据二次函数图象判断字母的取值范围

合集下载

二次函数图象与字母系数的关系判定方法

二次函数图象与字母系数的关系判定方法

二次函数图象与字母系数的关系判定方法(含例题讲解) 二次函数是初中数学的重点内容之一,它的图像是由字母系数a、b、c的符号确定的,反之在给定抛物线的条件下如何确定字母系数的范围呢?现将二次函数的图像与字母系数的关系归纳如下:
二次函数图象与字母系数的关系判定方法(含例题讲解)
(1)抛物线开口向上;
抛物线开口向下.
(2)抛物线开口大小,越大开口越小
(3)、同号对称轴在轴左侧;
、异号对称轴在轴右侧;
=0对称轴为轴.
(4)抛物线与轴的交点在轴上方;
抛物线与轴的交点在轴下方;
抛物线必过原点.
(5)抛物线与轴有两个交点;
抛物线与轴有唯一交点;
抛物线与轴没有交点.
(6)的符号由点( 1,)的位置来确定;
的符号由点( -1,)的位置来确定;
的符号由点(2,)的位置来确定。

例1:
如图1是抛物线的图像,则① 0;② 0;③ 0;④ 0;⑤ 0;⑥ 0;
⑦ 0。

解析:由图知:抛物线开口向下,;对称轴在轴左侧,、同号,故;抛物线与轴的交点在轴上方,;点( 1,)、点( -1,)分别在第四象限和第二象限,得<0, >0;抛物线与轴有两个交点,得;由对称轴得=0.
例2
如图2,已知二次函数的图像与轴相交于(,0 ),(,0)两点,且,与轴相交于(O,-2),下列结论:①;②;③;④;⑤。

.其
中正确结论的个数为( )
A.1个个个D.4个
解析:由图知:.当时,,所以,故③错误;因为抛物线与轴有两个交点,所以即,所以④正确;当时,由图像得,即
,所以,故①错误;因为,又,所以,故②错;当时,,即,所以故⑤错误.所以答案选A.。

专题09 二次函数的图象与性质(6大考点)(学生版)

专题09 二次函数的图象与性质(6大考点)(学生版)

第三部分函数专题09二次函数的图象与性质(6大考点)核心考点核心考点一二次函数的图象与性质核心考点二与二次函数图象有关的判断核心考点三与系数a、b、c有关的判断核心考点四二次函数与一元二次方程的关系核心考点五二次函数图象与性质综合应用核心考点六二次函数图象的变换新题速递核心考点一二次函数的图象与性质(2022·浙江宁波·统考中考真题)点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上.若y1<y2,则m的取值范围为()A.m>2B.32m>C.1m<D.322m<<(2021·江苏常州·统考中考真题)已知二次函数2(1)y a x=-,当0x>时,y随x增大而增大,则实数a的取值范围是()A.a>B.1a>C.1a≠D.1a<(2022·江苏徐州·统考中考真题)若二次函数2=23y x x--的图象上有且只有三个点到x轴的距离等于m,则m的值为________.知识点:二次函数的概念及表达式1.一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2.二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:()()12y a x x x x =--,其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.知识点:二次函数的图象及性质1.二次函数的图象与性质解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2ba,244ac b a -)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2ba 时,y 最小值=244ac b a-当x =–2ba时,y 最大值=244ac b a-最点抛物线有最低点抛物线有最高点增减性当x <–2b a 时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2b a 时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小【变式1】(2022·浙江宁波·统考二模)如图,抛物线2y ax bx c =++过点()1,0-,()0,1-,顶点在第四象限,记2P a b =-,则P 的取值范围是()A .01P <<B .12P <<C .02P <<D .不能确定【变式2】(2022·浙江宁波·统考二模)如图,抛物线2y ax bx c =++过点()1,0-,()0,1-,顶点在第四象限,记2P a b =-,则P 的取值范围是()A .01P <<B .12P <<C .02P <<D .不能确定【变式3】(2022·江苏盐城·滨海县第一初级中学校考三模)如图1,对于平面内的点A 、P ,如果将线段P A 绕点P 逆时针旋转90°得到线段PB ,就称点B 是点A 关于点P 的“放垂点”.如图2,已知点()4,0A ,点P 是y 轴上一点,点B 是点A 关于点P 的“放垂点”,连接AB 、OB ,则OB 的最小值是______.【变式4】(2022·吉林长春·校考模拟预测)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点()0,2A ,点()2,0C ,则互异二次函数()2y x m m =--与正方形OABC 有公共点时m 的最大值是__________.【变式5】(2021·湖北随州·一模)如图,抛物线2(0,0)y ax k a k =+><与x 轴交于A ,B 两点(点B 在点A 的右侧),其顶点为C ,点P 为线段OC 上一点,且14PC OC =.过点P 作DE AB ∥,分别交抛物线于D ,E 两点(点E 在点D 的右侧),连接OD ,DC .(1)直接写出A ,B ,C 三点的坐标;(用含a ,k 的式子表示)(2)猜想线段DE 与AB 之间的数量关系,并证明你的猜想;(3)若90ODC ∠=︒,4k =-,求a 的值.核心考点二与二次函数图象有关的判断(2021·广西河池·统考中考真题)点()()1122,,,x y x y 均在抛物线21y x =-上,下列说法正确的是()A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >(2021·湖南娄底·统考中考真题)用数形结合等思想方法确定二次函数22y x =+的图象与反比例函数2y x=的图象的交点的横坐标0x 所在的范围是()A .0104x <≤B .01142x <≤C .01324x <≤D .0314x <≤(2020·广西贵港·中考真题)如图,对于抛物线211y x x =-++,2221y x x =-++,2331y x x =-++,给出下列结论:①这三条抛物线都经过点()0,1C ;②抛物线3y 的对称轴可由抛物线1y 的对称轴向右平移1个单位而得到;③这三条抛物线的顶点在同一条直线上;④这三条抛物线与直线1y =的交点中,相邻两点之间的距离相等.其中正确结论的序号是_______________.知识点、抛物线的三要素:开口方向、对称轴、顶点.①a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.知识点、求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是,(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★知识点、直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(c ,0)(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切;③没有交点⇔0<∆⇔抛物线与x 轴相离.(4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组⎩⎨⎧++=+=cbx ax y nkx y 2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=444222122122121【变式1】(2022·四川泸州·校考模拟预测)二次函数2y ax bx c =++(0a ≠)的自变量x 与函数y 的部分对应值如下表:x…1-01234…2y ax bx c =++…8301-03…则这个函数图像的顶点坐标是()A .()2,1-B .()12-,C .()1,8-D .()4,3【变式2】(2022·山东日照·校考一模)设()12,A y -,()21,B y ,()32,C y 是抛物线()212y x =-++上的三点,则1y ,2y ,3y 的大小关系为()A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>【变式3】(2021·陕西西安·校考模拟预测)在同一坐标系中,二次函数211y a x =,222y a x =,233y a x =的图象如图,则1a ,2a ,3a 的大小关系为______.(用“>”连接)【变式4】(2022·广西·统考二模)如图,抛物线2y ax bx c =++与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则a 的取值范围是______.【变式5】(2022·河南南阳·统考三模)在平面直角坐标系中,已知抛物线242y ax ax =-+.(1)抛物线的对称轴为直线_______,抛物线与y 轴的交点坐标为_______;(2)若当x 满足15x ≤≤时,y 的最小值为6-,求此时y 的最大值.核心考点三与系数a、b、c 有关的判断(2022·湖北黄石·统考中考真题)已知二次函数2y ax bx c =++的部分图象如图所示,对称轴为直线=1x -,有以下结论:①<0abc ;②若t 为任意实数,则有2a bt at b -≤+;③当图象经过点(1,3)时,方程230ax bx c ++-=的两根为1x ,2x (12x x <),则1230x x +=,其中,正确结论的个数是()A .0B .1C .2D .3(2022·山东日照·统考中考真题)已知二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,对称轴为32x =,且经过点(-1,0).下列结论:①3a +b =0;②若点11,2y ⎛⎫⎪⎝⎭,(3,y 2)是抛物线上的两点,则y 1<y 2;③10b -3c =0;④若y ≤c ,则0≤x ≤3.其中正确的有()A .1个B .2个C .3个D .4个(2021·贵州遵义·统考中考真题)抛物线y =ax 2+bx +c (a ,b ,c 为常数,a >0)经过(0,0),(4,0)两点.则下列四个结论正确的有___(填写序号).①4a +b =0;②5a +3b +2c >0;③若该抛物线y =ax 2+bx +c 与直线y =﹣3有交点,则a 的取值范围是a 34≥;④对于a 的每一个确定值,如果一元二次方程ax 2+bx +c ﹣t =0(t 为常数,t ≤0)的根为整数,则t 的值只有3个.知识点、二次函数图象的特征与a,b,c 的关系字母的符号图象的特征aa >0开口向上a <0开口向下b b =0对称轴为y 轴ab >0(a 与b 同号)对称轴在y 轴左侧ab <0(a 与b 异号)对称轴在y 轴右侧c c =0经过原点c >0与y 轴正半轴相交c <0与y 轴负半轴相交b 2–4ac b 2–4ac =0与x 轴有唯一交点(顶点)b 2–4ac >0与x 轴有两个交点b 2–4ac <0与x 轴没有交点常用公式及方法:(1)二次函数三种表达式:表达式顶点坐标对称轴一般式c bx ax y ++=2⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=顶点式()kh x a y +-=2()k h ,h x =交点式()()12y a x x x x =--()⎪⎪⎭⎫ ⎝⎛--+4,222121x x a x x 221x x x +=(2)韦达定理:若二次函数c bx ax y ++=2图象与x 轴有两个交点且交点坐标为(1x ,0)和(2x ,0),则a b x x -=+21,acx x =⋅21。

根据函数图象确定系数取值范围

根据函数图象确定系数取值范围
字母系数取值范围
y=kx+b
y=kx+b
k>0 (1) b>0
k<0
(2)
b<0
总结:你是如何根据一次函数图象 确定k、b取值范围的
(1)由一次函数图象的增减性确定k的取值
a.增函数,即y随x的增大而增大 (直观看直线上升,过一三象限)

k>0
b.减函数,即y随x的增大而减小 (直观看直线下降,过二四象限)
内,y随x的增大而减小。
k<0时,图象在二四象限,在每个象限
内,y随x的增大而增大。
二次函数
定义: y ax2 bx c (a≠0)
图象: 抛物线
性质: (1)当a>0时,抛物线开口向上;
当a<0时,抛物线开口向x 下 。b 2a
(2)对称轴:直线
(
b
4ac b2
,
)
2a
4a
(3)顶点坐标:
已知函数y=k(x+1)和y=k/x,那么它们在同一坐标 系中的图象大致位置是
y
y
y
y
O
x
O
x
O
x
O
x
A
B
C
D
函数y=ax+b和y=ax2+bx+c在同一坐标系中的 图象可能是
y
y
y
y
O
x
O
x
O
x
O
x
A
B
C
D
小结:
作业:完成练习卷
根据函数图象确定系数取值范围
根据图象确定系数取值范围
一次函数 y kx b (k≠0)
反比例函数

二次函数的图像与字母a、b、c的关系

二次函数的图像与字母a、b、c的关系

课次教学方案教学过程:一、知识要点二次函数y=ax 2+bx+c 系数符号确实定:〔1〕a 由抛物线开口方向确定:开口方向向上,那么a >0;否那么a <0. 〔2〕b 由对称轴和a 的符号确定:由对称轴公式x=判断符号.〔3〕c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,那么c >0;否那么c <0.〔4〕b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.〔5〕当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号. 〔6〕由对称轴公式x=,可确定2a+b 的符号.二、根底练习1、抛物线y=ax 2+bx+c 〔a ≠0〕在平面直角坐标系中的位置如下图,那么以下结论中,正确的选项是〔 D 〕 A 、a >0 B 、b <0 C 、c <0 D 、a+b+c >02、二次函数y=ax 2+bx+c 的图象如图,其对称轴x=-1,给出以下结果①b 2>4ac ; ②abc >0;③2a+b=0; ④a+b+c >0;⑤a-b+c <0,那么正确的结论是〔 D 〕 A 、①②③④ B 、②④⑤ C 、②③④ D 、①④⑤任课教师学科 版本 年段 辅导类型 上课时间学生签名数学北师大初三课题二次函数y=a 2x +bx+c 系数符号确实定方法课次教学目标掌握二次函数中字母 a 、b 、c 三者与图象之间的关系。

教学策略 教学重点、难点:利用图形的性质与特殊性来确定字母a 、b 、c 三者之间的关系。

3、如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为〔21,1〕,以下结论:①ac <0;②a+b=0;③4ac-b 2=4a ;④a+b+c <0.其中正确结论的个数是〔 C 〕1\2\3 A 、1 B 、2 C 、3 D 、44、二次函数y=ax 2+bx+c 的图象如下图,对称轴为直线x=1,那么以下结论正确的选项是〔B 〕 A 、ac >0 B 、方程ax 2+bx+c=0的两根是x 1=-1,x 2=3 C 、2a-b=0 D 、当x >0时,y 随x 的增大而减小5、二次函数y=ax 2+bx+c 〔a ,b ,c 为常数,a ≠0〕的图象如下图,有以下结论: ①abc >0,②2b -4ac <0,③a-b+c >0,④4a-2b+c <0,其中正确结论的个数是〔A4 〕 A 、1 B 、2 C 、3 D 、46、〔如下图的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息: 〔1〕b 2-4ac >0;〔2〕c >1;〔3〕2a-b <0;〔4〕a+b+c <0.你认为其中错误的有〔D2〕 A 、2个 B 、3个 C 、4个 D 、1个7、抛物线y=ax 2+bx+c 〔a ≠0〕的图象如下图,那么以下说法正确的选项是〔C 〕 A 、b 2-4ac <0 B 、abc <0 C 、 -a2b<-1 D 、a-b+c <08、二次函数y=ax 2+bx+c 〔a ≠0〕的图象如下图,现有以下结论:①b 2-4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,那么其中结论正确的个数是〔B 〕1/2/5 A 、2个 B 、3个 C 、4个 D 、5个9、二次函数y=ax 2的图象开口向上,那么直线y=ax-1经过的象限是〔D 〕 A 、第一、二、三象限 B 、第二、三、四象限 C 、第一、二、四象限 D 、第一、三、四象限10、二次函数y=ax 2+bx+c 的图象如下图,那么以下结论正确的选项是〔D 〕A 、a <0,b <0,c >0,b 2-4ac >0B 、a >0,b <0,c >0,b 2-4ac <0C 、a <0,b >0,c <0,b 2-4ac >0D 、a <0,b >0,c >0,b 2-4ac >011、二次函数y=ax 2+bx+c 的图象如下图,那么以下判断不正确的选项是〔B 〕 A 、ac <0 B 、a-b+c >0C 、b=-4aD 、关于x 的方程a 2x +bx+c=0的根是x 1=-1,x 2=512、二次函数y=ax 2+bx+c 的图象如下图,那么a ,b ,c 满足〔A 〕A 、a <0,b <0,c >0,2b -4ac >0 B 、a <0,b <0,c <0,2b -4ac >0 C 、a <0,b >0,c >0,2b -4ac <0 D 、a >0,b <0,c >0,2b -4ac >013、二次函数y=2ax +bx+c 〔a ≠0〕的图象如下图,有以下4个结论,其中正确的结论是〔B 〕 A 、abc >0 B 、b >a+c C 、2a-b=0 D 、2b -4ac <014、二次函数y=2ax +bx+c 〔a ≠0〕的图象如下图,那么以下结论: ①ac >0;②a-b+c <0;③当x <0时,y <0;④方程2ax +bx+c=0〔a ≠0〕有两个大于-1的实数根.其中错误的结论有〔C 〕 A 、②③ B 、②④ C 、①③ D 、①④15、如下图为二次函数y=ax 2+bx+c 〔a ≠0〕的图象,在以下选项中错误的选项是〔C 〕 A 、ac <0 B 、x >1时,y 随x 的增大而增大 C 、a+b+c >0 D 、方程ax 2+bx+c=0的根是1x =-1,2x =316、二次函数y=ax 2+bx+c 的图象如下图,以下结论错误的选项是〔B 〕 A 、ab <0 B 、ac <0C 、当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小D 、二次函数y=2ax +bx+c 的图象与x 轴交点的横坐标就是方程2ax +bx+c=0的根17、二次函数y=ax 2+bx+c 的图象如下图,那么以下结论正确的选项是〔D 〕 A 、a >0 B 、c <0 C 、b 2-4ac <0 D 、a+b+c >018、二次函数y=ax 2+bx+c 〔a ≠0〕的图象如下图,以下结论①a ,b 异号;②当x=1和x=3时,函数值相等; ③4a+b=0;④当y=4时,x 的取值只能为0,结论正确的个数有〔 C 〕个.1/2/3 A 、1 B 、2 C 、3 D 、4三、能力练习c bx ax y ++=2的图象如图 l -2-2所示,那么a 、b 、c 满足〔 〕 A .a <0,b <0,c >0 B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >02.二次函数c bx ax y ++=2(a≠0〕且a <0,a -b+c >0,那么一定有〔 〕A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac≤03.二次函数c bx ax y ++=2的图象如图1-2-10,那么点〔b ,c a〕在〔 〕A .第一象限B .第二象限C .第三象限D .第四象限4.假设二次函数c bx ax y ++=2的图象如图,那么ac_____0〔“<〞“>〞或“=〞〕第4题图5.二次函数c bx ax y ++=2的图象如图 1-2-14所示,那么以下关于a 、b 、c 间的关系判断正确的选项是〔 〕 A .ab <0 B 、bc <0 C .a+b +c >0 D .a -b 十c <0四、知识小结:例题.抛物线c bx ax y ++=2过三点〔-1,-1〕、〔0,-2〕、〔1,l 〕.〔1〕求抛物线所对应的二次函数的表达式; 〔2〕写出它的开口方向、对称轴和顶点坐标;〔3〕这个函数有最大值还是最小值? 这个值是多少?五、中考真题回忆:〔09佛山〕19.〔1〕请在坐标系中画出二次函数22y x x =-+的大致图象;〔2〕在同一个坐标系中画出22y x x =-+的图象向上平移两个单位后的图象; 〔3〕直接写出平移后的图象的解析式. 注:图中小正方形网格的边长为1.〔1〕画图〔略〕注:根本反映图形的特征〔如顶点、对称性、变化趋势、平滑〕给2分, 满足其中的两至三项给1分,满足一项以下给0分; 〔2〕画图、写解析式〔略〕注:画图总分值2分,同〔1〕的标准;写解析式2分〔无过程不扣分〕.〔11·佛山〕21.如图,二次函数y =ax 2+bx +c 的图像经过A 〔-1,-1〕、B 〔0,2〕、C 〔1,3〕; 〔1〕求二次函数的解析式; 〔2〕画出二次函数的图像;【答案】解:〔1〕根据题意,得⎩⎪⎨⎪⎧a -b +c =-1c =2a +b +c =3………………2分解得a =-1,b =2,c =2………………4分所以二次函数的解析式为y =-x 2+2x +2………………5分〔2〕二次函数的图象如图………………8分 给分要点:顶点、对称、光滑〔各1分〕〔12佛山〕xyO第19题图xyoABC1xyoABC122.(1)任选以下三个条件中的一个,求二次函数c bx ax y ++=2的解析式; ①y 随x 变化的局部数值规律如下表:②有序数对()0,1-、()4,1、()0,3满足c bx ax y ++=2; ③函数c bx ax y ++=2的图象的一局部〔如图〕. (2)直接写出二次函数c bx ax y ++=2的三个性质.解析:〔1〕方法一:由 可得:C=3,0=+-c b a ,4=++c b a ,所以1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y方法二:由②可得:0=+-c b a ,4=++c b a ,039=++c b a ,解之得:1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y 方法三:由③可得:C=3,0=+-c b a ,12=-ab,解之得:1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y 〔三种选其一即可〕〔2〕1、对称轴为1=x , 2、开口向下 3、与x 轴有2个交点 4、交 y 轴正半轴考察知识:待定系数法求二次函数解析式、二次函数的性质及图像〔2021•佛山〕24.如图①,抛物线y=ax 2+bx+c 经过点A 〔0,3〕,B 〔3,0〕,C 〔4,3〕.x -1 0 1 2 3 y343〔1〕求抛物线的函数表达式;〔2〕求抛物线的顶点坐标和对称轴;〔3〕把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S〔图②中阴影局部〕.分析:〔1〕把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解即可;〔2〕把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;〔3〕根据顶点坐标求出向上平移的距离,再根据阴影局部的面积等于平行四边形的面积,列式进展计算即可得解.解:〔1〕∵抛物线y=ax2+bx+c经过点A〔0,3〕,B〔3,0〕,C〔4,3〕,∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;〔2〕∵y=x2﹣4x+3=〔x﹣2〕2﹣1,∴抛物线的顶点坐标为〔2,﹣1〕,对称轴为直线x=2;〔3〕如图,∵抛物线的顶点坐标为〔2,﹣1〕,∴PP′=1,阴影局部的面积等于平行四边形A′APP′的面积,平行四边形A′APP′的面积=1×2=2,∴阴影局部的面积=2.点评:此题考察了待定系数法求二次函数解析式,二次函数的性质,二次函数图象与几何变换,〔3〕根据平移的性质,把阴影局部的面积转化为平行四边形的面积是解题的关键.【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

专题:二次函数的图象与字母系数的关系

专题:二次函数的图象与字母系数的关系

专题:二次函数y =ax 2+bx +c (a ≠0)的图象与字母系数的关系二次函数y =ax 2+bx +c (a ≠0)系数符号的确定:⑴a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0.⑵b 由对称轴和a 的符号确定:由对称轴公式x = -2ba判断符号(左同右异). ⑶c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0.⑷b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac =0;没有交点,b 2-4ac <0. ⑸当x =1时,y =a +b +c ,当x =-1时,y =a -b +c .故由点(1, a +b +c ) 所在的象限,可判断a +b +c 的符号;由点(-1, a -b +c ) 所在的象限,可判断a -b +c 的符号.同理,当x =2时,可确定4a +2b +c 的符号,当x =-2时,可确定4a -2b +c 的符号……⑹由对称轴x = -2b a 与x =±1的位置关系,可确定2a ±b 的符号.当x = -2b a =1时,b = -2a ,即2a +b =0;当x = -2ba=-1时,b = 2a ,即2a -b =0.例1.抛物线y =ax 2+bx +c 图象如图所示,则下列式子中正确的个数为( )①a <0;②b <0;③c >0;④a +b +c >0;⑤ 4a -2b +c <0;⑥2a +b >0;⑦b 2-4ac >0;⑧4a +c <0C .5D .6c 的图象如图所示,给出下列结论:①2a +b >0;②b >a >c ;③若-1<m <n <1,则m +n <-ba;④3|a |+|c |<2|b |.其中正确的结论是 (写出你认为正确的所有结论序号).例3.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,与y 轴相交点C ,与x 轴负半轴相交点A ,且OA =OC ,下列5个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④2a +b =0;⑤c +1a= -2,其中正确的结论有 .(请填序号)强化训练1.如图为二次函数y =ax 2+bx +c (a ≠0)的图象,则下列说法:①a >0②2a +b =0 ③a +b +c >0 ④当-1<x <3时,y >0,其中正确的个数为( )A .1 B .2 C .3 D .42.已知二次函数y =ax 2+bx +c +2的图象如图所示,顶点为(-1,0),下列结论:①abc <0;②b 2-4ac =0;③a >2;④4a -2b +c >0.其中正确结论的个数是( )A .1 B .2 C .3 D .43.已知二次函数y =ax 2+bx +c 的图象如图所示,则下列结论:①c =2;②b 2-4ac >0;③2a +b =0;④a -b +c <0.其中正确的为( )A .①②③ B .①②④ C .①② D .③④4.如图是二次函数y =ax 2+bx +c =(a ≠0)图象的一部分,对称轴是直线x =-2.关于下列结论:①ab <0;②b 2-4ac >0;③9a -3b +c <0;④b -4a =0;⑤方程ax 2+bx =0的两个根为x 1=0,x 2=-4,其中正确的结论有( ) A .①③④ B .②④⑤ C .①②⑤ D .②③⑤5.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列5个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b >m (am +b )(m ≠1的实数).其中正确的结论有( ) A .2个 B .3个 C .4个 D .5个6.如图,抛物线y =ax 2+bx +c (a ≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P =a -b +c ,则P 的取值范围是( )A .-4<P <0 B .-4<P <-2 C .-2<P <0 D .-1<P <07.已知二次函数y =ax 2+bx +c 的图象与x 轴交于点(-2,0)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在(0,2)的下方.下列结论:①4a -2b +c =0;②a -b +c <0;③2a +c >0;④2a -b +1>0.其中正确结论的个数是( )个.A .4个B .3个C .2个D .1个8.如图,已知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点A (-1,0),对称轴为直线x =1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当x >3时,y <0;②3a +b <0;③-1≤a ≤-23;④4ac -b 2>8a ;其中正确的结论是( )A .①③④ B .①②③ C .①②④ D .①②③④9. 如图,二次函数y =ax 2+bx +c (a ≠0)的图象经过点(1,2)且与x 轴交点的横坐标分别为x 1,x 2,其中-1<x 1<0,1<x 2<2,下列结论:4a +2b +c <0,2a +b <0,b 2+8a >4ac ,a <-1,其中结论正确的有( ) A .1个B .2个C .3个D .4个10.抛物线y =ax 2+bx +c (a ≠0)满足条件:(1)4a -b =0;(2)a -b +c >0;(3)与x 轴有两个交点,且两交点间的距离小于2.以下有四个结论:①a <0;②c >0;③a +b +c <0;④4c <a <3c,其中所有正确结论的序号是 .有已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0),(x1,0),且1<x1<2,与y轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a-b+1>0.其中正确的结论是.(填写序号)。

二次函数字母取值范围方法

二次函数字母取值范围方法

二次函数字母取值范围方法二次函数y的取值范围怎么求如下:第一个是根据图像的性质,简单点说,就是看a,a大于0,开口向上,有最小值,4a分之4ac-b的平方,a小于0,开口向下,有最大值,4a分之4ac-b的平方。

第二是根据对称轴,负二a分之b,也是先看a,将对称轴横坐标代入式子求值。

拓展知识二次函数的基本表示形式为y=ax²+bx+c(a≠0)。

二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。

如果令y值等于零,则可得一个二次方程。

该方程的解称为方程的根或函数的零点。

基本图像在平面直角坐标系中作出二次函数y=ax2+bx+c的图像,可以看出,在没有特定定义域的二次函数图像是一条永无止境的抛物线。

决定位置因素一次项系数b和二次项系数a共同决定对称轴的位置。

当a>0,与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是-b/2a当a>0,与b异号时(即ab<0),对称轴在y轴右。

因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a>0,b>0或a事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。

可通过对二次函数求导得到。

五点法五点草图法又被叫做五点作图法是二次函数中一种常用的作图方法。

注明:虽说是草图,但画出来绝不是草图。

五点草图法中的五个点都是极其重要的五个点,分别为:顶点、与x轴的交点、与y轴的交点及其关于对称轴的对称点。

Ps.正规考试也是用这种方法初步确定图像。

但是正规考试的要求在于要列表格,取x、y,再确定总体图像。

五点法是可以用在正规考试中的。

二次函数图象与系数a、b、c的关系

二次函数图象与系数a、b、c的关系

模块三 函数第五讲 二次函数图象与a 、b 、c 的关系知识梳理 夯实基础二次函数图象的特征与a ,b ,c 的关系字母的符号图象的特征a >0开口向上aa <0开口向下b =0对称轴为y 轴ab >0(a 与b 同号)对称轴在y 轴左侧bab <0(a 与b 异号)对称轴在y 轴右侧c =0经过原点c >0与y 轴正半轴相交cc <0与y 轴负半轴相交b 2–4ac =0与x 轴有唯一交点(顶点)b 2–4ac >0与x 轴有两个交点b 2–4acb 2–4ac <0与x 轴没有交点常用公式及方法:(1)二次函数三种表达式:表达式顶点坐标对称轴一般式c bx ax y ++=2⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=顶点式()kh x a y +-=2()k h ,hx =交点式()()12y a x x x x =--()⎪⎪⎭⎫ ⎝⎛--+4,222121x x a x x 221x x x +=(2)韦达定理:若二次函数c bx ax y ++=2图象与x 轴有两个交点且交点坐标为(1x ,0)和(2x ,0),则a b x x -=+21,acx x =⋅21。

(3)赋值法:在二次函数c bx ax y ++=2中,令1=x ,则c b a y ++=;令1-=x ,则c b a y +-=;令2=x ,则c b a y ++=24;令2-=x ,则c b a y +-=24;利用图象上对应点的位置来判断含有a 、b 、c 的关系式的正确性。

直击中考 胜券在握1.(2021·山东日照中考)抛物线()20y ax bx c a =++¹的对称轴是直线1x =-,其图象如图所示.下列结论:①0abc <;②()()2242a c b +<;③若()11,x y 和()22,x y 是抛物线上的两点,则当1211x x +>+时,12y y <;④抛物线的顶点坐标为()1,m -,则关于x 的方程21ax bx c m ++=-无实数根.其中正确结论的个数是( )A .4B .3C .2D .1【答案】B 【分析】①由图象开口方向,对称轴位置,与y 轴交点位置判断a ,b ,c 符号.②把2x =±分别代入函数解析式,结合图象可得22(4)(2)a c b +-的结果符号为负.③由抛物线开口向上,距离对称轴距离越远的点y 值越大.④由抛物线顶点纵坐标为m 可得2ax bx c m ++…,从而进行判断21ax bx c m ++=-无实数根.【详解】解:①Q 抛物线图象开口向上,0a \>,Q 对称轴在直线y 轴左侧,a \,b 同号,0b >,Q 抛物线与y 轴交点在x 轴下方,0c \<,0abc \<,故①正确.②22(4)(2)(42)(42)a c b a c b a c b +-=+++-,当2x =时242ax bx c a c b ++=++,由图象可得420a c b ++>,当2x =-时,242ax bx c a c b ++=+-,由图象可得420a c b +-<,22(4)(2)0a c b \+-<,即22(4)(2)a c b +<,故②正确.③11|1||(1)|x x +=--,22|1||(1)|x x +=--,12|1||1|x x +>+Q ,\点1(x ,1)y 到对称轴的距离大于点2(x ,2)y 到对称轴的距离,12|y y \>,故③错误.④Q 抛物线的顶点坐标为(1,)m -,y m \…,2ax bx c m \++…,21ax bx c m \++=-无实数根.故④正确,综上所述,①②④正确,故选:B .【点睛】本题考查二次函数的图象的性质,解题关键是熟练掌握二次函数2(0)y ax bx c a =++¹中a ,b ,c 与函数图象的关系.2.(2021·四川巴中中考)已知二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值见表格,则下列结论:①c =2;②b 2﹣4ac >0;③方程ax 2+bx =0的两根为x 1=﹣2,x 2=0;④7a +c <0.其中正确的有( )x…﹣3﹣2﹣112…y … 1.8753m 1.8750…A .①④B .②③C .③④D .②④【答案】B 【分析】由表格可以得到二次函数图象经过点点(-3,1.875)和点(1,1.875),这两点关于对称轴对称,由此得到对称轴直线,设出二次函数顶点式,代入两点,求解出二次函数解析式,得到a ,b ,c 的值,依次代入到①②③④中进行判断即可解决.【详解】解:由表格可以得到,二次函数图象经过点(3,1.875)-和点(1,1.875),Q 点(3,1.875)-与点(1,1.875)是关于二次函数对称轴对称的,\二次函数的对称轴为直线3112x -+==-,\设二次函数解析式为2(1)y a x h =++,代入点(2,3)-,(2,0)得,390a h a h +=ìí+=î,解得38278a h ì=-ïïíï=ïî,\二次函数的解析式为:2327(1)88y x =-++,Q 233384y x x =--+,3c \=,\①是错误的,2934430168b ac -=+´´>Q ,\②是正确的,方程20ax bx +=为233084x x --=,即为220x x +=,12x \=-,20x =,\③是正确的,3377()3088a c +=´-+=>Q ,\④是错误的,\②③是正确的,故选:B .【点睛】本题考查了二次函数系数特征和二次函数解析式求法,利用待定系数法求解函数解析式是通法,由表格提炼出对称轴的信息,是解题的突破口,此题,也可以通过二次函数系数特征来解决.3.(2021·牡丹江中考)如图,抛物线y =ax 2+bx +c (a ≠0)的顶点为(1,n ),与x 轴的一个交点B (3,0),与y 轴的交点在(0,﹣3)和(0,﹣2)之间.下列结论中:①ab c>0;②﹣2<b 53<-;③(a +c )2﹣b 2=0;④2c ﹣a <2n ,则正确的个数为()A .1B .2C .3D .4【答案】B 【分析】根据二次函数的图象和性质逐一进行判断即可【详解】解:∵抛物线y =ax 2+bx +c (a ≠0)的开口向上, ∴a >0,∵抛物线线y =ax 2+bx +c (a ≠0)的顶点坐标为(1,n ),∴对称轴x =12ba-=,∴b =-2a <0,∵抛物线与y 轴的交点在(0,﹣3)和(0,﹣2)之间∴-3<c <-2<0,∴abc>0;故①正确;∵抛物线线x 轴的一个交点B (3,0),∴9a +3b +c =0,抛物线线x 轴的一个交点(-1,0),∵b =-2a ∴c =32b,∴-3<32b<-2,∴﹣2<b 43<-,故②错误;∵抛物线线x 轴的一个交点(-1,0),∴a -b +c =0,∴(a +c )2﹣b 2=(a +b +c )(a -b +c )=0,故③正确;∵a >0,∴-a <0∵b =-2a ∴3a +2b =-a <0∴2c ﹣a >2(a +b +c ),∵抛物线y =ax 2+bx +c (a ≠0)的顶点为(1,n ),∴a +b +c =n ,∴2c ﹣a >2n ;故④错误;故选:B 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),明确以下几点:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;③常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).4.(2021·湖北荆门中考)抛物线2y ax bx c =++(a ,b ,c 为常数)开口向下且过点(1,0)A ,(,0)B m (21m -<<-),下列结论:①20b c +>;②20a c +<;③ (1)0a m b c +-+>;④若方程()(1)10a x m x ---=有两个不相等的实数根,则244ac b a -<.其中正确结论的个数是( )A .4B .3C .2D .1【答案】A 【分析】根据已知条件可判断0c >,0a b <<,据此逐项分析解题即可.【详解】解:Q 抛物线开口向下a \<把(1,0)A ,(,0)B m 代入2y ax bx c =++得200a b c am bm c ++=ìí++=î2am bm a b\+=+20am bm a b \+--=(1)()0m am a b -++=21m -<<-Q 0am a b \++=,(1)am c a m b\=+=-0c \>110m \-<+<10m +<Q 11022m +\-<<1022b a\-<-<10b a\>>0a b \<<①220b c b a b b a +=--=->,故①正确;②220a c a a b a b +=--=-<,故②正确;③ (1)2230a m b c b c b a b b a +-+=-+=---=-->,故③正确;;④若方程()(1)10a x m x ---=有两个不相等的实数根,即2(1)10ax a m x am -++-=22(1)4(1)a m a am D =+--222(1)44a m a m a=+-+2244a bb a a a--=-⋅+22444b a ab a=+++24()4b a a b a=+++2440b ac a =-+>244ac b a \-<,故④正确,即正确结论的个数是4,故选:A .【点睛】本题考查二次函数的图象与性质、二次函数与系数a 、b 、c 关系,涉及一元二次方程根的判别式,是重要考点,有难度,掌握相关知识是解题关键.5.(2021·辽宁丹东中考)已知抛物线2(0)y ax bx c a =++>,且13,22a b c a b c ++=--+=-.判断下列结论:①0abc <;②220a b c ++>;③抛物线与x 轴正半轴必有一个交点;④当23x ££时,3y a =最小;⑤该抛物线与直线y x c =-有两个交点,其中正确结论的个数()A .2B .3C .4D .5【答案】D 【分析】由题意易得1,12b c a ==--,则有0c <,进而可判定①②,当x =1时,则12y a b c =++=-,当x =-1时,则有32y a b c =-+=-,然后可判定③,由题意可知抛物线的对称轴为直线104x a =-<,则有当23x ££时,y 随x 的增大而增大,故可得④;联立抛物线及直线解析式即可判断⑤.【详解】解:∵13,22a b c a b c ++=--+=-,∴两式相减得12b =,两式相加得1c a =--,∴0c <,∵0,0,0a b c >><,∴0abc <,故①正确;∴12222102a b c a a a ++=+´--=>,故②正确;∵当x =1时,则12y a b c =++=-,当x =-1时,则有32y a b c =-+=-,∴当0y =时,则方程20ax bx c =++的两个根一个小于-1,一个根大于1,∴抛物线与x 轴正半轴必有一个交点,故③正确;由题意可知抛物线的对称轴为直线1024b x a a=-=-<,∴当23x ££时,y 随x 的增大而增大,∴当2x =时,有最小值,即为424113y a b c a a a =++=+--=,故④正确;联立抛物线2y ax bx c =++及直线y x c =-可得:2x c ax bx c -=++,整理得:22012ax x c -+=,∴1804ac D =->,∴该抛物线与直线y x c =-有两个交点,故⑤正确;∴正确的个数有5个;故选D .【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键.6.(2021·山东枣庄中考)二次函数()20y ax bx c a =++¹的部分图象如图所示,对称轴为12x =,且经过点()2,0.下列说法:①0abc <;②20b c -+=;③420a b c ++<;④若11,2y ⎛⎫-⎪⎝⎭,25,2y ⎛⎫⎪⎝⎭是抛物线上的两点,则12y y <;⑤()14b c m am b c +>++(其中12m ¹).正确的结论有()A .2个B .3个C .4个D .5个【答案】B 【分析】先根据抛物线开口向下、与y 轴的交点位于y 轴正半轴0,0a c <>,再根据对称轴可得0b a =->,由此可判断结论①;将点()2,0代入二次函数的解析式可判断结论②③;根据二次函数的对称轴可得其增减性,由此可判断结论④;利用二次函数的性质可求出其最大值,由此即可得判断结论⑤.【详解】解:Q 抛物线的开口向下,与y 轴的交点位于y 轴正半轴,0,0a c \<>,Q 抛物线的对称轴为122b x a =-=,0b a \=->,0abc \<,则结论①正确;将点()2,0代入二次函数的解析式得:420a b c ++=,则结论③错误;将a b =-代入得:20b c -+=,则结论②正确;Q 抛物线的对称轴为12x =,32x \=和12x =-时的函数值相等,即都为1y ,又Q 当12x ³时,y 随x 的增大而减小,且3522<,12y y \>,则结论④错误;由函数图象可知,当12x =时,y 取得最大值,最大值为1111142424a b c b b c b c ++=-++=+,12m ¹Q ,214b c am bm c +>++\,即1()4b c m am b c +>++,结论⑤正确;综上,正确的结论有①②⑤,共3个,故选:B .【点睛】本题考查了二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题关键.7.(2021·四川广安中考)二次函数()20y ax bx c a =++¹的图象如图所示,有下列结论:①0abc >,②420a b c -+<,③()a b x ax b -³+,④30a c +<,正确的有( )A .1个B .2个C .3个D .4个【答案】C【分析】根据抛物线的开口方向,对称轴,与y 轴交点可得a ,b ,c 的符号,从而判断①;再根据二次函数的对称性,与x 轴的交点可得当x =-2时,y >0,可判断②;再根据x =-1时,y 取最大值可得a -b +c ≥ax 2+bx +c ,从而判断③;最后根据x =1时,y =a +b +c ,结合b =2a ,可判断④.【详解】解:∵抛物线开口向下,∴a <0,∵对称轴为直线x =-1,即12b a-=-,∴b =2a ,则b <0,∵抛物线与y 轴交于正半轴,∴c >0,∴abc >0,故①正确;∵抛物线对称轴为直线x =-1,与x 轴的一个交点横坐标在0和1之间,则与x 轴的另一个交点在-2和-3之间,∴当x =-2时,y =4a -2b +c >0,故②错误;∵x =-1时,y =ax 2+bx +c 的最大值是a -b +c ,∴a -b +c ≥ax 2+bx +c ,∴a -b ≥ax 2+bx ,即a -b ≥x (ax +b ),故③正确;∵当x =1时,y =a +b +c <0,b =2a ,∴a +2a +c =3a +c <0,故④正确;故选:C .【点睛】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ).8.(2021·湖南株洲中考)二次函数()20y ax bx c a =++¹的图像如图所示,点 P 在x 轴的正半轴上,且1OP =,设()M ac a b c =++,则 M 的取值范围为( )A .1M <-B .10M -<<C .0M <D .0M >【答案】D【分析】由图像可得0a <,0c >,当1x =,y a b c =++,并与x 轴交于OP 之间,得0a b c ++<,据悉可得()0M ac a b c =++>,据此求解即可.【详解】解:由图像可知,图像开口向下,并与y 轴相交于正半轴,∴0a <,0c >,当1x =,211y a b c a b c =++=++g g ,∵1OP =,并由图像可得,二次函数2y ax bx c =++与x 轴交于OP 之间,∴0a b c ++<∴()0M ac a b c =++>,故选:D .【点睛】本题考查二次函数图象及性质,熟悉相关性质是解题的关键.9.(2021·齐齐哈尔中考)如图,二次函数2(0)y ax bx c a =++¹图象的一部分与x 轴的一个交点坐标为()1,0,对称轴为1x =-,结合图象给出下列结论:①0a b c ++=;②20a b c -+<;③关于x 的一元二次方程20(a 0)++=¹ax bx c 的两根分别为-3和1;④若点()14,y -,()22,y -,()33,y 均在二次函数图象上,则123y y y <<;⑤()a b m am b -<+(m 为任意实数).其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C 【分析】根据二次函数的图像及性质逐项分析即可判断.【详解】解:∵二次函数2(0)y ax bx c a =++¹图象的一部分与x 轴的一个交点坐标为()1,0,∴当x =1时,0a b c ++=,故结论①正确;根据函数图像可知,当10x y =-<,,即0a b c -+<,对称轴为1x =-,即12b a-=-,根据抛物线开口向上,得0a >,∴20b a =>,∴0a b c b -+-<,即20a b c -+<,故结论②正确;根据抛物线与x 轴的一个交点为()1,0,对称轴为1x =-可知:抛物线与x 轴的另一个交点为(-3,0),∴关于x 的一元二次方程20(a 0)++=¹ax bx c 的两根分别为-3和1,故结论③正确;根据函数图像可知:213y y y <<,故结论④错误;当x m =时,2()y am bm c m am b c =++=++,∴当1m =-时,()a b c m am b c -+=++,即()a b m am b -=+,故结论⑤错误,综上:①②③正确,故选:C .【点睛】本题主要考查二次函数图像与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系.10.(2021·湖北鄂州中考)二次函数()20y ax bx c a =++¹的图象的一部分如图所示.已知图象经过点()1,0-,其对称轴为直线1x =.下列结论:①0abc <;②420a b c ++<;③80a c +<;④若抛物线经过点()3,n -,则关于x 的一元二次方程()200ax bx c n a ++-=¹的两根分别为3-,5,上述结论中正确结论的个数为( )A .1个B .2个C .3个D .4个【答案】C【分析】根据二次函数的图象与性质进行逐项判断即可求解.【详解】解:①由图象可知,a <0,b >0,c >0,∴abc <0,故①正确;②∵对称轴为直线x = 2b a-=1,且图象与x 轴交于点(﹣1,0),∴图象与x 轴的另一个交点坐标为(3,0),b=﹣2a ,∴根据图象,当x =2时,y =4a +2b +c >0,故②错误;③根据图象,当x =﹣2时,y =4a ﹣2b +c =4a +4a +c =8a +c <0,故③正确;④∵抛物线经过点()3,n -,∴根据抛物线的对称性,抛物线也经过点()5,n ,∴抛物线2y ax bx c =++与直线y =n 的交点坐标为(﹣3,n )和(5,n ),∴一元二次方程()200ax bx c n a ++-=¹的两根分别为3-,5,故④正确,综上,上述结论中正确结论有①③④,故选:C .本题考查二次函数的图象与性质,熟练掌握二次函数的图象与系数之间的关系是解答的关键.11.(2021·江苏宿迁·中考真题)已知二次函数2y ax bx c =++的图像如图所示,有下列结论:①0a >;②24b ac ->0;③40a b +=;④不等式21ax b x c +-+()<0的解集为1≤x <3,正确的结论个数是( )A .1B .2C .3D .4【答案】A【分析】根据抛物线的开口方向、于x 轴的交点情况、对称轴的知识可判①②③的正误,再根据函数图象的特征确定出函数的解析式,进而确定不等式,最后求解不等式即可判定④.【详解】解:∵抛物线的开口向上,∴a >0,故①正确;∵抛物线与x 轴没有交点∴24b ac -<0,故②错误∵由抛物线可知图象过(1,1),且过点(3,3)1933a b c a b c ++=ìí++=î∴8a+2b=2∴4a +b =1,故③错误;由抛物线可知顶点坐标为(1,1),且过点(3,3)则抛物线与直线y=x 交于这两点∴()21ax b x c +-+<0可化为2ax bx c x ++<,根据图象,解得:1<x <3故选A .【点睛】本题主要考查了二次函数图象的特征以及解不等式的相关知识,灵活运用二次函数图象的特征成为解答本题的关键.12.(2021·四川达州中考)如图,已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ¹)经过点()2,0,且对称轴为直线12x =,有下列结论:①0abc >;②0a b +>;③4230a b c ++<;④无论a ,b ,c 取何值,抛物线一定经过,02c a ⎛⎫ ⎪⎝⎭;⑤2440am bm b +-≥.其中正确结论有( )A .1个B .2个C .3个D .4个【答案】D【分析】①根据图像开口向上,对称轴位置,与y 轴交点分别判断出a ,b ,c 的正负②根据对称轴公式2b x a =-,12x =判断,a b 的大小关系③根据2x =时,0y =,比较423a b c ++与0的大小;④根据抛物线的对称性,得到2x =与1x =-时的函数值相等结合②的结论判断即可⑤根据抛物线对称轴找到顶点坐标的纵坐标,比较任意一点与顶点的纵坐标值,即比较函数值的大小即可判断结论.【详解】①图像开口朝上,故0a > ,根据对称轴“左同右异”可知0b <,图像与y 轴交点位于x 轴下方,可知c <0abc \>故①正确;②122b x a =-=得=-a b 0a b \+=③2y ax bx c =++Q 经过()2,0420a b c \++=又由①得c <04230a b c \++<故③正确;④根据抛物线的对称性,得到2x =与1x =-时的函数值相等\ 当1x =-时0y =,即0a b c -+=a b=-Q 20a c \+=即12c a=- \ 2y ax bx c =++经过,02c a ⎛⎫⎪⎝⎭,即经过(1,0)- 故④正确;⑤当12x =时,1142y a b c =++, 当x m =时,2y am bm c =++0a >Q\ 函数有最小值1142a b c ++\ 21142am bm c a b c ++³++化简得2440am bm b +-≥,故⑤正确.综上所述:①③④⑤正确.故选D .【点睛】本题考查二次函数图象与性质,二次函数解析式中系数与图像的关系,结合图像逐项分析,结已知条件得出结论是解题的关键.13.(2021·湖北随州中考)如图,已知抛物线2y ax bx c =++的对称轴在y 轴右侧,抛物线与x 轴交于点()2,0A -和点B ,与y 轴的负半轴交于点C ,且2OB OC =,则下列结论:①0a b c ->;②241b ac -=;③14a =;④当10b -<<时,在x 轴下方的抛物线上一定存在关于对称轴对称的两点M ,N (点M 在点N 左边),使得AN BM ^.其中正确的有( )A .1个B .2个C .3个D .4个【答案】B【分析】依据抛物线的图像和性质,根据题意结合二次函数图象与系数的关系,逐条分析结论进行判断即可【详解】①从图像观察,开口朝上,所以0a >,对称轴在y 轴右侧,所以0b <,图像与y 轴交点在x 轴下方,所以0c <0,0a b a b c--><\,所以①不正确;②点()2,0A -和点B ,与y 轴的负半轴交于点(0,)C c ,且2OB OC=设(2,0)B c -代入2y ax bx c =++,得:2420ac bc c -+=0c ¹Q \241b ac -=,所以②正确;③Q ()2,0A -,(2,0)B c -设抛物线解析式为:(2)(2)y a x x c =++过(0,)C c 4c ac \= 14a \=,所以③正确;④如图:设,AN BM 交点为P ,对称轴与x 轴交点为Q ,顶点为D ,根据抛物线的对称性,APB △ 是等腰直角三角形,()2,0A -Q ,(2,0)B c -22AB c \=-,112PQ AB c ==- 又对称轴2(2)12c x c -+-==+ (1,1)P c c \+- 由顶点坐标公式可知24(1,)4ac b D c a-+ 14a =Q 2(1,)D c cb \+- 由题意21c b c -<-,解得1b > 或者1b <-由①知0b <\1b <-,所以④不正确.综上所述:②③正确共2个故选B .【点睛】本题考查了二次函数图象与系数的关系,利用了数形结合的思想,二次函数2y ax bx c =++(a ≠0),a 的符号由抛物线的开口决定;b 的符号由a 及对称轴的位置确定;c 的符号由抛物线与y 轴交点的位置确定,此外还有注意利用特殊点1,-1及2对应函数值的正负来解决是解题的关键.14.(2021·天津中考)已知抛物线2y ax bx c =++(,,a b c 是常数,0a ¹)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.有下列结论:①0abc >;②关于x 的方程230ax bx c ++-=有两个不等的实数根;③7a b c ++>.其中,正确结论的个数是()A .0B .1C .2D .3【答案】D【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可【详解】∵抛物线2y ax bx c =++(,,a b c 是常数,0a ¹)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.∴c =1>0,a -b +c = -1,4a -2b +c >1,∴a -b = -2,2a -b >0,∴2a -a -2>0,∴a >2>0,∴b =a +2>0,∴abc >0,∵230ax bx c ++-=,∴△=24(3)b a c --=28b a +>0,∴230ax bx c ++-=有两个不等的实数根;∵b =a +2,a >2,c =1,∴a +b +c =a +a +2+1=2a +3,∵a >2,∴2a >4,∴2a +3>4+3>7,故选D .【点睛】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键.15.(2021·四川遂宁中考)已知二次函数2(0)y ax bx c a =++¹的图象如图所示,有下列5个结论:①0abc >;②24b ac <;③23c b <;④2()a b m am b +>+(1m ¹);⑤若方程2ax bx c ++=1有四个根,则这四个根的和为2,其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】A【分析】根据抛物线的开口向下,对称轴方程以及图象与y 轴的交点得到a ,b ,c 的取值,于是可对①进行判断;根据抛物线与x 轴的交点的个数可对②进行判断;根据对称轴可得12b a-=,则12a b =-,根据1x =-可得0a b c -+<,代入变形可对③进行判断;当1x =时,y a b c =++的值最大,即当(1)x m m =¹时,即a b c ++>2am bm c ++,则可对④进行判断;由于方程ax 2+bx +c =1有2个根,方程ax 2+bx +c =-1有2个根,则利用根与系数的关系可对⑤进行判断.【详解】解:①∵抛物线开口方向向下,∴a <0,∵抛物线与y 轴交于正半轴,∴c >0,∵对称轴在y 轴右侧,∴b >0,∴abc <0,①错误;②∵抛物线与x 轴有两个交点∴24b ac ->0∴24b ac >,故②错误;③∵抛物线的对称轴为直线x =1,∴12b a-=,∴12a b =-由图象得,当1x =-时,0y a b c =-+<,∴102b bc --+<∴23c b <,故③正确;④当1x =时,y a b c =++的值最大,∴当(1)x m m =¹时,a b c ++>2am bm c ++,∴()a b m am b +>+(1m ¹),∵b >0,∴2()a b m am b +>+(1m ¹),故④正确;⑤∵方程|ax 2+bx +c |=1有四个根,∴方程ax 2+bx +c =1有2个根,方程ax 2+bx +c =-1有2个根,∴所有根之和为2×(-b a)=2×2a a =4,所以⑤错误.∴正确的结论是③④,故选:A【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置.当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac =0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.16.(2013·山东德州中考)函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0.其中正确的个数为A .1B .2C .3D .4【答案】B【详解】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误.当x=1时,y=1+b+c=1,故②错误.∵当x=3时,y=9+3b+c=3,∴3b+c+6=0.故③正确.∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.综上所述,正确的结论有③④两个,故选B.。

二次函数函数及其图象

二次函数函数及其图象
第13讲┃ 二次函数的图象与性质
12.二次函数 y=ax2+bx+c(a≠0)的图象如图 13-5 所示,根据 图象解答下列问题:
(1)写出方程 ax2+bx+c=0 的两个根; (2)写出不等式 ax2+bx+c>0 的解集; (3)写出 y 随 x 的增大而减小的自变量 x 的取值范围; (4)若方程 ax2+bx+c=k 有两个不相等的实数根,求 k 的取值范 围.
┃考点自主梳理与热身反馈 ┃ 考点1 二次函数的定义
二次函数 的定义
二次函数的 自变量的取
值范围
形如y=ax2+bx+c(a,b,c都是常数,且 a__≠__0__)
一般的二次函数自变量的取值范围是全体实数, 而特殊的实际应用中的二次函数除外
第13讲┃ 二次函数的图象与性质
1.若二次函数 y=x2+2x-7 的函数值为 8,则对应的 x 的值是
第13讲┃ 二次函数的图象与性质
9.二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B 的坐标为(4,0),点C在y轴正半轴上,且AB=OC.
(1)求C的坐标; (2)求二次函数的解析式,并求出函数最大值.
图13-2
第13讲┃ 二次函数的图象与性质
解:(1)∵A(-1,0),B(4,0), ∴AO=1,OB=4, AB=AO+OB=1+4=5, ∴OC=5,即点C的坐标为(0,5);
图 13-3
[解析] ∵抛物线与x轴的一个交点为(3,0),而对称轴为x=1, ∴抛物线与x轴的另一交点是(-1,0).
当y=ax2+bx+c>0时,图象在x轴上方,此时x<-1或x>3.
第13讲┃ 二次函数的图象与性质
11.如图 13-4,二次函数 y=ax2+bx+c 的图象开 口向上,图象经过点(-1,2)和点(1,0),且与 y 轴交 于负半轴,给出下面四个结论:①abc<0;②2a+b> 0;③a+c=1;④b2-4ac>0.其中正确结论的序号是 ___②__③__④_.(请将正确结论的序号都填上)

人教版九年级数学上册第22章 二次函数单元测试及答案

人教版九年级数学上册第22章 二次函数单元测试及答案

人教版九年级数学上册第22章二次函数单元测试及答案考试分值:120分;考试时间:100分钟;姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1 C.y=2x2﹣2(x2+1)D.y=2.(3分)若y=(a2+a)是二次函数,那么()A.a=﹣1或a=3 B.a≠﹣1且a≠0C.a=﹣1 D.a=33.(3分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c在坐标系中的大致图象是()A.B.C.D.4.(3分)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x…﹣2 ﹣1 0 1 2 …y…﹣11 ﹣2 1 ﹣2 ﹣5 …由于粗心,他算错了其中一个y值,则这个错误的数值是()A.﹣11 B.﹣2 C.1 D.﹣55.(3分)二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.c<0C.当﹣1<x<2时,y>0 D.当x<时,y随x的增大而减小6.(3分)如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣B.﹣C.﹣1 D.﹣27.(3分)已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≤4且k≠3B.k<4且k≠3C.k<4 D.k≤48.(3分)对于二次函数y=x2+mx+1,当0<x≤2时的函数值总是非负数,则实数m的取值范围为()A.m≥﹣2 B.﹣4≤m≤﹣2 C.m≥﹣4 D.m≤﹣4或m≥﹣29.(3分)正实数x,y满足xy=1,那么的最小值为()A.B.C.1 D.10.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个评卷人得分二.填空题(共6小题,满分18分,每小题3分)11.(3分)若y=(m+2)x+3x﹣2是二次函数,则m的值是.12.(3分)直线y=mx+n和抛物线y=ax2+bx+c在同一坐标系中的位置如图所示,那么不等式mx+n<ax2+bx+c<0的解集是.13.(3分)请写出一个二次函数的解析式,满足:图象的开口向下,对称轴是直线x=﹣1,且与y轴的交点在x 轴的下方,那么这个二次函数的解析式可以为.14.(3分)已知二次函数y=3(x﹣1)2+k的图象上三点A(2,y1),B(3,y2),C(﹣4,y3),则y1、y2、y3的大小关系是.15.(3分)点A(2,y1)、B(3,y2)是二次函数y=﹣(x﹣1)2+2的图象上两点,则y1y2.16.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…﹣1 0 1 4 …y…10 5 2 5 …则当x≥1时,y的最小值是.评卷人得分三.解答题(共8小题,满分72分)17.(8分)如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC、C D.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标.18.(8分)如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA=24,OB=12;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同都是1个单位/秒,设经过x秒时(0≤x≤12),△POM的面积为y.(1)求直线AB的解析式;(2)求y与x的函数关系式;(3)连接矩形的对角线AB,当x为何值时,以M、O、P为顶点的三角形等于△AOB面积的;(4)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在直线AB上,请说明理由.19.(8分)平面直角坐标系xOy中,抛物线y=mx2﹣2m2x+2交y轴于A点,交直线x=4于B点.(1)抛物线的对称轴为x=(用含m的代数式表示);(2)若AB∥x轴,求抛物线的表达式;(3)记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G上任意一点P(x p,y p),y p≤2,求m的取值范围.20.(8分)已知一条抛物线的对称轴是直线x=1;它与x轴相交于A,B两点(点A在点B的左边),且线段AB 的长是4;它还与过点C(1,﹣2)的直线有一个交点是D(2,﹣3).(1)求这条直线的函数解析式;(2)求这条抛物线的函数解析式;(3)若这条直线上有P点,使S△PAB=12,求点P的坐标.21.(8分)某商场购进一种单价为40元的商品,如果以单价60元售出,那么每天可卖出300个,根据销售经验,每降价1元,每天可多卖出20个,假设每个降价x(元),每天销售y(个),每天获得利润W(元).(1)写出y与x的函数关系式;(2)求出W与x的函数关系式(不必写出x的取值范围)22.(10分)某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=﹣+c且过顶点C(0,5)(长度单位:m)(1)直接写出c的值;(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求斜面EG的倾斜角∠GEF的度数.(精确到0.1°)23.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点A(﹣1,0),点C(0,2)(1)求抛物线的函数解析式;(2)若D是抛物线位于第一象限上的动点,求△BCD面积的最大值及此时点D的坐标.24.(12分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1 C.y=2x2﹣2(x2+1)D.y=【分析】整理成一般形式后,利用二次函数的定义即可解答.【解答】解:A、y=x2+x,是二次函数;B、y=,不是二次函数;C、y=﹣2,不是二次函数;D、不是整式,不是二次函数;故选:A.【点评】本题考查二次函数的定义.2.(3分)若y=(a2+a)是二次函数,那么()A.a=﹣1或a=3 B.a≠﹣1且a≠0C.a=﹣1 D.a=3【分析】根据二次函数定义,自变量的最高指数是二,且系数不为0,列出方程与不等式即可解答.【解答】解:根据题意,得:a2﹣2a﹣1=2解得a=3或﹣1又因为a2+a≠0即a≠0或a≠﹣1所以a=3.故选:D.【点评】解题关键是掌握二次函数的定义.3.(3分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c在坐标系中的大致图象是()A.B.C.D.【分析】先根据二次函数的图象开口向下可知a<0,根据对称轴x=﹣<0,可得b<0,再由函数图象经过原点可知c=0,进而得到一次函数y=bx+c在坐标系中的大致图象.【解答】解:∵二次函数的图象开口向下,∴a<0,∵对称轴x=﹣<0,∴b<0,∵函数图象经过原点,∴c=0,∴一次函数y=bx+c在坐标系中的大致图象是经过原点且从左往右下降的直线,故选:D.【点评】本题主要考查了二次函数以及一次函数的图象,解题时注意:正比例函数的图象是经过原点的一条直线.4.(3分)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x…﹣2 ﹣1 0 1 2 …y…﹣11 ﹣2 1 ﹣2 ﹣5 …由于粗心,他算错了其中一个y值,则这个错误的数值是()A.﹣11 B.﹣2 C.1 D.﹣5【分析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.【解答】解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,﹣2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,函数解析式为y=﹣3x2+1x=2时y=﹣11,故选:D.【点评】本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.5.(3分)二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.c<0C.当﹣1<x<2时,y>0D.当x<时,y随x的增大而减小【分析】观察可判断函数有最小值;由抛物线可知当﹣1<x<2时,可判断函数值的符号;由抛物线与y轴的交点,可判断c的符号;由抛物线对称轴和开口方向可知y随x的增大而减小,可判断结论.【解答】解:A、由图象可知函数有最小值,故正确;B、由抛物线与y轴的交点在y的负半轴,可判断c<0,故正确;C、由抛物线可知当﹣1<x<2时,y<0,故错误;D、由图象可知在对称轴的左侧y随x的增大而减小,故正确;故选:C.【点评】本题考查了二次函数图象的性质,解析式的系数的关系.关键是掌握各项系数与抛物线的性质之间的联系.6.(3分)如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣ B.﹣C.﹣1 D.﹣2【分析】设A(x1,0),B(x2,0),C(0,t),由题意可得t=2;在直角三角形ABC中,利用射影定理求得OC2=OA•OB,即4=|x1x2|=﹣x1x2;然后根据根与系数的关系即可求得a的值.【解答】解:设A(x1,0)(x1<0),B(x2,0)(x2>0),C(0,t),∵二次函数y=ax2+bx+2的图象过点C(0,t),∴t=2;∵AC⊥BC,∴OC2=OA•OB,即4=|x1x2|=﹣x1x2,根据韦达定理知x1x2=,∴a=﹣.故选:A.【点评】本题主要考查了抛物线与x轴的交点.注意二次函数y=ax2+bx+2与关于x的方程ax2+bx+2=0间的转换关系.7.(3分)已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≤4且k≠3B.k<4且k≠3C.k<4 D.k≤4【分析】由于不知道函数是一次函数还是二次函数,需对k进行讨论.当k=3时,函数y=2x+1是一次函数,它的图象与x轴有一个交点;当k≠3,函数y=(k﹣3)x2+2x+1是二次函数,当△≥0时,二次函数与x轴都有交点,解△≥0,求出k的范围.【解答】解:当k=3时,函数y=2x+1是一次函数,它的图象与x轴有一个交点;当k≠3,函数y=(k﹣3)x2+2x+1是二次函数,当22﹣4(k﹣3)≥0,k≤4即k≤4时,函数的图象与x轴有交点.综上k的取值范围是k≤4.故选:D.【点评】本题考察了二次函数、一次函数的图象与x轴的交点、一次不等式的解法.解决本题的关键是对k的值分类讨论.8.(3分)对于二次函数y=x2+mx+1,当0<x≤2时的函数值总是非负数,则实数m的取值范围为()A.m≥﹣2 B.﹣4≤m≤﹣2 C.m≥﹣4 D.m≤﹣4或m≥﹣2【分析】分三种情况进行讨论:对称轴分别为x<0、0≤x<2、x≥2时,得出当0<x≤2时所对应的函数值,判断正误.【解答】解:对称轴为:x=﹣=﹣,y==1﹣,分三种情况:①当对称轴x<0时,即﹣<0,m>0,满足当0<x≤2时的函数值总是非负数;②当0≤x<2时,0≤﹣<2,﹣4<m≤0,当1﹣>0时,﹣2<m≤2,满足当0<x≤2时的函数值总是非负数;当1﹣<0时,不能满足当0<x≤2时的函数值总是非负数;∴当﹣2<m≤0时,当0<x≤2时的函数值总是非负数,③当对称轴﹣≥2时,即m≤﹣4,如果满足当0<x≤2时的函数值总是非负数,则有x=2时,y≥0,4+2m+1≥0,m≥﹣,此种情况m无解;故选:A.【点评】本题考查了二次函数的图象及性质,根据其自变量的取值确定字母系数的取值范围,解决此类问题:首先要计算出顶点坐标,再根据对称轴的位置并与图象相结合得出取值.9.(3分)正实数x,y满足xy=1,那么的最小值为()A.B.C.1 D.【分析】根据已知条件将所求式子消元,用配方法将式子配方,即可求出最小值.【解答】解:由已知,得x=,∴=+=(﹣)2+1,当=,即x=时,的值最小,最小值为1.故选:C.【点评】本题考查了二次函数求最大(小)值的运用,关键是将所求式子消元,配方.10.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.【解答】解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①正确);∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).故选:B.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二.填空题(共6小题,满分18分,每小题3分)11.(3分)若y=(m+2)x+3x﹣2是二次函数,则m的值是2.【分析】根据二次函数的定义求解即可.【解答】解:由题意,得m2﹣2=2,且m+2≠0,解得m=2,故答案为:2.【点评】本题考查了二次函数的定义,利用二次函数的定义是解题关键.12.(3分)直线y=mx+n和抛物线y=ax2+bx+c在同一坐标系中的位置如图所示,那么不等式mx+n<ax2+bx+c<0的解集是1<x<2.【分析】从图上可知,mx+n<ax2+bx+c,则有x>1或x<﹣;根据ax2+bx+c<0,可知﹣1<x<2;综上,不等式mx+n<ax2+bx+c<0的解集是1<x<2.【解答】解:因为mx+n<ax2+bx+c<0,由图可知,1<x<2.【点评】此题将图形与不等式相结合,考查了同学们对不等式组的解集的理解和读图能力,有一定的难度,读图时要仔细.13.(3分)请写出一个二次函数的解析式,满足:图象的开口向下,对称轴是直线x=﹣1,且与y轴的交点在x 轴的下方,那么这个二次函数的解析式可以为y=﹣x2﹣2x﹣1.【分析】由题意可知:写出的函数解析式满足a<0,﹣=﹣1,c<0,由此举例得出答案即可.【解答】解:设所求二次函数的解析式为y=ax2+bx+c(a≠0).∵图象的开口向下,∴a<0,可取a=﹣1;∵对称轴是直线x=﹣1,∴﹣=﹣1,得b=2a=﹣2;∵与y轴的交点在x轴的下方,∴c<0,可取c=﹣1;∴函数解析式可以为:y=﹣x2﹣2x﹣1.故答案为:y=﹣x2﹣2x﹣1.【点评】本题考查了二次函数的性质,用到的知识点:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣;当a>0时,抛物线开口向上,当a<0时,抛物线开口向下;二次函数与y轴交于点(0,c).14.(3分)已知二次函数y=3(x﹣1)2+k的图象上三点A(2,y1),B(3,y2),C(﹣4,y3),则y1、y2、y3的大小关系是y1<y2<y3.【分析】根据二次函数的解析式得出图象的开口向上,对称轴是直线x=1,根据x>1时,y随x的增大而增大,即可得出答案.【解答】解:∵y=3(x﹣1)2+k,∴图象的开口向上,对称轴是直线x=1,A(﹣4,y3)关于直线x=﹣2的对称点是(6,y3),∵2<3<6,∴y1<y2<y3,故答案为y1<y2<y3.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.15.(3分)点A(2,y1)、B(3,y2)是二次函数y=﹣(x﹣1)2+2的图象上两点,则y1>y2.【分析】先确定对称轴是:x=1,由知a=﹣1,抛物线开口向下,当x>1时,y随x的增大而减小,根据横坐标3>2得:y1>y2.【解答】解:∵二次函数对称轴为:x=1,a=﹣1,∴当x>1时,y随x的增大而减小,∵3>2>1,∴y1>y2,故答案为:>.【点评】本题考查了二次函数图象上的点的坐标特征,明确二次函数的增减性:①当a>0时,抛物线y=ax2+bx+c (a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小.16.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…﹣1 0 1 4 …y…10 5 2 5 …则当x≥1时,y的最小值是1.【分析】先用待定系数法求出二次函数的解析式,得出其对称轴的直线方程,进而可得出结论.【解答】解:∵由表可知,当x=﹣1时,y=10,当x=0时,y=5,当x=1时,y=2,∴,解得,∴抛物线的解析式为y=x2﹣4x+5,∴其对称轴为直线x=﹣=﹣=2.∵x≥1,∴当x=2时,y最小===1.故答案为:1.【点评】本题考查的是二次函数的最值,熟知用待定系数法求二次函数的解析式是解答此题的关键.三.解答题(共8小题,满分72分)17.(8分)如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC、C D.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标.【分析】(1)设抛物线的解析式为y=a(x﹣x1)(x﹣x2),再把点代入即可得出解析式;(2)分两种情况:①当点E在直线CD的抛物线上方;②当点E在直线CD的抛物线下方;连接CE,过点E作EF⊥CD,再由三角函数得出点E的坐标.【解答】解:(1)∵抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),∴设抛物线的解析式为y=a(x﹣x1)(x﹣x2),∴y=a(x+2)(x﹣4),∴﹣8a=4,∴a=﹣,∴抛物线的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4,(2)①当点E在直线CD的抛物线上方,记E′,连接CE′,过点E′作E′F′⊥CD,垂足为F′,由(1)得OC=4,∵∠ACO=∠E′OF′,∴tan∠ACO=tan∠E′CF′,∴==,设线段E′F′=h,则CF′=2h,∴点E′(2h,h+4),∵点E′在抛物线上,∴﹣(2h)2+2h+4=h+4,∴h1=0(舍去),h2=,∴E′(1,);②当点E在直线CD的抛物线下方;同①的方法得,E(3,),综上,点E的坐标为(1,),(3,).【点评】本题考查了用待定系数法求二次函数的解析式,掌握二次函数的解析式三种不同的形式是解题的关键.18.(8分)如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA=24,OB=12;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同都是1个单位/秒,设经过x秒时(0≤x≤12),△POM的面积为y.(1)求直线AB的解析式;(2)求y与x的函数关系式;(3)连接矩形的对角线AB,当x为何值时,以M、O、P为顶点的三角形等于△AOB面积的;(4)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在直线AB上,请说明理由.【分析】(1)设直线AB的解析式为y=kx+b,用待定系数法即可求解;(2)根据S△OMP=,即可求解;(3)根据面积之间关系列出等式即可求解;(4)当△POM的面积最大时,将△POM沿PM据直线翻折后得到△PDM,先求出D点坐标,看是否在直线y=上即可判断;【解答】解:(1)设直线AB的解析式为y=kx+b,A点坐标为(24,0),B为(0,12),把A、B两点的坐标代入上式,得:,解得,∴y=;(2)∵S△OMP=,∴y=•x即y=﹣;(3)∵S△AOB=,∴S△AOB=18,即y=18,当﹣,解得:x=6;(4)当△POM的面积最大时,将△POM沿PM据直线翻折后得到△PDM,当x=﹣=6时,S△POM=y有最大值.此时OP=6,OM=12﹣x=6∴△OMP是等腰直角三角形.∵将△POM沿PM所在直线翻折后得到△POM.∴四边形OPDM是正方形∴D(6,6),把D(6,6)代入y=x=6时,y=﹣×6+12=9≠6∴点D不在直线AB上.【点评】本题考查了二次函数的最值及矩形的性质,难度较大,关键是正确理解与把握题中给出的已知信息.19.(8分)平面直角坐标系xOy中,抛物线y=mx2﹣2m2x+2交y轴于A点,交直线x=4于B点.(1)抛物线的对称轴为x=m(用含m的代数式表示);(2)若AB∥x轴,求抛物线的表达式;(3)记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G上任意一点P(x p,y p),y p≤2,求m的取值范围.【分析】(1)根据抛物线的对称轴为直线x=﹣,代入数据即可得出结论;(2)由AB∥x轴,可得出点B的坐标,进而可得出抛物线的对称轴为x=2,结合(1)可得出m=2,将其代入抛物线表达式中即可;(3)分m>0及m<0两种情况考虑,依照题意画出函数图象,利用数形结合即可得出m的取值范围.【解答】解:(1)抛物线的对称轴为x==m.故答案为:m.(2)当x=0时,y=mx2﹣2m2x+2=2,∴点A(0,2).∵AB∥x轴,且点B在直线x=4上,∴点B(4,2),抛物线的对称轴为直线x=2,∴m=2,∴抛物线的表达式为y=2x2﹣8x+2.(3)当m>0时,如图1.∵A(0,2),∴要使0≤x p≤4时,始终满足y p≤2,只需使抛物线y=mx2﹣2m2x+2的对称轴与直线x=2重合或在直线x=2的右侧.∴m≥2;当m<0时,如图2,在0≤x p≤4中,y p≤2恒成立.综上所述,m的取值范围为m<0或m≥2.【点评】本题考查了二次函数的性质、二次函数的图象以及待定系数法求二次函数解析式,解题的关键是:(1)牢记抛物线的对称轴为直线x=﹣;(2)根据二次函数的性质找出对称轴为x=2;(3)分m>0及m<0两种情况考虑.20.(8分)已知一条抛物线的对称轴是直线x=1;它与x轴相交于A,B两点(点A在点B的左边),且线段AB 的长是4;它还与过点C(1,﹣2)的直线有一个交点是D(2,﹣3).(1)求这条直线的函数解析式;(2)求这条抛物线的函数解析式;(3)若这条直线上有P点,使S△PAB=12,求点P的坐标.【分析】(1)由于所求直线经过点C(1,﹣2)和D(2,﹣3),利用待定系数法即可确定直线的解析式;(2)由于抛物线的对称轴是直线x=1;它与x轴相交于A,B两点(点A在点B的左边),且线段AB的长是4,由此可以确定A、B的坐标,还经过D(2,﹣3),利用待定系数法可以确定抛物线的函数解析式;(3)由于线段AB的长是4,利用三角形的面积公式可以求出P的纵坐标的绝对值,然后代入(1)中直线解析式即可确定P的坐标.【解答】解:(1)∵直线经过点:C(1,﹣2)、D(2,﹣3),设解析式为y=kx+b,∴,解之得:k=﹣1,b=﹣1,∴这些的解析式为y=﹣x﹣1;(2)由抛物线的对称轴是:x=1,与x轴两交点A、B之间的距离是4,可推出:A(﹣1,0),B(3,0)(2分)设y=ax2+bx+c,由待定系数法得:,解之得:,所以抛物线的解析式为:y=x2﹣2x﹣3(2分);(3)设点P的坐标为(x,y),它到x轴的距离为|y|.(1分)∴,解之得:y=±6(1分)由点P在直线y=﹣x﹣1上,得P点坐标为(﹣7,6)和(5,﹣6).【点评】此题分别考查了抛物线与x轴的交点坐标与对称轴的关系、待定系数法确定函数的解析式即三角形的面积公式等知识,有一定的综合性,一起学生熟练掌握各个知识点才能很好解决问题.21.(8分)某商场购进一种单价为40元的商品,如果以单价60元售出,那么每天可卖出300个,根据销售经验,每降价1元,每天可多卖出20个,假设每个降价x(元),每天销售y(个),每天获得利润W(元).(1)写出y与x的函数关系式y=300+20x;(2)求出W与x的函数关系式(不必写出x的取值范围)【分析】(1)利用每天可卖出300个,每降价1元,每天可多卖出20个,进而得出y与x的函数关系式;(2)利用销量×每千克商品的利润=总利润,进而得出答案.【解答】解:(1)设每个降价x(元),每天销售y(个),y与x的函数关系式为:y=300+20x;故答案为:y=300+20x;(2)由题意可得,W与x的函数关系式为:W=(300+20x)(60﹣40﹣x)=﹣20x2+100x+6000.【点评】此题主要考查了根据实际问题列二次函数关系式,正确掌握销量与每千克利润与总利润的关系是解题关键.22.(10分)某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=﹣+c且过顶点C(0,5)(长度单位:m)(1)直接写出c的值;(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求斜面EG的倾斜角∠GEF的度数.(精确到0.1°)【分析】(1)根据点在抛物线上易求得c;(2)根据解析式求出A,B,C三点坐标,求出地毯的总长度,再根据地毯的价格求出购买地毯需要的钱;(3)由已知矩形EFGH的周长,求出GF,EF边的长度,再根据三角函数性质求出倾斜角∠GEF的度数.【解答】解:(1)抛物线的解析式为y=﹣+c,∵点(0,5)在抛物线上∴c=5;(2)由(1)知,OC=5,令y=0,即﹣+5=0,解得x1=10,x2=﹣10;∴地毯的总长度为:AB+2OC=20+2×5=30,∴30×1.5×20=900答:购买地毯需要900元.(3)可设G的坐标为(m,﹣+5)其中m>0则EF=2m,GF=﹣+5,由已知得:2(EF+GF)=27.5,即2(2m﹣+5)=27.5,解得:m1=5,m2=35(不合题意,舍去),把m1=5代入,﹣+5=﹣×52+5=3.75,∴点G的坐标是(5,3.75),∴EF=10,GF=3.75,在Rt△EFG中,tan∠GEF===0.375,∴∠GEF≈20.6°.【点评】此题考查二次函数和三角函数的性质及其应用,要结合图形做题.23.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点A(﹣1,0),点C(0,2)(1)求抛物线的函数解析式;(2)若D是抛物线位于第一象限上的动点,求△BCD面积的最大值及此时点D的坐标.【分析】(1)把A与C坐标代入抛物线解析式求出b与c的值,确定出解析式即可;(2)连接OD,设出D坐标,四边形OCDB的面积等于三角形OCD面积+三角形OBD面积,表示出三角形BCD 面积S与m的二次函数解析式,求出最大面积及D坐标即可.【解答】解:(1)将A,C代入得:,则抛物线的函数解析式为y=﹣x2+x+2;(2)连接OD,则有B(4,0),设D(m,﹣m2+m+2),∵S﹣S△OCD﹣S△OBD=×2m+×4(﹣m2+m+2)=﹣m2+4m+4,四边形OCDB∴S△BCD=S四边形OCDB﹣S△OBC=﹣m2+4m+4﹣×4×2=﹣m2+4m=﹣(m﹣2)2+4,当m=2时,S△BCD取得最大值4,此时y D=﹣×4+×2+2=3,即D(2,3).【点评】此题考查了抛物线与x轴的交点,以及待定系数法求二次函数解析式,熟练掌握二次函数的性质是解本题的关键.24.(12分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.【分析】(1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答;(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数的最值问题解答;(3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,然后分①点O1、B1在抛物线上时,表示出两点的横坐标,再根据纵坐标相同列出方程求解即可;②点A1、B1在抛物线上时,表示出点B1的横坐标,再根据两点的纵坐标相差A1O1的长度列出方程求解即可.【解答】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,解得x=,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.【点评】本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式,锐角三角函数,长方形的周长公式,以及二次函数的最值问题,本题难点在于(3)根据旋转角是90°判断出A1O1∥y 轴时,B1O1∥x轴,注意要分情况讨论.。

中考复习课件 二次函数的图象与各项字母系数之间的关系

中考复习课件  二次函数的图象与各项字母系数之间的关系
④(a+c)2<b2,其中不正确的个数是 (D )
A、4个 B、3个
y
C、2个 D、1个
o
x
x=1
3、已知:二次函数y=ax2+bx+c的图象如图所示, 下列结论中:①abc>0;②b=2a;③a+b+c<0;
④a+b-c>0; ⑤a-b+c>0正确的个数是 (C )
A、2个 B、3个
y
C、4个 D、5个
小试牛刀 快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
20
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
21
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
b
2a+b
- 与1比较,等于1,大于1,小于1
2a
2a-b
- b 与-1比较,等于-1,大于-1,小于-1 2a
b2-4ac
与x轴交点个数
a+b+c 令x=1,y=a+b+c,看纵坐标是在y轴的正半
轴上(>0)还是在负半轴上(<0)
a-b+c 令x=-1,y=a-b+c,看纵坐标
4a+2b+ c
4a-
b24ac>0
b2-4ac=0
与x轴无交点
b24ac<0
5.二次函数图象的对称轴特殊情况
(1)当对称轴是x=1

专题14 二次函数中动点问题求取值范围(老师版)

专题14 二次函数中动点问题求取值范围(老师版)

专题14二次函数中动点问题求取值范围知识归纳学会用函数的观点去看问题和用数形结合的思想去解决问题是本专题主要研究的知识点。

本专题主要对二次函数中动点问题求取值范围题型进行总结,对其解法进行归纳总结,所选题型为近几年期末考试中的常考题型。

二次函数动点问题解法⑴求二次函数的图象与x轴的交点坐标,需4102转化为一元二次1653方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数ax²+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式ax²+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;常考题型专练一、填空题1.在平面直角坐标系xOy中,抛物线y=x2–2m x–2m–2与直线y=-x-2交于C,D两点,将抛物线在C、D两点之间的部分(不含C、D)上恰有两个点的横坐标为整数,则m的取值范围为______.【答案】-2≤m<32-或12<m≤1【分析】先联立解方程将C、D点的横坐标解出来,再根据抛物线在C、D两点之间的部分(不含C、D)上恰有两个点的横坐标为整数,得出在C、D之间恰有两个整数解,进行分类讨论即可.【详解】解:∵在平面直角坐标系xOy中,抛物线y=x2–2m x–2m–2与直线y=-x-2交于C,D两点,联立解方程:22222y x mx my x⎧=---⎨=--⎩,()()210x m x-+=,解得:121,2x x m=-=∴抛物线与直线交点的横坐标为:1,2m-又∵抛物线在C、D两点之间的部分(不含C、D)上恰有两个点的横坐标为整数∴得出在C、D之间恰有两个整数解当21m >-即12m >-时得出:122m <≤解得:112m <≤当21m <-即12m <-时得出:423m -≤<-解得:322m -≤<-故答案为:322m -≤<-或112m <≤【总结】本题考查抛物线与直线交点以及图象的特点,联立解方程求出交点的横坐标是解题关键,注意分类讨论.2.在平面直角坐标系内,已知点A(﹣1,0),点B(1,1)都在直线y=12x+12上,若抛物线y=ax 2﹣x+1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是____.【答案】1≤a<98或a≤−2【分析】分a>0,a<0两种情况讨论,确定临界点,进而可求a 的取值范围.【详解】解:∵抛物线y=ax 2−x+1(a≠0)与线段AB 有两个不同的交点,∴令12x+12=ax 2−x+1,则2ax 2−3x+1=0,∴△=9−8a>0,∴a<98,①a<0时,此时函数的对称轴在y 轴左侧,当抛物线过点A 时,为两个函数有两个交点的临界点,将点A 的坐标代入抛物线表达式得:a+1+1=0,解得a=−2,故a≤−2②当a>0时,此时函数的对称轴在y 轴右侧,当抛物线过点B 时,为两个函数有两个交点的临界点,将点B 的坐标代入抛物线表达式得:a −1+1=1,解得a=1,即:a≥1∴1≤a<98综上所述:1≤a<98或a≤−2.故答案是:1≤a<98或a≤−2.【总结】本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键.3.已知抛物线()24410y ax ax a a =+++≠过点(),3A m ,(),3B n 两点,若线段AB 的长不大于4,则代数式21a a ++的最小值是_________.【答案】74【分析】根据题意得4a+1≥3,解不等式求得a≥12,把x=12代入代数式即可求得.【详解】∵抛物线y=ax 2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,∴4222m n a a +=-=-,顶点为(-2,1)∴由题意可知a>0,∵线段AB 的长不大于4,∴4a+1≥3∴a≥12∴a 2+a+1的最小值为:(12)2+12+1=74;故答案为74.【总结】本题考查了二次函数的性质,二次函数图象上点的坐标特征,根据题意得出4a+1≥3是解题的关键.4.在平面直角坐标系xOy 中,抛物线y =x 2–2m x –2m –2与直线y =-x-2交于C,D 两点,将抛物线在C、D 两点之间的部分(不含C、D)上恰有两个点的横坐标为整数,则m 的取值范围为______.【答案】-2≤m<32-或12<m≤1【分析】先联立解方程将C、D 点的横坐标解出来,再根据抛物线在C、D 两点之间的部分(不含C、D)上恰有两个点的横坐标为整数,得出在C、D 之间恰有两个整数解,进行分类讨论即可.【详解】解:∵在平面直角坐标系xOy 中,抛物线y =x 2–2m x –2m –2与直线y =-x-2交于C,D 两点,联立解方程:22222y x mx m y x ⎧=---⎨=--⎩,()()210x m x -+=,解得:121,2x x m=-=∴抛物线与直线交点的横坐标为:1,2m-又∵抛物线在C、D 两点之间的部分(不含C、D)上恰有两个点的横坐标为整数∴得出在C、D 之间恰有两个整数解当21m >-即12m >-时得出:122m <≤解得:112m <≤当21m <-即12m <-时得出:423m -≤<-解得:322m -≤<-故答案为:322m -≤<-或112m <≤【总结】本题考查抛物线与直线交点以及图象的特点,联立解方程求出交点的横坐标是解题关键,注意分类讨论.5.如图,在平面直角坐标系中,二次函数23y x bx =-++的图像与x 轴交于A、C 两点,与x 轴交于点(3,0)C ,若P 是x 轴上一动点,点D 的坐标为(0,1)-,连接PC +的最小值是______.【答案】4【分析】过点P 作PJ⊥BC 于J,过点D 作DH⊥BC 于)2PC PD PC PD PJ ⎫+=+=+⎪⎪⎭,求出DP PJ +的最小值即可解决问题.【详解】解:连接BC,过点P 作PJ⊥BC 于J,过点D 作DH⊥BC 于H.∵二次函数23y x bx =-++的图像与x 轴交于点(3,0)C ,∴b=2,∴二次函数的解析式为223y x x =-++,令y=0,-x 2+2x+3=0,解得x=﹣1或3,∴A(﹣1,0),令x=0,y=3,∴B(0,3),∴OB=OC=3,∵∠BOC=90°,∴∠OBC=∠OCB=45°,∵D(0,-1),∴OD=1,BD=4,∵DH⊥BC,∴∠DHB=90°,设DH x =,则BH x =,∵222DH BH BD +=,∴2224x x +=,∴x =∴DH =∵PJ⊥CB,∴90PJC ∠︒=,∴2PJ PC =,)2PC PD PC PD PJ ⎫+=+=+⎪⎪⎭,∵DP PJ DH +≥,∴DP PJ +≥∴DP+PJ 的最小值为PC +的最小值为4.故答案是4.【总结】本题考查了二次函数的相关性质,以及等腰直角三角形的判定和性质,垂线段最短等知识,得到∠OBC=∠OCB=45°,2PJ PC =是解题的关键.二、解答题1.在平面直角坐标系xOy 中,已知抛物线24y x x =-.(1)写这条抛物线的开口方向、顶点坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.试求抛物线24y x x =-的“不动点”的坐标.【答案】(1)抛物线开口向上,顶点坐标为(2,−4),当x>2,y 随x 的增大而增大,当x<2,y 随x 增大而减小;(2)“不动点”坐标为(0,0)或(5,5).【分析】(1)由a=1>0,故该抛物线开口向上,顶点A 的坐标为(1,−1),即可分析出变化情况;(2)设抛物线“不动点”坐标为(t,t),则t=24t t -,即可求解;【详解】解:(1)∵a=1>0,故该抛物线开口向上,顶点A 的横坐标为4222b a --=-=,则顶点A 的纵坐标为2242y =-⨯=−4;故顶点A 的坐标为(2,−4),当x>2,y 随x 的增大而增大,当x<2,y 随x 增大而减小;(2)设抛物线“不动点”坐标为(t,t),则t=24t t -,解得:t=0或5,故“不动点”坐标为(0,0)或(5,5).【总结】本题考查二次函数的性质;熟练掌握二次函数的图象及性质,数形结合解题是关键.2.已知二次函数2(0)y ax bx a =+≠,其对称轴为直线x=t.(1)当a=1,b=4时,t=________;(2)当a<0时,若点A(1,m),B(5,n)在此二次函数图象上,且m<n,则t 的取值范围是________;(3)已知点C(0,a),D(2,3a -2b),若此二次函数图象与线段CD 有且仅有一个公共点,求t 的取值范围.【答案】(1)-2;(2)t>3;(3)t≤18【分析】(1)利用对称轴公式,即可求解;(2)根据二次函数的图像开口向下,点A(1,m),B(5,n)在此二次函数图象上,且m<n,可得点B 离对称轴更近,进而即可求解;(3)分两种情况①当a>0时,得到22232y a b a b =⨯+≥-,②当a<0时,得到22232y a b a b =⨯+≤-,进而即可求解.【详解】解:(1)∵当a=1,b=4时,二次函数24y x x =+,∴对称轴为直线x=-2,即:t=-2,故答案是:-2;(2)∵当a<0时,二次函数2(0)y ax bx a =+≠的图像开口向下,又∵点A(1,m),B(5,n)在此二次函数图象上,且m<n,∴点B 离对称轴更近,即:|5-t|<|t-1|,∴t>3,故答案是:t>3;(3)①当a>0时,∵C(0,a)在y 轴的正半轴,2(0)y ax bx a =+≠的图像过原点,开口向上,此二次函数图象与线段CD 有且仅有一个公共点,∴只要22232y a b a b =⨯+≥-即可,即:4a+2b≥3a-2b,解得:a≥-4b,∴2b a -≤18,即:t=2b a -≤18,②当a<0时,同理可得:只要22232y a b a b =⨯+≤-,即:4a+2b≤3a-2b,解得:a≤-4b,∴2b a -≤18,即:t=2b a -≤18,综上所述:t≤18.【总结】本题主要考查二次函数的性质,掌握二次函数的对称轴方程,二次函数图像的对称性,是解题的关键.3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A(1,0),B(3,0),交y 轴于点C.(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值【答案】(1)y=x 2-4x+3;(2)278【分析】(1)将A(1,0),B(3,0)代入函数解析式y=ax 2+bx+3,求出a、b,即可求解;(2)求出直线BC 解析式;设点P 坐标为(t,t 2-4t+3),过点P 作//PE y 轴,表示出PE 长,得到△BCP 面积与t 函数关系式,根据函数性质即可求解.【详解】解:(1)将A(1,0),B(3,0)代入函数解析式,得309330a b a b ++⎧⎨++⎩==,解得14a b -⎧⎨⎩==,∴这个二次函数的表达式是y=x 2-4x+3;(2)当x=0时,y=3,即点C(0,3),设BC 的表达式为y=kx+m,将点B(3,0)点C(0,3)代入函数解析式,得300k m m +⎧⎨⎩==,解得13k m -⎧⎨⎩==,∴直线BC 的解析是为y=-x+3,设点P 坐标为(t,t 2-4t+3),过点P 作//PE y 轴,交直线BC 于点E(t,-t+3),PE=-t+3-(t 2-4t+3)=-t 2+3t,∴S △BCP =S △BPE +S CPE =12(-t 2+3t)×3=-32(t-32)2+278,∵-32<0,∴当t=32时,S △BCP 最大=278.【总结】本题为二次函数综合题,考查了二次函数,一次函数等知识,熟知待定系数法,理解函数图象上点的坐标特点,添加适当辅助线是解题关键.4.已知抛物线228y ax ax =--()0a ≠经过点()2,0-.(1)求抛物线的函数表达式和顶点坐标.(2)直线l 交抛物线于点()4,A m -,(),7B n ,n 为正数.若点P 在抛物线上且在直线l 下方(不与点A ,B 重合),分别求出点P 横坐标与纵坐标的取值范围,【答案】(1)228y x x =--,顶点坐标为()1,9-;(2)4p x -<<5,916p y -≤<【分析】(1)把()2,0-代入可求得函数解析式,然后利用配方法将二次函数解析式转化为顶点式,直接得到抛物线的顶点坐标;(2)把()4,A m -,(),7B n 代入可求出m,n,求出点P 横坐标取值范围,在利用二次函数的最值即可求纵坐标的取值范围【详解】解:(1)把()2,0-代入228y ax ax =--,得4480a a +-=,解得1a =,∴抛物线的函数表达式为228y x x =--,配方得()219y x =--,∴顶点坐标为()1,9-.(2)当4x =-时,16m =.当7y =时,2287n n --=,解得15n =,23n =-.n 为正数,∴5n =.点P 在抛物线上且在直线l 的下方(不与点A ,B 重合),∴4p x -<<5.∵1a =>0∴开口向上,当x=1时函数取得最小值=-9∴当41x -<≤时,y 随x 的增大而减小;当15x <<时,y 随x 的增大而增大,当x=-4时,y=16,当x=5时y=7,∴916p y -≤<【总结】本题二次函数综合题,考查了利用待定系数法求二次函数解析式,配方法把二次函数一般式化成顶点式,以及二次函数的性质.5.已知她物线2y x bx c =++的图象开口向上,且经过点(0,3)A 、19,24B ⎛⎫ ⎪⎝⎭.(1)求抛物线的解析式:(2)用配方法求出抛物线的顶点坐标和对称轴,(3)若点C 与点A 关于此抛物线的对称轴对称,点D 在抛物线上,且横坐标为4,记抛物线在点A,D 之间的部分(含点A,D)为图象M,若图象M 向下平移()0t t >个单位长度时与直线BC 只有一个交点,求t 的取值范围.【答案】(1)223y x x =-+(2)顶点坐标(1,2),对称轴x=1(3)1<t≤7【分析】(1)把点A (0,3)和B 1924(),代入2y x bx c =++,得到关于b 、c 的方程组,然后解方程组求出b 、c 即可得到抛物线解析式;(2)利用配方法得到2(1)2y x =-+,求出抛物线的顶点坐标和对称轴;(3)画出抛物线,如图,先利用待定系数法求出直线BC 的解析式为y=12x+2,再利用平移的性质得到图象M 向下平移1个单位时,点A 在直线BC 上;图象M 向下平移7个单位时,点D 在直线BC 上,由于图象M 向下平移t (t >0)个单位后与直线BC 只有一个公共点,即可得答案.【小问1详解】解:把点A (0,3)和B 1924(),代入2y x bx c =++,得=3{1193424c b ++=,解得=3{2c b =-,∴抛物线的解析式为223y x x =-+;【小问2详解】∵2223(1)2y x x x =-+=-+,∴抛物线的顶点坐标(1,2),对称轴x=1;【小问3详解】点C 与点A 关于此抛物线的对称轴对称,所以C 点坐标为(2,3),抛物线如下图,设直线BC 的解析式为y=mx +n,把B 1924(),,C(2,3)代入得,19+={2423m n m n +=,解得:1{22m n ==,∴直线BC 的解析式为y=12x+2,∵抛物线223y x x =-+,当x =4时,223y x x =-+=16-2×4+3=11,∴点D 的坐标为(4,11),∵直线y=12x+2,当x=0时,y=12x+2=2,当x=4时,y=12x+2=4,∴如下图,点E 的坐标(0,2),点F 的坐标(4,4),设点A 平移后的对应点为点A ',点D 平移后的对应点为点D ¢,当图象M 向下平移至点A '与点E 重合时,点D ¢在直线BC 上方,此时t=1,当图象M 向下平移至点D ¢与点F 重合时,点A '在直线BC 下方,此时t=11-4=7,结合图象可知,符合题意的t 的取值范围是1<t≤7.【总结】本题考查了待定系数法求一次函数解析式,待定系数法求二次函数解析式,二次函数图象与几何变换,解题的关键是利用了“数形结合”的数学思想,使抽象的问题变得直观化了.6.已知抛物线y=ax 2+bx+c 的顶点为(3,2),且过点(0,11).(1)求抛物线的解析式;(2)将抛物线先向左平移2个单位长度,再向下平移m(m>0)个单位长度后得到新抛物线.①若新抛物线与x 轴交于A,B 两点(点A 在点B 的左侧),且OB=3OA,求m 的值;②若P(x 1,y 1),Q(x 2,y 2)是新抛物线上的两点,当n≤x 1≤n+1,x 2≥4时,均有y 1≤y 2,求n 的取值范围.【答案】(1)y=(x﹣3)2+2;(2)①94或6;②23n-≤≤【分析】(1)设抛物线解析式为顶点式y=a(x﹣3)2+2,把点(0,11)代入求值即可;(2)①利用抛物线解析式求得点A、B的坐标,根据抛物线的对称性质和方程思想求得m的值即可;②根据抛物线的对称性质知:当x=4和x=﹣2时,函数值相等.结合图象,得n≥﹣2且n+1≤4.解该不等式组得到:﹣2≤n≤3.【详解】解:(1)∵顶点为(3,2),∴y=ax2+bx+c=y=a(x﹣3)2+2(a≠0).又∵抛物线过点(0,11),∴a(0﹣3)2+2=11,∴a=1.∴y=(x﹣3)2+2;(2)由平移的性质知,平移后的抛物线的表达式为y=(x﹣3+2)2+2﹣m=x2﹣2x+3﹣m,①分情况讨论:若点A,B均在x轴正半轴上,设A(x,0),则B(3x,0),由对称性可知:12(x+3x)=1,解得x=12,故点A的坐标为(12,0),将点A的坐标代入y=x2﹣2x+3﹣m得:0=14﹣1+3﹣m,解得m=9 4若点A在x轴负半轴上,点B在x轴正半轴上,设A(x,0),则B(﹣3x,0),由对称性可知:12(x﹣3x)=1,解得x=﹣1,故点A的坐标为(﹣1,0),同理可得m=6,综上:m=94或m=6;②∵新抛物线开口向上,对称轴为直线x=1,∴当x=4和x=﹣2时,函数值相等.又∵当n≤x 1≤n+1,x 2≥4时,均有y 1≤y 2,∴结合图象,得214n n ≥-⎧⎨+≤⎩,∴﹣2≤n≤3.【总结】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.7.如图所示,在平面直角坐标系中,抛物线212y x bx c =++经过点()0,2A 和31,2B ⎛⎫ ⎪⎝⎭.(1)求抛物线的解析式;(2)已知点C 与点A 关于此抛物线的对称轴对称,求点C 的坐标;(3)点D 在抛物线上,且横坐标为4,记抛物线在点A,D 之间的部分(含点A,D)为图像G,若图像G 向下平移t(0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围.【答案】(1)2122y x x =-+(2)()2,2(3)13t <≤【分析】(1)把点A、B 的坐标代入212y x bx c =++得到关于b、c 的方程组,然后解方程组求得b、c 的值,即可得到抛物线的解析式;(2)利用配方法可得()213122y x =-+,则抛物线的对称轴为直线1x =,然后根据点C 与点A 关于此抛物线的对称轴对称,即可求得点C 的坐标;(3)画出图象,先利用待定系数法求出直线BC 的解析式为112y x =+,再利用平移的性质得到图象G 向下平移1个单位时,点A 的直线BC 上;图象G 向下平移3个单位时,点D 在直线BC 上;然后根据图像G 向下平移t (0t >)个单位后与直线BC 只有一个公共点即可求得答案.【小问1详解】解:把点()0,2A 和31,2B ⎛⎫ ⎪⎝⎭代入212y x bx c =++得:21322c b c ì=ïí++=ïî,解得:12b c =-⎧⎨=⎩,所以抛物线解析式为2122y x x =-+;【小问2详解】解:∵()2211321222y x x x =-+=-+,∴抛物线的对称轴为直线1x =,∵点C 与点A 关于此抛物线的对称轴对称,∴C 点坐标为()2,2;【小问3详解】解:如图,设直线BC 的解析式为y mx m =+,把31,2B ⎛⎫ ⎪⎝⎭,()2,2C 代入y mx m =+,得:3222m n m n ì+=ïíï+=î,解得:121m n ⎧=⎪⎨⎪=⎩,∴直线BC 的解析式为112y x =+,当0x =时,1112y x =+=,∴图象G 向下平移1个单位时,点A 的直线BC 上,当4x =时,1132y x =+=,∵4x =时,21262y x x =-+=,∴图象G 向下平移3个单位时,点D 在直线BC 上,∴当13t <≤时,图象G 向下平移t(0t >)个单位后与直线BC 只有一个公共点.【总结】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.也考查了待定系数法求函数解析式.解题的关键是利用数形结合思想,把抽象问题直观化.8.如图,抛物线y=x 2+bx 与直线y=kx+2相交于点A(﹣2,0)和点B.(1)求b 和k 的值;(2)求点B 的坐标,并结合图象写出不等式kx+2>x 2+bx 的解集;(3)点M 是直线AB 上的一个动点,将点M 向下平移2个单位长度得到点N,若线段MN 与抛物线有公共点,请直接写出点M 的横坐标m 的取值范围.【答案】(1)b=2,k=1(2)2<<1x -(3)21m -≤≤-或01m ≤≤【分析】(1)用待定系数法即可求解;(2)首先求出点B 的坐标,再观察函数图象即可求解;(3)画出图,根据图进而求解即可.【小问1详解】解:把点A(﹣2,0)代入y=x 2+bx得0=4-2b,解得b=2把点A(﹣2,0)代入y=kx+2得0=-2k+2,解得k=1故b=2,k=1【小问2详解】解:由(1)知抛物线与直线的解析式分别为:y=x 2+2x,y=x+2由222y x x y x ⎧=+⎨=+⎩解得13x y =⎧⎨=⎩或20x y =-⎧⎨=⎩(舍去)故点B 的坐标为(1,3)故由图象可知:不等式kx+2>x 2+bx 的解集为2<<1x -【小问3详解】解:如图:设直线与y 轴的交点为点E,抛物线的顶点为点C,对称轴所在直线与直线的交点为点D当点M 在点A 的左侧或点B 的右侧时,线段MN 与抛物线没有公共点在y=x+2中,令x=0,则y=2,则点E(0,2),OE=2y=x 2+2x=(x+1)2-1,故点C(-1,-1)当x=-1时,y=x+2=-1+2=1则DC=1+1=2故当点M 在点D、E 之间时,将点向下平移2个单位长度得到点N,线段MN 与抛物线没有公共点故当21m -≤≤-或01m ≤≤时,线段MN 与抛物线有公共点【总结】本题考查了利用选定系数法求二次函数及一次函数的解析、利用图象求不等式的解集,坐标与图形,画出图形确定点M 的位置是解题的关键.9.如图,二次函数y=﹣x 2+bx+c 与x 轴交于点B 和点A(﹣1,0),与y 轴交于点C(0,4),与一次函数y =x+a 交于点A 和点D.(1)求出a、b、c 的值;(2)若直线AD 上方的抛物线存在点E,可使得△EAD 面积最大,求点E 的坐标;(3)点F 为线段AD 上的一个动点,点F 到(2)中的点E 的距离与到y 轴的距离之和记为d,求d 的最小值及此时点F 的坐标.【答案】(1)1a =,3b =,4c =;(2)点E 的坐标为(1,6)时,面积最大;(3)d 最小值为5,此时F 点的坐标为(1,2).【分析】(1)将A、C 两个点的坐标代入二次函数解析式,即可得出b、c 的值,将点A(-1,0)代入一次函数中,即可求得a 的值;(2)设点E 的横坐标为m,则点E 的纵坐标为234m m -++,过点E 作x 轴的垂线l,交x 轴于点G,交AD 于点H,则点H 的坐标为(),1m m +.过点D 作l 的垂线,垂足为T,联立直线方程和二次函数方程,即可得出D 的坐标,再根据∆∆∆=+AED AEH HED S S S ,得出含m 的函数,根据函数图象,可知,当1m =时,面积取得最大值,从而可得出E 的坐标;(3)过A 作y 轴的平行线AS,过F 作FG⊥y 轴交AS 于点M,过F 作FN⊥x 轴于N,根据角平分线的性质可得:FM FN =,即有11d FE FM FE FN =+-=+-,可知当N、F、E 所在直线与x 轴垂直时,d 取得最小值,即可得出点F 的坐标.【详解】解:(1)∵点C(0,4),A(-1,0)在函数的图象上,∴410=⎧⎨--+=⎩c b c 解得:34b c =⎧⎨=⎩,二次函数解析式为:234y x x =-++,∵点A(-1,0)在一次一次函数y x a =+上,∴01a =-+,∴1a =,一次函数解析式为:1y x =+;所以1a =,3b =,4c =;(2)设点E 的横坐标为m,则点E 的纵坐标为234m m -++,过点E 作x 轴的垂线l,交x 轴于点G,交AD 于点H,则点H 的坐标为(),1m m +.过点D 作l 的垂线,垂足为T,将1y x =+与2y 34x x =-++联立组成方程组,解得点D 的坐标为(3,4),所以1122AED AEH HED S S S EH AG EH DT ∆∆∆=+=⨯+⨯()12EH AG DT =+()2134132m m m =-++--⨯()23162m =--+∵函数图象开口向下,存在最大值,∴AED S ∆有最大值,当1m =时,最大值为6,此时点E 的坐标为(1,6);(3)过A 作y 轴的平行线AS,过F 作FG⊥y 轴交AS 于点M,过F 作FN⊥x 轴于N,如图所示:∵点D 的坐标为(3,4),点A 坐标为(-1,0)∴45DAB ∠=︒,∴AD 平分SAB ∠,∴FM FN =,∴11d FE FM FE FN =+-=+-显然,当N、F、E 所在直线与x 轴垂直时,1d FE FN =+-最小,最小值为615d =-=,此时点F 的横坐标为1,代入1y x =+得:F 点的坐标为(1,2).【总结】本题主要考查二次函数与一次函数的综合问题,二次函数、一次函数解析式的确定,组成面积的最值,角平分线的性质等,理解题意,作出相应辅助线,结合函数的基本性质是解题关键.。

二次函数的图象与性质

二次函数的图象与性质

y2;④-35<a<-25.其中正确结论有( D )
A.1 个
B.2 个
C.3 个
D.4 个
第 25 页
重难点3 二次函数解析式的确定 重点
• 例3 (2018·曲靖改编)已知二次函数的图象经
过点(0,3),(-3,0),(2,-5),求二次函数的

解析式.
思路点拨
设出二次函数的解析式y=ax2+bx+c,直接用待定系数求 解即可.
最值
2ba时,y 有最小值,最小值 2ba时,y 有最大值,最大值
为4ac4-a b2
为4ac4-a b2
在对称轴左侧 当 x<-2ba时,y 随 x 的增 当 x<-2ba时,y 随 x 的增
增减性
大而③___减__小_____
大而④___增__大_____
在对称轴右侧 当 x>-2ba时,y 随 x 的增 当 x>-2ba时,y 随 x 的增
大而⑤___增__大_____
大而⑥__减__小______
第5页
知识点三 二次函数的图象与字母系数a,b,c的关系
字母或代数式 符号
图象的特征
a
a>0
开口向①___上_____ |a|越大,开口越③___小_____
a<0
开口向②___下_____
b=0 对称轴为④_____y___轴
b
ab>0(b 与 a 同号) 对称轴在 y 轴⑤__左______侧
第7页
字母或代数式 符号
图象的特征
当 x=1 时,y=⑬_____a_+__b_+__c_____ 特殊 当 x=-1 时,y=⑭____a_-__b_+__c______

二次函数的图像与性质【十大题型】(原卷版)—2024年中考数学一轮复习【举一反三】系列(全国通用)

二次函数的图像与性质【十大题型】(原卷版)—2024年中考数学一轮复习【举一反三】系列(全国通用)

二次函数的图像与性质【十大题型】【题型1 根据二次函数解析式判断其性质】 (3)【题型2 二次函数y=ax 2+bx+c 的图象和性质】 (4)【题型3 二次函数平移变换问题】 (5)【题型4 根据二次函数的对称性求字母的取值范围】 (6)【题型5 根据二次函数的性质求最值】 (6)【题型6 根据二次函数的最值求字母的取值范围】 (7)【题型7 根据二次函数自变量的情况求函数值的取值范围】 (7)【题型8 根据二次函数的增减性求字母的取值范围】 (8)【题型9 二次函数图象与各项系数符号】 (8)【题型10 二次函数与三角形相结合的应用方法】 (11)【知识点 二次函数的图像与性质】1.定义:一般的,形如y =ax 2+bx +c (a .b .c 是常数,a ≠0)的函数叫做二次函数。

其中x 是自变量,a .b .c 分别是函数解析式的二次项系数.一次项系数.常数项。

二次函数解析式的表示方法(1)一般式:y =ax 2+bx +c (其中a ,b ,c 是常数,a ≠0);(2)顶点式:y =a (x -h )2+k (a ≠0),它直接显示二次函数的顶点坐标是(h ,k );(3)交点式:y =a (x -x 1)(x -x 2)(a ≠0),其中x 1,x 2是图象与x 轴交点的横坐标 .注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -³时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.2.二次函数的图象是一条抛物线。

当a >0时,抛物线开口向上;当a <0时,抛物线开口向下。

|a |越大,抛物线的开口越小;|a |越小,抛物线的开口越大。

y =ax 2y =ax 2+k y =a (x -h )2y =a (x -h )2+k y =ax 2+bx +c 对称轴y 轴y 轴x =h x =h abx 2-=(0,0)(0,k )(h ,0)(h ,k )⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22顶点a >0时,顶点是最低点,此时y 有最小值;a <0时,顶点是最高点,此时y 有最大值。

二次函数的字母系数的相关问题(解析版)

二次函数的字母系数的相关问题(解析版)

专项09 二次函数的字母系数的相关问题2项目 字母字母的符号 图象的特征 a a >0 开口向上 a <0 开口向下 bab >0(a ,b 同号) 对称轴在y 轴左侧 ab <0(a ,b 异号)对称轴在y 轴右侧 cc=0图象过原点 c >0 与y 轴正半轴相交 c <0 与y 轴负半轴相交 b 2-4acb 2-4ac=0与x 轴有唯一交点 b 2-4ac >0 与x 轴有两个交点 b 2-4ac <0与x 轴没有交点2. 根据二次函数图像判断a ,b ,c 的关系式与0的关系关系式 实际比较2a+b 比较的正负判断)结合与a b(1a 2-2a+b 比较的正负判断)结合与a b(1a2-- a+b+c 令x=1,看纵坐标 a-b+c 令x=-1,看纵坐标 4a+2b+c 令x=2,看纵坐标 4a-2b+c令x=-2,看纵坐标【考点1 对称轴】【典例1】如图,二次函数 y =ax 2+bx +c 的图象经过点 A (1,0), B (4,0),下列说法正确的是()A.b2−4ac<0B.a−b+c>0C.图象的对称轴是直线x=2D.图象的对称轴是直线x=52【答案】D【解答】解:∵二次函数y=ax2+bx+c的图象经过点A(1,0),B(4,0),∴b2−4ac>0,故A不符合题意,当x=−1时,y=a−b+c,由函数图像可得:(−1,a−b+c)在第三象限,所以a−b+c<0,故B不符合题意,∵二次函数y=ax2+bx+c的图象经过点A(1,0),B(4,0),∴图象的对称轴是直线x=1+42=2.5,故C不符合题意,D符合题意,故答案为:D【变式1-1】二次函数y=ax2+bx+c的图象如图所示,对称轴是x=1,下列结论正确的是().A.abc>0B.2a+b<0C.3b−2c<0D.3a+ c<0【答案】D【解答】解:∵−b2a=1>0,∴ab<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故A不符合题意;∵−b2a=1,∴2a+b=0,故B不符合题意;∵x=−1时,y=a-b+c<0,∴2a-2b+2c<0,∵−b2a=1,∴2a=−b,∴-b-2b+2c<0,∴3b-2c>0,故C不符合题意;∵x=−1时,y=a-b+c<0,∵−b2a=1,∴2a=−b,∴3a+c<0,故D符合题意;故答案为:D.【变式1-2】若A(m,6)与B(4−m,6)在抛物线y=ax2+bx+c的图象上,则其对称轴是()A.x=3B.x=−3C.x=2D.x=2−m【答案】C【解答】解:∵A(m,6)与B(4-m,6)在抛物线y=ax2+bx+c的图象上,∴A(m,6),B(4-m,6)关于对称轴对称,即对称轴过A(m,6),B(4-m,6)的中点,x=m+4−m2=42=2,故答案为:C.【考点2 a、b、c及b²-4ac对图像的影响】【典例2】抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④8a﹣2b+c>0;⑤若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2,其中正确的有()A.②③④B.①②③C.②④⑤D.②③【答案】A【解答】解:∵图象开口向上,∴a>0,∵对称轴为直线x=﹣1,∴﹣b2a=﹣1,∴b=2a>0,∵图象与y轴交点在y轴负半轴,∴c<0,∴abc<0,①不符合题意.由图象可知抛物线与x轴有两个交点,∴Δ=b2﹣4ac>0,②符合题意,由图象可知,抛物线与x轴的另一个交点为(﹣3,0),当x=﹣3时,y=0,∴9a﹣3b+c=0,③符合题意,8a﹣2b+c中:a>0、b=2a>0;c<0由(1,0)在抛物线上,可得a+b+c=0 c=-a-b所以8a﹣2b+c=a>0,④复合题∵|﹣2﹣(﹣1)|=1,|﹣0.5﹣(﹣1)|=0.5,∵1>0.5,∴当x=﹣2时的函数值大于x=﹣0.5时的函数值,∴y1<y2,⑤不符合题意,∴正确的有②③④,故答案为:A.【变式2-1】如图,二次函数y=ax2+bx+c的图象与x轴的一个交点坐标是(3,0),对称轴为直线x=1,下列结论:①abc>0;②2a+b=0;③4a﹣2b+c>0;④当y>0时,﹣1<x<3;⑤b<c.其中正确的个数是()A.2B.3C.4D.5【答案】B【解答】解:∵抛物线开口向下,∴a<0;∵抛物线的对称轴为直线x=﹣b2a=1,∴b=﹣2a>0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线与x轴的一个交点坐标是(3,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点坐标是(﹣1,0),∴x=﹣2时,y<0,∴4a﹣2b+c<0,所以③错误;∵抛物线与x轴的2个交点坐标为(﹣1,0),(3,0),∴﹣1<x<3时,y>0,所以④正确;∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,所以⑤正确.故答案为:B.【变式2-2】如图,抛物线y=ax2+bx+c(a≠0)交x轴于点A,B,交y轴于点C,点A 的坐标为(-4,0),抛物线的对称轴为直线x=-1,有以下结论:①该抛物线的最大值为a-b+c;②a+b+c>0;③b2-4ac>0;④2a+b=0,其中正确的有()A.1个B.2个C.3个D.4个【答案】C【解答】解:∵抛物线的对称轴为直线x=-1,开口向下,∴当x=-1,y有最大值,最大值y=a-b+c,故①正确;∵点A的坐标为(-4,0),对称轴为直线x=-1,∴B(2,0),∴当x=1时,y=a+b+c>0,故②正确;∵抛物线与x轴有两个交点,∴ b2-4ac>0,故③正确;∵抛物线的对称轴为直线x=-1,∴-b2a=-1,∴2a-b=0,故④错误,∴正确的个数为3个.故答案为:C【变式2-3】如图,二次函数y =ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1,x 2,其中﹣2<x 1<﹣1,0<x 2<1,下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③abc >0;④b 2+8a >4ac .其中正确的是( )A .①②③B .①③④C .②③④D .①②③④【答案】D【解答】解:如图:∵x =-2时,y <0,∴4a -2b +c <0,所以①符合题意; ∵抛物线开口向下, ∴a <0,∵﹣2<x 1<﹣1,0<x 2<1, ∴-2<x 1+x 2<0∴﹣1<x 1+x22<0,∵对称轴x=−b2a =x 1+x 22, ∴−1<−b2a<0, ∴2a -b <0,故②符合题意;∵−b2a<0,a <0,∴b <0,∵抛物线与y 轴交于正半轴, ∴c >0,∴abc >0,故③符合题意;∵二次函数y =ax 2+bx+c (a≠0)的图象经过点(﹣1,2),对称轴在-1和0之间, ∴顶点纵坐标大于2, ∴4ac−b 24a >2,∵a <0,∴b 2+8a >4ac ,所以④符合题意. ∴正确的选项有4个; 故答案为:D .【变式2-4】如图,二次函数y =ax 2+bx+c (a≠0)图象的一部分与x 轴的一个交点坐标为(1,0),对称轴为直线x =﹣1,结合图象给出下列结论:①a+b+c =0;②a ﹣2b+c >0;③关于x 的一元二次方程ax 2+bx+c =0(a≠0)的两根分别为3和1;④若点(﹣4,y 1),(﹣2,y 2),(3,y 3)均在二次函数图象上,则y 1<y 2<y 3;⑤a ﹣b <m (am+b )(m 为任意实数). 其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】A【解答】解:①∵二次函数y =ax 2+bx +c(a ≠0)图象的一部分与x 轴的一个交点坐标为(1,0),∴当x=1时,a +b +c =0, 故结论①符合题意;②根据函数图像可知,当x=−1,y<0,即a−b+c<0,对称轴为x=−1,即−b2a=−1,根据抛物线开口向上,得a>0,∴b=2a>0,∴a−b+c−b<0,即a−2b+c<0,故结论②不符合题意;③根据抛物线与x轴的一个交点为(1,0),对称轴为x=−1可知:抛物线与x轴的另一个交点为(-3,0),∴关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为-3和1,故结论③不符合题意;④根据函数图像可知:y2<y1<y3,故结论④不符合题意;⑤当x=m时,y=am2+bm+c=m(am+b)+c,∴当m=−1时,a−b+c=m(am+b)+c,∴a−b≤m(am+b),故结论⑤不符合题意,综上:①符合题意,故答案为:A.【变式2-5】如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(−2,0),且对称轴为直线x=−12,有下列结论:①abc<0;②a+b>0;③4a−2b+3c<0;④无论a,b,c取何值,抛物线一定经过(−c2a,0);⑤4am2−4bm+b≤0.其中正确结论有()A.1个B.2个C.3个D.4个【答案】B【解答】①图像开口朝下,故a<0,根据对称轴x=−12可知b<0,图像与y轴交点位于x轴上方,可知c>0∴abc>0故①不符合题意;②x=−b2a=−12得a=b∴a+b<0故②不符合题意;③∵y=ax2+bx+c经过(−2,0)∴4a−2b+c=0又由①得c>0∴4a−2b+3c>0故③不符合题意;④根据抛物线的对称性,得到x=−2与x=1时的函数值相等∴当x=1时y=0,即a+b+c=0∵a=b∴2a+c=0即−c2a=1∴y=ax2+bx+c经过(−c2a,0),即经过(1,0)故④符合题意;⑤当x=−12时,y=14a−12b+c,当x=m时,y=am2+bm+c∵a<0∴函数有最大值14a−12b+c∴am2+bm+c≤14a−12b+c化简得4am2+4bm+b≤0,故⑤符合题意.综上所述:④⑤符合题意.故答案为:B.1.(2021秋•密山市校级期末)抛物线y=ax2+bx+c的图象如图所示,则下列结论:①abc <0;②b2<4ac;③b+2a=0;④3a+c=0;其中正确的是()A.①③④B.②③④C.①②④D.①②③【答案】A【解答】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=﹣=1,∴b=﹣2a>0,∴b+2a=0,③正确.∵抛物线与y轴交点在x轴上方,∴c>0,∴abc<0,①正确.∵抛物线与x轴有2个交点,∴b2﹣4ac>0,即b2>4ac,∴②错误.∵x=﹣1时,y=a﹣b+c=0,b=﹣2a,∴3a+c=0,④正确.故选:A.2.(2021秋•泸西县期末)二次函数y=ax2+bx+c的图象如图所示,对称轴是x=1,下列结论:①abc>0;②2a+b<0;③a﹣b+c>0;④9a+3b+c<0.其中正确的是()A.①③④B.①②③C.①③D.②③【答案】C【解答】解:由抛物线的开口向上,得到a>0,∵﹣>0,∴b<0,由抛物线与y轴交于负半轴,得到c<0,∴abc>0,选项①正确;∵对称轴为直线x=1,∴﹣=1,即b=﹣2a,∴2a+b=0,选项②错误;根据图象知,当x=﹣1时,y>0,即a﹣b+c>0.选项③正确;∵抛物线对称轴为直线x=1,∴x=3与x=﹣1时函数值相等,又∵x=﹣1时,y>0,∴x=3时,y=9a+3b+c>0,选项④错误.则其中正确的选项有①③.故选:C.3.(2021秋•仁寿县期末)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,有下列结论:①4a+2b+c<0;②a+c>0;③2a+b+c>0;④当﹣1<x<3时,y随x的增大而增大.其中正确的有()A.4个B.3个C.2个D.1个【答案】C【解答】解:①由x=2时,y=4a+2b+c,由图象知:y=4a+2b+c>0,故错误;②抛物线过点(﹣1,0),∴a﹣b+c=0,∵﹣=1,a<0,∴b=﹣2a>0,∴a+c=b>0,故正确;③∵抛物线交y轴的正半轴,∴c>0,∵b=﹣2a,∴2a+b+c=c>0,故正确;④抛物线开口向下,对称轴为直线x=1,∴当x<1时,y随x的增大而增大,故错误;故正确的共有2个,故选:C.4.(2021秋•沈北新区期末)已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误是()A.a﹣b+c>0B.abc>0C.4a﹣2b+c<0D.2a﹣b=0【答案】C【解答】解:由图象可知,当x=﹣1时,y=a﹣b+c>1,故A项正确,不符合题意;∵抛物线开口向下,﹣=﹣1,与y轴的交点为(0,1),∴a<0,b=2a<0,c=1>0,∴2a﹣b=0,abc>0,故B、D项正确,不符合题意;∵抛物线的对称轴为直线x=﹣1,与x轴的一个交点在原点和点(1,0)之间,∴另一个交点在(﹣2,0)与(﹣3,0)之间,∴当x=﹣2时,y=4a﹣2b+c>0,故C项错误,符合题意,故选:C.5.(2022•深圳模拟)二次函数y=ax2+bx+c的图象如图所示,其对称轴为x=﹣1,有下列结论:①abc>0;②a+b<﹣c;③4a﹣2b+c>0;④3b+2c<0;⑤a﹣b<m(am+b)(其中m为任意实数),其中正确结论的个数有()A.2个B.3个C.4个D.5个【答案】C【解答】解:∵开口向下,∴a<0,∵抛物线和y轴的正半轴相交,∴c>0,∵对称轴为x=﹣=﹣1,∴b=2a<0,∴abc>0,故①正确;当x=1时,y<0,则a+b+c<0,∴a+b<﹣c,故②正确;由图象可知,当x=﹣2时,y>0,∴4a﹣2b+c>0,故③正确;∵当x=1时,a+b+c<0,b=2a,∴a=b,∴b+b+c<0,∴3b+2c<0,故④正确;∵当x=﹣1时,二次函数有最大值,所以当m为任意实数时,有a﹣b+c≥am2+bm+c,所以a﹣b≥m(am+b),故⑤错误.故选:C.6.(2022•日照一模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b2<4ac;③2c<3b;④a+2b>m(am+b)(m≠1);⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为2,其中正确的结论有()A.2个B.3个C.4个D.5个【答案】A【解答】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc<0,①错误.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,∴b2>4ac,②错误.∵x=﹣1时,y<0,∴a﹣b+c<0,∵b=﹣2a,∴a=﹣,∴﹣b+c<0,∴2c<3b,③正确.∵x=1时,y=a+b+c为函数最大值,∴a+b+c>m(am+b)+c(m≠1),∴a+b>m(am+b)(m≠1),∵b>0,∴a+2b>a+b>m(am+b)(m≠1),④正确.方程|ax2+bx+c|=1的四个根分别为ax2+bx+c=1和ax2+bx+c=﹣1的根,∵抛物线y=ax2+bx+c关于直线x=1对称,∴抛物线与直线y=1的交点的横坐标为之和为2,抛物线与直线y=﹣1的交点横坐标为之和为2,∴方程|ax2+bx+c|=1的四个根的和为4,⑤错误.故选:A.7.(2022•鄞州区模拟)二次函数y=ax2+bx+c(a≠0)的图象如图所示.下列结论:①abc >0;②a﹣b+c>0;③m为任意实数,则a+b>am2+bm;④3a+c<0;⑤若ax12+bx1=ax22+bx2且x1≠x2,则x1+x2=2.其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】B【解答】解:①图象开口向下,与y轴交于正半轴,对称轴在y轴右侧,能得到:a<0,c>0,﹣>0,b>0,∴abc>0,错误;②∵对称轴是直线x=1,与x轴交点在(3,0)左边∴二次函数与x轴的另一个交点在(﹣1,0)与(0,0)之间,∴a﹣b+c<0,∴②错误;③∵对称轴是直线x=1,图象开口向下,∴x=1时,函数最大值是a+b+c;∴m为任意实数,则a+b+c≥am2+bm+c,∴③错误;④∵﹣=1,∴b=﹣2a由②得a﹣b+c<0,∴3a+c<0,∴④正确;⑤∵ax12+bx1=ax22+bx2,∴ax12+bx1﹣ax22﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,∵x1≠x2,∴a(x1+x2)+b=0,∵x1+x2=﹣,b=﹣2a,∴x1+x2=2,∴⑤正确;故选:B.8.(2021秋•薛城区期末)如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①abc>0;②b=﹣a;③9a﹣3b+c=0;④m(am+b)≥a﹣b(m为任意实数);⑤4ac﹣b2<0,其中正确的命题有()A.1个B.2个C.3个D.4个【答案】C【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴是x=﹣=﹣1,∴b=2a>0,∵抛物线交于y轴的负半轴,∴c<0,∴abc<0,①说法错误;∵b=2a,∴②说法错误;∵抛物线与x轴交于(1,0),对称轴是x=﹣1,∴抛物线与x轴的另一个交点是(﹣3,0),∴9a﹣3b+c=0,③说法正确;∵抛物线的对称轴是x=﹣1,且开口向上,∴函数最小值为a﹣b+c,∴am2+bm+c≥a﹣b+c,∴m(am+b)≥a﹣b,④说法正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,⑤说法正确;故选:C.。

二次函数的图像与字母abc的关系

二次函数的图像与字母abc的关系

课次教学计划一、知识要点二次函数y=ax2+bx+c系数符号得确定:ﻫ(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0。

ﻫ(2)b由对称轴与a得符号确定:由对称轴公式x=判断符号、ﻫ(3)c由抛物线与y轴得交点确定:交点在y轴正半轴,则c〉0;否则c<0、ﻫ(4)b2-4ac得符号由抛物线与x轴交点得个数确定:2个交点,b2—4ac>0;1个交点,b 2—4ac=0;没有交点,b2—4ac<0。

ﻫ(5)当x=1时,可确定a+b+c得符号,当x=-1时,可确定a-b+c得符号。

ﻫ(6)由对称轴公式x=,可确定2a+b得符号.二、基础练习1、已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中得位置如图所示,则下列结论中,正确得就是( D )A、a>0B、b〈0C、c〈0 D、a+b+c〉02、已知二次函数y=ax2+bx+c得图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc〉0;③2a+b=0; ④a+b+c〉0;⑤a—b+c<0,则正确得结论就是( D)A、①②③④B、②④⑤C、②③④D、①④⑤3、如图,二次函数y=ax2+bx+c得图象与y轴正半轴相交,其顶点坐标为( ,1),下列结论:①ac〈0;②a+b=0;③4ac—b2=4a;④a+b+c<0。

其中正确结论得个数就是( C )1\2\3A、1B、2C、3D、44、已知二次函数y=ax2+bx+c得图象如图所示,对称轴为直线x=1,则下列结论正确得就是(B)A、ac>0 B、方程ax2+bx+c=0得两根就是x1=-1,x2=3C、2a-b=0D、当x>0时,y随x得增大而减小5、已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0)得图象如图所示,有下列结论:①abc>0,②-4ac<0,③a—b+c〉0,④4a-2b+c〈0,其中正确结论得个数就是(A4)A、1B、2C、3 D、46、(如图所示得二次函数y=ax2+bx+c得图象中,刘星同学观察得出了下面四条信息:(1)b2—4ac>0;(2)c>1;(3)2a—b<0;(4)a+b+c<0。

二次函数的图像与字母a、b、c的关系

二次函数的图像与字母a、b、c的关系

课次教学计划教学过程:一、知识要点二次函数y=ax 2+bx+c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0. (2)b 由对称轴和a 的符号确定:由对称轴公式x=判断符号.(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0.(4)b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.(5)当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号. (6)由对称轴公式x=,可确定2a+b 的符号.二、基础练习1、已知抛物线y=ax 2+bx+c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( D ) A 、a >0 B 、b <0 C 、c <0 D 、a+b+c >02、已知二次函数y=ax 2+bx+c 的图象如图,其对称轴x=-1,给出下列结果①b 2>4ac ; ②abc >0;③2a+b=0; ④a+b+c >0;⑤a-b+c <0,则正确的结论是( D ) A 、①②③④ B 、②④⑤ C 、②③④ D 、①④⑤3、如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为(21,1),下列结论:①ac <0;②a+b=0;③4ac-b 2=4a ;④a+b+c <0.其中正确结论的个数是( C )1\2\3A 、1B 、2C 、3D 、4任课教师学科 版本 年段 辅导类型 上课时间 学生签名数学北师大初三课题二次函数y=a 2x +bx+c 系数符号的确定方法课次教学目标 掌握二次函数中字母 a 、b 、c 三者与图象之间的关系。

教学策略 教学重点、难点:利用图形的性质与特殊性来确定字母a 、b 、c 三者之间的关系。

4、已知二次函数y=ax 2+bx+c 的图象如图所示,对称轴为直线x=1,则下列结论正确的是(B )A 、ac >0B 、方程ax 2+bx+c=0的两根是x 1=-1,x 2=3 C 、2a-b=0 D 、当x >0时,y 随x 的增大而减小5、已知二次函数y=ax 2+bx+c (a ,b ,c 为常数,a ≠0)的图象如图所示,有下列结论: ①abc >0,②2b -4ac <0,③a-b+c >0,④4a-2b+c <0,其中正确结论的个数是(A4 ) A 、1 B 、2 C 、3 D 、46、(如图所示的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)2a-b <0;(4)a+b+c <0.你认为其中错误的有(D2) A 、2个 B 、3个 C 、4个 D 、1个7、抛物线y=ax 2+bx+c (a ≠0)的图象如图所示,则下列说法正确的是(C ) A 、b 2-4ac <0 B 、abc <0 C 、 -a2b<-1 D 、a-b+c <08、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,现有下列结论:①b 2-4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,则其中结论正确的个数是(B )1/2/5 A 、2个 B 、3个 C 、4个 D 、5个9、已知二次函数y=ax 2的图象开口向上,则直线y=ax-1经过的象限是(D ) A 、第一、二、三象限 B 、第二、三、四象限 C 、第一、二、四象限 D 、第一、三、四象限10、二次函数y=ax 2+bx+c 的图象如图所示,则下列结论正确的是(D )A 、a <0,b <0,c >0,b 2-4ac >0B 、a >0,b <0,c >0,b 2-4ac <0C 、a <0,b >0,c <0,b 2-4ac >0D 、a <0,b >0,c >0,b 2-4ac >011、已知二次函数y=ax 2+bx+c 的图象如图所示,那么下列判断不正确的是(B ) A 、ac <0 B 、a-b+c >0C 、b=-4aD 、关于x 的方程a 2x +bx+c=0的根是x 1=-1,x 2=512、已知二次函数y=ax 2+bx+c 的图象如图所示,则a ,b ,c 满足(A )A 、a <0,b <0,c >0,2b -4ac >0 B 、a <0,b <0,c <0,2b -4ac >0C 、a <0,b >0,c >0,2b -4ac <0D 、a >0,b <0,c >0,2b -4ac >013、已知二次函数y=2ax +bx+c (a ≠0)的图象如图所示,有下列4个结论,其中正确的结论是(B ) A 、abc >0 B 、b >a+c C 、2a-b=0 D 、2b -4ac <014、已知二次函数y=2ax +bx+c (a ≠0)的图象如图所示,则下列结论: ①ac >0;②a-b+c <0;③当x <0时,y <0;④方程2ax +bx+c=0(a ≠0)有两个大于-1的实数根.其中错误的结论有(C ) A 、②③ B 、②④ C 、①③ D 、①④15、如图所示为二次函数y=ax 2+bx+c (a ≠0)的图象,在下列选项中错误的是(C ) A 、ac <0 B 、x >1时,y 随x 的增大而增大C 、a+b+c >0D 、方程ax 2+bx+c=0的根是1x =-1,2x =316、二次函数y=ax 2+bx+c 的图象如图所示,下列结论错误的是(B ) A 、ab <0 B 、ac <0C 、当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小D 、二次函数y=2ax +bx+c 的图象与x 轴交点的横坐标就是方程2ax +bx+c=0的根17、已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论正确的是(D )A 、a >0B 、c <0C 、b 2-4ac <0 D 、a+b+c >018、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论①a ,b 异号;②当x=1和x=3时,函数值相等; ③4a+b=0;④当y=4时,x 的取值只能为0,结论正确的个数有( C )个.1/2/3A 、1B 、2C 、3D 、4三、能力练习1.已知二次函数c bx ax y ++=2的图象如图 l -2-2所示,则a 、b 、c 满足( ) A .a <0,b <0,c >0 B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >0 2.已知二次函数c bx ax y ++=2(a ≠0)且a <0,a -b+c >0,则一定有( )A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac ≤03.二次函数c bx ax y ++=2的图象如图1-2-10,则点(b ,ca)在( )A .第一象限B .第二象限C .第三象限D .第四象限4.若二次函数c bx ax y ++=2的图象如图,则ac_____0(“<”“>”或“=”)第4题图 5.二次函数c bx ax y ++=2的图象如图 1-2-14所示,则下列关于a 、b 、c 间的关系判断正确的是( ) A .ab <0 B 、bc <0 C .a+b +c >0 D .a -b 十c <0四、知识小结:函数二次函数)0,,(2≠++=a c b a c bx ax y 是常数,图像 a>0a<0y0 xy0 x性质(1)抛物线开口向上,并向上无限延伸;(2)对称轴是x=ab2-,顶点坐标是 (a b 2-,ab ac 442-);(3)在对称轴的左侧,即当x<a b2-时,y 随x 的增大而减小;在对称轴的右侧,即当x>ab2-时,y 随x 的增大而增大,简记左减右增; (4)抛物线有最低点,当x=ab2-时,y 有最小值,(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=ab2-,顶点坐标是 (a b 2-,ab ac 442-);(3)在对称轴的左侧,即当x<ab2-时,y 随x 的增大而增大;在对称轴的右侧,即当x>ab2-时,y 随x的增大而减小,简记左增右减; (4)抛物线有最高点,当x=ab2-时,y 有最大值,例题.已知抛物线c bx ax y ++=2过三点(-1,-1)、(0,-2)、(1,l ). (1)求抛物线所对应的二次函数的表达式; (2)写出它的开口方向、对称轴和顶点坐标;(3)这个函数有最大值还是最小值? 这个值是多少?五、中考真题回顾: (09佛山)19.(1)请在坐标系中画出二次函数22y x x =-+的大致图象;(2)在同一个坐标系中画出22y x x =-+的图象向上平移两个单位后的图象; (3)直接写出平移后的图象的解析式.注:图中小正方形网格的边长为1.(1)画图(略)注:基本反映图形的特征(如顶点、对称性、变化趋势、平滑)给2分, 满足其中的两至三项给1分,满足一项以下给0分; (2)画图、写解析式(略)注:画图满分2分,同(1)的标准;写解析式2分(无过程不扣分).(11·佛山)21.如图,已知二次函数y =ax 2+bx +c 的图像经过A (-1,-1)、B (0,2)、C (1,3); (1)求二次函数的解析式; (2)画出二次函数的图像;【答案】解:(1)根据题意,得⎩⎪⎨⎪⎧a -b +c =-1c =2a +b +c =3 ………………2分解得a =-1,b =2,c =2………………4分ab ac y 442-=最小值ab ac y 442-=最大值xy O第19题图xyoABC1所以二次函数的解析式为y =-x 2+2x +2………………5分(2)二次函数的图象如图………………8分 给分要点:顶点、对称、光滑(各1分)(12佛山)22.(1)任选以下三个条件中的一个,求二次函数c bx ax y ++=2的解析式; ①y 随x 变化的部分数值规律如下表:②有序数对()0,1-、()4,1、()0,3满足c bx ax y ++=2; ③已知函数c bx ax y ++=2的图象的一部分(如图). (2)直接写出二次函数c bx ax y ++=2的三个性质.解析:(1)方法一:由 可得:C=3,0=+-c b a ,4=++c b a ,所以1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y方法二:由②可得:0=+-c b a ,4=++c b a ,039=++c b a , 解之得:1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y 方法三:由③可得:C=3,0=+-c b a ,12=-ab,解之得:1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y (三种选其一即可)(2)1、对称轴为1=x , 2、开口向下 3、与x 轴有2个交点x -1 0 1 2 3 y343xyoABC14、交y轴正半轴考察知识:待定系数法求二次函数解析式、二次函数的性质及图像(2013•佛山)24.如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).分析:(1)把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解即可;(2)把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;(3)根据顶点坐标求出向上平移的距离,再根据阴影部分的面积等于平行四边形的面积,列式进行计算即可得解.解:(1)∵抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3),∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),对称轴为直线x=2;(3)如图,∵抛物线的顶点坐标为(2,﹣1),∴PP′=1,阴影部分的面积等于平行四边形A′APP′的面积,平行四边形A′APP′的面积=1×2=2,∴阴影部分的面积=2.点评:本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象与几何变换,(3)根据平移的性质,把阴影部分的面积转化为平行四边形的面积是解题的关键.。

二次函数图像与性质

二次函数图像与性质

┃二次函数的图象与性质
考点2 二次函数图象的平移
ቤተ መጻሕፍቲ ባይዱ
将抛物线y=ax2+bx+c(a≠0)用配方法化成y=a(x- h)2+k(a≠0)的形式,而任意抛物线y=a(x-h)2+k均 可由抛物线y=ax2平移得到,具体平移方法如图15-1 :
图15-1
[注意] 确定抛物线平移后的解析式最好利用 顶点式,利用顶点的平移来研究图象的平移.
图15-4

析 ∵二次函数的图象开口向上,
∴a>0. ∵二次函数的图象与 y 轴的交点在 y 轴的负半轴 上, ∴c<0. ∵二次函数图象的对称轴是直线 x=-1, b ∴- =-1, 2a ∴b=2a>0,∴abc<0,∴①正确; 2a-b=2a-2a=0,∴②正确;
∵二次函数 y=ax2+bx+c 图象的一部分,其对 称轴为 x=-1,且过点(-3,0). ∴与 x 轴的另一个交点的坐标是(1,0), ∴把 x=2 代入 y=ax2+bx+c, 得 y=4a+2b+c >0,∴③错误; ∵二次函数 y=ax2+bx+c 图象的对称轴为 x= -1, ∴点(-5,y1)关于对称轴的对称点的坐标是(3, y1 ) , 根据当 x>-1 时,y 随 x 的增大而增大, 5 ∵ <3,∴y2<y1,∴④正确. 2
变式2 如图,在同一坐标系中,函数y=ax+b 与 y=ax2+bx(ab≠0)的图象只可能是( )
y y y y
o
x
o
x
o
x
o
x
A
B
C
D
二次函数的图象特征主要从开口方向、 与x轴有无交点,与y轴的交点及对称轴的位 置,确定a,b,c及b2-4ac的符号,有时也 可把x的值代入,根据图象确定y的符号.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、据图1所示二次函数y=ax2+bx+c的图象,小红写出了四个不等式,你认为她写错了的一个是( )
A.c<0 B.a>0 C.b>0 D.b2-4ac>0
图1 图2 图3 图4 图5
2、二次函数y=ax2+bx+c的图象如图3所示,则点A(a, b)在( )
A.第一象限B.第二象限C.第三象限D.第四象限次函数y=ax2+bx+c的图象
3、如图2所示,则下列a、b、c关系判断正确的是( )
A.ab<0
B.bc<0
C.a+b+c>0
D.a-b+c<0
4、已知函数)
)(
(b
x
a
x
y-
-
=(其中a b
>)的图象如下面右图所示,则函数b
ax
y+
=的图象可能正确的是
5. (2011山东菏泽,8,3分)如图4
为抛物线2
y ax bx c
=++的图像,A、B、C为抛物线与坐标轴的交点,且OA=
OC =1,则下列关系中正确的是
A.a+b=-1 B.a-b=-1 C.b<2a D.ac<0
6、(2011山东日照,17,4分)如图5,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命
题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题是.(只要求填写正确命题的序号)
7. (2011甘肃兰州,9,4分)如图6所示的二次函数2
y ax bx c
=++的图象中,刘星同学观察得出了下面四条信息:(1)240
b ac
->;(2)c>1;(3)2a-b<0;(4)a+b+c<0。

你认为其中错误
..的有A.2个B.3个C.4个D.1个
图8
8.(2011·重庆中考)已知抛物线y=ax2+bx+c.在平面直角坐标系中的位置如图7所示,则下列结论中,正确的是()A.0
>
a B.0
<
b C.0
<
c D.0
>
+
+c
b
a
第4题图
9、(2010·攀枝花中考)如图,二次函数y=ax2-bx+2的大致图象如图8所示,则函数y=-ax+b的图象不经过()
A.第一象限B.第二象限C.第三象限D.第四象限
10、(2010·昭通中考)二次函数y=ax2+bx+c的图象如图所示,则下
列结论正确的是()
A.a<0,b<0,c>0,b2-4ac>0 B.a>0,b<0,c>0,b2-4ac>0
C.a<0,b>0,c<0,b2-4ac>0 D.a<0,b>0,c>0,b2-4ac>0
11、下列图象中,当ab>0时,函数y=ax2与y=ax+b的图象是(
)
12.如图(1),二次函数y=ax2+bx+c图象如图所示,则下列结论成立的是( )
A.a>0,bc>0 B. a<0,bc<0 C. a>O,bc<O D. a<0,bc>
13.已知二次函数y=ax2+bx+c图象如图(3)所示,下列结论中:①abc>0,②b=2a;③a+b+c<0,④a -b+c>0,正确的个数是( )
A.4个 B.3个 C. 2个 D.1个
14、如图为二次函数2
y ax bx c
=++的图象,在下列说法中:
①0
ac<;②方程20
ax bx c
++=的根为
1
1
x=-,
2
3
x=;
③0
a b c
++>;④当1
x>时,y随着x的增大而增大.⑤
⑥2a+b=0 ⑦2a-b>0 ⑧c
b
a
+
-
2
4
>0
正确的说法有.(请写出所有正确说法的序号)
15.抛物线)0
(
2≠
+
+
=a
c
bx
ax
y过第二、三、四象限,则a 0,b 0,c 0.
16.已知抛物线c
x
ax
y+
+
=2
2与x轴的交点都在原点的右侧,则点M(c
a,)在第象限.
17. 已知:抛物线(a<0)经过点(-1,0),且满足4a+2b+c>0.以下结论:
①a+b>0;②a+c>0;③-a+b+c>0;④> 0 .其中正确的个数有()个
18.已知二次函数c
bx
ax
y+
+
=2中0
,0
,0<
>
<c
b
a,则此函数的图象不经过第象限
19.函数2
y ax
=的图象若是一条不经过一、二象限的抛物线。

则a 0
20.函数2
mx
y-
=开口向上,则m;
c
bx
ax
y+
+
=2
ac
b2
2-
21.二次函数c bx ax y ++=2
的值永远为负值的条件是a 0,ac b 42
- 0.
22.在同一直角坐标系中,函数b ax y +=2
与)0(≠+=ab b ax y 的图象大致如图 ( )
23.直线)0(≠+=ab b ax y 不经过第三象限,那么bx ax y +=2
的图象大致为 ( )
O
x
y
-1
1。

相关文档
最新文档