïï=ïïî∴△ABE ≌△DCF . … ……………………………………………………………3分 ∴∠B =∠C. ………………………………………………………………………4分∴AB ∥CD. … …………2解:作BG ⊥AE ,垂足为点G ,∴∠BGA =∠BGE =90º.在平行四边形ABCD 中,AD = 4, ∵E 是BC 边的中点,∴11 2.22BE EC BC AD ====……………………………………………………1分∵∠BAE =30º,∠ABC =105º, ∴∠BEG =45º.由已知得△ABE ≌△AFE .∴AB =AF ,BE =FE ,∠BEF =90º.在Rt △BGE 中,BG =GE……… ………………………………………………………………2分 在Rt △ABG 中,∴AB =AF=………………………………………………………………………3分 在Rt △ECF 中,FC = ………………………………………………… ……4分 ∴四边形ABCF的周长4+……………………………………………………5分3答: BE=EC ,BE ⊥EC .………………………………………1分证明:∵AC=2AB ,点D 是AC 的中点 ∴AB=AD=CD∵∠EAD=∠EDA=45° ∴∠EAB=∠EDC=135° ∵EA=ED∴△EAB ≌△EDC …………………………………………3分 ∴∠AEB=∠DEC ,EB=EC ………………………………4分 ∴∠BEC=∠AED=90° ………………………………5分 ∴BE=EC ,BE ⊥ECAB CDE4证明:解法:∵四边形ABCD 是平行四边形 ∴ AB=CD=EC ,AB ∥EC ,∴ 四边形ABEC 是平行四边形.……………………1分 ∴ AF=EF , BF=CF . ………………………2分 ∵ ∠ABC=∠D ,∠AFC=2∠D , ∴∠AFC=2∠D=2∠ABC . ∵∠AFC=∠ABF+∠BAF , ∴∠ABF=∠BAF .∴FA=FB . ………………………………………3分∴FA=FE=FB=FC,∴AE=BC . ………………………………………4分∴□ABEC 是矩形.………………………………………5分56解:(1)∵四边形ABCD 是菱形.∴BC//AD .∴△∽△CFM ADM . ∴CF CMAD AM=. ∵F 为边BC 的中点,∴1122CF BC AD ==. ∴12CF CM AD AM ==. ∴2AM MC =. (2)∵A B//DC , ∴1=4∠∠.∵1=2∠∠,FEDC BAE∴2=4∠∠.∵ME ⊥CD , ∴12CE CD =. ∵四边形ABCD 是菱形, ∴ 3=4∠∠. ∵F 为边BC 的中点, ∴12CF BC =. CF CE ∴=.在△CMF 和△CME 中,3=4∠∠,CF =CE ,CM 为公共边,∴△CMF ≌△CME . ∴ =90CFM CEM ∠∠=︒. ∵2=34∠∠=∠, ∴2=3430∠∠=∠=︒.∴ME CE =∵2CD CE ==∴CE =. ∴1ME =.7证明:∵ AC =BD ,∴ AD =BC .∵ A B ∠=∠ ,AE =BF ∴ △ADE ≌△BCF .∴ DE =CF .8解:过点C 作AB CF⊥于点F .∵AB ∥CD ,DE ∥BC∴四边形BCDE 为平行四边形 ∴BE=CD∵CD=4 ,∴BE=4.∵CB CE =,BE CF ⊥∴BF=2在Rt △BCF 中, 3tan =∠B ,2=BF ∴6=CF . ∴四边形ABCD 的面积=6)94(21⨯+=39 9证明:∵AC ∥DE ,∴∠ACB =∠E.-------------- 1分 在△ABC 和△CDE 中, ∠ACB =∠E ,∠B =∠D , -------------- 4分 AC =CE ,∴△ABC ≌△CDE.-------------- 5分10解:过点D 作DE ⊥AC 于E,过点A 作AF ⊥BC 于F.∵∠ACB =45°,∠BCD =90°, ∴∠ACD =45°.∵CD,∴DE =EC =1. ∵∠CAD =30°, ∴AE∴AC1.∴FA =FC=∵∠ABF =60°,∴sin 60AF AB ===︒DABCFE。

中考数学第五章《全等三角形》复习教案新人教版

中考数学第五章《全等三角形》复习教案新人教版

章节第五章课题全等三角形课型复习课教法讲练结合教学目标(知1。

了解图形全等的概念,能利用全等图形解决有关问题。

识、能力、教育)2.掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题.3.体会在证明过程中,所运用的归纳、转化等数学思想方法.教学重点掌握两个三角形全等的条件教学难点应用三角形的全等解决一些实际问题.教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1。

全等三角形的判定方法(1)三边对应相等的两个三角形全等,简写成“边边边”或“SSS".(2)两角和它们的夹边对应相等的两个二角形全等,简写成“角边角”或"ASA”(3)两角和其中一角的对边对应角相等的两个三角形全等,简写成“角角边"或“AAS”.(4)两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”. (5)有斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜过直角边定理"或“HL”.2。

全等三角形的性质:全等三角形的对应边相等,对应角相等.3.注意事项:(1)说明两个三角形全等时,应注意紧扣判定的方法,找出相应的条件,同时要从实际图形出发,弄清对应关系,把表示对应顶点的字母写在对应的位置上.(2)注意三个内角对应相等的两个三角形不一定全等,另外已知两个三角形的两边与一角对应相等的两个三角形也不一定全等.(二):【课前练习】1.如图,若△ABC≌△DEF,∠E等于( )A.30° B.50° C.60° D、100°2.如图,在△ABC中,AD⊥BC于 D,再添加一个条件____,就可确定△ABD≌△ACD3。

在下列各组几何图形中,一定全等的是( )A.各有一个角是45°的两个等腰三角形;B.两个等边三角形C.腰长相等的两个等腰直角三角形D.各有一个角是40°腰长都是5cm的两个等腰三角形4。

下列说法中不正确的是()A.有两角和其中一角的对边对应相等的两个三角形全等B.有两边和其中一边上的中线对应相等的两个三角形全等C.有一边对应相等的两个等边三角形全等D.面积相等的两个直角三角形全等5。

中考数学复习学案课件(全国通用):第四单元 三角形(共145张PPT)【状元学案】

中考数学复习学案课件(全国通用):第四单元 三角形(共145张PPT)【状元学案】
第17课时 几何初步及平行线、相交线 第18课时 三角三角形
第21课时 直角三角形与勾股定理 第22课时 相似三角形及其应用 第23课时 锐角三角函数 第24课时 解直角三角形及其应用
第17课时┃ 几何初步及平行线、 相交线
第17课时┃ 中考解读
2 3 4 5
n n-1 n 条直线最多有________ 2 个交点
平面内有 n 条直线,最多可以把平面分成 n n+1 平面的份数 ____________ +1 个部分 2
第17课时┃ 考点聚焦
考点4 互为余角、互为补角
90° ,则这两个角 如果两个角的和等于 ________
互余
互为 定义 余角
邻补角 定义
第17课时┃ 考点聚焦
考点6 “三线八角”的概念
同位 角 内错 角 同旁 内角 如果两个角在截线 l 的同侧,且在被截直线 a、 b 的同一方向叫做同位角(位置相同).∠1 和∠ 5,∠4 和∠8,∠2 和∠6,∠3 和∠7 是同位角 如果两个角在截线 l 的两旁(交错 ), 在被截线 a、 b 之间 (内 )叫做内错角 (位置在内且交错 ).∠ 2 和∠8,∠3 和∠5 是内错角 如果两个角在截线 l 的同侧,在被截直线 a、b 之间(内 )叫做同旁内角.∠5 和∠2,∠3 和∠8 是同旁内角
第17课时┃ 考点聚焦 考点3 几何计数
1 数直线的 条数 数线段的 条数 数角的 个数 数交点的 个数 数直线分 过任意三个不在同一直线上的 n 个点中的两个 n n-1 点可以画________ 2 条直线 线段上共有 n 个点(包括两个端点)时,共有线 n n-1 段________ 2 条 n n-1 从一点出发的 n 条直线可组成______ 2 个角
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备考2020中考数学一轮专题复习学案18三角形1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形,叫做三角形.2.三角形中的主要线段:(1)三角形的中线:连接三角形的一个顶点和它对边中点所得到的线段,叫做三角形这边上的中线.(2)三角形的高:从三角形的一个顶点向它的对边作垂线,连接这个顶点和垂足的线段,叫做三角形这边上的高线(简称三角形的高).(3)三角形的角平分线:连接三角形的一个顶点和这个角的平分线与对边交点的线段,叫做三角形的角平分线.(4)三角形中的中位线:连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.3.三角形的边之间关系:(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围.③证明线段不等关系.【温馨提示】三角形的三边关系是判断三条线段能否构成三角形的依据,并且还可以利用三边关系列出不等式求某些量的取值范围.4.三角形的角之间关系:(1)三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余.②三角形的一个外角等于和它不相邻的来两个内角的和.③三角形的一个外角大于任何一个和它不相邻的内角.(2)三角形的外角和等于360°;5.三角形的边与角之间的关系:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角.6.三角形的分类:按边分:⎧⎪⎧⎨⎨⎪⎩⎩三边都不相等的三角形底边和腰不相等的三角形等腰三角形等边三角形三角形按角分:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形【例1】(2019·石家庄新华区质量检测)将一幅三角尺按图示的方式摆放(两条直角边在同一条直线上,且两锐角顶点重合),连接另外两条锐角顶点,并测得∠1=47°,则∠2的度数为()A. 60°B. 58°C. 45°D. 43°【答案】B.【解答】如下图,∵∠3=180°-60°-45°=75°,∴∠2=180°-∠1-∠3=58°.故选B.【例2】(2019·扬州)已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有()A. 4个B. 5个C. 6个D. 7个【答案】D.【解答】由三角形两边之和大于第三边可得:⎩⎪⎨⎪⎧(n+2)+(n+8)>3n(n+2)+3n>n+8(n+8)+3n>n+2,解得2<n<10,∵n 是正整数,∴n=3,4,5,6,7,8,9,故选D.【例3】(2019·青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()典型例题A. 35°B. 40°C. 45°D. 50°【答案】C .【解答】如下图,∵BD 平分∠ABC ,∠ABC =35°,∴∠1=∠2=17.5°.∵AE ⊥BD ,∴BF 为AE 边上的中线,∴AD =DE ,∠5=90°-∠1=72.5°.∴∠3=∠4.∴∠CDE =2∠3.∵∠C =50°,∴∠BAC =95°.∴∠3=∠BAC -∠5=22.5°.∴∠CDE =2∠3=45°.故选C .1.全等三角形:能够完全重合的两个三角形叫全等三角形.2.三角形全等的判定:三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”). 直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,除了有一般三角形全等的判定方法,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)3.全等三角形的性质:全等三角形的对应边相等,对应角相等.知识点2: 全等三角形知识点梳理典型例题【例4】(2019·衡水故城县期末)如图,△ABC≌△DEC,点E在线段AB上,若∠AED +∠BCE=52°,则∠ACD的度数为()A. 25°B. 26°C. 27°D. 28°【答案】B.【解答】∵△ABC≌△DEC,∴∠ABC=∠DEC,∠ACB=∠DCE,∴∠ACD=∠BCE.∵∠AED+∠DEC+∠CEB=180°,∠CEB+∠ABC+∠BCE=180°,∴∠AED=∠BCE.∵∠AED+∠BCE=52°,∴∠AED=∠BCE=12×52°=26°.∴∠ACD=∠BCE=26°.1.等腰三角形的性质:(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边.即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.21教育名师原创作品推论2:等边三角形的各个角都相等,并且每个角都等于60°.(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).③等腰三角形的三边关系:设腰长为a,底边长为b,则2b<a④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=2180A∠-︒2.等腰三角形的判定:等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).知识点3:等腰三角形知识点梳理这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.3.等边三角形:(1)定义:三条边都相等的三角形是等边三角形.(2)性质:等边三角形的各角都相等,并且每一个角都等于60°.(3)判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.【例5】(2019·内江)一个等腰三角形的底边长是6,腰长是一元二次方程x 2-8x +15=0的一根,则此三角形的周长是( )A. 16B. 12C. 14D. 12或16【答案】A .【解析】方程x 2-8x +15=0的两个根为3,5.但长度为3,3,6的三条线段不能构成三角形,故该三角形的三边为5,5,6,即周长为16.故答案为A .1.直角三角形定义:有一个角是直角的三角形叫作直角三角形2. 直角三角形的性质:(1)直角三角形两锐角互余.(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.3. 直角三角形的判定:(1)两个内角互余的三角形是直角三角形.(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.4.勾股定理及逆定理:(1)勾股定理:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2; (2)勾股定理的逆定理:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.【例6】(2019·重庆市12/26)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD =3,则点D到BC′的距离为()A.332B.3217C7D13【答案】B.【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=1,C'M3 3BM=2,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=12×60°=30°,在Rt△C'DM中,典型例题∠DC'C=30°,DC'=2,∴DM=1,C'M=3DM=3,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'=22BM C'M+=222(3)+=7,∵S△BDC'=12BC'•DH=12BD•CM,∴7DH=3×3,∴DH=321,故选:B.1.(2019·荆门)将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则∠1的度数是()A. 95°B. 100°C. 105°D. 110°2.(2019·石家庄藁城区模拟)李老师布置了一道作图作业:“将一条12cm的线段分成三段,然后用这三条线段为边作一个三角形.”下面是四个同学分线段的结果:小李:5cm,5cm,2cm;小王:3cm,4cm,5cm;小赵:3cm,3cm,6cm;小张:4cm,4cm,4cm.其中,分法不正确的是()A.小李B.小王C.小赵D.小张3. (2019·杭州)在△ABC中,若一个内角等于另两个内角的差,则()巩固训练A. 必有一个内角等于30°B. 必有一个内角等于45°C. 必有一个内角等于60°D. 必有一个内角等于90°4. (2019·眉山)如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,∠B =30°,∠ADC =70°,则∠C 的度数是( )A. 50°B. 60°C. 70°D. 80°5. (2019·张家界)如图,在△ABC 中,∠C =90°,AC =8,DC =13AD ,BD 平分∠ABC ,则点D 到AB 的距离等于( )A. 4B. 3C. 2D. 16. (2018·邯郸二模)三个全等三角形按如图所示的形式摆放,则∠1+∠2+∠3的度数是( )A. 90°B. 120°C. 135°D. 180°7. (2019·河北中考说明)如图,在△ABC 中,已知∠C =90°,AC =60 cm ,AB =100 cm ,a ,b ,c ,…,是在△ABC 内部的矩形,它们的一个顶点在AB 上,一组对边分别在AC 上或与AC 平行,另一组对边分别在BC 上或与BC 平行.若各矩形在AC 上的边长相等,矩形a 的一边长是72 cm ,则这样的矩形a ,b ,c ,…的个数是( )A. 6B. 7C. 8D. 98. (2018·包头)如图,在△ABC 中,AB =AC ,△ADE 的顶点D ,E 分别在BC ,AC 上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5°B.12.5°C.12°D.10°9. (2018·陕西)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为()A. 423 B. 2 2 C.823 D. 3 210.(2019·呼和浩特)下面三个命题①底边和顶角对应相等的两个等腰三角形全等;②两边及其中一边上的中线对应相等的两个三角形全等;③斜边和斜边上的中线对应相等的两个直角三角形全等,其中正确的命题序号为________.11. (2019·怀化)若等腰三角形的一个底角为72°,则这个等腰三角形的顶角为________.12. (2019·株洲)如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC的中点,若EF=1,则AB=________.13. (2019·成都)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为________.14. (2019·甘肃)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=________.15. (2019·盐城)如图,在△ABC中,BC=6+2,∠C=45°,AB=2AC,则AC的长为________.16.(2019·通辽15/26)腰长为5,高为4的等腰三角形的底边长为.17.(2019·北京市12/28)如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).18. (2019·杭州)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B;(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.19.(2019·兰州)如图,AB=DE,BF=EC,∠B=∠E.求证:AC∥DF.20.(2019·无锡)如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O,求证:(1)△DBC≌△ECB;(2)OB=OC.21. (2019·温州)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C 作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.22.(2019·石家庄十八县联考二)如图,直线a∥b,点M,N分别为直线a和直线b上的点,连接M,N,∠1=70°,点P是线段MN上一动点,直线DE始终经过点P,且与直线a,b分别交于点D,E,设∠NPE=α.(1)证明:△MPD∽△NPE;(2)当△MPD与△NPE全等时,直接写出点P的位置;(3)当△NPE是等腰三角形时,求α的值.1.【答案】C.【解析】如下图,可得∠3=∠2=45°,∠4=60°,∴∠1=45°+60°=105°.2.【答案】C.【解析】∵3+3=6,不满足三角形两边之和大于第三边∴长为3 cm,3 cm,6 cm的三条线段不能作一个三角形,故选C.3.【答案】D.【解析】设这三个内角分别为∠A,∠B,∠C,则∠A=∠B-∠C,移项得∠A+∠C=∠B,∵∠A+∠B+∠C=180°,∴2∠B=180°,即∠B=90°.4.【答案】C.【解析】∵∠B=30°,∠ADC=70°,∴∠BAD=∠ADC-∠B=70°-30°=40°.∵AD平分∠巩固训练参考答案BAC ,∴∠DAC =∠BAD =40°.∴∠C =180°-∠ADC -∠DAC =180°-70°-40°=70°.5.【答案】C.【解析】如下图,过点D 作DE ⊥AB 于点E .∵DC =13AD ,∴DC =14AC .∵AC =8,∴DC =14×8=2.∵∠C =90°,∴BC ⊥CD .又∵BD 平分∠ABC ,∴DE =DC =2,故选C .6.【答案】D.【解析】如下图,由图形可得∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7=540°,∵三个三角形全等,∴∠4+∠6+∠9=180°.又∵∠5+∠7+∠8=180°,∴∠1+∠2+∠3=540°-180°-180°=180°.7.【答案】D.【解析】如下图.易证△BDE ≌△EFG ≌△GKH ≌△HL M ,可得BD =EF =GK =HL =BC -DC =1002-602-72=8 cm ,根据此规律,共有80÷8-1=9个这样的矩形.8.【答案】D.【解析】∵AB =AC ,∴∠B =∠C .∵∠C +∠BAC =145°,∴∠B =180°-(∠C +∠BAC )=180°-145°=35°.∴∠C =35°.∵∠DAE =90°,∴∠ADC =55°.∵AD =AE ,∴∠ADE =45°.∴∠EDC =∠ADC -∠ADE =55°-45°=10°.9.【答案】C.【解析】∵AD ⊥BC ,∴∠ADB =∠ADC =90°.在Rt △ACD 中,∵∠C =45°,AC =8,∴AD=AC ·sin45°=8×22=4 2.∵∠ABC =60°,∴∠BAD =90°-60°=30°.∵BE 平分∠ABD ,∴∠ABE =∠DBE =30°.∴∠BAD =∠ABE ,∴AE =BE ,在Rt △BDE 中,∵∠DBE =30°.∴DE =12BE =12AE .∵AE +DE =AD ,∴AE +12AE =4 2.∴AE =823. 10.【答案】①②.【解析】命题①顶角相等的等腰三角形则三角都相等,若有底边相等则两三角形全等;命题②如解图所示,若AB =EF ,BC =FG ,AH 、EI 分别为BC 、FG 边上的中线,则有△ABH ≌△EFI ,即有∠B =∠F ,即有△ABC ≌△EFG ;命题③错误.11.【答案】36°.【解析】这个等腰三角形的顶角为180°-2×72°=36°.12.【答案】4.【解析】在Rt △ABC 中,∵∠ACB =90°,CM 是斜边AB 上的中线,∴AB =2MC ,∵E 、F 分别为MB 、BC 的中点,∴EF 是△CM B 的中位线.又∵EF =1,∴MC =2EF =2.∴AB =2MC =4.13.【答案】9.【解析】∵在△ABC 中,AB =AC ,∴∠B =∠C .∵∠BAD =∠CAE ,∴△BAD ≌△CAE .∴CE =BD =9.14.【答案】85或14. 【解析】当∠A 为顶角时,则底角∠B =∠C =12(180°-∠A )=50°,此时的特征值k =80°50°=85;当∠A 为底角时,则顶角(∠B 或∠C )=180°-2∠A =20°,此时的特征值k =20°80°=14.故答案为85或14. 15.【答案】2.【解析】如下图,过点A 作AD ⊥BC 于点D ,设AD =x ,∵∠C =45°,∴CD =AD =x ,AC =2x .∴AB =2AC =2x .在Rt △ABD 中,BD =AB 2-AD 2=(2x )2-x 2=3x ,∴BC =BD +CD =3x +x =(3+1)x =6+2=2(3+1),解得x =2,∴AC =2.【解析】解:①如图1:当AB =AC =5,AD =4,则BD =CD =3,∴底边长为6;②如图2:当AB =AC =5,CD =4时,则AD =3,∴BD =2,∴BC =2224+=25,∴此时底边长为25;③如图3:当AB =AC =5,CD =4时,则AD 22AC CD -3,∴BD =8,∴BC =5∴此时底边长为517.【答案】45.【解析】解:延长AP 交格点于D ,连接BD ,则PD 2=BD 2=1+22=5,PB 2=12+32=10,∴PD 2+DB 2=PB 2,∴∠PDB =90°,∴∠DPB =∠P AB +∠PBA =45°,故答案为:45.18.【解答】(1)证明:∵点P 在AB 的垂直平分线上,∴P A =PB .∴∠P AB =∠B .∴∠APC =∠P AB +∠B =2∠B ;(2)解:根据题意得BQ =BA ,∴∠BAQ =∠BQA ,设∠B =x ,∴∠AQC =∠B +∠BAQ =3x ,∴∠BAQ =∠BQA =2x ,在△ABQ 中,x +2x +2x =180°,解得x =36°,即∠B =36°.19.【解答】证明:∵BF =EC ,∴BF +FC =EC +CF ,即BC =EF .在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ∠B =∠E ,BC =EF∴△ABC ≌△DEF (SAS).∴∠ACB =∠DFE .∴AC ∥DF .20.【解答】 (1)证明:∵AB =AC ,∴∠DBC =∠ECB .∵BD =CE ,BC =BC ,∴△DBC ≌△ECB (SAS);(2)解:∵△DBC ≌△ECB ,∴∠EBC =∠DCB .∴OB =OC .21.【解答】(1)证明:∵CF ∥AB ,∴∠B =∠FCD ,∠BED =∠F .∵AD 是BC 边上的中线,∴BD =CD .在△BDE 与△CDF 中,⎩⎪⎨⎪⎧∠EBD =∠FCD ∠BED =∠CFD ,BD =CD∴△BDE ≌△CDF (AAS );(2)解:∵△BDE ≌△CDF ,∴BE =CF =2.∴AB =AE +BE =1+2=3.∵AD ⊥BC ,BD =CD ,∴△ABC 为等腰三角形.∴AC =AB =3.22.【解答】(1)证明:∵a ∥b ,∴∠1=∠PNE .又∵∠MPD =∠NPE =α,∴△MPD ∽△NPE ;(2)解:当△MPD 与△NPE 全等时,点P 是MN 的中点;(3)解:①当PN =PE 时,∠PNE =∠PEN =70°.∴α=180°-∠PNE -∠PEN =180°-70°-70°=40°. ∴α=40°;②当EP =EN 时,α=∠PNE =∠1=70°;③当NP =NE 时,α=∠PEN =180°-∠PNE 2=180-∠12=180°-70°2=55°. 综上所述:α的值为40°或70°或55°.。

相关文档
最新文档