高级计量经济学 第二章 多元线性回归模型
多元线性回归的计算模型
多元线性回归的计算模型多元线性回归模型的数学表示可以表示为:Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y表示因变量,Xi表示第i个自变量,βi表示第i个自变量的回归系数(即自变量对因变量的影响),ε表示误差项。
1.每个自变量与因变量之间是线性关系。
2.自变量之间相互独立,即不存在多重共线性。
3.误差项ε服从正态分布。
4.误差项ε具有同方差性,即方差相等。
5.误差项ε之间相互独立。
为了估计多元线性回归模型的回归系数,常常使用最小二乘法。
最小二乘法的目标是使得由回归方程预测的值与实际值之间的残差平方和最小化。
具体步骤如下:1.收集数据。
需要收集因变量和多个自变量的数据,并确保数据之间的正确对应关系。
2.建立模型。
根据实际问题和理论知识,确定多元线性回归模型的形式。
3.估计回归系数。
利用最小二乘法估计回归系数,使得预测值与实际值之间的残差平方和最小化。
4.假设检验。
对模型的回归系数进行假设检验,判断自变量对因变量是否显著。
5. 模型评价。
使用统计指标如决定系数(R2)、调整决定系数(adjusted R2)、标准误差(standard error)等对模型进行评价。
6.模型应用与预测。
通过多元线性回归模型,可以对新的自变量值进行预测,并进行决策和提出建议。
多元线性回归模型的计算可以利用统计软件进行,例如R、Python中的statsmodels库、scikit-learn库等。
这些软件包提供了多元线性回归模型的函数和方法,可以方便地进行模型的估计和评价。
在计算过程中,需要注意检验模型的假设前提是否满足,如果不满足可能会影响到模型的可靠性和解释性。
总而言之,多元线性回归模型是一种常用的预测模型,可以分析多个自变量对因变量的影响。
通过最小二乘法估计回归系数,并进行假设检验和模型评价,可以得到一个可靠的模型,并进行预测和决策。
计量经济学-多元线性回归模型
Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y为因变 量,X1, X2,..., Xk为自变量,β0, β1,..., βk为回归 系数,ε为随机误差项。
多元线性回归模型的假设条件
包括线性关系假设、误差项独立同分布假设、无 多重共线性假设等。
研究目的与意义
研究目的
政策与其他因素的交互作用
多元线性回归模型可以引入交互项,分析政策与其他因素(如技 术进步、国际贸易等)的交互作用,更全面地评估政策效应。
实例分析:基于多元线性回归模型的实证分析
实例一
预测某国GDP增长率:收集该国历史数据,包括GDP、投资、消费、出口等变量,建立 多元线性回归模型进行预测,并根据预测结果提出政策建议。
最小二乘法原理
最小二乘法是一种数学优化技术,用 于找到最佳函数匹配数据。
残差是观测值与预测值之间的差,即 e=y−(β0+β1x1+⋯+βkxk)e = y (beta_0 + beta_1 x_1 + cdots + beta_k x_k)e=y−(β0+β1x1+⋯+βkxk)。
在多元线性回归中,最小二乘法的目 标是使残差平方和最小。
t检验
用于检验单个解释变量对被解释变量的影响 是否显著。
F检验
用于检验所有解释变量对被解释变量的联合 影响是否显著。
拟合优度检验
通过计算可决系数(R-squared)等指标, 评估模型对数据的拟合程度。
残差诊断
检查残差是否满足独立同分布等假设,以验 证模型的合理性。
04
多元线性回归模型的检验与 诊断
第二章 多元线性回归模型
ˆ ˆ ˆ) ( Y Y 2Y Xβ β X Xβ 0 ˆ β
ˆ X Y X Xβ 0
得到:
ˆ XY XXβ
ˆ β ( X X) 1 X Y
于是:
例3.2.1:在例2.1.1的家庭收入-消费支出例中,
1 ( X ' X) X 1 1 X2 1 X1 1 1 X 2 n X n X i 1 X n
可以证明,随机误差项的方差的无偏估计量为
e e ˆ n k 1 n k 1
2
e i2
二、最大或然估计
对于多元线性回归模型: i N 0, 2 , i 1, 2, , n
易知:
Yi ~ N ( X i β , 2 ) 其中: Xi 1 Xi1 Xi1 Xik
j
一、普通最小二乘估计
对于随机抽取的n组观测值 Yi , X ij , i 1, 2,, n; j 0,1, 2,, k , 其中X i 0 1
k 1个未知参数,如果样本函数的参数估计值已经得到,则有:
Y i 0 1 X i1 2 X i 2 k X ik , i 1, 2,, n
五、多元线性回归模型的参数估计实例
地区城镇居民消费模型
• 被解释变量:该地区城镇居民人均消费Y
• 解释变量:
– 该地区城镇居民人均可支配收入X1 – 前一年该地区城镇居民人均消费X2
• 样本:2006年,31个地区
数据
地区 2006年消费 支出 Y
北 天 河 山 辽 吉 上 江 浙 安 福 江 山 河 京 津 北 西 宁 林 海 苏 江 徽 建 西 东 南 14825.4 10548.1 7343.5 7170.9 7666.6 7987.5 7352.6 6655.4 14761.8 9628.6 13348.5 7294.7 9807.7 6645.5 8468.4 6685.2
计量经济学第二章(第二部分)
其中,有k个解释变量;k+1个回归参数
3
计量经济学 第二章B
同 上
(2)矩阵形式: Y XB N Y1 Y2 Y ... Y n 1 1 X ... 1 0 u1 1 u2 , B , N ... ... u n 1 k (k 1) 1 n n 1 X 11 X 12 ... X 1n X 21 X 22 ... X 2n ... ... ... ... X k1 X k2 ... X kn n (k 1)
2
(2)当 R
2
k n -1
时,
R
2
<0 ,此时, 使
2
用 R 将失去意义。因此, R 只适
2
用于Y与解释变量整体相关程度较的
情况。
34
计量经济学 第二章B
四、回归方程的显著性检验
(1) 提出原假设 (2) 构造统计量 H 0 : 1 2 ... k 0 F ESS/k RSS/n (3) 对于给定的显著性水平 (4)判定方程的显著性, 若 F F , 则拒绝原假设 若 F F ,则接受原假设 H 0,即模型的线性关系 F 检验; - k -1 ~ F(k, n - k - 1) ( 在 H 0 成立时) F
不管其质量的好坏,而所要求的样本容量
的下限。
20
计量经济学 第二章B
同 上
ˆ 由 B ( X X)
-1
ˆ X Y 中看到,要使 B
存在,
必须保证(XˊX)-1存在,因此,必须满
足|XˊX|≠0 ,即XˊX为满秩矩阵,而
高级计量经济学 第二章 多元线性回归模型
X' Xˆ X'Y
如果 X'X存在逆矩阵(这是满秩假定所要求的),
那么其解为: ˆ(X'X)1X'Y
最小二乘法估计
(多元回归模型)
如果将解释变量视作是非随机的,那么将X作为常 数矩阵,可以得知OLS估计量是线性无偏的: ˆ ( X ' X )1 X 'Y ( X ' X )1 X '( X e) ( X ' X )1 X 'e
ˆˆ1 0
N X1i
ˆ2 X2i
X1i X12i X1iX2i
XX 1iX 2i2i1 XY 1iiYi X2 2i X2iYi
思考:如果X1=2X2会出现什么情况?
最小二乘法估计
对拟合优度的统计检验
检验拟合优度的虚假设是所有解释变量均不是真 正的解释变量,即:
H 0 : 12 .. .k 0
备择假设为至少有一个解释变量的参数不等于零 。相应的统计量为:
F k 1 ,N kE RSS K N S S 1 K 1 R R 22N K K 1
如y果ˆ使xˆ12 , …x1,或 xk保持ˆ不1变 ,xyˆ1那么有
即每个估计的都反映出当其他因素不变时,该因
素产生的边际影响效果。
多元回归的拟合优度
多元回归方程的拟合优度同样可以用R2表示
R2RSS
TSS
Y Y ˆii Y Y2 21
最小二乘法估计
(多元回归模型)
上式实现最小化的必要条件是:
ESˆ(ˆS)2X'Y2X'Xˆ0
得出上述结果需要利用以下矩阵算法性质:
计量经济学 )多元线性回归模型的统计检验
ˆ) 0 X i1 (Yi Y i
ˆ) 0 X i 2 (Yi Y i
… X (Y Y ˆ) 0 ik i i
所以 从而
ˆ )(Y ˆ Y ) 0 (Y Y
i i
ˆ ) 2 (Y ˆ Y )2 (Y Y ) (Y Y i i i i
解释的那部分离差的大小。
• 那么,TSS、ESS、RSS之间存在的如下关系:
总离差平方和 = 回归平方和 + 残差平方和
TSS
=
ESS
+
RSS
关于TSS=ESS+ RSS的证明过程(教材P73) 证明: 将TSS,即总离差平方和进行分解:
ˆ ) (Y ˆ Y )) 2 TSS (Y Y ) 2 ((Y Y
• 拟合优度检验:检验模型对样本观测值的拟合 程度。
• 在一元回归模型中,拟合优度检验是通过构造 一个可以表征拟合程度的统计量R2来实现。
• 在多元回归模型中,也可以用该统计量来衡量 样本回归线对样本观测值的拟合程度。
总离差平方和、回归平方和及残差平方和
• 定义
TSS (Y Y ) 2
i
2 ˆ y i
y
2 i
1
yi
ei
2 2
检验模型的拟合优度。 R2叫做多重可决系数,也简称为可决系数或判定系数。
毫无疑问,R2越接近于1,模型的拟合优度越高。 但是在应用过程中人们发现,如果在模型中增加一个解释变量, 那么模型的回归平方和随之增大,从而R2也随之增大。 这就给人一个错觉:要使模型拟合得好,就必须增加解释变量。 所以,用来检验拟合优度的统计量必须能够防止这种倾向。
说 明
多元线性回归模型计量经济学
多重共线性诊断
通过计算自变量之间的相关系 数、条件指数等方法诊断是否
存在多重共线性问题。
异方差性检验
通过计算异方差性统计量、图 形化方法等检验误差项是否存
在异方差性。
03
多元线性回归模型的应用
经济数据的收集与整理
原始数据收集
通过调查、统计、实验等方式获取原始数据,确保数据的真实性 和准确性。
数据清洗和整理
在实际应用中,多元线性回归模型可能无法处理 非线性关系和复杂的数据结构,需要进一步探索 其他模型和方法。
随着大数据和人工智能技术的发展,多元线性回 归模型的应用场景将更加广泛和复杂,需要进一 步探索如何利用新技术提高模型的预测能力和解 释能力。
07
参考文献
参考文献
期刊论文
学术期刊是学术研究的重要载体, 提供了大量关于多元线性回归模 型计量经济学的最新研究成果。
学位论文
学位论文是学术研究的重要组成 部分,特别是硕士和博士论文, 对多元线性回归模型计量经济学 进行了深入的研究和探讨会议论文集中反映了多元线性回 归模型计量经济学领域的最新进 展和研究成果。
THANKS
感谢观看
模型定义
多元线性回归模型是一种用于描 述因变量与一个或多个自变量之 间线性关系的统计模型。
假设条件
假设误差项独立同分布,且误差项 的均值为0,方差恒定;自变量与 误差项不相关;自变量之间不存在 完全的多重共线性。
模型参数估计
最小二乘法
01
通过最小化残差平方和来估计模型参数,是一种常用的参数估
计方法。
05
案例分析
案例选择与数据来源
案例选择
选择房地产市场作为案例,研究房价 与影响房价的因素之间的关系。
高级计量经济学 第二章 多元线性回归模型
本章内容
古典线性回归(Ordinary Linear Squares)
模型估计方法和统计检验
其他模型估计方法
最大似然法(Maximum Likelihood) 广义矩法(Generalized Method of Moments)
模型设定与设定误差 虚拟变量的使用 建立多元回归模型时应注意的问题
斜率(dY/dX)
β1 β1Y/X β1Y β1/X -β1/X2 -β1Y/X2 β1+2β2X β1+β2Z
弹性(dY/dX)(X/Y)
β1X/Y β1 β1X β1/Y
-β1/(XY) -β1/X
(β1+2β2X)X/Y (β1+β2Z)X/Y
5
假定2:矩阵X是满秩的
X是一个n K 矩阵,X的秩应该等于K; 该假定也被称做识别条件。只有当识别条件得到
用下标R和UR区分有约束和无约束的回归方程R2 ,q为约束条件的个数,相应的F统计值计算公式 为:
F q ,N k 1E ER U S S E R N S S U S K R q S R 1 U 2 R R U 2 R R 2R N qK
最大似未知的总体分布,样 本数据提供了有关概率分布参数的信息,估计方法建立在 样本来自哪个概率分布的可能性最大基础之上。
对估计系数的统计检验
利用前述的估计量方差矩阵可以得到每个 估计参数的标准差sj,估计参数与该标准差 的比值为相应的t统计值。
利用t统计表(或相应的软件)可以得到与 模型自由度相对应的显著性水平,据此可 以判断结果在统计意义上的可靠性。
对模型参数的联合检验
同样的方法可以用于检验有关多个估计参数之间 关系的联合假设。
多元线性回归模型
多元线性回归模型引言:多元线性回归模型是一种常用的统计分析方法,用于确定多个自变量与一个连续型因变量之间的线性关系。
它是简单线性回归模型的扩展,可以更准确地预测因变量的值,并分析各个自变量对因变量的影响程度。
本文旨在介绍多元线性回归模型的原理、假设条件和应用。
一、多元线性回归模型的原理多元线性回归模型基于以下假设:1)自变量与因变量之间的关系是线性的;2)自变量之间相互独立;3)残差项服从正态分布。
多元线性回归模型的数学表达式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y代表因变量,X1,X2,...,Xn代表自变量,β0,β1,β2,...,βn为待估计的回归系数,ε为随机误差项。
二、多元线性回归模型的估计方法为了确定回归系数的最佳估计值,常采用最小二乘法进行估计。
最小二乘法的原理是使残差平方和最小化,从而得到回归系数的估计值。
具体求解过程包括对模型进行估计、解释回归系数、进行显著性检验和评价模型拟合度等步骤。
三、多元线性回归模型的假设条件为了保证多元线性回归模型的准确性和可靠性,需要满足一定的假设条件。
主要包括线性关系、多元正态分布、自变量之间的独立性、无多重共线性、残差项的独立性和同方差性等。
在实际应用中,我们需要对这些假设条件进行检验,并根据检验结果进行相应的修正。
四、多元线性回归模型的应用多元线性回归模型广泛应用于各个领域的研究和实践中。
在经济学中,可以用于预测国内生产总值和通货膨胀率等经济指标;在市场营销中,可以用于预测销售额和用户满意度等关键指标;在医学研究中,可以用于评估疾病风险因素和预测治疗效果等。
多元线性回归模型的应用可以为决策提供科学依据,并帮助解释变量对因变量的影响程度。
五、多元线性回归模型的优缺点多元线性回归模型具有以下优点:1)能够解释各个自变量对因变量的相对影响;2)提供了一种可靠的预测方法;3)可用于控制变量的效果。
然而,多元线性回归模型也存在一些缺点:1)对于非线性关系无法准确预测;2)对异常值和离群点敏感;3)要求满足一定的假设条件。
计量经济学第二章经典线性回归模型
Yˆ
Xβ
1.β 的均值
β ( X X )1 X Y
( X X )1 X ( Xβ u)
( X X )1 X Xβ ( X X )1 X u
β ( X X ) 1 X u
27
E(β) β ( X X )1 X E(u) (由假设3)
β
(由假设1)
即
E
β
β
0 1
...
β K
Yi = α+ β +Xiui , i = 1, 2, ...,n (2.4) 即模型对X和Y的n对观测值(i=1,2,…,n)成立。
(2.3)式一般用于观测值为时间序列的情形,在横截 面数据的情形,通常采用(2.4) 式。
5
二、 多元线性回归模型
在许多实际问题中,我们所研究的因变量的变动 可能不仅与一个解释变量有关。因此,有必要考虑线 性模型的更一般形式,即多元线性回归模型:
...... ......
u1un
u2un
.................................
unu1 unu2 ...... un2
显然, E(uu) 2In 仅当
E(ui uj)=0 , i≠j E(ut2) = σ2, t=1,2,…,n 这两个条件成立时才成立,因此, 此条件相当前面条件 (2), (3)两条,即各期扰动项互不相关,并具有常数方差。 14
P
食品价格平减指数 总消费支出价格平减指数
100,(1972
100)
7
多元线性回归模型中斜率系数的含义
上例中斜率系数的含义说明如下: 价格不变的情况下,个人可支配收入每上升10
亿美元(1个billion),食品消费支出增加1.12亿 元(0.112个 billion)。
计量经济学(2012B)(第二章多元线性回归)详解
2 2i
n
n
2 i
i ( yi ˆ1x1i ˆ2 x2i )
i 1
i 1
n
i yi
n
(
y
ˆ x
ˆ x
) y
i1
i
1 1i
2 2i
i
i 1
n
y 2
(ˆ
n
x
y
ˆ
n
x
y )
i1
i
1 i1 1i i
2 i1 2 i i
TSS ESS
2.5 单个回归参数的置信区间 与显著性检验
一、置信区间
H (4)
的拒绝域为:
0
F F (2, n 3)
(5) 推断:若
F F (2, n 3)
,则拒绝 H , 0
认为回归参数整体显著;
H 若 F F (2, n 3)
,则接受
,
0
认为回归参数整体上不显著。
回归结果的综合表示
yˆi 0.0905 0.426x1i 0.0084x2i
Sˆj : 或 t:
模型的估计效果. (5) 拟合优度与F 检验中的 F 统计量的关系是什么?这两个
量在评价二元线性回归模型的估计效果上有何区别? (6) 试比较一元线性回归与二元线性回归的回归误差,哪
个拟合的效果更好?
应用:
(1)预测当累计饲料投入为 20磅时,鸡的平均
重量是多少? yˆ 5.2415 f
(磅)
(2)对于二元线性回归方程,求饲料投入的边际生产率?
(0.1527) (0.0439)
(0.5928) (9.6989)
(0.0027) (3.1550)
R2 0.9855, R2 0.9831 , F 408.9551
最新计量经济学-多元回归课件教学讲义ppt
7
OLS估计量的代数性质
e n
n2i源自Yi2Yˆi
i1
i1
n
2
Yi b1b2 X2ibk Xki
i1
(1)OLS残差和为零。
ei 0
(2)X和OLS残差的协方差为零。
ei Xi 0
计量经济学-多元回归课件
4.1 三变量(二元)线性回归模型
1、回归模型
教科书需求量模型:
总体回归方程:
E(Y|X)=B1+ B2X2+ B3X3
总体回归方程的随机形式:
Yi= B1+ B2X2i+ B3X3i+ui Y(因变量)=教科书需求量,
X2(自变量)=教科书价格 X3(自变量)=可支配收入 ui =随机误差项
为进一步规范水利工程建设监理单位和监 理人员的监理活动,保证监理工作质量, 提高项目管理水平,水利部组织有关单 位及专家制定了《水利工程建设项目施 工监理规范》,作为水利行业标准施行。
本规范依据《中华人民共和国合同法》、《建设 工程质量管理条例》和《水利工程建设监理规定》 等法律、法规和规章编制。
中独立于X2的部分;
16
(3)RY-X2对RX3-X2 回归 RX3-X2的系数就是二元回归方程中X3的系数。
RY-X2对RX3-X2 回归的实质: Y中不能被X2解释的部分作为因变量,以X3
中不能被X2解释的部分作为自变量的回归 即X3对Y的独立贡献。 偏回归系数。
Y ˆb1b2X2b3X3
Y ˆY2(k1)
FYY ˆ2
~F(k1,nk) (nk)
《多元线性回归模型》课件
参数估计Biblioteka 最小二乘法使用最小二乘法估计模型中的 回归系数。
最大似然估计
通过最大似然估计法求解模型 参数。
岭回归
使用岭回归克服多重共线性问 题。
模型评估
R方值
通过R方值评估模型对数据的拟合程度。
调整R方值
调整R方值可纠正样本容量对R方的偏倚。
残差分析
通过残差分析评估模型的合理性和拟合优度。
解释变量
通过系数解释每个自变量对因变量的影响,了解它们在模型中的作用和重要性。
实例分析
1
数据收集
搜集相关数据,准备进行多元线性回归分析。
2
模型构建
使用收集到的数据建立多元线性回归模型。
3
结果解读
对模型结果进行解读和分析,并给出相关结论。
变量选择
相关性分析
通过相关性分析选择与因变量相关性强的自变量。
逐步回归
逐步回归法能帮助我们选择最佳的自变量组合。
变量筛选
借助统计指标和领域知识选择适当的自变量。
模型假设
1 线性关系
假设因变量与自变量之间存在线性关系。
2 多元正态分布
3 无多重共线性
假设因变量及自变量服从多元正态分布。
假设自变量之间不存在高度相关性。
《多元线性回归模型》 PPT课件
在这个PPT课件中,我们将讲解多元线性回归模型的重要概念和应用。通过 丰富的实例和清晰的解释,帮助你深入了解这一统计分析方法。
多元线性回归模型的概述
我们将介绍多元线性回归模型的基本概念、原理和用途。了解什么是多元线 性回归,以及如何利用它来分析和预测多个自变量对因变量的影响。
高级计量经济学课件 (2)
2)
~
t(N
K
1)
本例中:
t (0.7512 0.6635) 1 =5.9456。 p值为0.0000 0.004874
结论:拒绝规模报酬不变的原假设,而认为规模 报酬是递增的(为什么?)。
iN1ˆi 0
N i 1
X
1i
ˆi
0
N i 1
X
Ki
ˆi
0
含义:OLS估计所的残差与解释变量不相关。即残 差中不存在任何可解释的成份。
注意:只有回归方程中包含常数项,由OLS估计所 得残差总和才一定为0。
假定7:回归模型的解释变量之间不能存 在完全的多重共线性。
n “完全的多重共线性”:是指一个解释变量是 其他解释变量的线性组合 。说明该解释变量所 提供的信息与其他解释变量是完全重复的。
2 ˆ
2
<41.9232,
在5%的显著性水平上,不能拒绝 2 0.01 的原假设。
2. 单个回归系数的显著性检验
如果随机误差项 i 是经典误差项,并且满足正态性假定 :
Z
ˆk k sd (ˆk )
~
N (0,1)
用估计量的标准误替代标准差,统计量服从t分布。即:
t
ˆk k se(ˆk )
Yi E(Yi X 1i ,, X Ki ) i
问题本质:
多元线性回归方程将被解释变量分解成为两部分:
(1)E(Yi X 1i ,, X Ki ) 0 1 X 1i k X Ki
这部分是可以由解释变量来解释。
(2) i Yi E(Yi X 1i ,, X Ki )
基本统计量TSS、RSS、ESS的自由度:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用方程形式,残差平方和可以表示为
E S S u i 2 Y i Y ˆ i2 Y i ˆ 0 ˆjX ij2
最小二乘法估计
(多元回归模型)
以包括两个解释变量的模型为例,对未知参数求一阶导数 得到:
如y果ˆ使xˆ12 , …x1,或 xk保持ˆ不1变 ,xyˆ1那么有
即每个估计的都反映出当其他因素不变时,该因
素产生的边际影响效果。
多元回归的拟合优度
多元回归方程的拟合优度同样可以用R2表示
R2RSS
TSS
Y Y ˆii Y Y2 21
同样的方法可以用于检验有关多个估计参数之间 关系的联合假设。
用下标R和UR区分有约束和无约束的回归方程R2 ,q为约束条件的个数,相应的F统计值计算公式 为:
对拟合优度的统计检验
检验拟合优度的虚假设是所有解释变量均不是真 正的解释变量,即:
H 0 : 12 .. .k 0
备择假设为至少有一个解释变量的参数不等于零 。相应的统计量为:
F k 1 ,N kE RSS K N S S 1 K 1 R R 22N K K 1
需要注意的是,在计量经济学中,“线性”指的是估计参数可以表达为 样本观察值和误差项的线性函数,并不要求回归方程中变量之间的关 系为线性的。
例:CD函数 Ye0X1 1X2 2eu
对该函数两边取对数得到:LnY=0+1LnX1+2LnX2+u
即比:较:YY *= 0e+0X 1X1 11 *X +2 2 2X 2*u +u
不同数学函数的性质
模型 线性 双对数 左对数 右对数 倒数 对数倒数 二次函数 交叉项
数学方程
Y=β0+β1X lnY=β0+β1lnX lnY=β0+β1X Y=β0+β1lnX Y=β0+β1(1/X) lnY=β0+β1(1/X) Y=β0+β1X+β2X2 Y=β0+β1X+β2XZ
斜率(dY/dX)
ui2 Yi Y2
拟合优度也可以表示为因变量的实际值与拟合值
的相关系数,即:
R2
yi yyˆi yˆ 2 yi y2 yˆi yˆ2
多元回归的拟合优度
在利用R2评价模型拟合优劣时需要注意以下问题:
模型设定必须是正确的; R2是解释变量数量的非递减函数,即增加解释变量不会
鉴于R2是解释变量的非递减函数,这降低了 利用该指标对模型做比较时的价值。
使用调整自由度后的R2做比较,能够考虑增 加解释变量产生的影响。其计算公式为:
R2 1VVaarrYu 1Yiui2YN2 NK1
1(1R2) N1 NK
调整自由度后的R2
假定3还意味着
C o v[x,e]C o v[x,E [eX ]]0
E[Y X]X
假定4:球形扰动
(Spherical Disturbances)
假定4与挠动项的方差和协方差有关,即: V a r [ e iX ] 2 和 C o v [ e i,e jX ] 0 ,i j E[ee' X]2I
第二章 线性回归模型
(Linear regression equations)
本章内容
古典线性回归(Ordinary Linear Squares)
模型估计方法和统计检验
其他模型估计方法
最大似然法(Maximum Likelihood) 广义矩法(Generalized Method of Moments)
当F值大于选择的临界值时,我们拒绝H0。
对估计系数的统计检验
利用前述的估计量方差矩阵可以得到每个 估计参数的标准差sj,估计参数与该标准差 的比值为相应的t统计值。
利用t统计表(或相应的软件)可以得到与 模型自由度相对应的显著性水平,据此可 以判断结果在统计意义上的可靠性。
对模型参数的联合检验
( X ' X )1 X '[ 2I ]X ( X ' X )1 2 ( X ' X )1
19
对多元回归方程估计结果的解释
多元回归方程估计结果可以表达为
y ˆˆ1 x 1ˆ2 x 2 .. .ˆK x K
由方程可知:
y ˆ ˆ 1 x 1 ˆ 2 x 2 . .ˆ .K x K
E (ˆX ) (X 'X ) 1 X 'E (eX )
E ˆE X E ˆX
最小二乘法估计
(多元回归模型)
估计量的方差为:
Var(ˆ) E[(ˆ )(ˆ ) ']
E[( X ' X )1 X 'ee ' X ( X ' X )1] ( X ' X )1 X ' E[ee ']X ( X ' X )1
计算调整自由度后的R2时使用的方差பைடு நூலகம்R2不同。
增加解释变量可能使ESS降低,但Var u 可以增大、不变
或下降,取决于新增加变量的解释能力。 当模型包括多个解释变量时,必然有R2 R2。 如果模型包括了一些不具有统计显著性的解释变量,那么
会出现 R 2 显著小于R2。删除不显著的变量会提高R 2,但会 降低R2。 是否应该增加或删除某个变量一般不应该根据R 2 或R2的数 值大小,而应该根据对变量之间因果关系的理论认识。 R 2 可能出现负值。
最小二乘法估计
(多元回归模型)
上式实现最小化的必要条件是:
ESˆ(ˆS)2X'Y2X'Xˆ0
得出上述结果需要利用以下矩阵算法性质:
a 'x a , A x A ', x 'A ( x A A ')x
x x
x
求解未知系数的最小二乘法正态方程为:
这三个方程构成求解三个未知参数的联立 线性方程组,我们称该方程组为正规方程 (Normal equations)。
最小二乘法估计
(多元回归模型)
将上述关系表示成矩阵形式得到:
N
X1i
X2i
即
X1i X12i X1iX2i
XX 1iX 2i2iˆˆ1 0 XY 1iiYi X22i ˆ2 X2iYi
引起R2下降,因而存在着通过不断增添解释变量使R2趋 近于1的可能; 当模型不包含常数项时,R2的值可能超出0-1这一区间 。 利用时间序列数据建立的模型R2通常较高,而利用截面 数据建立的模型R2通常较低。 当因变量不同(包括其数学表达形式不同)时,比较R2 大小没有任何意义。
调整自由度后的R2
X' Xˆ X'Y
如果 X'X存在逆矩阵(这是满秩假定所要求的),
那么其解为: ˆ(X'X)1X'Y
最小二乘法估计
(多元回归模型)
如果将解释变量视作是非随机的,那么将X作为常 数矩阵,可以得知OLS估计量是线性无偏的: ˆ ( X ' X )1 X 'Y ( X ' X )1 X '( X e) ( X ' X )1 X 'e
假定6:误差服从正态分布
假定误差服从以零为均值和具有不变方差 的正态分布。
e X~N[0,2I]
对于应用工作而言,正态分布假定并不是 必须的,只是为分析计算提供了便利。这 涉及到假定3和4。
最小二乘法估计
YXeXˆu
式中:
是理论模型的未知参数向量 ˆ 是的估计量
假定1:参数线性函数
古典多元回归模型的可以表示为:
一般形式:Y = β0 + β1X1 + β2X2 + . . .+ βKXK +e 离差形式:y = β1x1 + β2x2 + . . .+ βKxK +e 矩阵形式:Y = Xβ +e
在矩阵形式中,Xi是矩阵X 中的一列,常数项被看作是一个取值恒为 0的变量。
β1 β1Y/X β1Y β1/X -β1/X2 -β1Y/X2 β1+2β2X β1+β2Z
弹性(dY/dX)(X/Y)
β1X/Y β1 β1X β1/Y
-β1/(XY) -β1/X
(β1+2β2X)X/Y (β1+β2Z)X/Y
5
假定2:矩阵X是满秩的
X是一个n K 矩阵,X的秩应该等于K; 该假定也被称做识别条件。只有当识别条件得到
满足时,我们才能够得到参数估计结果。 该假定要求,至少对于K个观察值而言,解释变
量之间不应存在完全的线性关系。当不满足这一 条件时,我们遇到奇异矩阵。 一元回归模型不存在违反该假定的情况。 在遇到此问题时,计量经济软件通常给出“Near Singular matrix”。
假定3:解释变量X独立于误差项
模型设定与设定误差 虚拟变量的使用 建立多元回归模型时应注意的问题
古典回归模型
当回归模型满足古典假定时,我们称 其为古典回归模型。
一元回归模型
Yi = β0 + β1Xi +ei
多元回归模型
Yi = β0 + β1X1i + β2X2i + . . .+ βKXKi +ei
根据这一假定,X的观察结果不含有与挠动 项期望值有关的信息,用公式表达为:
E [e1
X] 1