限制性内切酶分类指南
限制性核酸内切酶
生理意义
限制作用实际就是限制酶降解外源DNA ,维护宿主遗传稳定的保护 机制。甲基化是常见的修饰作用,可使腺嘌呤A和胞嘧啶C甲基化而受 到保护。通过甲基化作用达到识别自身遗传物质和外来遗传物质的目 的。所以,能产生防御病毒侵染的限制酶的细菌,其自身的基因组中 可能有该酶识别的序列,只是该识别序列或酶切位点被甲基化了。但 并不是说一旦甲基化了,所有限制酶都不能切割。大多数限制酶对 DNA甲基化敏感,因此当限制酶目标序列与甲基化位点重叠时,对酶 切的影响有3种可能,即不影响、部分影响、完全阻止。对甲基化 DNA的切割能力是限制酶内在和不可预测的特性,因此,为有效的切 割DNA,必须同时考虑DNA甲基化和限制酶对该类型甲基化的敏感 性。另外,现在很多商业限制酶专门用于切割甲基化DNA。
E
Escherichia
(属)
co
coli
(种)
R
RY13
(品系)
I
的结构,辅因子的需求切位与作用方式,可将限 制酶分为三种类型,分别是第一型(Type I)、第二型(Type Ⅱ) 及第三型(Type Ⅲ)。
类型
第一型限制酶 同时具有修饰(modification)及识别切割(restriction)的作用;另有识别 (recognize)DNA上特定碱基序列的能力,通常其切割位(cleavage site)距离 识别位(recognition site)可达数千个碱基之远。例如:EcoB、EcoK。
第二型限制酶 只具有识别切割的作用,修饰作用由其他酶进行。所识别的位置多为短的回文 序列(palindrome sequence);所剪切的碱基序列通常即为所识别的序列。是遗 传工程上,实用性较高的限制酶种类。例如:EcoRI、HindⅢ。
限制性核酸内切酶
限制性核酸内切酶限制性核酸内切酶:是识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶。
限制性核酸内切酶的分类:依照限制酶的结构,辅因子的需求切位与作用方式,可将限制酶分为三种类型,别离是第一型(Type I)、第二型(Type II)及第三型(Type III)。
第一型限制酶同时具有修饰(modification)及认知切割(restriction)的作用;还有认知(recognize)DNA 上特定碱基序列的能力,通常其切割位(cleavage site)距离认知位(recognition site)可达数千个碱基之远,并非能准确信位切割位点,因此并非经常使用。
例如:EcoB、EcoK。
第二型限制酶只具有认知切割的作用,修饰作用由其他酵素进行。
所认知的位置多为短的回文序列(palindrome sequence);所剪切的碱基序列通常即为所认知的序列。
是遗传工程上,有效性较高的限制酶种类。
例如:EcoRI、HindIII。
第三型限制酶与第一型限制酶类似,同时具有修饰及认知切割的作用。
可认知短的不对称序列,切割位与认知序列约距24-26个碱基对,并非能准确信位切割位点,因此并非经常使用。
例如:EcoPI、HinfIII。
限制酶在遗传学方面的应用:1、在甚因工程方面利用能产生“粘性结尾”的限制酶, 进行DNA的体外重组, 是较为方便的, 只要用同一限制酶处置不同来源的DNA, 由于所产生的水解片段具有相同的粘性结尾, 能够彼此“粘合”,再经连接酶处置, 就成为重组DNA分子了. 目前, 基因工程上, 限制酶要紧应用于以下两方面(1)目的基因与载体的重组细菌细胞中的限制酶能水解外源DNA , 因此必需通过适当的载体(质粒或噬菌体)的帮忙才能将外源DNA引人受体细胞并在其中增殖和表达。
将供体DNA与载体用一样的限制酶处置, 使载体带上各类各样的外源DNA片断, 然后引人受体细菌细胞增殖, 菌细胞增殖, 再挑选出所需的菌株, 便取得带有某一目的基因的繁衍系.用这种方式, 已成功地将酵母菌的咪哇甘油磷酸脱水酶基因、夕一异丙基苹果酸脱氢酶基因和色氨酸合成酶基因通过几噬菌体转人大肠杆菌,并表达了信息.(2)建造新的基因载体作为基因载体,在引人受体细胞后, 必需有较高的复制率, 以求取得大量的基因产物;必需具有一个选择性标志, 以便挑选;还要有一最多种限制酶的作用位点(每种酶只有一个切口);也要求利用平安。
限制性内切酶
限制性内切酶限制性内切酶(又称限制酶)首先是在细菌体内发现的,但后来在部分古细菌中也发现了这种成分。
通常,限制性内切酶会切割双链DNA,每个限制性内切酶会识别特定的DNA序列,根据不同的内切酶类型,可在识别序列内或距识别序列不远的位置处切割DNA,识别序列长度通常为4-8bp,酶切之后会形成粘性末端和平末端。
上世纪50年代初期,许多研究团队观测到了噬菌体对于同一物种的不同细菌宿主菌株存在感染效率差异[1,2],即:使用在一种细菌菌株(例如,大肠杆菌C)内繁殖的噬菌体λ感染同一种类的灵异菌株(例如大肠杆菌K),结果发现,相比于重新感染宿主菌株(大肠杆菌C),大肠杆菌K的感染率出现明显下降。
新的宿主(大肠杆菌K)似乎可以选择性抵御或“耐受”侵入的噬菌体。
研究人员还发现,这一现象并没有遗传性,因为经过一轮感染后,在新菌株中生长的噬菌体还可以以正常的感染率感染该菌株。
这种现象被称为“宿主控制变异”,有关其背后的机制也成为了频繁研究的领域[3]。
直到上世纪60年代,人们才发现宿主变异的机制,其与噬菌体DNA的酶切有关,进而发现并分理出了限制性内切酶。
上世纪60年代初Werner Arber观测发现,宿主范围内的决定性遗传物质都存在于噬菌体DNA中,而后续实验证明甲硫氨酸参与宿主的自我保护[4]。
这些发现最终催生了限制性修饰(R-M)体系的概念,通过该体系,来自于宿主的限制性内切酶和甲基化酶共同作用,切割外来病毒(非甲基化)DNA,同时保护宿主的DNA不受甲基化[5]。
随着DNA连接酶的发现以及位点特异性限制性内切酶的家族不断壮大,重组DNA 技术应运而生。
限制性内切酶的命名规则,考虑到内切酶来源的三种特性——属名、种名和菌株或血清型——组成了一个简短的名称,后面加上罗马数字,代表来自同一菌株的多个限制性内切酶[6]。
例如,以HindⅢ酶为代表:“H”代表Haemophilus“in”代表influenzae“d”代表血清型d“Ⅲ”用于区分来自于Haemophilusinfluenza血清型d的其它限制性内切酶限制性内切酶的分类,根据结构的复杂程度、识别序列、切割位点位置以及辅助因子要求,限制性内切酶分为四类:TypeⅠ:同时具有限制性和甲基化活性的多亚基蛋白需要ATP切割位点与识别位点间的间距不定TypeⅡ:特异性的识别序列切割位点位于识别序列内或邻近识别序列在切割位点生成5'磷酸基和3'羟基末端需要M2+TypeⅢ:由两个相反的识别序列组成切割位点与其中一个识别序列的间距恒定需要ATPTypeⅣ:仅切割甲基化的DNA切割位点大约距离识别位点30bp由于自身特殊的特点,TypeⅡ限制性内切酶已经成为分子克隆、法医学DNA分析等许多研究应用最常用的限制性内切酶。
二、限制性内切酶的类型II类限制性内切酶III类限制性内切酶首先由M.
(3)粘性末端(sticky ends,cohensive ends) 含有几个核苷酸单链的末端。 分两种类型:
① 5’端凸出(如EcoR I切点) 5’3’5’3’GAATTC CTTAAG
G AATTC CTTAA G
-3’ -5’
-3’ -5’
② 3’端凸出(如Pst I切点)
5’3’CTGCAG GACGTC -3’ -5’
A 用于核酸操作的工具酶
Enzymes
限制性核酸内切酶 DNA连接酶 DNA聚合酶 DNA修饰酶 核酸外切酶 单链DNA内切酶
第一节 限制性核酸内切酶
一、限制性核酸内切酶
(Restriction endonuclease) 是一类能够识别双链DNA分子中的某 种特定核苷酸序列(4—8bp),并由 此处切割DNA双链的核酸内切酶。
U代表嘌呤;Y代表嘧啶。
Sau 3A 5’-GATC----3’ 3’----CTAG-5’ 同尾酶的粘性末端互相结合后形成的 新位点一般不能再被原来的酶识别。 GATCT3’ 5’ -G BamH I Bgl Ⅱ A-5’ 3’-CCTAG 5’-GGATCT-3’ Bgl Ⅱ 3’-CCTAGA-5’ Sau 3A
?
BamH I
(7)限制酶的酶活性
限制性内切酶的识别和酶切活性一般在 一定的温度、离子强度、pH等条件下才 表现最佳切割能力和位点的专一性。
所以一般使用专一的反应缓冲液。 ① 星号(*)活性 如果改变反应条件就会影响酶的专一性 和切割效率,称为星号(*)活性。
限制性核酸内切酶
II 型限制性核酸内切酶酶解反应的操作 II 型核酸内切酶的多酶联合酶解: 对盐浓度要求不同的酶,可采取下列方法: 使用较贵的酶的盐浓度,加大便宜酶的用量,同时酶解 低盐酶先切,然后补加盐,高盐酶再切 一种酶先切,然后更换缓冲液,另一种酶再切 0.1倍体积的 5 M NaAc pH 5.4 2.5倍体积的冰冷乙醇
3限制性内切酶
2.将反应体系充分混匀,并于台式离心 机上短暂离心。 3.Eppendorf管于37℃水管中反应1小 时。 4.反应结束后加入2μl的6XLoading buffer 以终止反应。 5.混匀后0.8%琼脂糖凝胶上60伏电泳2 小时。
3.反应缓冲液:
反应缓冲液主要由Tris· HCl、NaCl、Mg2+组成, 其中Mg2+为内切酶辅基; Tris· HCl维持反应体系pH值在7.2-7.6之间; NaCl浓度不同形成3种级别的离子强度: 低盐(10mM NaCl) 中盐(50mM NaCl) 高盐(100mM NaCl) 不同的内切酶选择特定的反应缓冲液。
4.酶解温度与时间:
大多数限制酶反应温度为37℃,如 EcoRⅠ, HindⅢ, BamHⅠ, PstⅠ等,也有 如BclⅠ需在50℃下进行反应, 反应时间根据酶的单位与DNA用量之比 来定,原则是酶:DNA=2-3:1 2小时即可,充分酶解。
实验方法
1.按下表分别加入各试剂(注意限制性 内切酶最后加入且在冰上操作)于 Eppendorf管中。 DNA 5μl 10×buffer 1μl 无菌水 3.5μl 内切酶 0.5μl 总体积: 10μl
酶切反应中应注意以下几个问题:
1.内切酶: 不应混有其它杂蛋白特别是其它内切酶或外切酶的污染; 注意内切酶的识别位点及形成的粘性末端; 内切酶的用量 根据内切酶单位和DNA用量而定,通常 1u指在适当条件下,1小时内完全酶解1ug特定DNA底 物所需要的限制性内切酶量,使用中一般以1ug DNA对 2-3u酶短时间为宜。 同时内切酶体积不能超过反应体系10%,因内切酶中含 50%甘油,体系中甘油超过5%会抑制内切酶活力; 使用时防止操作中对内切酶的污染。
2.DNA:
限制性内切酶
生技2班 张维嘉 楼辉辉 梁竟一 冯夏艳 孟慧 毛荣 殷智强
限制性核酸内切酶是可以识别DNA的特异序列,并在识别位点 或其周围切割双链DNA的一类内切酶,简称限制酶。 根据限制酶的结构,辅因子的需求切位与作用方式,可将限制 酶分为三种类型,分别是第一型、第二型及第三型。 Ⅰ型限制性内切酶既能催化宿主DNA的甲基化,又催化非甲基 化的DNA的水解; Ⅱ型限制性内切酶只催化非甲基化的DNA的水解; III型限制性内切酶同时具有修饰及认知切割的作用。
用于DNA基因组物理图谱的组建;基因的定位和基因分离;DNA分子碱基 序列分析;比较相关的DNA分子和遗传工程。 限制性核酸内切酶是由细菌产生的,其生理意义是提高自身的防御能力. 限制酶一般不切割自身的ype II restriction enzyme ) 识别序列: 5'GGGCC^C 3‘ BamHI(类型:Type II restriction enzyme ) 识别序列: 5' G^GATCC 3' BglII (类型:Type II restriction enzyme ) 识别序列: 5' A^GATCT 3' EcoRI (类型:Type II restriction enzyme ) 识别序列: 5' G^AATTC 3' HindIII (类型:Type II restriction enzyme ) 识别序列: 5' A^AGCTT 3' KpnI (类型:Type II restriction enzyme ) 识别序列: 5' GGTAC^C 3' NcoI (类型:Type II restriction enzyme ) 识别序列: 5' C^CATGG 3' NdeI (类型:Type II restriction enzyme ) 识别序列: 5' CA^TATG 3' NheI (类型:Type II restriction enzyme ) 识别序列: 5' G^CTAGC 3' NotI (类型:Type II restriction enzyme ) 识别序列: 5' GC^GGCCGC 3' SacI (类型:Type II restriction enzyme ) 识别序列: 5' GAGCT^C 3' SalI (类型:Type II restriction enzyme ) 识别序列: 5' G^TCGAC 3' SphI (类型:Type II restriction enzyme ) 识别序列: 5' GCATG^C 3' XbaI (类型:Type II restriction enzyme ) 识别序列: 5' T^CTAGA 3' XhoI (类型:Type II restriction enzyme ) 识别序列: 5' C^TCGAG 3'
基因工程中常用的三种工具酶
一、限制性核酸内切酶(restriction endonuclease)1.定义:凡能识别和切割双链DNA分子内特定核苷酸序列的酶,也称为限制酶(restriction enzyme,RE)。
2.类型:来自原核生物,有三种类型。
Ⅰ型:兼具甲基化修饰和ATP参与的核酸内切酶活性,随机切割。
Ⅱ型:大多能特异识别4~6个核苷酸序列(回文结构),最大识别序列为8个核苷酸,如SfiI、NotI;但有近10种Ⅱ型限制酶的识别序列为非回文结构,如SfaNI、MnlI等,Ⅱ型限制酶均可作为基因工程的工具酶。
另有一些来源不同的限制酶的识别位点是相同的核苷酸序列,将这类酶特称为同工异源酶(isoschizomers)或同裂酶。
同工异源酶切割产生相同的末端;有一些同工异源酶对于切割位点上的甲基化碱基的敏感性有所差别,故可用来研究DNA 甲基化作用,如SmaI和XmaI;HpaII和MspI;MboI和Sau3AI是成对的同工异源酶;其中HpaII和MspI是一对同工异源酶,其识别位点是CCGG。
与同工异源酶对应的一类限制酶,它们虽然来源各异,识别序列也各不相同,但都产生出相同的粘性末端,称为同尾酶(isocaudamers)。
常用的限制酶BamHI、BclI、BglII、Sau3AI和XhoII就是一组同尾酶,它们切割DNA之后都形成由GATC4个核苷酸组成的粘性末端。
显而易见,由同尾酶所产生的DNA片段,是能够通过其粘性末端之间的互补作用而彼此连接起来的,因此在基因克隆实验中很有用处。
但必须指出,由两种同尾酶消化产生的粘性末端,重组之后所形成的序列结构再不能被原来的任何一种同尾酶所识别。
Ⅲ型:功能基本同Ⅰ型,但为特定位点切割。
三种限制酶的区别如下表所示:Ⅰ型Ⅱ型Ⅲ型DNA底物dsDNA dsDNA dsDNA辅助因子Mg2+,A TP,SAM Mg2+ Mg2+,A TP识别序列特异特异特异切割位点非特定(于识别序列前后100~1000bp范围之内)特定(切割于识别序列之中或近处,固定位点)特定(切割点在识别序列后25~75bp处)与甲基化作用的关系内切酶蛋白同时具有甲基化酶的作用酶蛋白不具有甲基化作用内切酶蛋白同时具有甲基化酶的作用3.命名:第一个字母取自产生该酶的细菌属名,用大写;第二、第三个字母是该细菌的种名,用小写;第四个字母代表株。
限制性核酸内切酶与核酸内切酶、外切酶
限制性核酸内切酶百科名片其3′→5′外切酶活性使双链DNA分子产生出单链区,经过这种修饰的DNA 再配合使用Klenow酶,同时加进带放射性同位素的核苷酸,便可以制备特异性的放射性探针。
核酸内切酶核酸内切酶(endonuclease)在核酸水解酶中,为可水解分子链内部磷酸二酯键生成寡核苷酸的酶,与核酸外切酶相对应。
从对底物的特异性来看,可分为DNaseⅠ、DNaseⅡ等仅分解DNA的酶;脾脏RNase、RNaseT1等仅分解RNA的酶。
如链孢霉(Neurospora)的核酸酶就是既分解DNA又分解RNA的酶。
一般来说,大都不具碱基特异性,但也有诸如脾脏RNase、RNaseT1等或限制性内切酶那种能够识别并切断特定的碱基或碱基序列的酶。
[1]寡核苷酸,是一类只有20个以下碱基对的短链核苷酸的总称(包括脱氧核糖核酸DNA或核糖核酸RNA内的核苷酸),寡核苷酸可以很容易地和它们的互补对链接,所以常用来作为探针确定DNA或RNA的结构,经常用于基因芯片、电泳、荧光原位杂交等过程中。
RNA聚合酶科技名词定义中文名称:RNA聚合酶英文名称:RNA polymerase定义1:以一条DNA链或RNA链为模板催化由核苷-5′-三磷酸合成RNA的酶。
所属学科:生物化学与分子生物学(一级学科);酶(二级学科)定义2:以一条DNA链或RNA链为模板催化由核苷-5′-三磷酸合成RNA的酶。
所属学科:细胞生物学(一级学科);细胞遗传(二级学科)定义3:以DNA或RNA为模板合成RNA的酶。
所属学科:遗传学(一级学科);分子遗传学(二级学科)本内容由全国科学技术名词审定委员会审定公布RNA聚合酶(RNA polymerase):以一条DNA链或RNA为模板催化由核苷-5′-三磷酸合成RNA的酶。
是催化以DNA为模板(template)、三磷酸核糖核苷为底物、通过磷酸二酯键而聚合的合成RNA的酶。
因为在细胞内与基因DNA的遗传信息转录为RNA有关,所以也称转录酶。
限制性内切酶
限制性内切酶1,发现限制性内切酶能保护细菌不受噬菌体的感染,行使微生物免疫功能,缺乏限制性内切酶的大肠杆菌极易被噬菌体感染,但是如果拥有限制性内切酶,被感染的几率就会降低。
限制性内切酶在原核生物中普遍存在,所有自由生存的细菌和古细菌几乎都能编码限制性内切酶。
2,限制-修饰(R-M)系统大多数限制性内切酶常常伴随有一两种修饰酶(DNA甲基化酶),从而保护细胞自身的DNA不被限制性内切酶破坏。
修饰酶识别的位点与相应的限制性内切酶相同,但它们的作用是甲基化每条链中的一个碱基,而不是切开DNA链。
甲基化所形成的甲基基团能够伸入到限制性内切酶识别位点的双螺旋的大沟中,阻碍限制性内切酶发挥作用,即组成R-M系统。
在R-M系统中,有些限制性内切酶和修饰酶是两种不同的蛋白,独立行使自己的功能,有些本身就是一种大的限制-修饰复合酶,由不同的亚基或同一亚基的不同结构域分别执行自己的功能。
3,分类最常用的II型限制性内切酶,能够在识别序列内部或附近特异性的切开DNA链,产生特性的片段和凝胶电泳条带,是唯一一类能用于DNA分析和克隆的限制性内切酶。
限制性内切酶切割后产生一个3-羟基和5-磷酸基,只有当镁离子存在时才具有活性,而相应的修饰酶则需要S-腺苷甲硫氨酸的存在。
备注:NEBuffer: Tris-HCl , MgCl, DTT(二硫苏糖醇,强还原剂)星号活性:在非理想条件下,内切酶切割与识别位点相似但不完全相同的序列,称为星号活性。
使用高保真内切酶,即经过基因工程改造降低了星号活性。
同裂酶:识别序列相同的限制性内切酶即为同裂酶,第一个被发现的内切酶称为原酶,后来发现的识别序列相同的内切酶称为原酶的内裂酶。
4,甲基化(1)原核生物甲基化在原核生物中,DNA甲基化酶作为限制修饰系统的一个组成部分广泛存在,作用是保护宿主菌不被相应的限制性内切酶切割。
Dam甲基化酶:G m ATCDcm甲基化酶:C m CAGG和C m CTGG例如,从dam+ E.coli 中分离的质粒DNA则不能被识别序列为GA TC的限制性内切酶所切割,但是被Dam甲基化阻断的限制性位点可以通过克隆方法去甲基化,及将DNA转入至dam-的菌种中进行增殖。
限制性内切酶的说明
限制酶使用说明一、分类目前,已被发现的限制酶,根据其反应的必须因子和切断点等特性,被分为以下三大类:类别反应必须因子切点酶例 I 型 s-腺苷基蛋氨酸、ATP、Mg2+识别部位和切点不同,切断部位不定Eco B、Eco KII 型 Mg2+切断识别部位或其附近的特定部位Eco R I、Bam H I III 型 ATP、Mg2+识别部位和切点不同,但切断特定部位Eco P I、Hin f III 应用于基因工程研究用的限制酶,一般全是II型酶,现在市场上销售的酶都属于II型酶, 这些限制酶由于其反应条件和底物DNA种类的不同,其切断状况及出现Star活性的频率等各有不同,并且其程度也根据酶的不同而千差万别。
因而在使用限制酶时,必须对这些要素充分注意,确保目标序列的切断反应能顺利进行,下面具体介绍一下使用限制酶时的一些注意点。
二、注意事项1. 甲基化的影响从带有DNA甲基化酶基因的宿主菌中制备的DNA,其碱基的一部分已经被甲基化,因此即便使用能够识别、切断被甲基化部分的序列的限制酶,也几乎无法切断被甲基化的部分。
被甲基化的部位,根据底物DNA及宿主种类的不同而不同。
例如宿主菌为大肠杆菌的情况下,根据宿主的种类有以下两种情况:在进行转化时,通常使用的菌株为C600、HB101、JM109等,因为都带有dam、dcm甲基化酶,所以使用这些菌株制备的DNA时,必须注意。
另外,动物由来的DNA,CG序列多为5m CG;植物由来的DNA,CG及CNG序列多为5m CG和5m CNG。
2. Star活性限制酶在一些特定条件下使用时,对于底物DNA的特异性可能降低。
即可以把与原来识别的特定的DNA序列不同的碱基序列切断,这个现象叫Star活性。
Star活性出现的频率,根据酶、底物DNA、反应条件的不同而不同,可以说几乎所有的限制酶都具有Star活性。
并且,它们除了识别序列的范围增大之外,还发现了在DNA的一条链上加入切口的单链切口活性,所以为了极力抑制Star活性,一般情况下,即使会降低反应性能,我们也提倡在低甘油浓度、中性pH、高盐浓度条件下进行反应。
限制性核酸内切酶的命名和类型
5‘…G--C--T--G--OH P--A--A--T--T--C--G--A--G … 3’ 3‘…C--G--A--C--T--T--A--A—P OH--G--C--T--C … 5’
退火 4--7 ℃ 5‘…G--C--T--G--A--A--T--T--C--G--A--G … 3’ 3‘…C--G--A--C--T--T--A--A--G--C--T--C … 5’
EOP=1(修饰作用)
人们发现侵染大肠杆菌的噬菌体都存在着一些功能性障碍。即所 谓的寄主控制的限制与修饰现象简称(R/M体系)。 细菌的R/M体系类 似于免疫系统,能辨别自身的DNA与外来的DNA,并能使后者降解掉。
(1)限制(Restriction)
限制性内切酶将侵入细菌体内的外源DNA进行分 解,切成小片断。
5、限制性内切酶对DNA的消化作用
限制性核酸内切酶概念
限制性内切核酸酶(Restriction endonuclease)是一类能够识别双链DNA 分子中的某种特定核苷酸序列(4-8bp),
并由此处切割DNA双链的核酸内切酶。
1. 来源 2. 性质
主要来源于原核生物
内切酶
即在核酸分子链的内部制造切口的酶。 形成5’-P和3’-OH末端
二、限制性内切酶的类型
据限制性核酸内切酶的识别切割特性、催化条件及是否具有修 饰酶活性,可分为Ⅰ、Ⅱ、Ⅲ、Ⅳ型。
基因工Байду номын сангаас中使用 主要特性 限制修饰 蛋白结构 辅助因子 识别序列 切割位点 Ⅰ型 双功能(具甲基化) 异源三聚体 ATP Mg2+ SAM 距识别序列1kb处 随机性切割 Ⅱ型 单一功能 同源二聚体 Mg2+ 4-6bp回文序列 识别序列内或附近 特异切割 Ⅲ型 双功能(具甲基化) 异源二聚体 ATP Mg2+ 距识别序列下游 24-26bp处 随机性切割
生物化学与分子生物学实验技术-实验四 限制性内切酶分析
回文结构(Palindrome)
产生黏性末端(sticky end)或平头末端(blunt end)
实验原理
➢ Hin d III 是应用最广泛的限制性内切酶之一,酶切 位点和切割位点如下:
➢ DNA采用PCR法获得内参基因GAPDH(815bp) 。 ➢ GAPDH片段中含有一个Hin d III酶切位点,酶切
➢ 凝胶完全凝固后,移去梳子,将凝胶放入电泳槽, 点样端置于负极。TAE缓冲液使恰好没胶面约1mm。
StepⅣ 酶切结束后,加入4 µl 6×loading buffer,
混匀备用。
StepⅤ 20µl Loading :
-
M
未酶切
DNA
酶切样品
+
StepⅥ 电泳: 120V ,30- 40 min
分类: Ⅰ、Ⅱ、Ⅲ类
命名:
Hin dⅢ
Haemophilus influenzae d strain Ⅲ 流感嗜血杆菌d株的第三种酶 属 系 株序
第一个字母取自产生该酶的细胞属名,用大写; 第二、第三个字母是该细胞的种名,用小写; 第四个字母代表株; 用罗马数字表示发现的先后次序。
识别和切割位点
配置酶切体系,混匀
ddH2O 10×buffer DNA(PCR产物) Hin d III
5 µl 2.5 µl 10 µl 2.5 µl 20 µl
漩涡离心机瞬时离心。
StepⅡ 37℃保温1h。
StepⅢ 1.0%琼脂糖凝胶制备:
➢ 使用微波炉( 中高火)加热agarose(1~2min) ,待溶液冷却至60℃; ➢ 将琼脂糖溶液倒入胶模中,厚度约3-5mm,避 免产生气泡;
StepⅦ 染色、观察:
常用的限制性内切酶
HindⅡ
GTCGAC CAGCTG
Bam HⅠ
GGATCC CCTAGTG
平端切口
G+
CCTAG
GATCC G
粘端切口
识别序列一般为4、6、8个碱基对(base pair,bp)
限制性酶切位点出现的概率:
①识别4bp的酶 每1/44bp 即1/256bp
GCCTAG+
GATCC G
同尾酶:
有些限制性内切酶虽然识别序列不完全相 同,但切割DNA后,产生相同的粘性末端,称 为同尾酶。这两个相同的粘性末端称为配伍未 端(compatible end)。
Bam HⅠ
GGATCC CCTAGG
Bg lⅡ
AGATCT TCTAGA
G CCTAG
+
GATCC G
最古老的生物转化,就是利用细菌将乙 醇转化成乙酸的醋酸发酵。
生物转化还可用于把异丙醇转化成甘油 进而二羟基丙酮;葡萄糖转化成葡萄糖酸, 进而转化成2一酮基葡萄糖酸或5一酮基葡 萄糖酸,以及将山梨醇转变成L一山梨糖等。 此外,微生物转化发酵还包括甾类转化和抗 生素的生物转化等等。
其产物具有立体构型单一,转化条件温 和,后处理简便,公害少。
生物合成技术: 基因工程、细胞工程基础上应用发酵法和 酶法合成技术合成生化活性物质。
涉及的反应有50多种:如水解、脱氢、氧 化、羟基化、环氧化、还原、氢化、酯化、 异构化、氮杂基团氧化还原、硫醚开裂等 等。
2、生物半合成技术:
指一个药物其部分结构由天然资源得到, 然后用化学合成法制得最终产品或应用微生 物转化法将化学合成的中间产物,通过某些 生物合成步骤来解决药物合成中难于进行的 化学反应,从而获得最终有效化合物。
限制性内切酶的发现
酶分子
I类酶
II类酶
三亚基双功能 内切酶与甲基化酶分离
III类酶 二亚基双 能
识别位点 二分非对称序列 4-6bp序列,回文结构 5-7bp非对称序列
切割位点 距识别位点1000bp 在识别位点中或靠识别位点 在识别位点 下游24-26bp
限制性反应 互斥 与甲基化反应
分开反应
同时竟争
限制作用 需要ATP 需要
需要
不需要
五.I类酶,III类酶限制-修饰酶基本特怔
1)I类酶,EcoK,EcoB。 (1)异源多聚体,亚基R.M.S分别具有限制,修饰酶的作用,特
异性位点识别活性。
(2)I类酶与 DNA识别位点结合依赖亚基 M与辅助因子S—腺 苷甲硫氨酸(SAM)相互作用。
(3)S—腺苷甲硫氨酸(SAM)通过变构作用使酶处于活性状态, 酶与 DNA识别位点结合后,根据甲基化状态发挥相应酶的活 性,或限制, 或限修饰,或不限制不限修饰
2) hsdR编码限制性核酸内切酶---识别DNA分子特定位点, 将双链DNA切断。(DNA分子转化细胞:受体细胞去掉 hsdR基因位点)
3) hsdM编码产物是DNA甲基化酶---催化DNA分子特定位点 的碱基甲基化反应。
4) hsdS表达产物的功能是---协助限制性核酸内Hale Waihona Puke 酶和甲基 化酶,识别特殊的作用位点。
六.甲基化酶的基本特征:
1)Ⅱ类限制性内切酶有相应甲基化酶伙伴, a)限制性内切酶,甲基化酶的识别位点相同,序列内使碱 基甲基化,封闭酶切口。
b)甲基化酶封闭一个限制性内切酶切口同时产生另一种酶 切口。
c) DNA腺嘌呤甲基化酶 Darn DNA胞嘧啶甲基化酶 Dcm
七.酶切图谱示意图
限制性内切酶和引物
引物设计软件
• Primer Premier 5.0
• Oligo • primer 3 • The Primer Generator • NetPrimer
Primer Premier 5.0使用介绍sequence Load
Preimer Premier 启动界面
子的简并性,引物3’端最后一个碱基最好
不与密码子第三个碱基配对。
引物5’端
• 引物5’端可以有与模板DNA不配对碱基, 在5’端引入一段非模板依赖性序列。
– 5’端加上限制性核酸内切酶位点序列(酶切 位点5’端加上适当数量的保护碱基)。 – 5’端的某一位点修改某个碱基,人为地在产 物中引入该位点的点突变以作研究。 – 5’端标记放射性元素或非放射性物质(如生 物素、地高辛等)。
7、同尾酶
许多不同的限制酶切割 DNA 产生的末端是相同的, 且是对称的,即它们可产生相同的粘性突出末端。 这些酶统称为同尾酶。这些酶切割 DNA 得到的产 物可进行粘端连接。以下几种酶产生的末端是相同 的。通过表 4-3 很容易判断哪些酶可产生相同的 DNA 末端。
· EcoRⅠ G↓AATCC MfeⅠ C↓AATTC ApoⅠ R↓AATTY · SpeⅠ A↓CTAGT NheⅠ G↓CTAGC XbaⅠ T↓CTAGA · BamHⅠ G↓GATCC Sau3AⅠ ↓GATC StyⅠ C↓CWWGG · ClaⅠ AT↓CGAT AccⅠ GT↓MKAC (pUC19)
四、III类限制修饰酶
(1)亚基R,MS亚基组成。MS亚基具有识别和甲基 化修饰双重作用. (2)修饰与限制取决于两亚基之间的竟争。
(3)切割位点无特异性,只与识别位点的距离有关 MboII 识别 5’-AAGA- 3’ 切割位点 5’-GAAGANNNNNNNN/N-3’ 3’-CTTCTNNNNNNN/NN-5’
限制性核酸内切酶
目 录
• 限制性核酸内切酶的概述 • 限制性核酸内切酶的分类 • 限制性核酸内切酶的工作原理 • 限制性核酸内切酶的应用 • 限制性核酸内切酶的未来发展
01
限制性核酸内切酶的概述
定义和特性
定义
限制性核酸内切酶是一类能识别并附着特定的核苷酸序列,并对每条链中特定 部位的两个脱氧核糖核苷酸之间的磷酸二酯键进行切割的一类酶。
在生物科学领域的应用
基因克隆和DNA重组技 术
限制性核酸内切酶是基因克隆和DNA重组 技术中的关键工具,用于切割和重组DNA 片段。
基因诊断和基因治疗
限制性核酸内切酶可用于检测和纠正基因突变,为 基因诊断和基因治疗提供有效手段。
生物制药和生物技术
限制性核酸内切酶在生物制药和生物技术领 域中用于生产重组蛋白、抗体和治疗性核酸 等生物制品。
双活性酶
02
同时具有切割和磷酸酶活性,如BstAPI。
多活性酶
03
同时具有多种活性,如FokI同时具有切割、磷酸酶和甲基化酶
活性。
03
限制性核酸内切酶的工作原理
识别和切割DNA的过程
识别
限制性核酸内切酶能够识别特定的 DNA序列,通常是4-6个核苷酸组成 的序列。
切割
在识别位点处,限制性核酸内切酶将 DNA链切开,形成两个断开的磷酸二 酯键。
产生黏性末端
限制性核酸内切酶切割DNA后,通常产生具有突出末端的片段,也称为黏性末端 。这种黏性末端可以用于DNA的连接和重组。
04
限制性核酸内切酶的应用
在基因工程中的应用
1 2 3
基因克隆
限制性核酸内切酶能够将DNA分子切割成特定序 列的片段,为基因克隆提供精确的DNA片段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30多年前,当人们在对噬菌体的宿主特异性的限制-修饰现象进行研究时,首次发现了限制性内切酶。
细菌可以抵御新病毒的入侵,而这种"限制"病毒生存的办法则可归功于细胞内部可摧毁外源DNA的限制性内切酶。
首批被发现的限制性内切酶包括来源于大肠杆菌的EcoR I 和EcoR II,以及来源于Heamophilus influenzae的Hind II和Hind III。
这些酶可在特定位点切开DNA,产生可体外连接的基因片段。
研究者很快发现内切酶是研究
限制性内切酶的主要功能是保护细菌不受噬菌体的感染,这一观点已被人们广泛接受。
它们作为微生物免疫机制的一部分行使其功能。
当一个没有限制性内切酶的细菌被病毒感染时,大部分病毒颗粒都能成功地进行感染。
然而一个有限制性内切酶的同种细菌被成功感染的比率显著下降。
出现更多的限制性内切酶将会起到多重保护作用;而一个拥有4到5种各自独立的限制性内切酶将会使细胞坚不可摧。
限制性内切酶常常伴随一到两种修饰酶(甲基化酶)出现。
后者的作用是保护细胞自身的DNA 不被限制性内切酶破坏。
修饰酶识别的位点与相应的限制性内切酶相同,但只甲基化每条链中的一个碱基,而不是切开DNA链。
限制性内切酶识别位点处的甲基基团伸入到双螺旋的大沟中去,阻碍了限制性内切酶的作用。
这样,限制性内切酶和它的"搭档"--甲基化酶一起就构成了限制-修饰(R-M)系统。
在一些R-M系统中,限制性内切酶和修饰酶是两种不同的蛋白,它们各自独立行使自己的功能;而在另一些系统中,两种功能由同一种限制-修饰酶的不同亚基,或是同一亚基的不同结构域来执行。
传统上将限制性内切酶按照亚基组成、酶切位置、识别位点、辅助因子等因素划分为三大类。
然而,蛋白测序的结果表明,限制性内切酶的变化多种多样,若从分子水平上分类,则应当远远不止这三种。
I型限制性内切酶是一类兼有限制性内切酶和修饰酶活性的多个亚基的蛋白复合体。
它们在识别位点很远的地方任意切割DNA链。
以前人们认为I型限制性内切酶很稀有,但现在通过对基因组测序的结果发现这一类酶其实很常见;尽管I型酶在生化研究中很有意义,但由于不产生确定的限制片段和明确的跑胶条带,因而不具备实用性。
II型酶在其识别位点之中或临近的确定位点特异地切开DNA链。
它们产生确定的限制片段和跑胶条带,因此是三类限制性内切酶中唯一用于dna分析和克隆的一类。
II型限制性内切酶由一群性状和来源都不尽相同的蛋白组成,因而任意一种限制性内切酶的氨基酸序列可能与另一种限制性内切酶的氨基酸序列截然不同。
实际上,从已知的情况上看,这些酶很可能是在进化过程中各自独立产生的,而非来源于同一个祖先。
II型限制性内切酶中最普遍的是象Hha I、Hind III和Not I这样在识别序列中进行切割的酶。
这一类酶是构成商业化酶的主要部分。
大部分这类酶都以同二聚体的形式结合到DNA上,因而识别的是对称序列;但有极少的酶作为单聚体结合到DNA上,识别非对称序列。
一些酶识别连续的序列(如EcoR I识别GAATTC);而另一些识别不连续的序列(如Bgl I识别GCCNNNNNGGC)。
限制性内切酶的切割后产生一个3"羟基端和一个5"磷酸基团。
它们的活性要求镁离子,而相应的修饰酶则需要S-甲硫氨酸腺苷的存在。
这些酶一般都比较小,亚基一般都在200-300个氨基酸左右。
另一种比较常见的酶是所谓的IIS型酶,比如Fok I和Alw I,它们在识别位点之外切开DNA。
这些酶的大小居中,约为400-650个氨基酸左右;它们识别连续的非对称序列,有一个结合识别位点的域和一个专门切割DNA的功能域。
一般认为这些酶主要以单体的形式结合到DNA上,但与临近的酶结合成二聚体,协同切开DNA链。
因此一些IIS型的酶在切割有多个识别位点的DNA分子时,活性可能更高。
第三种II型限制性内切酶(有时也被称为IV型限制性内切酶)是一类较大的、集限制和修饰功能于一体的酶,通常由850-1250个碱基组成,在同一条多肽链上同时具有限制和修饰酶活性。
有些酶识别连续序列,并在识别位点的一端切开DNA链;而另一些酶识别不连续的序列(如Bcg I:CGANNNNNNTGC),并在识别位点的两端切开DNA链,产生一小段含识别序列的片段。
这些酶的氨基酸序列各不相同,但其结构组成是一致的。
他们在N端由一个负责切开DNA的功能域,这个域又与DNA修饰域连接;此外还有一到两个识别特异DNA序列的功能域构成C端,或以独立的亚基形式存在。
当这些酶与底物结合时,它们或行使限制性内切酶的功能切开底物,或作为修饰酶将其甲基化。
III型限制性内切酶也是兼有限制-修饰两种功能的酶。
它们在识别位点之外切开DNA链,并且要求识别位点是反向重复序列;它们很少能产生完全切割的片段,因而不具备实用价值,也没有人将其商业化。