2015年秋季新版北师大版七年级数学上学期5.4、应用一元一次方程——打折销售教案4

合集下载

新北师大七年级上《5.4应用一元一次方程——打折销售》课后作业含答案

新北师大七年级上《5.4应用一元一次方程——打折销售》课后作业含答案

5.4 应用一元一次方程——打折销售1.某超市进了一批商品,每件进价为a元,若要获利25%,则每件商品的零售价应定为( ) A.25%a B.(1-25%)aC.(1+25%)a D.a1+25%2.某种家用电器的进价为800元,出售时标价为1 200元,后来由于电器积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A.六折B.七折C.八折D.九折3.某商品降价20%后出售,一段时间后欲恢复原价,则应在售价的基础上提高的百分数是( ) A.20% B.30%C.35% D.25%4.某商店将彩电先按原价提高50%,后在广告中写出“大酬宾,七折优惠”,结果每台彩电比原价多赚了100元,则每台彩电原价应是( )A.1 200元B.1 800元C.2 000元D.2 700元5.400元的九折是________;________的八五折是340元.6.如果某商品降价10%后的售价是a元,那么该商品的原价是________元.7.一商店把某商品九折出售仍可获得20%的利润率,该商品的进价是每件30元,则标价是每件________元.8.一件商品,每件成本50元,按成本增加25%销售后因库存积压减价,按售价的90%出售,每件还能赢利吗?________(填“能”或“不能”),赢利________元.9.某种彩电先按标价提高40%,然后在广告中写上“大酬宾八折优惠”,结果彩电反而赚了270元,求彩电的原标价.10.工艺商场按标价销售某种工艺品时,每件可获利45元,按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等,求该工艺品每件的进价、标价分别是多少元.11.为促销某商场定下如下方案:一次性购物不超过100元不优惠;超过100元,但不超过300元,按九折优惠;超过300元的按八折优惠,其中的300元仍按九折优惠.某人两次购物分别用了75元和286元.(1)此人两次购物,若物品不打折,要付多少钱?(2)此人两次购物共节省了多少钱?(3)若将两次购物的钱合起来,一次购买相同的物品,是否更省钱?说明理由.(2015·烟台)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3 000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价的10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2 100元(其他成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.课后作业1.C 考查代数式的列法2.B 设至多可打x 折,则1200×x10-800800≥5%,x≥7.3.D 设商品原售价为1,提高的百分数为x ,则1×(1-20%)(1+x)=1,x =14,所以提高的百分数为25%.4.C 设彩电原价为x 元,则x(1+50%)×0.7-x =100,x =2 000. 5.360元 400元6.109a 设原价x 元.(1-10%)x =a.x =109a. 7.40 设标价为x 元.90%x -30=30×20%。

5.4应用一元一次方程-打折销售七年级数学上册课件(北师大版)

5.4应用一元一次方程-打折销售七年级数学上册课件(北师大版)
每件服装的标价为:__(__1_+_4_0_%__)·_x____. 每件服装的实际售价为:_(_1_+_4_0_%__)_·_x_·_8_0_%_. 每件服装的利润为:___(1_+__4_0_%__) _·x__·_8_0_%__-__x_. 因此,列出方程为:_(1_+_4_0_%__)__·x__·8_0_%__-__x_=__1_5_. 解方程,得x=_1_2_5__. 因此每件服装的成本价是:_1_2_5__元.
解:设该商品的进价为x元. 由题意,得1100×80%=(1+10%)x. 解这个方程,得x=800. 因此,该商品的进价为800元.
三、典例精析
例2 :某超市节日酬宾,全场8折,一部手机在这次酬宾活动中的利润率为 10%,它的进价是2000元,求它的原价.
解:设这部手机的原价为x元. 根据题意,得80%x-2000=2000×10%. 解得 x=2750. 因此,这部手机的原价为2750元.
价格是
元.
四、当堂练习
5.一件衣服按标价的六折出售,店主可赚22元,已知这件衣服的进价 是50元,求这件衣服的标价是多少元.
解:设这件衣服的标价是x元.
根据题意,得 x-50=22.
解这个方程,得
x=120.
因此,这件衣服的标价是120元.
四、当堂练习
6.某商品的进价为200元,销售价为260元,后又折价销售,所得利润率为 4%,此商品是按原售价的几折销售的?
A.-x=60
B.300-=60
C.-x=60
D.300-=60
2.十一期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销
售,售价为2080元.设该电器的成本价为x元,根据题意,下面所列方程正

北师大版七年级数学上册5.4 应用一元一次方程——打折销售课件

北师大版七年级数学上册5.4 应用一元一次方程——打折销售课件
(程——打折销售/
交流思考
③一件服装原售价是120元,按原售价打8折(即按原 售价的80%)卖出,则这件服装实际售价是_9_6__元.
原售价打8折(即按原售价的80%):原售价 ×80%
按原售价打6 折,对折呢?
72元,60元.
探究新知
利润=售价—成本价 利润率:利润占成本的百分比. 利润率=利润÷成本×100% =(售价-成本) ÷成本×100%
探究新知
5.4 应用一元一次方程——打折销售/
交流思考 ①一个篮球成本是80元,售价是100元,则这 个篮球的利润是__2_0_元,利润率是__2_5_%_.
利润=售价-成本价
利润率=利润/成本价
答:这批夹克每件的成本价是50元.
连接中考
5.4 应用一元一次方程——打折销售/
(2019•阜新)某种衬衫因换季打折出售,如果按原价 的六折出售,那么每件赔本40元;按原价的九折出售, 那么每件盈利20元,则这种衬衫的原价是( C ) A.160元 B.180元 C.200元 D.220元
课堂检测
分析: 设商品原价为x元
售价 成本 利润 80%x 1800 1800×10%
等量关系: 售价-成本=利润
80%x-1800=1800×10%.
探究新知
5.4 应用一元一次方程——打折销售/
某商场将某种商品按原价的八折出售,此时商品的
利润率是10%.已知这种商品的进价为1800元,那么这种 商品的原价是多少?
售价是60元呢? -20,-25%
售价是
40,
120元呢? 50%
探究新知
5.4 应用一元一次方程——打折销售/
交流思考 ②一双皮鞋成本是60元,将成本提高50% (即加五成)后,标价是_9_0__元.

北师大版数学七年级上册5.4 《应用一元一次方程——打折销售》优质课件

北师大版数学七年级上册5.4 《应用一元一次方程——打折销售》优质课件

4.某件商品现在的售价为 34 元,比原价降低了 15%,则原来的
售价是( D )
A.51 元 B.28.9 元 C.35 元 D.40 元
5.某超市进了一批商品,每件进价为 a 元,若要获利 25%,则
每件商品的零售价应定为( C )
A.25%a B.(1-25%)a C.(1+25%)a
a D.1+25%
17.某商场将一款空调按标价的八折出售,仍可获利10%, 若该空调的进价为2000元,则标价为___2_7_5_0__元.
18.购买一本书,打八折比打九折少花2元钱,那么这本书 的原价是__2_0_____元.
19.某个体户进了40套服装,以高出进价40元的售价卖出 了30套,后因换季,剩下的10套服装以原售价的六折售出, 结果40套服装共收款4320元,问:每套服装的进价是多少元? 这位个体户是赚了还是赔了?赚了或赔了多少元?
19.设 每套衣服的进价为x元, 依题意得:30(x+40)+10(x+40)×0.6=4320, 解得:x=80,4320-80×40=1120元.
答:每套服装的进价是80元,这位个体户,赚了1120元
20.甲、乙两件服装的成本共500元,商店老板为获取利润, 决定将甲服装按50%的利润定价,乙服装按40%的利润定 价.在实际出售时,应顾客要求,两件服装均按9折出售, 这样商店共获利157元,求甲、乙两件服装的成本各是多少 元?
5.4 应用一元一次方程——打折销售
商品销售和利润问题中的关系式: (1)商品利润=商品售价___-_____商品成本价(商品进价);
商品利润
商品利润率=_商__品__成__本_×100%; 商品销售额=商品销售价×商品销售量; 商品的销售利润=(销售价-成本)×销售量.

2015年秋季新版北师大版七年级数学上学期5.4、应用一元一次方程——打折销售课件5

2015年秋季新版北师大版七年级数学上学期5.4、应用一元一次方程——打折销售课件5

10
自学检测1(3分钟)
进价x元的商品提价50%标价,则标价为:
再打八折出售,则售价为:
利润为:
利润率为:
都用式子表 示,
自学指导2(5分钟)
阅读课本P145“想一想”,完成课本上的问 题:
解:设每件服装的成本价为x元,那么 (1+40%) x ; 每件服装的标价为: 每件服装的实际售价为: (1+40%) x 80% ;
3.销售价=进价×(1+利润率) 都用式子表 折数 示, 4.售价 标价
问题:1.一件衣服的进价为80元,现以120元的价
格出售,可获利 120-80 元; 2.某商品的成本价是100元,现以150元卖 150 100 100% 出,这件商品的利润率是_______; 100 3.原价X元的商品提价40%后标价,则标价为 ______ (1+40% )x 元;
则由题意得:X ·(1+25%)=135 解这个方程,得:X=108。 则第一件衣服赢利:135-108=27。
设第二件衣服的成本价是y元, 由题意得:y · (1-25%)=135 解这个方程,得:y=180。 则第二件衣服亏损:180-135=45 总体上约亏损了:45-27=18(元)
∴总体上亏损了:18元。
解:设这件夹克的成本价为x元,依题意有:
x· (1+ 50%)· 80%=60
解得:x= 50
∴这件夹克的成本价为50元。
当堂训练(10分钟) 1、某服装商店以135元的价格售出两件衣服, 按成本计算,第一件盈利25 %,第二件亏损 25 %,则该商店卖这两件衣服总体上是赚了, 还是亏了?
解: 设第一件衣服的成本价是X元,
(1.4X 80% -X) 每件服装的利润为: 由此,列出方程: 1.4X× 80% -X=15 解方程,得:X= 125 。 因此,每件服装的成本价是 125 元。 ; ;

【最新】北师大版数学七年级上册5.4《应用一元一次方程——打折销售》公开课课件.ppt

【最新】北师大版数学七年级上册5.4《应用一元一次方程——打折销售》公开课课件.ppt
5.4 应用一元一次方 程——打折销售
打折是怎么回事?
所谓打折,就是商品以标价为基础,按 一定的比例降价出售,它是商家们的一种 促销行为。
例如:
一个滑板标价200元,若以九折出售, 则实际售价为 200 ×0.9 = 180(元),若打 七折,则实际售价为200 × 0.7 = 140(元)。
二、利润与利润率
例一、一家商店将某种服装按成本价提40%后标 价,又以8折(即按标价的80%)优惠卖出,结 果每件仍获利15元,这种服装每件的成本是多 少元?
[分析]:假设每件衣服的成本价为x元, 那么每件衣服标价为——元; 每件衣服的实际售价为—元; 每件衣服的利润为———元。
用一元一次方程解决实际问题的一般步骤是什么?
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/1/112021/1/112021/1/112021/1/11
谢谢观看
。2021年1月11日星期一2021/1/112021/1/112021/1/11
15、会当凌绝顶,一览众山小。2021年1月2021/1/112021/1/112021/1/111/11/2021

北师大版七年级数学上册第5章第4节应用一元一次方程—打折销售课件

北师大版七年级数学上册第5章第4节应用一元一次方程—打折销售课件
想一想:15元利润是怎样产生的?
解:设每件服装的成本价为x元, 那么 每件服装的标价为: x (1+40%)元 ; 每件服装的实际售价为:1.4x×80%元; 每件服装的利润为: (1.4x×80% -x)元 ; 由此,列出方程: 1.4x×80% -x=15 ; 解方程,得: x= 125 . 因此,每件服装的成本价是 125 元.
2.解: 设商品原价为1, ①先提价10%再降价10%后, 价格为: (1+10%)(1-10%) =1.1×0.9=0.99; ②先降价10%再提价10%后, 价格为: (1-10%)(1+10%) =0.9×1.1=0.99; ③先提价20%再降价20%后, 价格为: (1-20%)(1+20%) =0.8×1.2=0.96; ④先提价15%再降价15%后, 价格为: (1-15%)(1+15%) =0.85×1.15=0.9775, ∵0.96<0.9775<0.99=0.99, ∴调价后价格最低的方案是③.
问题2:
(1) 原价100元的商品打8折后价格为_8__0_元;
(2) 原价100元的商品提价40%后的价格为
__1_4_0__元;
(3) 进价100元的商品以150元卖出,利润
是__5_0____元,利润率是__5_0_%____;
(4) 原价x元的商品打8折后价格为
_0__.8_x__元;
问题2:
拓展提升
1.某服装商店以135元的价格售出 两件衣服, 按成本计算,第一件盈利 25%, 第二件亏损25%, 则该商店卖 这两件衣服总体上是赚了, 还是亏 了? 这二件衣服的成本价会一样吗? 算一算?
解:设第一件衣服的成本价是x元, 则由题意得: x (1+25%)=135 解这个方程, 得: x=108. 则第一件衣服赢利: 135-108=27. 设第二件衣服的成本价是y元, 由题意得: y (1- 25%) =135 解这个方程, 得: y=180. 则第二件衣服亏损: 180- 135=45 总体上约亏损了: 45- 27=18 (元) 因此, 总体上约亏损了18元.

七年级数学上册 5.4 应用一元一次方程—打折销售教案 (新版)北师大版

七年级数学上册 5.4 应用一元一次方程—打折销售教案 (新版)北师大版

第五章一元一次方程应用一元一次方程——打折销售一、课标与教材分析:本节课以“打折销售问题”为例展开探索,关键在于搞清成本、售价、标价、利润、利润率等术语的含义.分析“打折销售问题”中的数量关系,建立数学模型,并用方程最终解决实际问题.使学生进一步领悟到方程解实际问题的关键是找到“等量关系”.由于打折销售问题是学生日常生活中常见的问题,可以在课前安排学生进行一次社会调查,让学生深入商店,感受有关打折销售的现实情景,了解成本、售价、标价、利润、利润率等之间的关系.同时由于此类问题所涉及的数量关系及数据较复杂,在讨论数量关系的过程中,学生可能会遇到困难,教师可以列出表格,帮助学生分析,首先鼓励学生自己填表,对学有困难的学生教师要通过举具体事例说明关系:利润=售价-成本,利润率=利润÷本金等,然后引导学生填写表格.要求学生在解决问题的过程中体验数学与周围世界的联系,以及数学在社会生活中的作用和意义,逐步领会学习数学与个人成长之间的关系,感受成功,增强自信.二、学情分析:学生已经知道的:打折问题,学生在小学阶段已有所接触和认识,学生已知“几折”所表示的意义,而且学过用算术方法计算一些简单的打折销售问题。

但对于绝大多数学生来说,通过建立等量关系来分析一些较复杂的打折销售问题还存在一定的困难。

学生想知道的:通过前两节课的学习,学生已经经历运用方程解决实际问题的过程,知道寻找等量关系是解决问题的关键。

打折销售是学生学习了代数式,简易方程即一元一次方程的解法后的一个理论联系实际的最好教材,也是前一部分知识的应用与巩固。

学生自己能解决的:打折销售是生活中常见的但不是很熟悉的一个问题,学生缺少丰富的生活体验,因此布置学生进行课前调查很有必要。

学生根据切身体会和实践经验进行总结,应用一元一次方程解决实际问题的一般步骤,体会更加深刻。

三、教学目标1.理解成本、售价、利润、利润率之间的数量关系,并能复述。

2.能在具体打折问题中准确找出等量关系列方程求解,并根据所求方程的解来解释和分析打折销售中的具体现象3.通过调查,体验和分析,充分感受身边的数学,尝试用数学的眼光分析生活中的打折现象,理性消费。

北师大版数学七年级上册5.4《应用一元一次方程——打折销售》参考教案

北师大版数学七年级上册5.4《应用一元一次方程——打折销售》参考教案

应用一元一次方程——打折销售〖教学目标〗1.知识与技能(1)体会与掌握运用一元一次方程解决实际生活中的问题的一般步骤。

(2)会寻找打折销售问题中的等量关系,能熟练列出方程。

2.数学思考初步学会运用数学的思维方式去观察、分析现实社会中碰到的商品打折销售问题。

3.解决问题(1)经历将生活中的具体问题抽象为数学模型的过程。

(2)培养反思的意识与习惯。

(3)培养“学数学、用数学”的习惯,能从数学的角度提出问题、解决问题。

4.情感与态度(1)学会与他人合作、与他人沟通。

(2)明白诚实是为人立身之本的道理。

〖教材分析〗《数学课程标准》明确提出:让学生“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。

”本节课通过“打折销售”这一素材培养学生学会对现实生活中遇到的实际问题进行思考,并运用数学思维方式去解决这一问题,同时培养学生提出问题的意识与能力。

〖教学设计〗(一)表演小品,导入新课店主站在一张桌子后,桌子上放着两件衣服,身后立着一块醒目的牌子:“放血大处理”,“血”字是红色的。

店主喊:“大家过来看一看,瞧一瞧,走过、路过,不要错过,本店不计成本挥泪大甩卖,所有服装两折处理,每件只卖48元……”一工商人员上场对店主说:“你这是违法行为,请把牌子收起来,不能这么喊。

”店主:“我确实是两折处理呀!”工商人员:“你把衣服的成本价提高了多少标价?”店主:“我提高了500%以后标价的。

”工商人员:“同学们,他将每件衣服按成本价提高了500%进行标价,再按两折处理,每件衣服卖48元,你们算一算,他到底是赚还是亏?”(表演结束。

)(二)学生猜测小品中的店主是赚是亏?(独立思考)(三)学生讨论以下问题1.如果一件衣服的成本价为100元,按成本价提高500%标价,标价是多少?再按标价打两折销售,实际售价是多少?2.假设一件衣服的成本价为x元,按成本价提高500%标价,标价是多少?再按标价打两折销售,实际售价是多少?3.你所列出的实际售价与小品中的商家的售价有什么关系?4.根据这个等量关系列出方程,并解出方程;验证你的猜测是否正确。

北师大版-数学-七年级上册-5.4 应用一元一次方程——打折销售 教案

北师大版-数学-七年级上册-5.4 应用一元一次方程——打折销售 教案

应用一元一次方程——打折销售教学目标1.使学生经历探索打折销售中的已知量和未知量之间的相等关系,列出一元一次方程解简单的应用题;体验数学知识在现实生活中的应用.2.使学生进一步了解列出一元一次方程解应用题这种代数方法;培养学生的分析问题和解决问题的能力.教学重点与难点教学重点:学会用一元一次方程解简单的打折销售问题,经历用方程解决实际问题的过程.教学难点:正确分析打折销售问题的数量关系列出方程.教学过程一、课前调查亲身体验,感受数学与社会生活的联系,了解打折销售的基本概念,为上课作知识铺垫和感性经验,为课后练习打下坚实的基础,同时培养学生走向社会、适应社会的能力.以学习小组为单位分工协作:一部分学生运用摄像、拍照等手段对商场的广告牌、标语等进行记录;一部分学生采用口头交流等方式对消费者、营业员进行随访调查;组长组织组员对数字信息进行归纳总结,并准备素材汇报调查结果.二、情境引入情景:教师(批发商)桌前摆出一盒铅笔,旁边立一小牌:只批发,不零售,每捆10支,一捆1.6元.甲(小商贩)批发铅笔:“我批发10捆,共16元.”乙(消费者)走向前看了看价格说:“铅笔价格贵点了,便宜点吧?”学生甲回答:“小本买卖没几分利,你多买点,我给你八折优惠,0.20元一支.”学生乙掏出一元钱买走了5支铅笔.丙提出问题:在刚才的表演中,铅笔的成本价、标价、实际售价、利润分别是多少?它们之间有什么等量关系?你是怎么理解商品“八折优惠”的?小商贩在这笔买卖中获得利润率是多少?三、研讨分析学生通过分组讨论,加上课前调查积累的经验很容易得出“0.16元是成本价、0.25元是标价、0.20元为打折后的实际售价、一支铅笔所获利润为0.20-0.16=0.04元.根据学生对这些概念的理解,教师可作适当补充:成本价又称进价或本金,是指商家为销售而购进货物时的价钱;标价是指商家出售商品时所标明的价格,不一定是实际卖出的价格,有时称作原价;售价是指商品成交时的实际价格;利润是指商品售价与进价之间的差额,即利润=售价-进价,一般情况下,商家不做无利的买卖;打折即买卖货物时,降低商品的定价,打几折就是按原标价的十分之几售出商品.它们之间的关系有:成本价0.16元+提高的价钱=标价0.25元;标价0.25元×打折数810=折后售价0.20元;实际售价0.20元-成本价0.16元=利润0.04元;利润0.04元成本0.16元×100%=利润率25%.(因此,利润=成本×利润率) 在刚才的表演中,商贩进行的“八折优惠”的意思是按标价0.25元的0.8倍出售,即每支铅笔的售价为0.25×0.8=0.20元.小商贩在这笔买卖中获得的利润率为每支铅笔获得利润0.04元每支铅笔的成本0.16元×100%=25%. 四、典例解析例某商场将某种商品按原价的8折出售,此时商品的利润率是10%.已知这种商品的进价为1 800元,那么这种商品的原价是多少?分析:利润率=利润成本=售价-成本成本,在解决这类问题的过程中,要抓住这个等量关系.由于本例中只提到售价、进价和利润率,因此我们可以用“进价”代替“成本”.解:设商品原价是x 元,根据题意,得80%x -1 8001 800=10%. 解这个方程,得x =2 475.因此,这种商品的原价为2 475元.五、基础演练1.一件商品的进价为45元,利润为10元,则售价应为__________元.2.一件衣服的售价为130元,进价为80元,则利润为__________元.3.一件商品的标价为50元,现以八折销售,售价为__________元;如果进价为32元,则它的利润为__________元,利润率是__________.4.一块手表的成本价是70元,利润率是30%,则这块手表的利润是__________元,售价应是__________元.5.一部小灵通的利润为150元,售价为600元,则这部小灵通的成本价是__________元,利润率为__________.6.一款诺基亚手机原价1 080元,现在打折促销,售价为810元,则商家打______折销售.六、总结反思本节课你有什么感受和收获?1.知道了打折、利润的含义,了解了利润、售价、成本价之间的关系,学会了利润率的计算方法.2.对于一些实际问题,可以选设未知数,并表示其他未知量,利用一般等量关系(如公式等)构建一元一次方程求解.3.用方程模型可以帮助我们解决商品营销中的打折问题,数学来源于生活,服务于生活.七、评价与反思:参考答案:五、基础演练1.552.503.40 8 25%4.21 915.450 33.33%6.7.5。

北师大版数学七年级上册5.4《应用一元一次方程——打折销售》教案

北师大版数学七年级上册5.4《应用一元一次方程——打折销售》教案

北师大版数学七年级上册5.4《应用一元一次方程——打折销售》教案一. 教材分析北师大版数学七年级上册5.4《应用一元一次方程——打折销售》这一节主要让学生了解打折销售的实际背景,掌握用一元一次方程解决实际问题的方法。

教材通过实例引入,让学生了解商品原价、折后价、折扣等概念,并学会建立一元一次方程来求解实际问题。

二. 学情分析七年级的学生已经学习了简单的一元一次方程,对解方程有一定的了解。

但解决实际问题的能力还不够,需要通过实例来引导学生理解实际问题与数学知识的联系,培养他们运用数学知识解决实际问题的能力。

三. 教学目标1.了解打折销售的实际背景,理解商品原价、折后价、折扣等概念。

2.学会建立一元一次方程来解决打折销售的实际问题。

3.培养学生的数学建模能力和解决实际问题的能力。

四. 教学重难点1.重点:了解打折销售的实际背景,掌握用一元一次方程解决打折销售实际问题的方法。

2.难点:建立正确的数学模型,求解一元一次方程。

五. 教学方法采用问题驱动法,通过实例引导学生了解实际问题与数学知识的联系,培养他们运用数学知识解决实际问题的能力。

在教学过程中,注重启发式教学,引导学生主动思考,积极参与。

六. 教学准备1.准备相关实例,如商品原价、折后价、折扣等。

2.准备教学PPT,展示实例和讲解过程。

七. 教学过程1.导入(5分钟)利用PPT展示商品原价、折后价、折扣等实例,引导学生了解打折销售的实际背景。

2.呈现(10分钟)呈现具体实例,如一件商品原价为100元,打八折后的价格为80元。

引导学生思考,如何用数学知识来表示这个问题。

3.操练(10分钟)让学生分组讨论,尝试建立一元一次方程来解决这个问题。

引导学生理解,打八折相当于原价的0.8,所以可以建立方程100 * 0.8 = 80。

4.巩固(10分钟)让学生解答其他类似的打折销售问题,如商品原价为200元,打七折后的价格为多少。

引导学生运用一元一次方程解决问题。

北师大版数学七年级上册5.4 应用一元一次方程——打折销售教案

北师大版数学七年级上册5.4 应用一元一次方程——打折销售教案

4 应用一元一次方程——打折销售●情景导入 同学们,请帮我解决一个问题: 一批服装的进价是每件80元,按成本价提高50%后标价,后来,又按标价的八折进行销售.请你帮老师计算一下,这批服装在打完折后还能赚到钱吗?【教学与建议】教学:通过实际问题,熟悉销售问题中涉及的有关概念,并能简单计算.建议:通过这个活动让学生感受到数学就在身边,极大地激发学生学习数学的热情和积极性.●复习导入1.与销售有关的几个概念:(1)进价:__购进__商品时的价格(有时也叫成本价). (2)售价:在销售商品时的__售出价__(有时也叫成交价、卖出价).(3)标价:在销售时__标出的价__(有时称原价、定价).(4)利润:在销售商品的过程中的纯收入,一般情况下利润=__售价-进价__.(5)利润率:__利润__占__进价__的百分率,即利润率=__利润÷进价×100%__.(6)折扣:销售价占__标价__的百分率(如打九折,即按标价的90%出售).2.填空:(1)原价100元的商品提价30%后的价格为__130__元;提价后若打九折销售,则售价为__117__元;此商品的利润为__17__元,利润率是__17%__.(2)一件商品打折出售,就是用原价乘__折扣__.【教学与建议】教学:复习相关概念,为新课的学习打好基础.建议:通过简单的习题,使同学们体会概念的意义.*命题角度1 利润率问题 打折销售问题中应注重学生对利润率概念的理解.利润率公式:商品利润率=商品利润商品进价×100%. 【例1】商店对某种手机的售价作了调整,按原售价的八折出售,此时的利润率为14%.若此种手机的进价为1 200元,设该手机的原售价为x 元,则下列方程正确的是(A)A .0.8x -1 200=1 200×14%B .0.8x -1 200=14%xC .x -0.8x =1 200×14%D .0.8x -1 200=14%×0.8x【例2】一家商店将某款棉衣按进价提高40%标价,又以八折卖出,结果每件棉衣可获利15元,则这款棉衣每件的进价是__125__元.*命题角度2 折扣问题在打折销售问题中,比如打九折,就是用售价乘90%或0.9,但是如果要求打几折,学生列方程,设折数为x 时,方程中应该用售价乘x 10. 【例3】某服装的进价为80元/件,标价为200元/件,商店将此服装打x 折销售后仍获利50%,则x 为(B)A .5B .6C .7D .8【例4】某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打多少折?解:设商店应打x 折.根据题意,得180×x 10-120=120×20% 解得x =8.答:商店应打八折.*命题角度3 打折销售中的分类讨论问题判断所购商品价格在哪个区间内,对应的折扣是多少,直接通过“商品售价=商品标价×折扣数10”计算即可.针对“复式折扣”问题,根据“商品售价=某一区间商品折扣价+商品价格超出部分×另一区间的商品折扣数10”进行计算. 【例5】超市推出如下优惠方案:①一次性购物不超过100元,不享受打折优惠;②一次性购物超过100元但不超过300元,一律打九折;③一次性购物超过300元,一律打八折.如果李明两次购物分别付款80元、252元,那么他一次购买与上两次购买相同的物品应付款__288元或316元__.高效课堂 教学设计 1.理解商品销售中所涉及的进价、标价、售价、利润及利润率的含义.2.能列一元一次方程解决有关商品打折销售的问题.理解商品销售中的进价、标价、售价、利润、利润率的关系.列一元一次方程解决商品打折销售的问题. 活动一:创设情境 导入新课某经销商将进价为50元的商品标价165元,却打着“5折亏本大甩卖”的广告,小明妈妈看见广告觉得很划算,但小明觉得经销商在欺骗顾客.你同意小明的观点吗?你遇到过这样的事情吗?活动二:实践探究 交流新知【探究】应用一元一次方程解决打折销售问题多媒体出示教材P 145内容学生通过思考、分析 ,与同伴进行交流,解决下面的问题.设每件服装的成本价为x 元,你能用含x 的代数式表示其他的量吗?问题中有怎样的等量关系?每件服装的标价为:__(1+40%)x __; 每件服装的实际售价为:__0.8×(1+40%)x __;每件服装的利润为:__0.8×(1+40%)x -x __;由此,列出方程:__0.8×(1+40%)x -x =15__;解方程,得x =__125__;因此每件服装的成本价是__125__元.【归纳】进价是进货时的价格,标价是出售时所标明的价格,售价是出售时的实际价格.售价=标价×打折数10,利润=售价-进价.活动三:开放训练 应用举例【例1】(教材P 146例题)某商场将某种商品按原价的8折出售,此时商品的利润率是10%.已知这种商品的进价为1 800元,那么这种商品的原价是多少?【方法指导】利润率=利润成本 ×100%=售价-成本成本×100%,在解决这类问题的过程中,要抓住这个等量关系.由于本例中只提到售价、进价和利润率,因此我们可以用“进价”代替“成本”. 解:设商品原价是x 元.则该商品的实际售价为:__80%x __;该商品的利润为:__80%x -1__800__; 该商品的利润率为:__80%x -1 8001 800__; 由此,列出方程:__80%x -1 8001 800=10%; 解方程,得x =__2__475__;因此,这种商品的原价为__2__475__元.【例2】一件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这批夹克每件的成本价是多少元?【方法指导】先用成本价表示出标价,然后根据等量关系式“标价×0.8=售价”列方程.解:设这批夹克每件的成本价是x 元,则标价为(1+50%)x 元.根据题意,得(1+50%)x ·0.8=60.解这个方程,得x =50.因此,这批夹克每件的成本价是50元.活动四:随堂练习1.新生活超市元旦实行货物6折优惠销售,定价为9元的物品,售价为__5.4__元.售价为15元的物品,定价为__25__元.2.一件商品进价为40元,售价为60元,其利润是__20__元,利润率是__50%.3.某商品进价为105元,若按进价的150%标价,要获得此商品20%的利润,商店可以打几折销售(B) A.7 B.8 C.6 D.54.某服装商贩同时卖出两套服装,每套均卖180元,按成本计算,其中一套盈利25%,另一套亏损25%,则该商贩在这次经营中(A)A.亏损24元B.盈利24元C.不亏不盈D.盈利20元5.某商店把某种商品按进价加20%作为定价,按定价的1.5倍标价后再8折出售,最终售出10件,总营业额为720元,则这次生意盈利还是亏损?盈利或亏损多少元?解:设进价为x元.根据题意,得x·(1+20%)×1.5×0.8×10=720,解得x=50.故这次生意共盈利720-50×10=220(元).活动五:课堂小结与作业学生活动:通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?教学说明:教师引导学生回顾进价、标价、售价、利润、利润率这几个量的关系,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.作业:课本P146习题5.7中的T1、T2、T3本节课从和我们的生活息息相关的利润问题入手,让学生在具体情境中感受到数学在实际生活中的应用,从而激发他们学习数学的兴趣.根据“实际售价=进价+利润”等数量关系列一元一次方程解决与打折销售有关的实际问题.审清题意,找出等量关系是解决问题的关键.另外,商品经济问题的题型很多,让学生触类旁通,达到举一反三,灵活运用有关的公式解决实际问题,提高学生的数学能力.。

2015年秋季新版北师大版七年级数学上学期5.4、应用一元一次方程——打折销售课件29

2015年秋季新版北师大版七年级数学上学期5.4、应用一元一次方程——打折销售课件29

达标检测
一家商店将某种服装按成本价提高40% 后标价,又以8折优惠卖出,结果每件仍 获利15元,这种服装每件的成本价是多少 元? 这题有哪些关键词? 这些词间有联系吗?
用什么作相等关系?
达标检测
一件夹克按成本价提高50%后标价,后因季 节关系按标价的8折出售,每件以60元卖出, 这批夹克每件的成本价是多少元? 一件商品按成本价提高20%后标价,又以九 折销售,售价为270元,这种商品的成本价 是多少? 某商场的电视机原价为2500元,现以八折 销售,如果想使降价前后的销售额都为10 万元,那么销售量应增加多少台?
进价 数量 50 100
成本
售价/件 x
总售价
深圳
虎门
12 9
12×50
50x 100x
9×100
x
50x+100x=(12×50+9×100)(1+25%) x=12.5
达标检测
某商品的进价是2000元,标价为3000元,商 品要求以利润率不低于5%的售价打折出售, 则该商品最低可以打__折。 某商品的价格,1999年为a,2000年上涨了 10%,2001年又下降了10%,则2001年的 价格比1999年的价格是高了还是低了,或 是相等呢?
课时目标
1. 通过分析打折销售中的数量关系,经历应 用方程解决实际问题的过程; 2. 了解商品销售中相关概念的含义,通过分 析打折销售中的数量关系,利用成本、售 价、标价、利润、利润率之间的关系,列 方程解决实际问题.
导学点拔
你能根据自己的理解说出它们的意思吗?
成本价、标价、售价、 利润、利润率、 打折、销量、 提高了、提高到 你知道它们之间的关系吗?
个体户小张把某种货物按标价九折出售,仍可 获利20%,若货物的进价为每件24元,求每件 的标价是多少元?

北师大版初中数学七年级上册5.4 应用一元一次方程——打折销售 课件

北师大版初中数学七年级上册5.4 应用一元一次方程——打折销售 课件

解:设商品的原价是x元,根据题意,得
等量关系:
解这个方程,得x=2475.
(售价-成本) ×100%=利润率 成本
答:这种商品的原价为2475元.
探究新知
5.4 应用一元一次方程——打折销售/
归纳总结
1. 用一元一次方程解决实际问题的关键: (1) 仔细审题. (2) 找等量关系. (3) 解方程并验证结果.
基础巩固题
3.某种牛奶进价每瓶5元,若按标价的8折销售, 仍然获利3元, 求该种牛奶的标价为多少元? (1)设_该__种__牛__奶__的__标__价__为__x_元_____; (2)实际售价为___8_0_%__x_____元; (3)列方程为___8_0_%__x_-_5_=_3_____; (4)解得x=_______1_0________; (5)答:_该__种__牛__奶__的__标__价__为__1_0_元___ .
解这个方程, 得: x=108. 则第一件衣服盈利: 135-108=27(元). 设第二件衣服的成本价是y元,
由题意得: y(1-25%)=135. 解这个方程, 得: y=180.
则第二件衣服亏损: 180-135=45(元), 总体上约亏损了: 45-27=18 (元). 因此, 总体上约亏损了18元.
北师大版 数学 七年级 上册 5.4 应用一元一次方程——打折销售/
5.4 应用一元一次方程 ——打折销售
导入新知
5.4 应用一元一次方程——打折销售/
打折销售情景剧
特惠区
素养目标
5.4 应用一元一次方程——打折销售/
3. 使学生掌握商品销售中的利润、进价和标价之间的关系. 2. 进一步认识、掌握列方程解应用题的一般步骤. 1. 理解、掌握打折销售中的各种数量关系.

5.4《应用一元一次方程——打折销售》课件(共20张PPT)北师大版数学七年级上册

5.4《应用一元一次方程——打折销售》课件(共20张PPT)北师大版数学七年级上册

想一想
一家商店将某种服装按成本价提高40%后标价,又以8折优惠 卖出,结果每件仍获利15元.
知识回顾 典例探究 方法归纳 巩固练习 课堂小结 布置作业
想一想
一家商店将某种服装按成本价提高40%后标价,又以8折优惠 卖出,结果每件仍获利15元.
设每件服装的成本价为x元, 那么每件服装的标价为: (1+40%)x ; 每件服装的实际售价为: (1+40%)x ∙80% ; 每件服装的利润为: (1+40%)x ∙80%- x ; 由此,列出方程: (1+40%)x ∙80%- x=15 ;
解:设成本价为x元,
则标价为(1+50%) x元,根据题意,
得 (1+50%)0
60 -50 = 10(元)
利润率 10 100%=20% 50
答: 老板赚了10元,利润率为20%.
5x0
成本价
(1+50%)x
标价
60 售价
知识回顾 典例探究 方法归纳 巩固练习 课堂小结 布置作业
经典名著的定价为x元,则可列方程为 0.9x-2=0.8x+10 .
4.一家商店因换季将某种服装打折销售,如果每件服装按标价 的5折出售将亏本20元,而按标价的8折出售将赚40元.为了保 证不亏本,最少要打 6 折.
知识回顾 典例探究 方法归纳 巩固练习 课堂小结 布置作业
随堂练习
抢答
5.岚岚去文具店买练习本,营业员告诉她若所购买练习本超 过10本,则超过10本的部分按七折优惠.岚岚买了20本,结 果便宜了1.8元,你知道原来每本的价格是多少吗?
培养学生建立方程模型将实际问题转化为数学问题的化归能力.
4.体会数学与生活的密切联系,激发学生学习数学的兴趣;体验与人

北师版七上数学5.4应用一元一次方程——打折销售

北师版七上数学5.4应用一元一次方程——打折销售

3.一种商品在进价基础上经过提价50%,再打八折出售,最后 还获利40元,设这种商品的进价为x元,根据题意,可列方程: __(_1_+__5_0_%__)×__8_0_%__x_-__x_=__4_0_.
能力提升
4.某个体户商贩在一次买卖中同时卖出两件上衣,每件都以135元
售出,若按成本计算,其中一件盈利25%,另一件亏本25%,则他
课堂达标
基础过关 1.2023年“五一”期间,某电器按成本价提高30%后标价,再打八 折销售,售价为2888元.设该电器的成本价为x元,根据题意,下列 所列方程正确的是( A ) A.x(1+30%)×80%=2888 B.x×30%×80%=2888 C.2888×30%×80%=x D.x×30%=2888×80%
解:设甲种口罩每包进价x元,则乙种口罩每包进价(x+10)元, 由题意,得30%x=20%(x+10), 解得x=20, 故x+10=20+10=30. 甲、乙两种口罩每包的利润为30%×20=6(元), 则出售口罩的利润额为6×(150+100)=1500(元), 答:这个月该药店出售口罩的利润额是1500元.
知识点3 利息问题 5.(例3)小明将一笔压岁钱存到银行,存期为两年,年利率是 2.25%,到期取款时小明共得到本利和1045元,问两年前小明存入 多少元? 解:设两年前小明存入x元, 由题意,得x+2×2.25%x=1045, 解得x=1000. 答:两年前小明存入1000元. 【小结】注意利息与本利的和区别.
解:(1)设这种节能型冰箱进价是x元, 根据题意,得90%×(1+20%)x=2430, 解得x=2250. 所以这种节能型冰箱进价是2250元. 则每台冰箱盈利为2430-2250=180(元). 答:按照新售价出售,商家每台冰箱还可赚180元.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用一元一次方程——打折销售
【教学目标】
知识与技能
1.使学生会列一元一次方程解决有关商品销售的问题.
2.通过应用题教学使学生进一步使用代数中的方程去反映现实中的相等关系,体会代数方法的优越性.
过程与方法
1.根据具体问题的数量关系,形成方程的模型,初步形成学生利用方程的观点认识现实世界的意识和能力.
2.通过分组合作学习的活动学会在活动中与他人合作,并能与他人交流思维的过程与结果.
情感、态度与价值观
通过由具体实例的分析、思考与合作学习的过程培养学生理论联系实际的辩证唯物主义的思想以及善于分析问题、利用知识解决实际问题的良好的学习习惯.
【教学重难点】
重点:正确分析应用题的题意,列出一元一次方程.
难点:正确列出一元一次方程.
【教学过程】
一、温故知新
师:同学们,今天我们要学习如何列一元一次方程解应用题,那么列方程解应用题的关键是什么呢?
学生回答,教师点评.
二、例题讲解
【例1】某商场将某种商品按原价的8折出售,此时商品的利润率是10%.已知这种商品的进价为1800元,那么这种商品的原价是多少?
分析:利润率==,在解决这类问题的过程中,要抓住这个等量关系.由于本例中只提到售价、进价和利润率,因此我们可以用“进价”代替“成本”.
解:设商品原价是x元,根据题意,得
=10%,
解这个方程,得x=2475,
因此,这种商品的原价为2475元.
【例2】商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%;另一件亏损
25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
分析:两件衣服共卖了120(60×2)元,是盈是亏要看这家商店买进这两件衣服时花了多少钱,如果进价大于售价就亏损,反之就盈利.
假设一件商品的进价是40元,如果卖出后盈利25%,那么商品利润是40×25%元,如果卖出后亏损25%,商品利润是40×(-25%)元.
本题中,设盈利25%的那件衣服的进价是x元,它的商品利润就是0.25x元,根据进价与利润的和等于售价,列出方程
x+0.25x=60.
由此得x=48.
类似地,可以设另一件衣服的进价为y元,它的商品利润是-0.25y元,列出方程
y-0.25y=60.
由此得y=80.
两件衣服的进价是x+y=128元,而两件衣服的售价是60+60=120元,进价大于售价,由此可知卖这两件衣服总共亏损8元.
三、巩固练习
在商品市场经常可以听到小贩的叫嚷声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利2元卖了,他还能获利20%,求一个玩具赛车的进价是多少元?
【答案】10×80%-2=6(元),
设进价为x,则有x·(1+20%)=6,
解得x=5(元).
即一个玩具赛车的进价是5元.
四、课堂小结
师:通过上面的例题,请同学们总结出列一元一次方程解应用题的步骤.
学生回答,教师予以补充.。

相关文档
最新文档