三视图 同步练习2
人教版九年级数学下29.2三视图(二)同步练习附答案解析
29.2三视图同步练习(二)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、与如图中的三视图相对应的几何体是()A.B.C.D.2、由几个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的小正方体的个数是()A.B.C.D.3、下面四个立体图形,从正面、左面、上面观察都不可能看到长方形的是( )A.B.C.D.4、如图,电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为().A.B.C.D.5、如图,几何体左视图是()A.B.C.D.6、如图是一个底面为正方形的直棱柱,现将图切割成图所示的几何体,图中几何体从上面看的图形是()A.B.C.D.7、如图表示一个由相同小立方块搭成的几何体的从上面看到的平面图形,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的从正面看的平面图形为()A.B.C.D.8、如图的从正、左、上面三种不同的角度看到的平面图形所对应的几何体是()A.B.C.D.9、如图,由几个相同的小立方体搭成的几何体从正面和上面看到的图形,组成这个几何体的小立方体的个数是()A. 个或个B. 个或个C. 个或个D. 个或个10、如图是从由几个小立方块所搭几何体的上面看到的图形,小正方形中的数字表示在该位置的小立方块的个数,那么从这个几何体的正面看到的图形是()A.B.C.D.11、如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A. 个B. 个C. 个D. 个12、如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是,,,则,,的大小关系是()A.B.C.D.13、形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是()A.B.C.D.14、某几何体的三视图如图所示,则此几何体是()A. 圆锥B. 圆柱C. 长方体D. 四棱柱15、如图所示的几何体的左视图是()A.B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图是有几个相同的小立方块组成的几何体的三视图,则小立方块的个数是 .17、如图是某几何体从正面、左面和上面看到的平面图形,根据图中数据,求得18、如图,桌子上放着三个物体,则图(1)是从_________面看的,图(2)是从__________面看到的.19、由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多个.20、如图是一个长方体的三视图(单位:),根据图中数据计算这个长方体的体积是.三、解答题(本大题共有3小题,每小题10分,共30分)21、个完全相同的正方体组成如图所示的几何体,画出该几何体的主视图和左视图(画在所给的方格中).22、如图是一个立体图形的从正、左、上面看到的平面图形,请写出这个立体图形的名称,并计算这个立体图形的体积(结果保留).23、如图,水平放置的长方体的底面是边长为和的矩形,它的左视图的面积为,则长方体的体积是多少?29.2三视图同步练习(二) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、与如图中的三视图相对应的几何体是()A.B.C.D.【答案】B【解析】解:由主视图和左视图可以得到该几何体是一个正方体和一个长方体的复合体,.故答案为:.2、由几个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的小正方体的个数是()A.B.C.D.【答案】C【解析】解:根据三视图,可得出,这个几何体的底层有个小正方体;第二层应该有个小正方体;第三层应有个小正方体;因此搭成这个几何体的小正方体的个数是个.故答案为:.3、下面四个立体图形,从正面、左面、上面观察都不可能看到长方形的是( )A.B.C.D.【答案】B【解析】解:从长方体的正面、左面、上面都能看到长方形;从圆柱体的正面、左面能看到长方形;从上面看为圆形;从圆锥的正面、左面、上面都不可能看到长方形;从四棱锥的上面可能看到长方形.故答案应为:.4、如图,电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为().A.B.C.D.【答案】D【解析】解:该几何体主视图是正方形,左视图是三角形,俯视图是一个圆形,故能无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞;该几何体主视图和左视图相同为三角形,通过正方形时不是无缝隙地,俯视图为圆形,故不能无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞;该几何体的主视图、左视图和俯视图均为正方形,故不能无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞;该几何体主视图和左视图都是三角形,俯视图是四边形,故不能无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞.故答案应选:5、如图,几何体左视图是()A.B.C.D.【答案】D【解析】解:根据视图知识可知,答案是:故答案为:.6、如图是一个底面为正方形的直棱柱,现将图切割成图所示的几何体,图中几何体从上面看的图形是()A.B.C.D.【答案】C【解析】解:从上面看,图的俯视图是正方形,有一条对角线.7、如图表示一个由相同小立方块搭成的几何体的从上面看到的平面图形,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的从正面看的平面图形为()A.B.C.D.【答案】B【解析】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有列,从左到右的列数分别是,,.8、如图的从正、左、上面三种不同的角度看到的平面图形所对应的几何体是()A.B.C.D.【答案】C【解析】解:从正面看能看到一个小正方形,故选项中正面有一个小正方形的只有9、如图,由几个相同的小立方体搭成的几何体从正面和上面看到的图形,组成这个几何体的小立方体的个数是()A. 个或个B. 个或个C. 个或个D. 个或个【答案】C【解析】解:从上面看的图形知,底面有个小立方体,从正面看的图形知,第二层至少有两个小立方体,至多有个小立方体,则组成这个几何体的小立方体的个数是个或个.10、如图是从由几个小立方块所搭几何体的上面看到的图形,小正方形中的数字表示在该位置的小立方块的个数,那么从这个几何体的正面看到的图形是()A.B.C.D.【答案】A【解析】解:根据所搭几何体的上面看到的图形可得,主视图有列,每列小正方数形数目分别为,,,画图如下:11、如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A. 个B. 个C. 个D. 个【答案】D【解析】解:由三视图可得,需要的小正方体的数目:.如图:搭成这个几何体的小正方体的个数是个.12、如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是,,,则,,的大小关系是()A.B.C.D.【答案】A【解析】解:主视图的面积是三个正方形的面积,左视图是两个正方形的面积,俯视图是一个正方形的面积,故.13、形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是()A.B.C.D.【答案】D【解析】解:由实物结合它的俯视图可得该物体是由两个长方体木块一个横放一个竖放组合而成,看不见的线画成虚线.由此得到它的主视图应为.14、某几何体的三视图如图所示,则此几何体是()A. 圆锥B. 圆柱C. 长方体D. 四棱柱【答案】B【解析】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.15、如图所示的几何体的左视图是()A.B.C.D.【答案】D【解析】解:从左向右看,得到的几何体的左视图是中间无线条的矩形.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图是有几个相同的小立方块组成的几何体的三视图,则小立方块的个数是 .【答案】4【解析】解:从俯视图上看,此几何体的下面有个小正方体,从左视图和主视图上看,最上面有个小正方体,故组成这个几何体的小立方块的个数是:.故正确答案是.17、如图是某几何体从正面、左面和上面看到的平面图形,根据图中数据,求得该几何体的体积为__________.【答案】【解析】解:根据几何体从正面、左面和上面看到的平面图形,可知该几何体为空心圆柱,其内圆半径为,外圆半径为,高为,所以几何体的体积为.18、如图,桌子上放着三个物体,则图(1)是从_________面看的,图(2)是从__________面看到的.【答案】正,上【解析】解;则图(1)是从正面看的,图(2)是从上面看到的.19、由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多个.【答案】7【解析】解:根据题意得:则搭成该几何体的小正方体最多是(个).20、如图是一个长方体的三视图(单位:),根据图中数据计算这个长方体的体积是.【答案】24【解析】解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可求出该几何体的体积为.答:这个长方体的体积是.三、解答题(本大题共有3小题,每小题10分,共30分)21、个完全相同的正方体组成如图所示的几何体,画出该几何体的主视图和左视图(画在所给的方格中).【解析】解:从正面看有三列:第一列有两个正方形,第二列有一个正方形,第三列有两个正方形,从左面看有两列:第一列有两个正方形,第二列有一个正方形.根据几何体画图形如下所示:22、如图是一个立体图形的从正、左、上面看到的平面图形,请写出这个立体图形的名称,并计算这个立体图形的体积(结果保留).【解析】解:由三视图可知,该物体是圆柱.它的底面直径是,高是,所以.23、如图,水平放置的长方体的底面是边长为和的矩形,它的左视图的面积为,则长方体的体积是多少?【解析】解:根据题意,得,因此,长方体的体积是.。
人教版数学九年级下册 29.2 三视图 简单几何体的三视图 同步课时练习试题 含答案
第29章投影与视图 29.2 三视图简单几何体的三视图1. 如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是( )A. 左视图与主视图相同B. 俯视图与主视图相同C.左视图与俯视图相同D.三个视图都相同\2. 下列四个几何体中,左视图为圆的是( )3. 如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )4. 在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是( )5. 如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )6. 下面所给几何体的俯视图是( )7. 图中空心圆柱体的主视图的画法正确的是( )8. 如图所示几何体的左视图是( )9. 如图所示的几何体的俯视图是( )10. 如图所示的几何体的俯视图是( )11.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( )12. 下图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变13. 写出一个在三视图中俯视图与主视图完全相同的几何体_______________.14. 如图是一圆锥,在它的三视图中,既是中心对称图形,又是轴对称图形的是它的________视图(填“主”、“俯”或“左”).16. 画出几何体的三视图.17. 画出如图所示立体图的三视图.18. 一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).19. 5个棱长为1的小正方体组成如图所示的几何体.(1)该几何体的体积是(立方单位),表面积是(平方单位);(2)画出该几何体的主视图和左视图.20. 中央电视台有一个非常受欢迎的娱乐节目:《墙来了》,选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为下列几何体中的哪一个?选择并说明理由.答案:1---13 ADBAA BCCBD CD14. 正方体(答案不唯一)15. 俯16. 解:如图.17. 解:如图所示:18. 解:如图所示:19. 解(1)5 22(2)如图.20. 解:比较各几何体的三视图,考虑是否有长方形,圆及三角形即可.对于A,三视图分别为长方形、三角形、圆,符合题意;对于B,三视图分别为三角形、三角形、圆(含圆心),不符合题意;对于C,三视图分别为正方形、正方形、正方形,不符合题意;对于D,三视图分别为三角形、三角形、矩形(含对角线),不符合题意;所以选A。
人教版九年级数学下册《29.2三视图》同步练习题带答案
人教版九年级数学下册《29.2三视图》同步练习题带答案学校:___________班级:___________姓名:___________考号:___________第1课时几何体的三视图1.视图:物体在某一方向光线下的正投影.主视图:在内得到的由前向后观察物体的视图;俯视图:在内得到的由上向下观察物体的视图;左视图:在内得到的由左向右观察物体的视图.2.三视图的规律:主视图与俯视图要“长对正”,主视图与左视图要“高平齐”,左视图与俯视图要“宽相等”.注意:在画三视图时,看得见的轮廓用实线表示,看不见的轮廓要用虚线表示.基础分点训练知识点1三视图的有关概念1.(2024·甘肃)如图所示,该几何体的主视图是()2.(2024·临夏州)马家窑彩陶绚丽典雅,符号丰富,被称为彩陶文化的“远古之光”.如图是一件马家窑彩陶作品的立体图形,有关其三视图说法正确的是()A.主视图和左视图完全相同B.主视图和俯视图完全相同C.左视图和俯视图完全相同D.三视图各不相同3.在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中卯的俯视图是()知识点2三视图的画法4.如图,是由3个相同的小正方体搭成的几何体,画出该几何体的三视图.中档提分训练5.观察如图所示的几何体,下列关于其三视图的说法正确的是()A.主视图既是中心对称图形,又是轴对称图形B.左视图既是中心对称图形,又是轴对称图形C.俯视图既是中心对称图形,又是轴对称图形D.主视图、左视图、俯视图都是中心对称图形6.如图所示的几何体,其俯视图是()7.沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是()8.画出如图所示立体图的三视图.拓展素养训练9.【核心素养·空间观念】学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好可以无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为()第2课时由三视图确定几何体学霸笔记由三视图确定几何体:先根据三视图想象立体图形的前面、上面和左侧面,然后综合起来考虑整体图形.基础分点训练知识点由三视图确定几何体1.如图是某几何体的三视图,则该几何体是()A.圆锥B.圆柱C.长方体D.三棱柱2.与如图所示的三视图所对应的实物图是()3.【真实问题情境】通过小颖和小明的对话,我们可以判断他们共同搭的几何体是()中档提分训练4.(2024·酒泉三模)某几何体的三视图如图所示,则该几何体是()5.【传统文化】(2024·广西桂林模拟)图(1)是矗立千年而不倒的应县木塔一角,全塔使用了54种形态各异的斗拱.斗拱是中国建筑特有的一种结构,位于柱与梁之间.斗拱由斗、升、拱、翘、昂组成,图(2)是其中一个组成部件的三视图,则这个部件是()图(1)图(2)6.小明用若干个相同的小正方体搭成的一个几何体的三视图如图所示,由此可知,搭成这个几何体的小正方体最多有()A.13个B.12个C.11个D.10个第3课时由三视图确定几何体的表面积或体积学霸笔记由三视图计算几何体的表面积或体积的方法:先由三视图想象出几何体的形状,再进一步画出展开图,最后进行计算.基础分点训练知识点由三视图确定几何体的表面积或体积1.如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为()A.4π cm3B.8π cm3C.16π cm3D.32π cm32.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.3.如图,是某几何体的三种视图.(1)说出这个几何体的名称;(2)若其看到的三个图形中图1的长为15 cm,宽为4 cm;图2的宽为3 cm;图3直角三角形的斜边长为5 cm,试求这个几何体的所有棱长的和是多少,它的表面积多大?中档提分训练4.【核心素养·空间观念】(2024·陇南县级模拟)某圆锥形遮阳伞主视图如图所示,若∠OAB=30°,OA=2 m,则遮阳伞伞面的面积(圆锥的侧面积)为()A.2√3π m2B.√3π m2C.2π m2D.4π m25.(2024·武威校级一模)一个长方体的三种视图如图所示,若其俯视图为正方形,则这个长方体的体积为cm3.6.一个长方体的三视图如图所示,若其俯视图为正方形,求这个长方体的表面积.7.李明在参观某工厂车床工作间时发现了一个工件,通过观察并画出了此工件的三视图,借助直尺测量了部分长度.如图所示,该工件的体积是多少?拓展素养训练8.如图是一个几何体的三视图(单位:cm).(1)写出这个几何体的名称;(2)根据图中所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC 的中点D,请你求出这个线路的最短路程.参考答案1.视图:物体在某一方向光线下的正投影.主视图:在正面内得到的由前向后观察物体的视图;俯视图:在水平面内得到的由上向下观察物体的视图;左视图:在侧面内得到的由左向右观察物体的视图.2.三视图的规律:主视图与俯视图要“长对正”,主视图与左视图要“高平齐”,左视图与俯视图要“宽相等”.注意:在画三视图时,看得见的轮廓用实线表示,看不见的轮廓要用虚线表示.基础分点训练知识点1三视图的有关概念1.(2024·甘肃)如图所示,该几何体的主视图是(C)2.(2024·临夏州)马家窑彩陶绚丽典雅,符号丰富,被称为彩陶文化的“远古之光”.如图是一件马家窑彩陶作品的立体图形,有关其三视图说法正确的是(D)A.主视图和左视图完全相同B.主视图和俯视图完全相同C.左视图和俯视图完全相同D.三视图各不相同3.在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中卯的俯视图是(C)知识点2三视图的画法4.如图,是由3个相同的小正方体搭成的几何体,画出该几何体的三视图.解:该几何体的三视图如图所示.中档提分训练5.观察如图所示的几何体,下列关于其三视图的说法正确的是(C)A.主视图既是中心对称图形,又是轴对称图形B.左视图既是中心对称图形,又是轴对称图形C.俯视图既是中心对称图形,又是轴对称图形D.主视图、左视图、俯视图都是中心对称图形6.如图所示的几何体,其俯视图是(C)7.沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是(A)8.画出如图所示立体图的三视图.解:立体图的三视图如图所示.拓展素养训练9.【核心素养·空间观念】学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好可以无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为(A)第2课时由三视图确定几何体学霸笔记由三视图确定几何体:先根据三视图想象立体图形的前面、上面和左侧面,然后综合起来考虑整体图形.基础分点训练知识点由三视图确定几何体1.如图是某几何体的三视图,则该几何体是(C)A.圆锥B.圆柱C.长方体D.三棱柱2.与如图所示的三视图所对应的实物图是(A)3.【真实问题情境】通过小颖和小明的对话,我们可以判断他们共同搭的几何体是(D)中档提分训练4.(2024·酒泉三模)某几何体的三视图如图所示,则该几何体是(A)5.【传统文化】(2024·广西桂林模拟)图(1)是矗立千年而不倒的应县木塔一角,全塔使用了54种形态各异的斗拱.斗拱是中国建筑特有的一种结构,位于柱与梁之间.斗拱由斗、升、拱、翘、昂组成,图(2)是其中一个组成部件的三视图,则这个部件是(C)图(1)图(2)6.小明用若干个相同的小正方体搭成的一个几何体的三视图如图所示,由此可知,搭成这个几何体的小正方体最多有(A)A.13个B.12个C.11个D.10个第3课时由三视图确定几何体的表面积或体积学霸笔记由三视图计算几何体的表面积或体积的方法:先由三视图想象出几何体的形状,再进一步画出展开图,最后进行计算.基础分点训练知识点由三视图确定几何体的表面积或体积1.如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为(A)A.4π cm3B.8π cm3C.16π cm3D.32π cm32.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为108.3.如图,是某几何体的三种视图.(1)说出这个几何体的名称;解:(1)三棱柱.(2)若其看到的三个图形中图1的长为15 cm,宽为4 cm;图2的宽为3 cm;图3直角三角形的斜边长为5 cm,试求这个几何体的所有棱长的和是多少,它的表面积多大?+++(2)棱长和为:(3+4+5)×2+15×3=69(cm).侧面积为:3×15+4×15+5×15=180(cm2).=6(cm2).底面积为:3×4×12表面积为:180+6×2=192(cm2).中档提分训练4.【核心素养·空间观念】(2024·陇南县级模拟)某圆锥形遮阳伞主视图如图所示,若∠OAB=30°,OA=2 m,则遮阳伞伞面的面积(圆锥的侧面积)为(A)A.2√3π m2B.√3π m2C.2π m2D.4π m25.(2024·武威校级一模)一个长方体的三种视图如图所示,若其俯视图为正方形,则这个长方体的体积为144cm3.6.一个长方体的三视图如图所示,若其俯视图为正方形,求这个长方体的表面积.解:根据三视图,得长方体如图所示,则AB=3√2,CE=4.∵AC2+BC2=AB2∴AC=BC=3∴正方形ACBD的面积为3×3=9.这个长方体的侧面积为4AC·CE=4×3×4=48.∴这个长方体的表面积为48+9+9=66.7.李明在参观某工厂车床工作间时发现了一个工件,通过观察并画出了此工件的三视图,借助直尺测量了部分长度.如图所示,该工件的体积是多少?解:根据三视图,知该工件是由大、小两个圆柱组合成的几何体.大、小两圆柱体底面直径分别是4 cm和2 cm.大、小两圆柱体的高分别是4 cm和1 cm.大圆柱体的体积为:π×22×4=16π(cm3)小圆柱体的体积为:π×12×1=π(cm3).∴该工件体积为:16π+π=17π(cm3).拓展素养训练8.如图是一个几何体的三视图(单位:cm).(1)写出这个几何体的名称;解:(1)这个几何体的名称是圆锥.(2)根据图中所示数据计算这个几何体的表面积;(2)S表=S侧+S底=πrl+πr2=π×2×6+π×22=16π(cm2).(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC 的中点D,请你求出这个线路的最短路程.(3)如图,将圆锥侧面展开,线段BD为所求的最短路程.设∠BAB'=x°.⏜的长根据题意,得底面圆的周长等于BB',解得x=120.即2×π×2=x×π×6180∴∠BAB'=120°.⏜的中点,AB=AC=6 cm∵点C为BB'∴∠CAB=60°.∴△ABC是等边三角形.又∵点D为AC的中点∴∠ADB=90°.∴BD=AB·sin 60°=6×√3=3√3(cm).2∴这个线路的最短路程为3√3cm.。
九年级数学下册 第三十二章 投影与视图 32.2 视图 第2课时 较复杂几何体的三视图同步练习冀教版
较复杂几何体的三视图
1.如图(1)所示的是由6个大小相同的正方形组成的几何体,它的俯视图是如图(2)所示的( )
2.在水平的讲台上放置圆柱形水杯和长方形粉笔盒,如图(1)所示,则它的主视图是图(2)所示的( )
3.从上面观察这个立体图形,能得到的平面图形是( )
A B C D
4.图中几何体的俯视图是( )
图(2)D
C B A 图(1)
图(2)D
C B A
A B C D
5.由6个大小相同的正方体搭成的几何体如图所示,关于它的视图,说法正确的是( )
A .主视图的面积最大
B .左视图的面积最大
C .俯视图的面积最大
D .三个视图的面积一样大
6.某三棱锥的三视图如图所示,该三棱锥的体积是( )
A .38
B .4
C .2
D .34
7.已知一个几何体的三视图如图所示,则该几何体的体积为多少? 正(主)视图 侧(左)视图
俯视图 2 2 3 2 3 1。
人教版九年级下册数学 29.2三视图 同步测试(含解析)
29.2三视图同步测试一.选择题1.若一个立体图形从正面看和从左面看都是等腰三角形,从上面看是带有圆心的圆,则这个立体图形是()A.圆柱B.正三棱柱C.圆锥D.正三棱锥2.图中的三视图所对应的几何体是()A.B.C.D.3.下列几何体中,从左面看到的图形是圆的是()A.B.C.D.4.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的从三个方向看得图形,下列说法正确的是()A.从正面看到的图相同B.从左面看到的图相同C.从上面看到的图相同D.从三个方向看到的图都不相同5.如图,是由大小一样的小立方块摆成的立体图形的三视图,则摆成这个立体图形所需的小立方块的个数为()A.3B.4C.5D.66.如图,某糕点包装盒的俯视图是正五边形,则正五边形的每一内角的度数为()A.72°B.108°C.120°D.540°7.如图2是图1长方体的三视图,若用S表示面积,S主=a2,S左=a2+a,则S俯=()A.a2+a B.2a2C.a2+2a+1D.2a2+a8.如图,将小立方块①从6个大小相同的小立方块所搭的几何体中移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图改变C.俯视图改变,左视图改变D.主视图不变,左视图不变9.如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是()A.B.C.D.10.在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有()A.4个B.8个C.12个D.17个二.填空题11.一个零件的主视图、左视图、俯视图如图所示(尺寸单位:厘米),这个零件的表面积是cm2.12.如图,由5个相同的小正方体组成的立体图形,分别从正面、左面、上面三个不同方向观察这个立体图形,你可以看到哪些平面图形?.13.一个立体图形如图,从面看到的形状是,从面看到的形状是,从面看到的形状是.14.几个完全相同的小正方体搭成如图的几何体,从上面拿掉一个或者几个小正方体(不能直接拿掉被压在下面的小正方体)而不改变几何体的三视图的方法有种.15.用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要个小立方块.三.解答题16.如图所示是由几个小立方体所组成的几何体的从上面看的形状图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体的从正面看、从左面看的图形.17.分析图中几何体,请在下面的网格图中画出该几何体分别从正面、左面及上面所看到的形状图.18.如图,是由10个同样大小的小正方体搭成的物体.(1)请在网格中分别画出从正面、上面观察该几何体得到的平面图形并涂上阴影;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体从正面和上面观察得到的平面图形不变,你认为最多还可以添加个小正方体.参考答案一.选择题1.解:∵主视图和左视图都是等腰三角形,∴此几何体为锥体,∵俯视图是一个圆,∴此几何体为圆锥.故选:C.2.解:观察图形可知选项B符合三视图的要求.故选:B.3.解:选项A中的几何体的左视图为三角形,因此不符合题意;选项B中的几何体其左视图为等腰三角形,因此选项B不符合题意;选项C中的几何体的左视图是长方形,因此选项C不符合题意;选项D中的几何体,其左视图为圆,因此选项D符合题意,故选:D.4.解:图①的三视图为:图②的三视图为:故选:C.5.解:由俯视图易得最底层有2个正方体,第二层有1个正方体,那么共有2+1=3个正方体组成.故选:A.6.解:∵正多边形的内角和公式为:(n﹣2)×180°,∴正五边形的内角和是:(5﹣2)×180°=540°,则每个内角是:540°÷5=108°.故选:B.7.解:∵,∴俯视图的长为a+1,宽为a,∴,故选:A.8.解:观察图形可知,将小立方块①从6个大小相同的小立方块所搭的几何体中移走后,所得几何体主视图不变,左视图和俯视图都改变.故选:C.9.解:从正面看去,一共三列,左边有1个小正方形,中间有2个小正方形,右边有1个小正方形,主视图是.故选:A.10.解:易得三摞碟子数从左往右分别为5,4,3,则这个桌子上共有5+4+3=12个碟子.故选:C.二.填空题11.解:由三视图可得这个零件是圆柱体,表面积是:π×52×2+15×π×10=200π(cm2),故答案为:200π.12.解:图中的组合体,从正面、左面、上面看到的图形如下:故答案为:A、C、D.13.解:一个立体图形如图,从正面看到的形状是,从上面看到的形状是,从左面看到的形状是.故答案为:正;上;左.14.解:第一种可以把第二层前面这两个的左边这个拿掉,第二种可以把第二层前面这两个的右边这个拿掉,第三种可以把第二层后面这三个的中间这个拿掉,第四种可以把第二层前面这两个的左边这个拿掉和第二层后面这三个的中间这个拿掉.故答案为:4.15.解:观察图象可知:这样的几何体最少需要(2+1+1)+(3+1)+1=9个小立方块.故答案为:9.三.解答题16.解:由题意可得:.17.解:如图所示:18.解:(1)从正面、上面观察该几何体所得到的图形如图所示:(2)根据主视图和俯视图的关系,可得最多可以添加3个,故答案为:3.。
初中数学(新人教版)九年级下册同步测试:三视图(同步测试)【含答案及解析】
29.2三视图第1课时简单几何体的三视图知能演练提升能力提升1.在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是()2.已知底面为正方形的长方体如图所示,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同3.下列几何体的主视图既是中心对称图形又是轴对称图形的是()4.如图,将Rt△ABC绕直角边AC所在直线旋转一周,所得几何体的主视图是()5.如图,该几何体的俯视图是()6.如图,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图形是()7.由若干个大小、形状完全相同的小立方块所搭成的几何体的俯视图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()8.下图中右面的三视图是左面棱锥的三视图,能反映物体的长和高的是()A.俯视图B.主视图C.左视图D.都可以创新应用★9.如图,这是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可恰好堵住圆形空洞,又可恰好堵住方形空洞的是()★10.5个棱长为1的小正方体组成如图所示的几何体.(1)该几何体的体积是(立方单位),表面积是(平方单位);(2)画出该几何体的主视图和左视图.能力提升能力提升1.A2.B3.D4.D Rt△ABC绕直角边AC旋转一周所得到的几何体是圆锥,所以它的主视图是等腰三角形.5.B6.A要注意看的方向,本题是从上面看,即俯视,圆柱从上面看应该是圆形,正方体从上面看应该是正方形,并且它们是并列摆放的.7.A8.B由实物图可以知道能反映长的视图是主视图和俯视图,能反映高的视图是主视图和左视图,故选B.创新应用9.B10.解(1)522(2)如图.第2课时复杂几何体的三视图知能演练提升能力提升1.已知一个水平放置的圆柱形物体如图所示,中间有一个细棒,则此几何体的俯视图是()2.手提水果篮抽象的几何体如图所示,以箭头所指的方向为主视图方向,则它的俯视图为()3.如图,该零件的左视图是()4.有一个零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()5.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵、横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图,该几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()6.如图,桌面上的模型由20个棱长为a的小正方体组成,现将该模型露在外面的部分涂上涂料,则涂上涂料部分的总面积为.7.已知某几何体的示意图如图所示,请画出该几何体的三视图.8.已知一个槽形工件如图所示,它是长方体中间切去了一个小的三角块,工人师傅要得到它的平面图形,请你画出它的三视图.★9.如图,下列是一个机器零件毛坯和它的主视图,请画出这个机器零件的左视图与俯视图.创新应用★10.如图,下列是一个机器零件的毛坯,请画出这个机器零件的三视图.★11.已知由若干个完全相同的小正方体组成的一个几何体如图所示.(1)请画出这个几何体的左视图和俯视图;(用阴影表示)(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加几个小正方体?能力提升1.C2.A3.D4.C5.A6.50a27.解如图所示.8.解如图所示.9.解如图所示.创新应用10.解三视图如图所示.11.解(1)左视图和俯视图如下:(2)在第二层第二列的第二行和第三行可各加一个;在第三层第二列的第三行可加一个,在第三列的第三行可加1个,2+1+1=4(个).故最多可再添加4个小正方体.第3课时从视图到实物知能演练提升能力提升1.已知由几个小正方体所搭的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的主视图为()2.已知一个几何体的三视图如图所示,则该几何体是()3.已知一个几何体的三视图如图所示,则该几何体的侧面积是()A.200 cm2B.600 cm2C.100π cm2D.200π cm24.已知一个由小正方体所搭的几何体如图所示,从不同的方向看所得到的平面图形中(小正方形中的数字表示在该位置的小正方体的个数),其中不正确的是()5.已知一个几何体的三视图如图所示(其中a,b,c为相应的边长),则这个几何体的体积是.6.用若干个小正方体搭成一个几何体,它的主视图和俯视图如图所示,问:搭成这样的几何体,最少需要多少个小正方体?最多需要多少个小正方体?7.已知某工件的三视图如图所示,求此工件的全面积.创新应用★8.如果一个几何体是由多个小正方体堆成,其三视图如图所示,那么这样的几何体一共有多少种情况?能力提升1.D2.D3.D通过三视图知原几何体是一个底面直径为10 cm,高为20 cm的圆柱体.则S侧面=10π×20=200π(cm)2.故选D.4.B A是从左面看到的,C是从正面看到的,D是从上面看到的.5.abc6.解由主视图得到该几何体有三列,高度分别为2,3,2;由俯视图得第一列和第三列各有2个,但是第二列最少有5个,最多有9个.所以搭成这样的几何体,最少需要9个小正方体,最多需要13个小正方体.7.解由三视图可知,该工件是一个底面半径为10 cm,高为30 cm的圆锥,圆锥的母线长为√302+102=10√10(cm),圆锥的侧面积为1×20π×10√10=100√10π(cm2),圆锥的底面积为2102π=100π(cm2),所以圆锥的全面积为100π+100√10π=100(1+√10)π(cm2).即工件的全面积为100(1+√10)π cm2.创新应用8.解主视图、左视图、俯视图都是由4个正方形组成,所以该物体是由一些完全一样的小正方体构成,所以该物体可以是由8个完全一样的小正方体组成的大正方体如图(1),而且也可以保持图(1)中下面一层有4个小正方体,那么上面一层4块中缺少任意一块,或缺对角的2块,这七种情况的三视图都如题图所示.。
第二十九章 三视图 同步练习 2022—2023学年人教版数学九年级下册
人教版九下 29.2 三视图一、选择题(共16小题)1. 如图是某几何体的三视图,该几何体是( )A. 正方体B. 圆锥C. 四棱柱D. 圆柱2. 如图所示的几何体,其俯视图是( )A. B.C. D.3. 如图是由4个小正方形体组合成的几何体,该几何体的主视图是( )A. B.C. D.4. 由若干个棱长为1cm的正方体堆积成一个几何体,它的三视图如图所示,则这个几何体的表面积是( )A. 15cm2B. 18cm2C. 21cm2D. 24cm25. 如图,是某几何体的三视图,该几何体是( )A. 圆柱B. 正方体C. 三棱柱D. 长方体6. 如图是由一个圆柱和一个长方体组成的几何体,则该几何体的俯视图是( )A. B.C. D.7. 若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是( )A. 球体B. 圆锥C. 圆柱D. 正方体8. 如图①,长方体的体积为120,图②是图①的三视图,用S表示面积,若S主=24,S 左=20,则S俯=( )A. 26B. 28C. 30D. 329. 下列选项中,如图所示的圆柱的三视图画法正确的是( )A. B.C. D.10. 如图所示,从左面看该几何体,看到的图形是( )A. B.C. D.11. 图②是图①中长方体的三视图,若用S表示面积,S主=a2,S左=a2+a,则S俯=( )A. a2+aB. 2a2C. a2+2a+1D. 2a2+a12. 一个几何体由若干个大小相同的小正方体组成,从上面看和从左面看得到的平面图形如图,那么组成该几何体所需小正方体的个数最少为( )A. 4B. 5C. 6D. 713. 如图所示的六角螺母,从上面看,得到的图形是( )A. B.C. D.14. 一个圆柱的三视图如图所示,则这个圆柱的体积为( )A. 24B. 24πC. 96D. 96π15. 如图,是一个几何体从正面、左面、上面看得到的图形,则这个几何体是( )A. B.C. D.16. 如图,下列关于物体的主视图画法正确的是( )A. B.C. D.二、填空题(共10小题)17. 如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为.18. 下图是由一些相同长方体的积木块拾成的几何体的三视图,则此几何体共由块长方体的积木搭成.19. 在①长方体,②球,③圆锥,④圆柱,⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是.(填上序号即可)20. 长方体的主视图、俯视图如图所示,则这个长方体的体积为;21. 一个几何体的三视图如下图所示,这个几何体是(填名称).22. 有四块如图(1)这样的小正方体摆在一起(各部分之间必须相连),其主视图如图(2),则左视图有种画法.23. 长方体直观图有多种画法,通常我们采用画法.24. 下图是由十个小正方体组成的几何体,若每个小正方体的棱长都是2,则该几何体的主视图和左视图的面积之和是.25. 图是某几何体的三视图及相关数据,则该几何体的侧面积是26. 图是由小正方体组合而成的几何体的主视图、左视图和俯视图,则至少再加个小正方体后,该几何体可成为一个正方体.三、解答题(共7小题)27. 如图是一个几何体的三视图,根据图示的数据计算出该几何体的表面积.28. 画出下列组合体的三视图.29. 学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:碟子的个数1234⋯碟子的高度(单位:cm)22+1.52+32+4.5⋯(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);(2)分别从正面、左面、上面三个方向看这些碟子,看到的形状图如图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.30. 一个等腰Rt△ABC如图所示,将它绕直线AC旋转一周,形成一个几何体.(1)写出这个几何体的名称,并画出这个几何体的三视图;(2)依据图中的数据,计算这个几何体的表面积.(结果保留π)31. 如图是由一些大小相同的小立方块搭成的几何体.(1)图中有块小立方块;(2)请分别画出它的主视图,左视图和俯视图.32. 由一些大小相同,棱长为1的小正方体搭成的几何体的俯视图如下图所示,数字表示该位置上的小正方体个数.(1)请在下图中画出它的主视图和左视图;(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面积为.(3)在不改变主视图和俯视图的情况下,最多可添加个小正方体.33. 一个零件是由长为34mm、高和宽都为17mm的长方体与直径为34mm、高度为17mm的半圆柱组成几何体后,又切去直径为17mm的圆柱后剩下的几何体,其实物直观图如图所示,请画出这个零件的三视图.答案1. D【解析】该几何体的视图为一个圆形和两个矩形.则该几何体可能为圆柱.2. D【解析】从上面看,是一个带圆心的圆.3. A【解析】该组合体的主视图如下:4. B【解析】由三视图可知该几何体的直观图如图所示.∵各个小正方体的棱长为1cm,∴这个几何体的表面积是3×6×1×1=18(cm2).5. D6. A【解析】从上边看,是一个矩形,矩形的内部有一个与矩形两边相切的圆.7. A【解析】解答这种类型的题目时,可以像画图题一样,面出每个选项中的几何体的三视图,然后和已知三视图比较得出答案;也可以通过已知的三个视图想象出几何体,从选项中寻找和它一致的几何体,进而得出答案.8. C【解析】由题意,长方体的宽为120÷24=5,长为120÷20=6,∴俯视图的面积为6×5=30.9. A【解析】放置的圆柱的主视图是长方形,左视图是圆,俯视图是长方形.10. B【解析】从左面看是一个长方形,中间有两条水平的虚线,故选B.11. A【解析】∵S主=a2=a⋅a,S左=a2+a=a(a+1),∴俯视图的长为a+1,宽为a,=a⋅(a+1)=a2+a.∴S俯12. B【解析】由从上面看与从左面看得到的平面图形知,组成该几何体所需小正方体个数最少的分布情况如图所示(不唯一);所以组成该几何体所需小正方体的个数最少为5,故选B.13. B【解析】从上面看,是一个正六边形,六边形的中间是一个圆.14. B【解析】由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,=πr2ℎ=π⋅22×6=24π,∴V圆柱故选B.15. B【解析】观察从正面、左面、上面看得到的图形发现,这个几何体是长方体和圆锥的组合图形.故选B.16. C【解析】主视图是从正面看几何体得到的图形,在画图时规定:看得见的轮廓线画成实线,看不见的轮廓线画成虚线,显然空心圆柱的主视图画法正确的是C,故选C.17. 3π【解析】由三视图知几何体为圆柱,且底面圆的半径是1,高是3,∴这个几何体的体积为:π×12×3=3π.18. 419. ②20. 1221. 四棱锥22. 4【解析】左视图可能为以下4种.23. 斜二侧24. 48【解析】该几何体的主视图和左视图如下,∴面积之和为2×2×(6+6)=48.25. 16√7π【解析】根据三视图可知该几何体为圆锥,高为6,母线长为8,则底面半径为√82−62=2√7,所以S=π×2√7×8=16√7π.圆锥侧26. 22【解析】观察三视图,可知这个几何体各个位置上的小正方体的个数,在俯视图上标出如图所示,则由题意可知最小可以组成3×3×3的正方体,即组成的正方体共有27个小正方体,27−2−1−1−1=22,所以至少再加22个小正方体后,才能组成一个正方体.27. 由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,所以圆锥的母线长=√52+122=13,⋅2π⋅5⋅13=90π.所以圆锥的表面积=π⋅52+1228. 如图所示.29. (1)由图可知,每增加一个碟子高度增加1.5cm,桌子上放有x个碟子时,高度为2+1.5(x−1)=1.5x+0.5.(2)由图可知,共有3摞,左前一摞有5个,左后一摞有4个,右边一摞有3个,共有3+4+5=12(个),叠成一摞后的高度=2+1.5×11=18.5(cm).30. (1)这个几何体是圆锥,这个几何体的三视图如图所示.×2π×2×√22+22+π×22=(4√2+4)π.(2)这个几何体的表面积为1231. (1)6(2)如图所示.32. (1)该几何体的主视图和左视图如图所示.(2)32【解析】给这个几何体喷上颜色(底面不喷色),需要喷色的面有32个,所以喷色的面积为32.(3)1【解析】在俯视图中标数字“2”的正方形的位置上再添加1个小正方体,不会改变主视图和俯视图.33. 三视图如图所示:。
新高中人教B版数学必修二同步练习:1.1.5_三视图(含答案)
1.1.5 三视图【课时目标】1.了解正投影的概念;2.理解三视图的原理和视图间的相互关系,能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简单组合)的三视图.1.正投影在物体的平行投影中,如果投射线与投射面垂直,则称这样的平行投影为__________.2.三视图(1)一个投射面水平放置,叫做______________,投射到水平投射面的图形叫__________.一个投射面放置在正前方叫做____________,投射到直立投射面内的图形叫__________,和直立、水平两个投射面都垂直的投射面叫做______________,投射到侧立投射面内的图形叫做__________.(2)将空间图形向水平投射面、直立投射面、侧立投射面作正投影,然后把这三个投影按一定的布局(俯视图放在________的下面,长度与__________一样,左视图放在__________的右面,高度与__________一样,宽度与__________的宽度一样即“长对正、高平齐、宽相等”)放在一个平面内,这样构成的图形叫做空间图形的__________.一、选择题1.下列说法正确的是()A.任何几何体的三视图都与其摆放的位置有关B.任何几何体的三视图都与其摆放的位置无关C.有的几何体的三视图与其摆放的位置无关D.正方体的三视图一定是三个全等的正方形2.如图所示的一个几何体,哪一个是该几何体的俯视图()3.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④4.一个长方体去掉一个小长方体,所得几何体的主视图与左视图分别如图所示,则该几何体的俯视图为()5.如图所示的正方体中,M、N分别是AA1、CC1的中点,作四边形D1MBN,则四边形D1MBN在正方体各个面上的正投影图形中,不可能出现的是()6.一个长方体去掉一角的直观图如图所示,关于它的三视图,下列画法正确的是()二、填空题7.根据如图所示俯视图,找出对应的物体.(1)对应________;(2)对应________;(3)对应________;(4)对应________;(5)对应________.8.若一个三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.9.用小正方体搭成一个几何体,如图是它的主视图和左视图,搭成这个几何体的小正方体的个数最多为________个.三、解答题10.在下面图形中,图(b)是图(a)中实物画出的主视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出左视图(尺寸不作严格要求).11.(1)如图是截去一角的长方体,画出它的三视图.(2)如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.能力提升12.对如图所示的几何体正确的说法是()A.如果把(1)作为主视图,则(2)、(3)分别是俯视图和左视图B.如果把(2)作为主视图,则(1)、(4)分别是俯视图和左视图C.如果把(3)作为主视图,则(2)、(1)分别是俯视图和左视图D.如果把(4)作为主视图,则(2)、(1)分别是俯视图和左视图13.用小立方体搭成一个几何体,使它的主视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?在绘制三视图时,要注意以下三点:1.若两相邻物体的表面相交,表面的交线是它们的原分界线,在三视图中,分界线和可见轮廓都用实线画出,不可见轮廓用虚线画出.2.一个物体的三视图的排列规则是:俯视图放在主视图的下面,长度和主视图一样.左视图放在主视图的右面,高度和主视图一样,宽度和俯视图一样,简记为“长对正,高平齐,宽相等”.3.在画物体的三视图时应注意观察角度,角度不同,往往画出的三视图不同.1.1.5 三视图答案知识梳理1.正投影2.(1)水平投射面俯视图直立投射面主视图侧立投射面左视图(2)主视图主视图主视图主视图俯视图三视图作业设计1.C[球的三视图与其摆放位置无关.]2.C3.D[在各自的三视图中①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.]4.C[由三视图中的主、左视图得到几何体的直观图如图所示,所以该几何体的俯视图为C.]5.D6.A7.(1)D(2)A(3)E(4)C(5)B8.2 4解析三棱柱的高同左视图的高,左视图的宽度恰为底面正三角形的高,故底边长为4.9.710.解图(a)是由两个长方体组合而成的,主视图正确,俯视图错误,俯视图应该画出不可见轮廓线(用虚线表示),左视图轮廓是一个矩形,有一条可视的交线(用实线表示),正确画法如图所示.11.(1)解该图形的三视图如图所示.(2)解该物体是由一个正六棱柱和一个圆柱组合而成的,正视图反映正六棱柱的三个侧面和圆柱侧面,左视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图如图所示.12.D[物体有不同的放法得到不同的视图,所以把不同的图作为主视图就是考查各种不同的放法时物体的三视图.若(2)为主视图,说明物体已经竖起来放,显然此时(1)(3)(4)里面没有适合的视图作为左视图和俯视图;若(3)为主视图,则俯视图(2)中的正方体小块的位置不正确;若(1)为主视图,则俯视图(2)中的正方体小块的位置不正确.所以D正确,故选D.]13.解由于主视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.。
【2021新】人教版九年级数学下册29.2 三视图同步练习附答案(精品版)
由三视图到表面展开图
1. 一个几何体的展开图如图所示,这个几何体是()
A.三棱柱B.三棱锥
C.四棱柱D.四棱锥
2. 如图所示,水平放置的长方体的底面是长为4和宽为2的矩形,它的主视图的面
积为12,则长方体的体积等于()
A.16 B.24 C.32 D.48
3. 如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为______cm2.
4. 如图是一个几何体的三视图,根据图中标注的数据可得该几何体的体积为.(结果保
留π)
5. 如图为一几何体从不同方向看的图形.
(1)写出这个几何体的名称;
(2)任意画出这个几何体的一种表面展开图;
(3)若长方形的高为10 cm,三角形的边长为4 cm,求这个几何体的侧面积.
参考答案
1.A
2.B
3.2π
4.3π
5.解:(1)正三棱柱;
(2)如图所示;
(3)3×10×4=120(cm2).。
人教版初中数学九年级下册《29.2 三视图》同步练习卷(含答案解析
人教新版九年级下学期《29.2 三视图》同步练习卷一.选择题(共7小题)1.下面的几何体从左面看到的图形是()A.B.C.D.2.下列四个立体图形中,左视图为长方形的()A.①③B.①④C.②③D.③④3.如图所示的几何体的俯视图是()A.B.C.D.4.如图所示的某零件左视图是()A.B.C.D.5.如图是由几个相同小正方体组成的立休图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.B.C.D.6.如图,是一个几何体的三视图(单位:cm),则图中几何体的体积是()A.30 πcm3B.24 πcm3C.15 πcm3D.12 πcm3 7.某几何体由若干个大小相同的小正方体组成,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个二.填空题(共1小题)8.一个长方体从正面和左面看到的图形如图所示(单位cm),则从其上面看到的图形的面积是.三.解答题(共2小题)9.如图几何体是由棱长为m的正方体摆放成如图的形状.(1)请在3×3网格中画出这个几何体从正面、左面、上面看到的几何体的形状图?并用阴影表示.(2)求这个几何体的表面积?10.观察下面由8个小立方块组成的图形,请在指定的位置画出从正面、左面、上面看到的这个几何体的形状图.人教新版九年级下学期《29.2 三视图》同步练习卷参考答案与试题解析一.选择题(共7小题)1.下面的几何体从左面看到的图形是()A.B.C.D.【分析】从左边看得到的图形是左视图,圆锥的左视图是三角形.【解答】解:从左面看到的图形是三角形,故选:A.【点评】本题考查了简单几何体的三视图,从左边看得到的图形是左视图.2.下列四个立体图形中,左视图为长方形的()A.①③B.①④C.②③D.③④【分析】左视图是从几何体的左边看所得到的视图.【解答】解:正方体左视图为正方形,也属于长方形,球左视图为圆;圆锥左视图是等腰三角形;圆柱左视图是长方形,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是掌握所有的看到的棱都应表现在三视图中.3.如图所示的几何体的俯视图是()A.B.C.D.【分析】根据直观图,由几何体的俯视图的定义进而得出答案.【解答】解:由题意可得:该几何体是长方体和圆柱的组合图形,则其俯视图为长方形中间为圆形,故选项B正确.故选:B.【点评】此题主要考查了由几何体判断三视图,正确得出几何体的组成是解题关键.4.如图所示的某零件左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形,其中间含一个圆,如图所示:故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.5.如图是由几个相同小正方体组成的立休图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.如图,是一个几何体的三视图(单位:cm),则图中几何体的体积是()A.30 πcm3B.24 πcm3C.15 πcm3D.12 πcm3【分析】根据三视图得出几何体为圆锥,再利用圆锥的体积公式解答即可.【解答】解:由三视图可得:几何体为圆锥,所以圆锥的体积=cm3,故选:D.【点评】此题考查三视图判定几何体,关键是根据三视图得出几何体为圆锥.7.某几何体由若干个大小相同的小正方体组成,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由主视图和左视图可确定所需正方体个数最少时俯视图为:,则组成这个几何体的小正方体最少有5个.故选:B.【点评】此题主要考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.二.填空题(共1小题)8.一个长方体从正面和左面看到的图形如图所示(单位cm),则从其上面看到的图形的面积是6cm2.【分析】先根据从左面、从正面看到的形状图的相关数据可得,从上面看到的形状图是长为3宽为2的长方形,再根据长方形的面积公式计算即可.【解答】解:根据从左面、从正面看到的形状图的相关数据可得:从上面看到的形状图是长为3宽为2的长方形,则从上面看到的形状图的面积是2×3=6cm2;故答案为:6cm2.【点评】此题考查了由三视图判断几何体,关键是根据从左面、从正面看到的形状图的相关数据得出从上面看到的形状图是长为3宽为2的长方形.三.解答题(共2小题)9.如图几何体是由棱长为m的正方体摆放成如图的形状.(1)请在3×3网格中画出这个几何体从正面、左面、上面看到的几何体的形状图?并用阴影表示.(2)求这个几何体的表面积?【分析】(1)根据三视图的定义,画出图形即可;(2)根据三视图确定表面有多少个正方形即可解决问题;【解答】解:(1)三视图如图所示:(2)这个几何体的表面一共有2(5+3+4)=24个正方形,∴这个几何体的表面积=24m2.【点评】本题考查作图﹣三视图,解题的关键是理解题意,正确作出三视图,属于中考常考题型.10.观察下面由8个小立方块组成的图形,请在指定的位置画出从正面、左面、上面看到的这个几何体的形状图.【分析】根据三视图的定义画出图形即可;【解答】解:【点评】本题考查三视图的定义,解题的关键是学会观察和想象,再画它的三视图.。
浙教版九年级下《3.2简单几何体的三视图》同步练习含答案
3.2 简单几何体的三视图同步练习一、单选题1、下列说法错误的是()A、长方体、正方体都是棱柱B、球体的三种视图均为同样大小的图形C、三棱柱的侧面是三角形D、六棱柱有六条棱、六个侧面、侧面为长方形2、(2016•龙岩)如图所示正三棱柱的主视图是()A、B、C、D、3、一个立体图形的三视图如图所示,那么它是()A、圆锥B、圆柱C、三棱锥D、四棱锥4、(2016•湖州)由六个相同的立方体搭成的几何体如图所示,则它的主视图是()A、B、C、D、5、一个几何体的三视图如图所示,则该几何体的形状可能是()A、B、C、D、6、如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A、B、C、D、7、(2016•菏泽)如图所示,该几何体的俯视图是()A、B、C、D、8、一些完全相同的小正方形搭成一个几何体,这个几何体从正面和左面看所得的平面图形均如图所示,小正方体的块数可能有()A、7种B、8种C、9种D、10种9、(2016•雅安)将如图绕AB边旋转一周,所得几何体的俯视图为()A、B、C、D、10、(2016•衢州)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A、B、C、D、11、(2016•日照)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A、B、C、D、12、如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()A、B、C、D、13、(2016•泰安)如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为()A、90°B、120°C、135°D、150°14、(2016•大连)如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A、40πcm2B、65πcm2C、80πcm2D、105πcm215、(2016•随州)如图是某工件的三视图,则此工件的表面积为()A、15πcm2B、51πcm2C、66πcm2D、24πcm2二、填空题16、在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是________(填上序号即可).17、如图是由五个大小相同的正方体搭成的几何体,从________ 面看所得到的性状图的面积最小.18、如图,一个几何体由大小相同、棱长为1的正方体搭成,则其左视图的面积为________19、如图是由大小相同的小正方体组成的简单几何体的左视图和俯视图,那么组成这个几何体的小正方体的个数最少为________ 个.20、(2016•齐齐哈尔)一个侧面积为16 πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为________cm.三、作图题21、由6个相同的小立方块搭成的几何体如图所示,请画出从三个方向看所得到的形状图.22、由若干个小立方体所组成的一个几何体,其俯视图如图所示.其中的数字表示在该位置上的小立方体的个数.请画出这个几何体从正面看和从左面看的图形.四、解答题23、如图,是一个由若干同样大小的正方体搭成的几何体俯视图,小正方形中的数字表示在该位置的立方体的个数.(1)请你画出它的从正面看和从左面看的形状图.(2)如果每个立方体的棱长为2cm,则该几何体的表面积是多少?24、如图是七个棱长为1的立方块组成的一个几何体,画出其三视图并计算其表面积.25、如图是一个几何体的三视图:(1)请写出这个几何体的名称.(2)求这个几何体的侧面积.答案部分一、单选题1、【答案】D 2、【答案】C 3、【答案】A4、【答案】A 5、【答案】D 6、【答案】C 7、【答案】C 8、【答案】C 9、【答案】B10、【答案】C11、【答案】B 12、【答案】C 13、【答案】B 14、【答案】B 15、【答案】D二、填空题16、【答案】② 17、【答案】左18、【答案】3 【考点】简单几何体的三视图19、【答案】5 20、【答案】4三、作图题21、【答案】解:如图所示:22、【答案】解:如图所示:四、解答题23、【答案】解:(1)如图所示:(2)(2×2)×(6×2+6×2+5×2+4)=4×38=152(平方厘米).故该几何体的表面积是152平方厘米.24、【答案】解:作图如下:表面积S=(4×2+5×2+5×2)×(1×1)=28×1=28.25、【答案】解:(1)由三视图判断几何体为:圆柱体;(2)侧面积为:2π×1×3=6π(cm2).。
湘教版九年级下册数学 3.3三视图 同步习题(含解析)
3.3三视图同步习题一.选择题1.如图所示几何体的左视图是()A.B.C.D.2.如图所示的几何体是由几个大小相同的小正方体搭成的,将正方体①移走后,从左面看到的图形是()A.B.C.D.3.如图所示的4个立体图形中,从正面看到的形状是四边形的个数是()A.1B.2C.3D.44.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,下列关于这个几何体的说法正确的是()A.左视图的面积为2B.俯视图的面积为3C.主视图的面积为4D.三种视图的面积都是45.桌面上放置着如图所示的一个圆锥和一个长方体,其中①②③是没有按规定位置排列的三种视图,则按主视图、左视图、俯视图顺序排列正确的是()A.①②③B.③②①C.②①③D.①③②6.直立放置在水平面上的圆柱形状物体的三视图是下列图中的()A.B.C.D.7.一个几何体是由一些相同的立方体组成的,从正面和从左面看到的形状图如图所示,则组成这个几何体的立方体最多有()A.12个B.13个C.14个D.18个8.如图所示是由五个大小相同的正方体搭成的几何体,则关于它从正面看、从左面看、从上面看到的平面图形,下列说法正确的是()A.从正面看的图形面积最小B.从上面看的图形面积最小C.从左面看的图形面积最小D.从三个方向看的图形面积一样大9.一物体及其从正面看得到的图形如图1所示,则从左面看到的平面图形与从上面看到的平面图形分别是图2中的()A.①②B.③②C.①④D.③④10.如图所示,甲,乙,丙三个侦察员,从三个不同方位观察一间房子,哪个图形是侦察员乙看到的()A.B.C.D.二.填空题11.观察右边立体图得到它的主视图、左视图和俯视图,请写在对应图的下边.①,②,③.12.观察图中的几何体,指出右面的三幅图分别是从哪个方向看到的.(1)是,(2)是,(3)是.13.观察图中的几何体,指出右面三幅图分别从哪个角度看到的?(1);(2);(3).14.有一辆小汽车如图,小红从空中往下看这辆小汽车,图是小红看到的形状.15.从正面看到的图形,称为正视图(或称为主视图);从上面看到的图形,称为俯视图;从左面看到的图形称为左视图,请你根据如图所示的立体图形的三视图,写出立体图形的名称.图形名称:①②③④⑤.三.解答题16.图1三个平面图形分别是图2几何体的哪个视图?17.找出与下列几何体对应的三视图,在三视图的下方填上对应的几何体序号.18.桌上摆着一个由若干个大小相同的小正方体组合而成的几何体,其主视图和左视图如图所示.这个几何体的俯视图可能是怎样的?画出所有不同的俯视图.参考答案一.选择题1.解:从左边看,底层是一个矩形,上层是一个直角三角形(三角形与矩形之间没有实线隔开),左齐.故选:A.2.解:将正方体①移走后,从左面看到的图形是底层是两个小正方形,上层的左边是一个小正方形.故选:B.3.解:如图4个立体图形中,从正面看到的形状是四边形的是第1个和第4个.故选:B.4.解:A、从左面看,可以看到3个正方形,面积为3,故本选项错误;B、从上面看,可以看到4个正方形,面积为4,故本选项错误;C、从正面看,可以看到4个正方形,面积为4,故本选项正确;D、三种视图的面积不一样,故本选项错误;故选:C.5.解:组合体的主视图是如②图所示;组合体的左视图是如①图所示;组合体的俯视图是如③图所示.故选:C.6.解:一个直立在水平面上的圆柱体的主视图、左视图、俯视图分别是长方形、长方形、圆.故选:B.7.解:假设观察者面向北,此时正南方向看的就是主视图,正西方向看到的就是左视图,由主视图和左视图宽度可知,该几何体的俯视图应该在如图1所示3×3的范围内.由于主视图两旁两列有两层小方格,中间一列1层小立方体,因此俯视图区域内每个方格内小正方体最多个数如图2所示.由左视图信息,可知俯视图区域内每个方格内小正方体最多个数如图3所示.综合图3、图4信息可知俯视图区域内每个方格内小正方体最多个数如图4所示.故选:B.8.解:该图形的左视图为:,主视图为:,俯视图为:,可知左视图的面积最小,俯视图和主视图面积一样大.故选:C.9.解:如图所示:从左面看到的平面图形是“日”字形;从上面看到的平面图形是横着的“目”字形,故选:B.10.解:由乙侦查员所在的位置可看到图中小方框位于右上角.故选:B.二.填空题11.解:①俯视图;②左视图;③主视图,故答案为:俯视图;左视图;主视图.12.解:如图所示:故答案为:上面;正面;左面.13.解:根据三视图的观察角度得出此物体的三视图分别是:主视图,左视图,俯视图,故右面三幅图中(1)从正面看到的,(2)从左面看到的,(3)从上面看到的.故答案为:正面,左面,上面.14.解:从空中往下可看到一的大长方形内有一个小长方形.故选(3).15.解:根据三视图可知,符合条件的几何体依次是:①长方体;②圆柱;③圆锥;④正四棱锥;⑤球体.故答案为:长方体;圆柱;圆锥;正四棱锥;球体.三.解答题16.解:从正面看是两层,上层两个正方形,底层左边一个正方形,左齐;从左边看是两层,底层两个正方形,上层左边一个正方形,左齐;从上面看是两层,上层两个正方形,底层左边一个正方形,左齐.17.解:如图所示:18.解:如图所示:。
新人教版九年级数学下册 29.2 三视图同步测试(含答案)
三视图三视图[见B本P90]1.如图29-2-1几何体的主视图是( C )图29-2-12.下列四个立体图形中,主视图为圆的是( B )A B C D3.有一篮球如图29-2-2放置,其主视图为( B )图29-2-2A B C D4如图29-2-3,由三个小立方块搭成的俯视图是( A )图29-2-35.如图29-2-4所示的几何体的主视图是( C )29-2-46.从不同方向看一只茶壶,你认为是其俯视图的是( A )图29-2-57. 如图29-2-6是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( D )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变图29-2-68.如图四个水平放置的几何体中,三视图如图29-2-7所示的是( D )图29-2-79.如图29-2-8所示几何体的左视图是( C )图29-2-810.球和圆柱在水平面上紧靠在一起,组成如图29-2-9所示的几何体,托尼画出了它的三视图,其中他画的俯视图应该是( C )图29-2-9A.两个相交的圆B.两个内切的圆C.两个外切的圆 D.两个外离的圆11.下列几何体中,俯视图相同的是( C )图29-2-10A.①② B.①③ C.②③ D.②④12.将棱长是1 cm的小正方体组成如图29-2-11所示的几何体,那么这个几何体的表面积是( A )图29-2-11A.36 cm2 B.33 cm2 C.30 cm2 D.27 cm213.我国古代数学家利用“牟合方盖”(如图29-2-12甲)找到了球体体积的计算方法,“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图29-2-12乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是( B )图29-2-1214.5个棱长为1的正方体组成如图29-2-13所示的几何体.(1)该几何体的体积是________(立方单位),表面积是________(平方单位);(2)画出该几何体的主视图和左视图.图29-2-13第14题答图解:(1)5 22 (2)如图所示.15.图29-2-14是一个蘑菇形小零件图,其上部是一个半球体,下部是圆柱体,作出它的三视图.图29-2-14解:蘑菇形零件的上部为半球体,下部为圆柱体,它的主视图与左视图相同,上部均为半圆,下部为矩形.俯视图为同心圆(不含圆心),内圆被遮为虚线,如图所示.16.作出下面立体图形的三视图.图29-2-15 解:如图所示.第2课时由三视图描述物体的形状[见B本P92]1.下面是一个几何体的三视图,则这个几何体的形状是( B )图29-2-16A.圆柱B.圆锥C.圆台 D.三棱柱2.某几何体的三种视图如图29-2-17所示,则该几何体是( C )图29-2-17A.三棱柱 B.长方体C.圆柱 D.圆锥3.某几何体的三视图如图29-2-18所示,则这个几何体是( A )图29-2-18A.三棱柱 B.圆柱C.正方体 D.三棱锥4.已知一个正棱柱的俯视图和左视图如图29-2-19所示,其主视图为( D )图29-2-195.长方体的主视图、俯视图如图29-2-20所示,则其左视图面积为( A )图29-2-20A.3 B.4C.12 D.166.一个长方体的左视图、俯视图及相关数据如图29-2-21所示,则其主视图的面积为( B )A.6 B.8 C.12 D.24图29-2-21图29-2-227.如图29-2-22是一个几何体的主视图和左视图,同学们在探究它的俯视图时,画出了如图29-2-23的几个图形,其中可能是该几何体俯视图的共有( C )图29-2-23A.3个 B.4个C.5个 D.6个8.图29-2-24是一个正六棱柱的主视图和左视图,则图中的a=( B )图29-2-24A.2 3 B. 3 C.2 D.1【解析】从主视图来看,正六棱柱的底面正六边形的直径为4,半径为2,而正六边形的边长等于半径,所以边长也为2,所以a=2sin60°= 3.9.下图是由几个相同的小立方块组成的几何体的三视图,小立方块的个数是( B ) A.3 B.4 C.5 D.6图29-2-2510.由n个相同的小正方体堆成的几何体,其视图如图29-2-26所示,则n的最大值是( A )A.18 B.19 C.20 D.21图29-2-2611. 某超市货架上摆放着某品牌红烧牛肉方便面,如图29-2-27是它们的三视图,则货架上的红烧牛肉方便面至少有( B )A.8 B.9 C.10 D.11图29-2-2712. 某几何体的三视图如图29-2-28所示,则组成该几何体共用了小方块( D )A. 12块B. 9块C. 7块D. 6块图29-2-2813.如图29-2-29是某几何体的三视图,则该几何体的体积是( C )图29-2-29A. 18 3B. 54 3C. 108 3D. 216 3【解析】由三视图可看出:该几何体是一个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6×34×62×2=108 3.14.一个几何体的三视图如图29-2-30所示(其中标注的a,b,c为相应的边长),则这个几何体的体积是__abc__.图29-2-30【解析】几何体是长方体,长为a,宽为b,高为c,则V=abc.15.图29-2-31是某实物的三视图,描述该实物的形状.图29-2-31解:观察三视图,可把三视图分解为两组如下图.由第1组三视图可观察出物体下部为一个长方体;由第2组三视图可观察出物体左上部也为一个长方体.综合原三视图可得物体是由两个长方体结合成的一个整体(像沙发),如图所示.第1组第2组16.如图29-2-32,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中,共有1个小立方体,其中1个看得见,0个看不见;如图②中,共有8个小立方体,其中7个看得见,1个看不见;如图③中,共有27个小立方体,其中19个看得见,8个看不见;……则(1)第⑥个图中,看得见的小立方体有________个;(2)猜想并写出第n个图形中看不见的小立方体的个数为多少?图29-2-32解:(1)n=1时,看不见的小立方体的个数为0个;n=2时,看不见的小立方体的个数为(2-1)×(2-1)×(2-1)=1(个);n=3时,看不见的小立方体的个数为(3-1)×(3-1)×(3-1)=8(个);……n=6时,看不见的小立方体的个数为(6-1)×(6-1)×(6-1)=125(个),故看得见的小立方体有63-125=216-125=91(个).(2)第n个图形中看不见的小立方体的个数为(n-1)3个.第3课时 由三视图到表面展开图 [见B 本P94]1.如图29-2-33是某几何体的三视图,其侧面积( C )图29-2-33A .6B .4πC .6πD .12π2.一个几何体的三视图如图29-2-34所示,那么这个几何体的侧面积是( B )图29-2-34A .4πB .6πC .8πD .12π【解析】 由三视图知该几何体是底面直径为2,高为3的圆柱体,所以该几何体的侧面积为2π×3=6π.3.图29-2-35是某几何体的三视图及相关数据,则该几何体的侧面积是( B )图29-2-35A.12ab πB.12ac π C .ab π D .ac π 【解析】 该几何体是圆锥,侧面展开图是扇形,S 扇形=12×a π×c =12ac π.4.如图29-2-36是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是__72__.图29-2-36图29-2-375.图29-2-37是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是__左视图__.【解析】 设小正方体的棱长为1,则主视图的面积为5,左视图的面积为3,俯视图的面积为5,所以左视图的面积最小.6.某几何体的三视图如图29-2-38所示,则该几何体的表面积为__270__cm 2__.图29-2-38【解析】 由三视图可知,几何体是一个直三棱柱,其表面积为S 表=(5+12+52+122)×7+2×12×12×5=270( cm 2).7.某冷饮厂要加工一批冰淇淋蛋筒,设计给出了封闭蛋筒的三视图如图29-2-39所示,请你按照三视图确定制作每个蛋筒所需的包装材料面积(π取3.14,精确到0.1 cm 2).图29-2-39【解析】 (1)由三视图知立体图形是圆锥;(2)再由圆锥画它的表面展开图计算表面积. 解:由三视图可知,蛋筒是圆锥形的,如下图所示.蛋筒的母线长为13 cm ,底面的半径为102=5(cm),运用勾股定理可得它的高h =132-52=12(cm).由展开图可知,制作一个冰淇淋蛋筒的材料面积为S 扇形+S 圆=12×2π×5×13+π×52=65π+25π=90π≈282.6(cm 2).8.图29-2-40是某几何体的展开图. (1)这个几何体的名称是____; (2)画出这个几何体的三视图;(3)求这个几何体的体积.(π取3.14)图29-2-40【解析】观察展开图,中间是一个矩形,上、下方是相等的圆,易知此几何体为圆柱;圆柱的主视图和左视图是相同的长方形,俯视图为圆,其体积为底面积乘高,且圆柱底面直径为10,高为20.解:(1)圆柱;(2)三视图如图所示.(3)体积为πr2h≈3.14×25×20=1 570.9.某个长方体的主视图是边长为1 cm的正方形,沿这个正方形的对角线向垂直于正方形的方向将长方体切开,截面是一个正方形,那么这个长方体的俯视图是( D )【解析】截面是一个正方形,边长为 2 cm,故这个长方体的俯视图是边长分别为1 cm, 2 cm的长方形,选D.10.如图29-2-41是一个包装纸盒的三视图(单位:cm),则制作一个纸盒所需纸板的面积是( C )图29-2-41A .75(1+3)cm 2B .75⎝ ⎛⎭⎪⎫1+32cm 2 C .75(2+3)cm 2D .75⎝⎛⎭⎪⎫2+32cm 2 【解析】 包装盒的侧面展开图是一个长方形,长方形长为(5×6)cm ,宽为 5 cm ,面积为30×5=150 (cm 2),包装盒的一个底面是一个正六边形,面积为6×12×52×32=7523(cm 2),故包装盒的表面积为150+2×7523=150+753=75(2+3)(cm 2),选C.11.一个如图29-2-42所示的长方体的三视图如图29-2-43所示,若其俯视图为正方形,则这个长方体的表面积为( A )图29-2-42 图29-2-43 A .66 B .48C .482+36D .57【解析】 设长方体底面边长为x ,则2x 2=(32)2,∴x =3,∴该长方体表面积为3×4×4+32×2=48+18=66,故选A.12.图29-2-44是某工件的三视图,按图中尺寸求工件的表面积.图29-2-44【解析】 在实际的生产中,三视图和展开图往往结合在一起,常由三视图想象出几何体的形状,再画出其表面展开图,然后根据展开图求表面积.解:观察三视图可知,工件的上部为一个圆锥,下部紧连着一个共底面的圆柱(如图所示).上部圆锥侧面展开图是扇形(半圆),其面积为S 扇=12×(3)2+12×2π=2π(cm 2);下部圆柱侧面展开图是矩形,其面积为S 矩=1×2π=2π(cm 2);底部为圆面,面积为S 圆=π cm 2,所以,所求工件的表面积为S 表=S 扇+S 矩+S 圆=2π+2π+π=5π(cm 2).13.一个几何体的主视图和左视图如图29-2-45所示,它的俯视图为菱形,请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.图29-2-45解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm ,∴菱形的边长为52 cm ,棱柱的侧面积=4×52×8=80(cm 2).14.如图29-2-46所示是一个直四棱柱及其主视图和俯视图(等腰梯形). (1)根据图中所给数据,可得俯视图(等腰梯形)的高为____; (2)在虚线框内画出其左视图,并标出各边的长.图29-2-46【解析】 (1)过上底的顶点向对边引垂线组成直角三角形求解即可;(2)易得左视图为长方形,宽等于(1)中算出的梯形的高,高等于主视图中长方形的高. 解:(1)4(2)如图所示:。
湘教版初中九年级下册数学课时同步练习 第3章 投影与视图 3.3《三视图》同步练习卷
湘教版数学九年级下册3.3《三视图》同步练习卷一、选择题1.下列几何体中,俯视图为四边形的是()2.如图所示几何体的左视图是( )3.由几个相同的小正方形搭成的一个几何体如图所示,这个几何体的主视图是()4.如图是某几何体的三视图及相关数据,则判断正确的是()A.a>cB.b>cC.4a2+b2=c2D.a2+b2=c25.一个几何体的三视图如图所示,则该几何体的表面积为()A.4π B.3π C.2π+4 D.3π+46.如图是某几何体的三视图,则该几何体的全面积等于()A.112B.136C.124D.847.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A. B. C. D.8.如图,箭头表示投影线的方向,则图中热水瓶的正投影是( )9.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A. B. C. D.10.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是( )A.主视图相同 B.左视图相同 C.俯视图相同 D.三种视图都不相同二、填空题11.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.12.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么这个圆锥的左视图的面积是.13.如图是某几何体的三视图,则该几何体的表面积为14.如图是由几个小立方块搭成的几何体的主视图与左视图,这个几何体最多可能有________个小立方块.15.一个几何体的三视图如图,很据图示的数据计算该几何体的表面积为______(结果保留π).16.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放个小正方体.三、作图题17.由一些大小相同,棱长为1的小正方体搭成的几何体的俯视图如图所示,数字表示该位置的正方体个数.(1)请画出它的主视图和左视图;(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面积为(3)在不改变主视图和俯视图的情况下,最多可添加块小正方体.18.画图题:①由大小相同的小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的俯视图和左视图。
2022年初中数学《画几何体的三视图》同步练习(附答案)
3.3 三视图第1课时画几何体的三视图1.如图〔1〕放置的一个圆柱,那么它的左视图是〔〕2.如图〔1〕所示的是圆台形灯罩的示意图,它的俯视图是如图〔2〕所示的〔〕3.如下图的四个几何体中,主视图与其他几何体的主视图不同的是〔〕4.如图〔1〕所示的是由6个大小相同的正方形组成的几何体,它的俯视图是如图〔2〕所示的〔〕5.如图〔1〕所示,放置的一个水管三叉接头,假设其主视图如图〔2〕所示,那么其俯视图DCBA图(2)DCBA图(1)图(2)DCBA图(2)DCBA图(1)图(1)是图〔3〕所示的〔 〕6.在水平的讲台上放置圆柱形水杯和长方形粉笔盒,如图〔1〕所示,那么它的主视图是图〔2〕所示的〔 〕7.沿圆柱体上面直径截去一局部的物体如下图,画出它的三视图.图(3)DCBA图(2)DCBA(第3题)第1课时 抛物线形二次函数1.图〔1〕是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶〔拱桥洞的最高点〕离水面2m ,水面宽4m .如图〔2〕建立平面直角坐标系,那么抛物线的关系式是〔 〕 A .y=-2x 2 B .y=2x 2 C 、212y x =-D 、212y x =第1题 第2题2、如图,铅球的出手点C 距地面1米,出手后的运动路线是抛物线,出手后4秒钟到达最大高度3米,那么铅球运行路线的解析式为〔 〕 A 、2316h t =-B 、2316h t t =-+C 、2118h t t =-++D 、21213h t t =-++ 3.如下图是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB 位置时,水面宽度为10m ,此时水面到桥拱的距离是4m ,那么抛物线的函数关系式为〔 〕 A 、2254y x =B 、2254y x =-C 、2425y x =-D 、2425y x =第3题 第4题4、某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x 2+4x 〔单位:米〕的一局部,那么水喷出的最大高度是〔 〕 A 、4米 B 、3米 C 、2米 D 、1米5.有一个抛物线形拱桥,其最大高度为16米,跨度为40米,现把它 的示意图放在如下图的平面直角坐标系中,那么此抛物线的解析式为第5题 第6题 第7题 第8题6、如图,一小孩将一只皮球从A 处抛出去,它经过的路线是某个二次函数图像的一局部,如果他的出手处A 距地面OA 为1m ,球路的最高点为B 〔8,9〕,那么这个二次函数的表达式为,小孩将球抛出约米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师
大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和
检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应
内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
29.2三视图同步练习
1. 如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称.
2.请将六棱柱的三视图名称填在相应的横线上.
3.一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有
个碟子.
4. 圆柱对应的主视图是()
(A)(B)(C)(D)
5. 某几何体的三种视图分别如下图所示,那么这个几何体可能是().
(A)长方体(B)圆柱(C)圆锥(D)球
6. 下面是空心圆柱在指定方向上的视图,正确的是…()
俯视图
主视图
左视图
主
视
图
(A) (B) (C) (D)
7. 一个四棱柱的俯视图如右图所示,则这个四棱柱的主视图和左视图可能是()
(A) (B) (C) (D)
8. 主视图、左视图、俯视图都是圆的几何体是(
(A)圆锥(B)圆柱(C)球(D)空心圆柱
9. 根据要求画出下列立体图形的视图.
(画左视图)(画俯视图)(画正视图)
10. 画出右方实物的三视图.
11. 如图是一个物体的三视图,请画出物体的形状.
左
视
图
12. 根据下面三视图建造的建筑物是什么样子的?共有几层?一共需要多少个小正方体.
主视图左视图俯视图
答案:1、圆锥2、俯视图,正视图,左视图3、12. 4、C 5、B
6、A
7、D
8、C.
9
10、
主视图左视图俯视图
11、
12、图略,共三层,需9个小正方体.
教学反思
1 、要主动学习、虚心请教,不得偷懒。
老老实实做“徒弟”,认认真真学经验,扎扎实实搞教研。
2 、要勤于记录,善于总结、扬长避短。
记录的过程是个学习积累的过程,总结的过程就是一个自我提高的过程。
通过总结,要经常反思自己的优点与缺点,从而取长补短,不断进步、不断完善。
3 、要突破创新、富有个性,倾心投入。
要多听课、多思考、多改进,要正确处理好模仿与发展的关系,对指导教师的工作不能照搬照抄,要学会扬弃,在原有的基础上,根据自身条件创造性实施教育教学,逐步形成自己的教学思路、教学特色和教学风格,弘扬工匠精神,努力追求自身教学的高品位。