太阳能光伏发电原理与应用
太阳能光伏发电系统原理与应用技术
太阳能光伏发电系统原理与应用技术一、引言在当今社会,能源问题日益成为人们关注的焦点。
传统的化石能源日益枯竭,同时也给地球环境带来了严重的污染。
寻找一种清洁、可再生的能源就成为了当务之急。
太阳能作为一种非常丰富的可再生能源,其应用前景广阔。
太阳能光伏发电系统作为太阳能利用的一种主要方式,在能源领域也备受关注。
本文将就太阳能光伏发电系统的原理与应用技术展开探讨。
二、太阳能光伏发电系统原理1. 太阳能光伏发电系统的基本构成太阳能光伏发电系统主要包括太阳能电池板、光伏逆变器、储能设备和配电系统等组成部分。
其中,太阳能电池板是太阳能光伏发电系统的核心部件,其作用是将太阳能转换为直流电能;光伏逆变器则是将直流电能转换为交流电能供电使用;而储能设备则可以将多余的电能储存起来,以应对没有太阳能供应的时候。
2. 太阳能电池板的工作原理太阳能电池板利用光能来产生电能,其主要工作原理是光生电效应。
当太阳光照射到太阳能电池板上时,光子会被太阳能电池板的半导体材料吸收,并激发出电子和空穴对。
这些电子和空穴对在电场的作用下,分别向两端移动,形成电流,从而产生了电能。
三、太阳能光伏发电系统应用技术1. 多晶硅和单晶硅太阳能电池随着技术的不断发展,太阳能电池的制备工艺也得到了极大的改进。
目前市场上主要的太阳能电池为多晶硅和单晶硅太阳能电池。
多晶硅太阳能电池通过将多晶硅棒切割成薄片来实现,而单晶硅太阳能电池则是利用单晶硅棒来生产。
这两种太阳能电池在光伏发电系统中应用广泛,且具有较高的转换效率和稳定性。
2. 太阳能光伏发电系统的并网技术随着太阳能光伏发电技术的不断发展,其并网技术也愈加成熟。
并网技术是指太阳能光伏发电系统将发电效果集中于电网内,以供应城市和居民的用电需求。
通过并网技术,太阳能光伏发电系统可以将多余的电能输送到电网中,从而实现供需平衡和能源优化利用。
3. 太阳能光伏发电系统的智能化管理随着物联网和大数据技术的发展,太阳能光伏发电系统的智能化管理也成为了发展趋势。
太阳能光伏发电技术的研究和应用
太阳能光伏发电技术的研究和应用随着科技的不断进步,太阳能光伏发电技术已经成为了全球能源领域的一个重要组成部分。
太阳能光伏发电技术利用太阳能的能源将其转化成电能,这是一个高效、可持续的能源利用方式。
近年来,太阳能光伏发电技术的研究和应用一直是全球科学家和工程师们追求的目标,下面我们来了解一下太阳能光伏发电技术的研究和应用。
一、太阳能光伏发电技术的原理1.太阳能光伏发电技术基本原理太阳能光伏发电技术就是利用太阳光通过光伏电池将光能转化成电能的一种技术。
太阳光通过光伏电池后激发出一定的电子,形成电流,从而实现能量的转换并输出电力。
2.太阳能光伏电池的基本结构太阳能光伏电池由n型半导体和p型半导体组成,这些半导体中夹杂着一定的氧化物或者硅粉等杂质,从而形成电子空穴对,在太阳光的照射下,电子空穴对得以分离而产生电流。
3.太阳能光伏电池的分类根据半导体类别和PN结的制备方法,太阳能光伏电池可以分为硅晶电池、非晶硅电池、铜铟镓硒电池等多种类型。
二、太阳能光伏发电技术的应用1.太阳能光伏发电技术在家庭用电中的应用太阳能光伏发电技术可以为家庭提供电力,特别是在一些偏远地区,太阳能光伏发电技术可以成为唯一的电力供应方式。
2.太阳能光伏发电技术在大型能源系统中的应用太阳能光伏发电技术在大型能源系统中也有着广泛的应用,如电网并网发电、农业扶贫光伏发电等。
三、太阳能光伏发电技术的研究1.太阳能光伏发电技术在能源存储方面的研究随着能源需求增长,储能技术的研究也成为了太阳能光伏发电技术的关键研究方向。
目前,科学家们正在探索太阳能光伏发电技术与其他储能技术集成的途径,如电池、压缩空气等。
2.太阳能光伏发电技术在生产过程中的研究科学家们正在探索太阳能光伏发电技术在生产过程中的环保性、经济性等多方面,以实现生产成本的降低,进一步提高技术的使用率和应用范围。
四、太阳能光伏发电技术的未来太阳能光伏发电技术是一种可持续的能源利用方式,未来大概率成为能源的主要来源之一。
光伏发电技术及其应用分析
光伏发电技术及其应用分析随着全球气候变化问题日益严峻,清洁能源成为了许多国家政策中不可或缺的一部分。
近年来,光伏发电技术作为一种清洁、环保、可再生的能源,其发展速度越来越快。
本文将探讨光伏发电技术的基本原理、分类、应用以及未来发展趋势。
一、光伏发电技术基本原理光伏发电技术是一种利用太阳能光子对半导体材料的光电转换能力来产生电能的技术。
其基本原理是将半导体材料暴露在阳光下,太阳能光子与半导体原子相互作用,激发出电子。
此时,原子大部分带正电,而激发出来的电子带负电,这种程度不平衡形成了电场,电子在电场的作用下被吸引到另一个接触面上,这样就产生了光电流。
光电流可以被蓄电池、用电器直接使用,也可以通过变频器转换为交流电。
二、光伏发电技术的分类根据不同的半导体材料,光伏发电技术可以分为单晶硅、多晶硅、非晶硅、柔性硅、有机光伏等不同种类。
其中,单晶硅和多晶硅被广泛应用于光伏发电市场,其性能稳定、效率高、使用寿命长成为市场主流产品。
另外,也有一些不同形态的光伏发电装置,例如光伏电池板、光伏薄膜、光伏玻璃等,他们形状各异,但都可以实现太阳能光子转化为电能的功能。
三、光伏发电技术的应用1. 太阳能光伏发电系统太阳能光伏发电系统是利用太阳光伏发电技术来将光能转化为电能。
其系统由发电部分、储能部分和控制部分组成,发电部分由太阳能电池板构成,储能部分由蓄电池构成,控制部分采用微控制器技术。
这种系统可以广泛应用于农村、山区等没有电网的地方,还可以用于光伏发电站。
2. 光伏发电空调系统光伏发电空调系统是指用光伏发电技术驱动空调的系统。
该系统利用光伏电池板中的太阳能,将其转换为电能,再经逆变器转化为交流电再供电给空调。
其特点是非常环保、节能、适用范围广,可以应用于居民房屋、商店等空间中。
四、光伏发电技术的未来发展趋势光伏发电技术是未来清洁能源领域的重要研究方向,未来将会出现更多的创新技术,优化前沿设备,降低光伏发电系统的成本,更加方便大众普及和应用。
太阳能光伏发电原理与应用实验报告资料
太阳能光伏发电原理与应用实验报告资料一、实验目的1.了解太阳能光伏发电的基本原理;2.熟悉太阳能光伏电池的结构和工作原理;3.掌握太阳能光伏电池的性能参数测量以及光照条件与电压之间的关系。
二、实验仪器与材料仪器:太阳能光伏电池板、直流电源、万用表、电流表、电压表材料:密封玻璃容器、黑白铜板、导线、短路开关、光源三、实验原理太阳能光伏发电原理基于光生电效应,光照条件下通过光伏电池将太阳能转化为电能。
光伏电池是由两个不同材质的半导体层组成,形成“p-n”结。
当光照射到光伏电池上时,光子能量被电子吸收,激发出电子从价带跃迁到导带,产生电流。
四、实验步骤1.将太阳能光伏电池板安装在密封玻璃容器上,并保持容器内真空环境。
2.将黑白铜板固定在容器正上方,作为光源反射板。
3.按照实验电路连接光伏电池、直流电源以及万用表、电流表和电压表。
4.打开直流电源,设定合适的电压,调节电流和电压表的量程。
5.观察并记录不同光照条件下电流和电压的变化。
6.测量不同光照条件下的输出功率,计算各组数据的转化效率。
五、实验结果与分析根据实验数据,我们可以得到不同光照条件下的电流和电压的关系,进而计算出各组数据的转化效率。
六、实验结论通过本实验,我们了解到太阳能光伏发电的基本原理,熟悉了太阳能光伏电池的结构和工作原理。
在实验中,我们还掌握了太阳能光伏电池的性能参数测量以及光照条件与电压之间的关系。
太阳能光伏发电是一种可再生、清洁的能源,具有广阔的应用前景。
实验的结果表明,在不同光照条件下,光伏电池的输出电压和电流存在明显的变化,说明光照强度对太阳能光伏发电效果有较大的影响。
光伏发电技术原理及应用
光伏发电技术原理及应用光伏发电技术是一种将太阳能转化为电能的可再生能源技术,它的原理基于光电效应。
光电效应是指当光照射到特定材料表面时,光子的能量被电子吸收后会使其从原子中解离出来,形成自由电子和正空穴。
通过合适的电子器件,如光伏电池,就可以将这些自由电子和正空穴聚集起来,形成电流,从而实现光能到电能的转换。
光伏发电技术的关键是光伏电池,也称为太阳能电池。
光伏电池由一层或多层半导体材料制成,常见的材料有硅、多结薄膜太阳能电池等。
其中,硅材料的光伏电池是目前应用最广泛的一种。
光伏电池的核心部分是PN结,即由P型半导体和N型半导体组成的结构。
当光照射到PN结上时,光子的能量被吸收,激发了电子从价带跃迁到导带,形成自由电子和正空穴。
这些自由电子和正空穴会被电场分离,形成电势差,从而产生电流。
这就是光伏电池的基本工作原理。
光伏发电技术的应用非常广泛。
最常见的应用是太阳能发电站。
太阳能发电站通常由大量的光伏电池组成,形成光伏阵列。
光伏阵列可以根据需要进行灵活布置,可以安装在屋顶、太阳能板、太阳能路灯等地方。
当太阳光照射到光伏阵列上时,光伏电池将光能转化为电能,再经过逆变器变成交流电,供给家庭和工业用电。
太阳能发电站的优点是可再生、清洁、无噪音和零排放,可以有效减少对传统化石能源的依赖,对环境友好。
光伏发电技术还可以应用于户用太阳能发电系统。
户用太阳能发电系统主要由光伏电池组、逆变器、电池和控制器等设备组成。
光伏电池组将太阳能转化为电能,经过逆变器转化为交流电,供给家庭使用。
如果太阳能发电量超过了家庭用电需求,多余的电能可以储存在电池中,以备不时之需。
户用太阳能发电系统可以有效减少家庭用电的支出,同时也减少了对传统能源的依赖,对环境保护起到积极作用。
光伏发电技术还可以应用于航天、船舶、交通等领域。
在航天领域,光伏电池可以作为航天器上的能源来源,为航天器提供所需的电能。
在船舶领域,光伏电池可以用来为船只提供动力,减少燃油的消耗。
光伏发电技术的原理与应用
光伏发电技术的原理与应用近年来,随着环保意识的提高以及可再生能源的逐渐受到关注,光伏发电逐渐成为一种备受欢迎的绿色能源。
那么,光伏发电技术的原理是什么?它的应用有哪些呢?让我们一起来探讨一下。
一、光伏发电技术的原理光伏发电技术是指利用太阳光能产生电能的技术。
根据光伏发电原理的不同,可分为晶体硅光伏、非晶硅薄膜光伏和有机光伏等多种不同类型。
1. 晶体硅光伏晶体硅光伏又称为硅晶光伏,是目前应用最广泛的一种光伏技术。
晶体硅光伏板是由大面积的单晶硅或多晶硅制成的。
当太阳光照射在晶体硅板上时,晶体硅中的电子被按能量大小排列的太阳光激发,从而跃迁到P-N结两边,形成电流,并通过电路输出电能。
由于硅片制作成本高,这类发电板的价格相对较贵。
2. 非晶硅薄膜光伏与晶体硅光伏不同,非晶硅薄膜光伏使用薄膜硅制成太阳能电池板。
当阳光照射在薄膜硅上时,光能会被吸收,激发出电子,并在电场的作用下移动,形成电流,实现光-电转换。
此类电池板的优点是价格相对较低,适合大规模应用。
但由于薄膜硅光电转换效率较低,需要较大面积的电池板才能满足一定的能量需求。
3. 有机光伏有机光伏利用有机光电材料对可见光和红外辐射的光吸收和转换,将太阳能光子转化为电子,通过电路输出电流。
与非晶硅薄膜光伏相比,有机光伏电池成本更低,生产电池时的成型性好,可以生产成各种形状,但其电池板长时间使用后会较快的老化和损坏。
二、光伏发电技术的应用光伏发电作为一种绿色环保的能源,目前在全球各地都有大规模的应用。
以下是几种常见的应用形式:1. 独立光伏系统独立光伏系统是指将太阳能电池板的发电能量直接用于其驱动的设施中,不需要接入电网,是一种可移动的、不受区域限制的发电方式。
例如,偏远地区或一些线缆不通的地方,可使用独立光伏系统满足电力需求。
2. 并网光伏发电并网光伏发电是将光伏发电系统与电网连接,通过电网直接向用户提供电力,同时可以将多余的电流注入电网,实现对电网的支持。
太阳能光伏技术
太阳能光伏技术太阳能光伏技术作为可再生能源的一种重要形式,已经成为解决能源危机和环境问题的关键技术之一。
本文将对太阳能光伏技术的原理、应用、发展前景以及对环境的影响等方面进行深入探讨。
一、太阳能光伏技术的原理太阳能光伏技术是通过太阳光的照射,将光能直接转化为电能的一种技术。
其原理主要是利用光伏效应,即当太阳光照射到光伏电池上时,光子的能量被光伏电池中的半导体材料吸收,并激发出电子和空穴的对。
这些电子和空穴在材料内部运动,形成电流,从而产生直流电能。
而太阳能光伏技术则是将这种直流电能通过逆变器转换为交流电能,以供电器设备使用。
二、太阳能光伏技术的应用太阳能光伏技术的应用范围非常广泛,主要包括以下几个方面:1. 太阳能光伏发电:利用太阳能光伏技术建设光伏电站,通过大规模光伏电池组成的光伏阵列吸收太阳光能,实现电能的产生。
这种发电方式具有无污染、可再生、可靠性高等优点,逐渐成为全球能源领域的重要组成部分。
2. 太阳能光伏热水器:太阳能光伏技术还可以应用于家庭普及的太阳能热水器中。
通过光伏电池组件将太阳光能转化为电能,用来驱动热水器的加热系统,实现热水的供应,达到节能环保的目的。
3. 太阳能光伏路灯:在城市道路、公园等场所,可以采用太阳能光伏技术来建设光伏路灯。
这种路灯利用太阳能光伏技术,将太阳光转换为电能储存在电池中,并在夜晚通过光控传感器自动开启路灯,提供道路照明,大大节约了能源,并减少了环境污染。
三、太阳能光伏技术的发展前景太阳能光伏技术在未来的发展前景非常广阔。
随着能源危机和环境问题的日益凸显,人们对于可再生能源的需求和重视程度也在不断提高。
太阳能作为免费、无限可用的能源,具有巨大的潜力和市场需求。
同时,太阳能光伏技术的成本不断下降,效率不断提高,使得太阳能光伏技术的应用变得更加可行和可持续。
预计未来,太阳能光伏技术将在全球范围内得到进一步的推广和应用,成为主导能源形式之一。
四、太阳能光伏技术对环境的影响太阳能光伏技术作为清洁能源形式,对环境影响较小。
太阳能的原理和应用是什么
太阳能的原理和应用是什么1. 太阳能的原理太阳能是指通过利用太阳辐射的能量来产生电力或者热能的一种可再生能源。
太阳能的利用主要基于两个原理:光伏效应和热力学效应。
1.1 光伏效应光伏效应是指在某些半导体材料(如硅)中,当受到光照时,光子能量会使其中的电子跃迁到较高能级,产生电子-空穴对。
这些电子-空穴对可以通过电子流动产生电流,从而产生电能。
1.2 热力学效应热力学效应是指利用太阳能将太阳辐射转化为热能。
太阳能热力学系统一般由太阳能集热器、传热介质、热储存装置和热能利用设备等组成。
通过集热器将太阳辐射吸收并转化为热能,再通过传热介质和热储存装置传递和储存热能,最后利用热能利用设备将热能转化为实际的热能应用。
2. 太阳能的应用太阳能具有广泛的应用领域,包括光伏发电、太阳能热水器、太阳能空调和太阳能热发电等。
2.1 光伏发电光伏发电是利用太阳能通过光伏效应直接转化为电能的过程。
通过将光伏电池组件安装在大面积的太阳辐射充足的区域,如屋顶、太阳能电站等,可以将太阳能转化为电能,并供应到电力系统中供人们使用。
光伏发电具有可再生、无污染、长寿命等特点,被广泛应用于家庭、工业和商业领域。
2.2 太阳能热水器太阳能热水器是利用太阳能热力学效应将太阳辐射转化为热能,用于加热水的设备。
太阳能热水器一般由太阳能集热器、储热水箱和辅助加热装置等组成。
太阳能集热器通过吸收太阳辐射将其转化为热能,再将热能传递到储热水箱中,供应给用户使用。
太阳能热水器具有高效节能、环保无污染等特点,被广泛应用于家庭、酒店、游泳馆等场所。
2.3 太阳能空调太阳能空调是利用太阳能热力学效应将太阳辐射转化为冷能,并用于制冷和空调的设备。
太阳能空调系统一般由太阳能集热器、吸收式制冷机和冷却水装置等组成。
太阳能集热器通过吸收太阳辐射将其转化为热能,再经过制冷机的作用将热能转化为冷能,并通过冷却水装置将冷能传递到室内进行制冷和空调。
太阳能空调具有环保、节能、可再生等特点,被广泛应用于家庭、商业和办公场所。
太阳能光伏发电系统原理与应用技术
太阳能光伏发电系统原理与应用技术引言太阳能光伏发电系统是利用太阳能将光能转化为电能的一种可再生能源发电系统。
随着能源问题的日益突出和环境保护意识的增强,太阳能光伏发电系统在全球范围内得到了广泛的应用和推广。
本文将详细介绍太阳能光伏发电系统的原理和应用技术。
1. 太阳能光伏发电系统原理太阳能光伏发电系统的原理是基于光伏效应的。
当光线照射到光伏电池上时,光子会与光伏电池内的半导体材料相互作用,产生出电子和空穴对。
在特定的电场作用下,电子和空穴会流动起来,从而形成电流。
这个过程就是光伏效应。
光伏电池的主要组成部分是PN结构,其中P型材料与N型材料通过界面连接,形成PN 结。
当光伏电池受到光照时,光子会打破材料的电子束缚,使得电子和空穴产生并分离,从而产生电流。
2. 太阳能光伏发电系统的组成太阳能光伏发电系统主要由太阳能电池板、电池组、逆变器和电网组成。
2.1 太阳能电池板太阳能电池板是太阳能光伏发电系统的核心部件,负责将太阳能转化为电能。
常见的太阳能电池板有单晶硅太阳能电池板、多晶硅太阳能电池板和非晶硅太阳能电池板等。
2.2 电池组电池组是太阳能光伏发电系统的能量储存部分,主要由蓄电池组成。
当太阳能光伏电池板产生的电能超过负载需求时,多余的电能会被储存在电池组中,以备不时之需。
2.3 逆变器逆变器是太阳能光伏发电系统的核心装置,主要功能是将直流电转化为交流电。
由于大部分家用电器和电网都是使用交流电,所以逆变器的作用非常重要。
2.4 电网电网是太阳能光伏发电系统中的一个重要部分,可以将太阳能发电系统产生的电能注入到电网中,实现电能的共享和输送。
同时,当太阳能光伏发电系统产生的电能不足时,电网也可作为备用电源供给电能。
3. 太阳能光伏发电系统的应用技术太阳能光伏发电系统的应用技术主要包括并网发电技术、离网发电技术和混合发电技术。
3.1 并网发电技术并网发电技术是指将太阳能光伏发电系统产生的电能直接与电网连接,将多余的电能注入到电网中。
太阳能光伏发电原理与应用实验报告
太阳能光伏发电原理与应用实验报告一、引言太阳能光伏发电是利用光伏效应将太阳能转化为电能的一种可再生能源发电方式。
光伏发电是一种清洁、安全、无噪音和无排放的能源转换方式,具有广阔的发展前景。
本实验目的是通过实际操作,深入理解太阳能光伏发电的原理与应用,并对其发电效率进行测试。
二、实验原理1.光伏效应光伏效应是指当光照射到半导体材料上时,光子的能量被电子吸收,使其跃迁到价带上,形成光生电流的现象。
根据光伏效应,我们可以将光能转化为电能。
2.光伏电池光伏电池是利用光伏效应将光能转化为直流电能的一种半导体器件。
常见的光伏电池有单晶硅、多晶硅和非晶硅等。
光伏电池的工作原理是通过P-N结构形成的电场将光生载流子分离,从而产生电流。
3.光伏组件光伏组件是由多个光伏电池通过串联或并联组成的。
光伏组件能够将光能转化为直流电能,并可以通过逆变器将直流电能转化为交流电能。
三、实验设备和材料1.实验仪器:太阳能光伏电流电压测试仪、多用千分表、太阳能模拟器2.实验材料:光伏电池、导线、电阻等四、实验内容与步骤1.实验内容(1)掌握太阳能光伏发电的基本原理;(2)通过对不同光照强度和角度的测试,测量光伏电池的电流和电压;(3)计算光伏电池的发电效率。
2.实验步骤(1)搭建实验装置。
将光伏电池与测试仪器连接,并将太阳能模拟器调整到适当的光照强度。
(2)调整不同光照强度。
通过调整太阳能模拟器的光照强度,逐步增加光照强度,记录光伏电池的电流和电压。
(3)调整不同角度。
通过调整光伏电池的角度,分别在不同角度下测试光伏电池的电流和电压。
(4)计算发电效率。
根据实验数据,计算光伏电池的发电效率。
五、实验结果与分析1.实验结果通过实验测量,得到了不同光照强度和角度下光伏电池的电流和电压数据,并计算出了光伏电池的发电效率。
2.实验分析(1)光伏电池的电流与光照强度成正比。
在光照强度增加的情况下,光伏电池的电流也会增加。
(2)光伏电池的电流与角度有关。
太阳能光伏发电技术的原理及应用
太阳能光伏发电技术的原理及应用太阳能光伏是指利用光伏效应将太阳能转化为电能的技术,即太阳能电池板。
如今,随着人们环保意识的提高和对可再生能源的需求不断增加,该技术得到了广泛应用和发展。
光伏效应是指将太阳辐射能转换为直接电能的现象。
该现象最先被发现于1839年,后经多次实验和研究发现,将一种半导体放在阳光下,就能够获得一定程度的电压和电流。
太阳能电池板的原理就是利用光伏效应,在太阳的辐射下,半导体材料中的电子受到光子的能量激励后,跃迁成为自由电子和空穴,自由电子和空穴再重新组合时,会释放出能量并产生电流。
太阳能电池板主要由一个或多个太阳能电池组成,多个太阳能电池通过导线连接,形成电池板组,用于产生电能。
太阳能光伏发电的应用太阳能光伏发电已经广泛应用于无人岛、露天采矿、交通信号灯、通讯、测量等方面。
随着科技的进步和需求的不断增加,太阳能光伏的应用范围也越来越广泛,主要有以下几个方面。
1.家庭太阳能光伏电站家庭太阳能光伏电站是指在户外或屋顶上设置太阳能电池板,将太阳能转换为电能,并储存在大容量电池里,方便家庭使用。
这种电站既可以向外部电网供电,也可以以独立的形式为家庭提供电力。
由于随着技术和成本的下降,太阳能电池板的价格越来越低,因此越来越多的人开始热衷于自家安装太阳能光伏电站,用来节省电费。
2.商用太阳能光伏电站商用太阳能光伏电站是指设在商业区、工业区等地区的大型太阳能光伏电站。
这些电站一般都会向电网提供电力,而且随着技术的进步,太阳能电池板的转换效率越来越高,大型太阳能光伏电站的建设成本也在不断降低,越来越多的商业公司和工业企业开始关注并投入建设。
3.农业太阳能光伏电站农业太阳能光伏电站主要以农业景观为背景,通过光伏发电技术为农业生产提供更为可靠的稳定电力。
这种电站大多数都是地面型或遮阳网型电站,具有比较优秀的景观效果,而且农村地区通常缺乏电力,使用太阳能光伏发电能够大大缓解农村供电压力。
总的来说,太阳能光伏发电技术以其优越的特点,在各自领域得到了广泛的应用。
太阳能光伏发电系统的工作原理解析
太阳能光伏发电系统的工作原理解析太阳能光伏发电系统是一种利用太阳能转化为电能的装置,通过将太阳辐射能转化为直流电能,为日常生活和工业生产提供可再生清洁能源。
本文将介绍太阳能光伏发电系统的工作原理,以及其组成部分和应用领域。
一、工作原理太阳能光伏发电系统的工作原理基于光伏效应,即通过将太阳光转化为电能的作用。
当太阳辐射能照射到光伏电池组件上时,光子与光伏电池材料内的半导体原子发生相互作用。
这一过程中,光子的能量被转化为电子的激发能量,使得电子从半导体的价带跃迁到导带,形成电子-空穴对。
通过电池内部的电场作用力,电子会被推向逆电场方向的电极,从而形成电流。
这个过程将太阳光的能量转化为电能输出。
二、组成部分太阳能光伏发电系统主要由光伏电池组件、控制器、储能装置和逆变器等组成。
1. 光伏电池组件:主要由太阳能电池板组成,这些电池板由多个光伏电池单元串联并联而成。
光伏电池单元是由半导体材料构成的,能够吸收太阳辐射能并将其转化为电能。
2. 控制器:控制器用于控制和调节太阳能光伏发电系统的运行。
它能够监测电池的电压和电流,以确保系统的正常工作,并通过最大功率点追踪算法来提高系统的发电效率。
3. 储能装置:由于太阳能的不稳定性和间歇性,储存太阳能发电产生的电能至关重要。
储能装置通常采用蓄电池来储存电能,以备不时之需。
4. 逆变器:太阳能光伏发电系统输出的是直流电能,而大部分家用电器使用的是交流电能。
逆变器的作用是将直流电能转化为交流电能,以满足日常生活和工业生产的需要。
三、应用领域太阳能光伏发电系统的应用领域广泛,涵盖了家庭、工业和农村等领域。
1. 家庭应用:太阳能光伏发电系统可以为家庭提供独立的电力供应,满足基本的用电需求。
通过安装光伏电池组件在屋顶或空地上,可以将太阳能转化为电能,供应家庭照明、电视、电脑等家电设备的使用。
2. 工业应用:工业生产对电力需求较大,太阳能光伏发电系统可以作为企业的备用电源或主要电力供应来源。
光伏发电的原理及使用方法
光伏发电的原理及使用方法
光伏发电是一种利用太阳能转化为电能的技术。
光伏发电系统由光伏电池组件、光伏逆变器、支架、电力接入等组成。
光伏发电的原理是通过光伏电池组件将太阳能转化为直流电能。
光伏电池组件由多个光伏电池单元组成,这些电池单元由半导体材料制成,当太阳光照射到电池表面时,光的能量被半导体材料吸收,激发出电子。
这些电子通过电池内部的电场向电池的正极移动,形成电流。
直流电经过光伏逆变器的转换,变成交流电,可供家庭或工业用电。
光伏发电系统的使用方法包括:
1. 安装光伏电池组件:将光伏电池组件安装在阳光充足的地方,如屋顶或地面。
确保组件朝向太阳,并且不会被阴影遮挡,以最大限度地吸收太阳能。
2. 连接光伏逆变器:将光伏电池组件的直流电线与光伏逆变器的输入端相连。
光伏逆变器将直流电转换为交流电,以供家庭或工业使用。
3. 连接电力接入:将光伏逆变器的交流电线连接到家庭或工业用电系统,以直接使用光伏发电产生的电能。
如果发电的电能超过使用的电能,多余的电能可以输入电网,实现向电网供电。
4. 进行维护和监控:定期检查光伏电池组件的状态,确保其正常工作。
同时,监控发电量和电网连接情况,保证光伏发电系统的效率和安全性。
光伏发电系统的使用方法可以根据实际需求进行调整,如通过添加电池储存系统
来储存多余的电能,以在夜间或阴天供电使用。
太阳能光伏电池的原理与应用
太阳能光伏电池的原理与应用随着能源危机的加剧以及环境污染的恶化,人们对新能源的需求越来越迫切。
在各种可再生能源中,太阳能被认为是最为广泛的能源之一。
而太阳能光伏电池作为太阳能的转化工具,也逐渐被广泛应用于各个领域。
本文将着重介绍太阳能光伏电池的原理及其应用领域。
一、太阳能光伏电池的原理太阳能光伏电池是由半导体材料制成的电池,可以将太阳能转化为电能。
其原理基于光电效应,当光子作用于半导体表面时,会激发出电子并引起电子的移动,从而产生电压。
太阳能光伏电池主要有单晶硅、多晶硅、非晶硅、有机半导体等类型。
太阳能光伏电池的运行原理分为三步:第一步是光子被吸收,这些光子被吸收后会进入半导体材料中,如果光子的能量大于材料的能带价值,电子就可以被激发出来。
第二步是电子被激发,经过一段时间后,这些被激发的电子将被吸引到p-n结的另一端,因此,它们沿着电路流动,从而在电路中产生电流。
第三步是电子流产生,这些电子在流经负载电阻时会产生电压和电流。
二、太阳能光伏电池的应用领域1. 太阳能发电太阳能光伏电池广泛应用于太阳能发电领域,可将日光直接转化为电能,并直接应用于民用电网或农业、工业生产等领域。
除此之外,太阳能光伏电池还可以应用在一些远程地区或无法接通城市电网的地方,比如偏远山区等。
2. 无线传输太阳能光伏电池还可以应用于无线传输领域。
在一些空间较大且难以接通电源的场所,如广场、公园、高速公路等,可以通过太阳能光伏电池将自然光能够转化为电能,进而提供WiFi信号、广告机等,从而为人们的生活提供更加方便。
3. 极地勘探在极地地区,气温极低且极长夜晚,十分难以给设备供电。
使用太阳能光伏电池可以解决这个问题,从而为勘探人员提供更加便捷的工作条件。
结语作为新能源领域的重点发展方向之一,太阳能光伏电池已经开始逐步普及和应用。
相信随着技术的不断进步和人们的不断探索,太阳能光伏电池的应用将会更加广泛,未来的能源领域也将会更加多元和绿色。
太阳能光伏发电的技术原理及发展趋势
太阳能光伏发电的技术原理及发展趋势太阳能光伏发电是一种利用太阳能直接转化为电能的技术。
它的工作原理基于光伏效应,简单来说就是将太阳光转化为电能的过程。
太阳能光伏发电在能源领域具有巨大的潜力,是未来清洁能源的重要组成部分。
一、太阳能光伏发电的基本原理太阳能光伏发电的基本原理是光伏效应。
光伏效应是指当一些半导体材料被阳光照射时,它们会产生一个电场和一些自由电子和空穴,这些电子和空穴被电场“分离”出来,从而形成了一个电流。
这个现象被称为光伏效应,它将太阳光转化为可利用的电能。
太阳能光伏发电系统主要由太阳能电池板、电子元件和电路控制系统组成。
当太阳能电池板接收到阳光时,它会产生电场,并将电子和空穴“分离”出来。
通过各种电子元件和电路控制系统,这些电子和空穴最终被捕获并转化为可用的电能。
二、太阳能光伏发电的发展趋势随着全球对清洁能源的需求增加,太阳能光伏发电将有着广阔的市场前景。
它具有一系列优点包括:环保、永续、节省成本和可靠性高等。
这些优点将促进太阳能光伏发电的发展,并可能替代传统能源。
1.快速发展的产业随着太阳能光伏发电技术的发展,其产业也在迅速发展。
各个国家和地区的政府都在积极推动太阳能光伏发电的产业发展。
未来几年,太阳能光伏发电产业将有着更广阔的市场前景和更多的投资。
2.技术的不断创新太阳能光伏发电技术的不断创新是促进其发展的重要因素。
新的技术将改善太阳能光伏发电的效率、可靠性、成本和持续性等方面,使其更加成熟和可靠。
未来几年,太阳能光伏发电技术的不断创新将推动其进入更广阔的市场。
3.政策扶持的加强政府的政策扶持将是促进太阳能光伏发电发展的重要驱动力。
政策扶持将对太阳能光伏发电的研究和开发提供资金和技术支持,推广政策将促进太阳能光伏发电的普及,从而推进整个产业的发展。
4.应用范围的扩大太阳能光伏发电的应用范围将不断扩大。
未来几年,太阳能光伏发电将在交通、工业、建筑、家庭等领域得到广泛应用。
这将极大地推动太阳能光伏发电的市场增长和技术发展。
太阳能光伏发电技术与应用
太阳能光伏发电技术与应用一、引言太阳能光伏发电是一种使用太阳能将光能转化为电能的技术,由于其使用非常环保,越来越多的人们开始使用和推崇它。
本文将讨论太阳能光伏发电技术的原理、发展历程以及在不同领域的应用。
二、太阳能光伏发电的原理太阳能光伏发电的核心原理是光伏效应。
当太阳光子碰撞光伏电池中的半导体材料时,将其内部的电子激发出来,形成正负离子对。
正负离子对会在电池中累积,生成电流。
这种发电方式相对传统发电方式的最大优势在于,不需要任何的燃料,同时也不会产生任何有害的碳排放物质,非常环保。
三、太阳能光伏发电的发展历程太阳能光伏发电技术的实际应用可以追溯到20世纪50年代。
当时,最先进的太阳能电池是由硅制造,效率非常低,只有几个百分点。
到了20世纪70年代,由于国际上石油危机的影响,提高太阳能电池的效率成为了一个重要的研究点。
在此期间,太阳能光伏发电技术得到了较大的发展,其效率逐渐提高到了10%以上,并且逐渐开始应用于卫星、通信等领域。
1990年代以后,太阳能光伏发电进入了快速发展时期。
目前,太阳能光伏发电的效率已经超过了30%。
四、太阳能光伏发电在各个领域的应用1、家庭用电站:随着太阳能光伏发电效率的提高和成本的下降,越来越多的家庭将其安装在屋顶上进行能源补充。
光伏发电可以完全满足日常生活中的用电需求,并且在不用的时间将多余的电卖回给能源公司2、公共设施:太阳能光伏发电可以应用在城市中大型的公共设施,如公交车站牌、自行车停放区等。
这些设施需要电来驱动点燃照明,而由于其不需要额外的电线,因此很适合采用太阳能光伏发电方式。
3、农村电力`: 太阳能光伏发电不需要大量的电力线路来传输电力,因此对于偏远的农村地区来说,使用太阳能光伏发电就显得尤为重要,同时也对于农村地区的环境进行保护作用。
4、机动车:太阳能光伏发电可以在机动车中应用,如使用在车顶作为补充能量源的发电板的形式。
这种方式可以减少空气污染,并且为车辆提供持续的能源。
太阳能光伏发电技术原理及应用
太阳能光伏发电技术原理及应用随着现代科技的进步,越来越多的人开始关注可再生能源,尤其是太阳能光伏发电技术。
这种技术利用太阳能将光转化为电能,将由化石燃料产生的环境问题降到最低点。
本文将介绍太阳能光伏发电技术的原理及其在不同领域的应用。
一、太阳能光伏发电技术的原理太阳能光伏发电技术,又称太阳能电池技术,是将太阳光辐射转化为电能的过程。
太阳能光伏发电技术基于光电效应,这意味着光子可以激发材料中的电子。
太阳能电池的工作原理是,当太阳光经过太阳能电池芯片时,它会激活芯片内的电子。
这些电子进入一个电能带中,随着一些化学过程的发生,它们就会流动,形成电流。
太阳能电池是由半导体材料制成的。
这种材料可以被激活,以产生电子。
太阳能电池的常见材料包括硅、铜铟镓硒和硫化镉。
硅是最常见的太阳能电池材料,而铜铟镓硒和硫化镉则在更高端的太阳能电池中使用。
二、太阳能光伏发电技术的应用太阳能光伏发电技术广泛应用于太阳能电池板、太阳能热水器、太阳能灯、太阳能车和太阳能飞机等领域。
以下是太阳能光伏发电技术的主要应用领域:1. 太阳能电池板太阳能电池板是太阳能光伏发电技术的最常见应用。
太阳能电池板被安装在太阳光照射的区域,以收集太阳光转化为电能。
这些电池板通常安装在屋顶或地面,并通过电缆将电能输送到用电设备中。
它们可用于住宅和商业建筑中,以及一些无法使用传统电力的遥远或偏远地区。
2. 太阳能热水器太阳能热水器利用太阳光的热量来加热水,以提供热水供应。
太阳能热水器通常由集热器、储水箱和控制系统组成。
太阳能热水器是一种节能的选择,因为它们减少了加热水的电量或燃气量。
3. 太阳能灯太阳能灯避免了有线电力的使用,通过太阳能电池板收集自然的太阳光,并将其转化为电能以供应夜间照明。
太阳能灯通常用于花园、公园或街道灯中。
4. 太阳能车太阳能车是使用太阳能光伏发电技术的汽车,其主要用于长途旅行。
这些车通常使用大量的太阳能电池板来收集太阳能,并在需要时转化为电能,以供电。
光伏发电的原理与应用论文
光伏发电的原理与应用论文1. 引言光伏发电是一种利用太阳能将光能转化为电能的技术。
近年来,随着能源需求的增长和环境保护意识的提高,光伏发电作为一种清洁、可再生的能源形式受到了广泛关注和应用。
本文将介绍光伏发电的原理以及其在不同领域的应用。
2. 光伏发电原理光伏发电的原理基于光电效应,即光照射到半导体材料上时,光子激发了半导体中的电子,并使其能量提升。
这些激发的电子通过半导体内部的pn结构,最终形成电流。
下面详细介绍光伏发电的原理。
2.1 光电效应光电效应是指当光照射到金属或半导体材料上时,会激发出电子,使其从材料中解离出来形成自由电子。
这种现象最早由爱因斯坦在1905年提出,被后来的实验证实。
2.2 pn结构光伏电池一般由两种材料组成,一种具有n型半导体特性,另一种具有p型半导体特性。
当这两种材料通过特定的工艺进行连接时,形成了pn结构。
pn结在正向偏压下,允许电流通过,而在反向偏压下则会阻止电流。
2.3 光伏电池光伏电池是将光电效应和pn结结合起来的电子器件。
光伏电池的基本结构包括正、负电极以及光敏材料层。
当光照射到光敏材料上时,光子激发了其中的电子,使其向正电极方向流动,形成电流。
3. 光伏发电的应用光伏发电技术在各领域的应用越来越广泛,下面列举了几个主要的应用领域。
3.1 太阳能发电站太阳能发电站是利用大面积的光伏电池组成的太阳能电池阵列来发电的设施。
太阳能发电站可以利用太阳能的辐射将其转化为电能,供应给电网或其他电力系统使用。
3.2 光伏发电系统在农业领域的应用光伏发电系统可以为农业提供可持续、清洁的能源供应。
例如,在农田上安装光伏电池板,可以为灌溉系统、温室和家畜的供电,减少传统能源的使用。
3.3 光伏发电系统在建筑领域的应用光伏发电系统在建筑领域的应用越来越普遍。
例如,在建筑物的屋顶上安装光伏电池板,可以为建筑物提供部分或全部的电力需求,减少对传统电网的依赖。
3.4 光伏发电系统在航天领域的应用光伏发电系统在航天领域的应用也非常重要。
光伏发电技术的应用与趋势
光伏发电技术的应用与趋势随着全球环保意识的不断增强,绿色环保技术也越来越受到人们的关注。
其中,光伏发电技术作为最为成熟且应用最为广泛的绿色能源之一,正逐步替代传统能源,成为未来能源发展的重要方向之一。
本文将从光伏发电技术的原理、应用场景、优势与劣势、趋势等多个维度进行探讨。
一、光伏发电技术的原理光伏发电技术是利用太阳能光辐射的能量转化为电能的一种技术。
它通过太阳能电池将太阳辐射的能量转化为直流电、再通过逆变器等设备将直流电转换为交流电,以供应用电器使用。
太阳能电池是利用半导体材料(如硅、锗等)的光电效应产生电能的。
二、光伏发电技术的应用场景光伏发电技术的应用场景相当广泛。
其主要应用于家庭光伏发电、商业光伏发电、农村电网改造、远程发电系统等。
家庭光伏发电主要应用在居民住宅中,通过光伏电池板吸收太阳能,将产生的电能储存起来,再为家中的电器供电。
商业光伏发电则主要应用于商业场所的需求,如超市、医院等。
农村电网改造则是利用光伏发电技术为农村地区提供电力,满足农村地区的生产和生活电力需求。
远程发电系统则常用于偏远地区的电力供给。
三、光伏发电技术的优势与劣势光伏发电技术与传统能源相比,具有以下优势:1. 绿色环保:光伏发电是一种绿色环保的能源,没有燃料燃烧过程,不会像传统发电方式一样产生大量的温室气体和空气污染物。
2. 经济优势:光伏发电具有明显的经济优势。
由于太阳能光辐射不需要额外的花费,因此光伏电站建设成本较低,且在运行过程中,光伏电站只需要进行常规的维护保养,就可以发挥相当的电力效益。
3. 可再生性:与化石燃料不同,太阳能是一种可再生的能源,可以在长时间内被反复利用,不会像石油、煤炭等传统能源一样随着时间的推移而枯竭。
然而,光伏发电技术也存在以下劣势:1. 受光强度和天气影响:光伏发电的电能产生数量受到光的强度和天气的影响,只有在阳光充足的情况下才能发挥最大的发电效率。
2. 能源密度低:光伏发电的能源密度较低,与传统能源相比较容易受到占地面积等限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论能源是现代社会存在和发展的基石。
随着全球经济社会的不断发展,能源消费也相应的持续增长。
随着时间的推移,化石能源的稀缺性越来越突显,且这种稀缺性也逐渐在能源商品的价格上反应出来。
在化石能源供应日趋紧张的背景下,大规模的开发和利用可再生能源已成为未来各国能源战略中的重要组成部分。
太阳能是人类取之不尽用之不竭的可再生能源,具有充分的清洁性、绝对的安全性、相对的广泛性、确实的长寿命和免维护性、资源的充足性及潜在的经济性等优点,在长期的能源战略中具有重要地位。
我们对太阳能的利用大致可以分为光热转换和光电转换两种方式,其中,光电利用(光伏发电)是近些年来发展最快,也是最具经济潜力的能源开发领域。
太阳能电池是光伏发电系统中的关键部分,包括硅系太阳电池(单晶硅、多晶硅、非晶硅电池)和非硅系太阳能电池等。
在晶体硅太阳能电池的产业链上分布着晶硅制备、硅片生产、电池制造、组件封装四个环节。
光伏发电系统主要由太阳能电池、蓄电池、控制器和逆变器构成。
光伏发电系统可分为独立太阳能光伏发电系统和并网太阳能光伏发电系统:独立太阳能光伏发电是指太阳能光伏发电不与电网连接的发电方式,典型特征为需要蓄电池来存储能量,在民用范围内主要用于边远的乡村,如家庭系统、村级太阳能光伏电站;在工业范围内主要用于电讯、卫星广播电视、太阳能水泵,在具备风力发电和小水电的地区还可以组成混合发电系统等。
并网太阳能光伏发电是指太阳能光伏发电连接到国家电网的发电的方式,成为电网的补充。
在各国政府的扶持下,世界太阳能电池产量快速增长,1995-2005年间,全球太阳能电池产量增长了17倍。
我们预计,2010年全球太阳能电池的年产量有望较2005年的年产量增长6.3倍,整个行业的销售收入有望增长3.5倍。
我国太阳能资源非常丰富,开发利用的潜力非常大。
我国太阳能发电产业的应用空间也非常广阔,可以应用于并网发电、与建材结合、解决边远地区用电困难问题等。
我国政府对太阳能发电产业也给予了充分的扶持,先后出台了一系列法律、政策,有力的支持了产业的发展。
第二章太阳能及其应用太阳能是人类取之不尽用之不竭的可再生能源,具有充分的清洁性、绝对的安全性、相对的广泛性、确实的长寿命和维护性、资源的充足性及潜在的经济性等优点,在长期的能源战略中具有重要地位并且得到广泛的应用。
2.1太阳能的含义一般是指太阳光的辐射能量,在现代一般用作发电。
自地球形成生物就主要以太阳提供的热和光生存,而自古人类也懂得以阳光晒干物件,并作为保存食物的方法,如制盐和晒咸鱼等。
但在化石燃料减少下,才有意把太阳能进一步发展。
太阳能的利用有光热转换和光电转换两种方式。
太阳能发电是一种新兴的可再生能源。
广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等等。
2.2太阳能的发展历史据记载,人类利用太阳能已有3000多年的历史。
将太阳能作为一种能源和动力加以利用,只有300多年的历史。
近代太阳能利用历史可以从1615年法国工程师所罗门·德·考克斯在世界上发明第一台太阳能驱动的发动机算起。
该发明是一台利用太阳能加热空气使其膨胀做功而抽水的机器。
真正将太阳能作为“近期急需的补充能源”,“未来能源结构的基础”,则是近来的事。
20世纪70年代以来,太阳能科技突飞猛进,太阳能利用日新月异。
2.3我国太阳能资源我国是太阳能资源相当丰富的国家,绝大多数地区年平均日辐射量在4 kWh/㎡以上,西藏最高达7kWh/㎡。
2.4太阳能的应用就目前来说,人类直接利用太阳能还处于初级阶段,主要有太阳能集热、太阳能热水系统、太阳能暖房、太阳能发电等方式。
2.4.1太阳能集热器太阳能集热器(solar collector)在太阳能热系统中,接受太阳辐射并向传热工质传递热量的装置。
按传热工质可分为液体集热器和空气集热器。
按采光方式可分为聚光型集热器和吸热型集热器两种。
一个好的太阳能集热器应该能用20~30年。
2.4.2 太阳能热水系统早期最广泛的太阳能应用即用于将水加热,现今全世界已有数百万太阳能热水装置。
太阳能热水系统主要元件包括收集器、储存装置及循环管路三部分。
此外,可能还有辅助的能源装置(如电热器等)以供应无日照时使用,另外尚可能有强制循环用的水,以控制水位或控制电动部份或温度的装置以及接到负载的管路等。
依循环方式太阳能热水系统可分两种:自然循环式和自然循环式。
2.4.3太阳能暖房太阳能暖房系统是由太阳能收集器、热储存装置、辅助能源系统,及室内暖房风扇系统所组成,其过程乃太阳辐射热传导,经收集器内的工作流体将热能储存,再供热至房间。
至辅助热源则可装置在储热装置内、直接装设在房间内或装设于储存装置及房间之间等不同设计。
2.5太阳能发电即直接将太阳能转变成电能,并将电能存储在电容器中,以备需要时使用。
2.5.1太阳能离网发电系统太阳能离网发电系统包括1、太阳能控制器对所发的电能进行调节和控制,一方面把调整后的能量送往直流负载或交流负载,另一方面把多余的能量送往蓄电池组储存,当所发的电不能满足负载需要时,太阳能控制器又把蓄电池的电能送往负载。
2、太阳能蓄电池组的任务是贮能,以便在夜间或阴雨天保证负载用电。
3、太阳能逆变器负责把直流电转换为交流电,供交流负荷使用。
2.5.2太阳能并网发电系统太阳能并网发电系统是将光伏阵列产生的可再生能源不经过蓄电池储能,通过并网逆变器直接反向馈入电网的发电系统。
2.5.3 Si太阳电池硅太阳电池是最常用的卫星电源,由于空间技术的发展,各种飞行器对功率的需求越来越大。
其中,以发展背表面场(BSF)、背表面反射器(BSR)、双层减反射膜技术为第一代高效硅太阳电池,这种类型的电池典型效率最高可以做到15%左右,目前在轨的许多卫星应用的是这种类型的电池。
2.5.4太阳能路灯太阳能路灯是一种利用太阳能作为能源的路灯,因其具有不受供电影响,不用开沟埋线,不消耗常规电能,只要阳光充足就可以就地安装等特点,因此受到人们的广泛关注,又因其不污染环境,而被称为绿色环保产品。
太阳能路灯即可用于城镇公园、道路、草坪的照明,又可用于人口分布密度较小,交通不便经济不发达、缺乏常规燃料,难以用常规能源发电,但太阳能资源丰富的地区,以解决这些地区人们的家用照明问题。
2.6太阳能的利弊2.6.1 优点(1)普遍性:太阳光普照大地,没有地域的限制无论陆地或海洋,无论高山或岛屿,都处处皆有,可直接开发和利用,且勿须开采和运输。
(2)无害性:开发利用太阳能不会污染环境,它是最清洁的能源之一,在环境污染越来越严重的今天,这一点是极其宝贵的。
(3)巨大性:每年到达地球表面上的太阳辐射能约相当于130万亿吨煤,其总量属现今世界上可以开发的最大能源。
(4)长久性:根据目前太阳产生的核能速率估算,氢的贮量足够维持上百亿年,而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是用之不竭的。
2.6.2 缺点(1)分散性:到达地球表面的太阳辐射的总量尽管很大,但是能流密度很低。
(2)不稳定性:由于受到昼夜、季节、地理纬度和海拔高度等自然条件的限制以及晴、阴、云、雨等随机因素的影响,所以,到达某一地面的太阳辐照度既是间断的,又是极不稳定的,这给太阳能的大规模应用增加了难度。
(3)效率低和成本高:目前太阳能利用的发展水平,有些方面在理论上是可行的,技术上也是成熟的。
但有的太阳能利用装置,因为效率偏低,成本较高,总的来说,经济性还不能与常规能源相竞争。
在今后相当一段时期内,太阳能利用的进一步发展,主要受到经济性的制约。
第三章太阳能光伏发电系统原理光伏发电系统是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。
这种技术的关键元件是太阳能电池。
太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电系统装置。
3.1光电效应概述光照射到某些物质上,引起物质的电性质发生变化,也就是光能量转换成电能。
这类光致电变的现象被人们统称为光电效应(Photoelectric effect)。
3.2光生伏打效应概述及应用3.2.1光生伏打效应是指物体由于吸收光子而产生电动势的现象,是当物体受光照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。
3.2.2光生伏打效应应用光生伏打效应主要是应用在半导体的PN结上,把辐射能转换成电能。
大量研究集中在太阳能的转换效率上。
理论预期的效率为24%。
由于半导体PN结器件在阳光下的光电转换效率最高,所以通常把这类光伏器件称为太阳能电池,也称光电池或太阳电池。
3.3太阳能电池及其太阳能组件3.3.1太阳能电池的工作原理太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。
这就是光电效应太阳能电池的工作原理。
3.3.2太阳能电池的生产流程通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。
如图1图1太阳能电池的生产流程3.3.3 太阳能电池的制造技术晶体硅太阳能电池的制造工艺流程如图2。
提高太阳能电池的转换效率和降低成本是太阳能电池技术发展的主流。
具体的制造工艺技术说明如下:(1)切片:采用多线切割,将硅棒切割成正方形的硅片。
(2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。
(3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。
(4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散, 制成PN+结,结深一般为0.3-0.5um。
(5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。
(6)去除背面PN+结。
常用湿法腐蚀或磨片法除去背面PN+结。
(7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。
先制作下电极,然后制作上电极。
铝浆印刷是大量采用的工艺方法。
(8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。
制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3 ,SiO ,Si3N4 ,TiO2 ,Ta2O5等。
工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD 法或喷涂法等。
(9)烧结:将电池芯片烧结于镍或铜的底板上。
(10) 测试分档:按规定参数规范,测试分类。
3.3.4 太阳电池组装工艺简介组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的电池组件板。
电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。
产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。