2018武汉四调数学试卷及答案(Word精校版)
武汉市2018届高中毕业生四月调研测试理科数学参考答案

武汉市2018届高中毕业生四月调研测试理科数学参考答案一、选择题1-5: BDABC 6-10: BDABD 11、12:CC二、填空题13. 25 14. 13- 15. (0,)2π三、解答题17.(1)由已知212132a a a a +=+-,而12a =,∴2222232(2)a a -=+-,即222230a a --=.而20a >,则23a =.又由323252a a a a +=+-,23a =,∴233952(3)a a -=+-,即233280a a --=.而30a >,则34a =.∴23a =,34a =.(2)由已知条件可知:22112()21n n n n a a a a n ---=-+-,∴22221(1)(1)(1)n n a a n n ----=--,则22221(1)(1)(1)n n a n a n ---=---223(1)2a =⋅⋅⋅=--222(1)1a =--0=,而22(1)n n b a n =--,∴0n b =,数列{}n b 为等差数列.∴22(1)n a n -=.而0n a >,故1n a n =+.18.解:(1)过M 作1MT AA ⊥于点T ,连1B T ,则11AT =.易证:111AA E A BT ∆≅∆,于是111AA E A BT ∠=∠.由111190A BT ATB ∠+∠=,知11190AA E ATB ∠+∠=,∴11A E BT ⊥.显然MT ⊥面11AA B B ,而1A E ⊂面11AA B B ,∴1M T A E ⊥,又1B T M T T =,∴1A E ⊥面MTB ,∴11A E MB ⊥.连11B D ,则1111B D AC ⊥. 又111D M AC ⊥,1111BD D M D =,∴11AC ⊥面11MD B ,∴111ACMB ⊥.由11A E MB ⊥,111AC MB ⊥,1111A E AC A =,∴1B M ⊥面11A EC .(2)在11D C 上取一点N ,使11ND =,连接EF . 易知1//A E FN .∴1111A EFC N EFC E NFC V V V ---==11113(23)33332NFC S ∆=⋅⨯=⨯⨯⨯=. 对于11A EC ∆,11AC =,1A E =1EC =11cos EAC∠==.∴11A EC ∆的面积11111sin 2S A C A E EA C =⋅∠12=⨯=.由等体积法可知F 到平面11A EC 之距离h 满足111113A EC A EFC S h V ∆-⋅=,则133h =,∴h =,又1FC =1FC 与平面1AEC 所成角为θ,∴sin θ===.19.解:(1)设直线AB 的斜率为tan k α=,方程为1(1)y k x -=-,代入2224x y +=中,∴222[(1)]40x kx k +---=.∴222(12)4(1)2(1)40k x k k x k +--+--=.判别式222[4(1)]4(21)[2(1)4]k k k k ∆=--+--28(321)k k =++.设11(,)A x y ,22(,)B x y ,则12221224(1)212(1)421k k x x k k x x k -⎧+=⎪⎪+⎨--⎪=⎪+⎩.∵AB 中点为(1,1),∴12212(1)()1221k k x x k -+==+,则12k =.∴直线的AB 方程为11(1)2y x -=-,即210x y -+=. (2)由(1)知12AB x =-==.设直线的CD 方程为1(1)(0)y k x k -=--≠.同理可得CD =∴0)AB k CD λ==≠. ∴2241312kk kλ=++-41132k k=++-.令13t k k =+,则4()12g t t =+-,(,[23,)t ∈-∞-+∞.()g t 在(,-∞-,)+∞分别单调递减,∴2()1gt ≤<或1()2g t <≤故221λ<或212λ<≤.即6(1,λ+∈. 20.解:(1)由题意知:∴450.1550.15650.2750.3x =⨯+⨯+⨯+⨯850.15950.170.5+⨯+⨯=,∴4000名考生的竞赛平均成绩x 为70.5分.(2)依题意z 服从正态分布2(,)N μσ,其中70.5x μ==,2204.75D σξ==,14.31σ=,∴z 服从正态分布22(,)(70.5,14.31)N N μσ=,而()(56.1984.81)0.6826P z P z μσμσ-<<+=<<=,∴10.6826(84.81)0.15872P z -≥==.∴竞赛成绩超过84.81分的人数估计为0.158********.8⨯=人634≈人.(3)全市竞赛考生成绩不超过84.81分的概率10.15870.8413-=.而(4,0.8413)B ξ,∴444(3)1(4)10.8413P P C ξξ≤=-==-⋅10.5010.499=-=.21.解:(1)定义域为:(0,)+∞,当a e =时,(1)()'()x x xe e f x x+-=.∴()f x 在(0,1)时为减函数;在(1,)+∞时为增函数.(2)记ln t x x =+,则ln t x x =+在(0,)+∞上单增,且t R ∈.∴()(ln )x f x xe a x x =-+()t e at g t =-=.∴()f x 在0x >上有两个零点等价于()t g t e at =-在t R ∈上有两个零点.①在0a =时,()t g t e =在R 上单增,且()0g t >,故()g t 无零点;②在0a <时,'()tg t e a =-在R 上单增,又(0)10g =>,11()10a g e a=-<,故()g t 在R 上只有一个零点;③在0a >时,由'()0t g t e a =-=可知()g t 在ln t a =时有唯一的一个极小值(ln )(1ln )g a a a =-.若0a e <<,(1ln )0g a a =->最小,()g t 无零点;若a e =,0g =最小,()g t 只有一个零点;若a e >时,(1ln )0g a a =-<最小,而(0)10g =>,由于ln ()xf x x=在x e >时为减函数,可知:a e >时,2a e e a a >>.从而2()0a g a e a =->,∴()g x 在(0,ln )a 和(ln ,)a +∞上各有一个零点.综上讨论可知:a e >时()f x 有两个零点,即所求a 的取值范围是(,)e +∞.22.解:(1)由l :cos sin 100ρθρϕ+-=,及cos x ρθ=,sin y ρθ=.∴l 的方程为2100x y +-=.由3cos x θ=,2sin y θ=,消去θ得22194x y +=. (2)在C 上取点(3cos ,2sin )M ϕϕ,则d=05cos()10ϕϕ=--.其中003cos 54sin 5ϕϕ⎧=⎪⎪⎨⎪=⎪⎩,当0ϕϕ=时,d此时093sin 3cos 5ϕϕ==,0082sin 2cos 5ϕϕ==,98(,)55M .。
湖北省武汉市2018届高中毕业生四月调研测试理科数学试题+Word版含解析

武汉市2018届高中毕业生四月调研测试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数的共轭复数是()A. B. C. D.【答案】B【解析】,所以其共轭复数为.2. 已知集合,,若,则实数的取值集合为()A. B. C. D.【答案】D【解析】【分析】先求出集合M={x|x2=1}={﹣1,1},当a=0时,N=∅,成立;当a≠0时,N={},由N⊆M,得或=1.由此能求出实数a的取值集合.【详解】∵集合M={x|x2=1}={﹣1,1},N={x|ax=1},N⊆M,∴当a=0时,N=∅,成立;当a≠0时,N={},∵N⊆M,∴或=1.解得a=﹣1或a=1,综上,实数a的取值集合为{1,﹣1,0}.故选:D.【点睛】本题考查实数的取值范围的求法,考查子集、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3. 执行如图所示的程序框图,如果输入的,则输出的属于()A. B. C. D.【答案】A【解析】【分析】根据程序框图的功能进行求解即可.【详解】本程序为条件结果对应的表达式为S=,则当输入的t∈[﹣2,2],则当t∈[﹣2,0)时,S=2t∈[﹣4,0),当t∈[0,2]时,如右图,S=﹣3t+t3=t(t﹣)(t)∈[﹣2,2],综上S∈[﹣4,2],故选:A.【点睛】本题主要考查程序框图的识别和判断,根据条件结构,结合分段函数的表达式是解决本题的关键.4. 某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为()A. B. C. D.【答案】B【解析】【分析】在该几何体的所有顶点中任取两个顶点,它们之间距离取最大值时,最大距离相当于一个长宽高分别为2,1,1的长方体的体对角线,进而得到答案.【详解】由已知中的三视图可得该几何体是一个以侧视图为底面的直四棱柱,在该几何体的所有顶点中任取两个顶点,它们之间距离取最大值时,最大距离相当于一个长宽高分别为2,1,1的长方体的体对角线,故d==,故选:B.【点睛】由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.5. 一张储蓄卡的密码共有位数字,每位数字都可以从中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过次就按对的概率为()A. B. C. D.【答案】C【解析】【分析】利用互斥事件概率加法公式和相互独立事件概率乘法公式直接求解.【详解】一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,任意按最后一位数字,不超过2次就按对的概率为:p==.故选:C.【点睛】本题考查概率的求法,考查互斥事件概率加法公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.6. 若实数,满足,,,,则,,的大小关系为()A. B. C. D.【答案】B【解析】【分析】推导出0=log a1<log a b<log a a=1,由此利用对数函数的单调性能比较m,n,l的大小.【详解】∵实数a,b满足a>b>1,m=log a(log a b),,,∴0=log a1<log a b<log a a=1,∴m=log a(log a b)<log a1=0,0<<1,1>=2log a b>.∴m,n,l的大小关系为l>n>m.故选:B.【点睛】本题考查三个数的大小的比较,考查对数函数的单调性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7. 已知直线与双曲线的右支有两个交点,则的取值范围为()A. B. C. D.【答案】D【解析】【分析】根据双曲线的渐近线和切线的方程得出k的范围.【详解】双曲线的渐近线方程为y=±x,∴当﹣1<k≤1时,直线与双曲线的右支只有1个交点,当k≤﹣1时,直线与双曲线右支没有交点,把y=kx﹣1代入x2﹣y2=4得:(1﹣k2)x+2kx﹣5=0,令△=4k2+20(1﹣k2)=0,解得k=或k=﹣(舍).∴1<k<.故选:D.【点睛】本题考查了双曲线的简单几何性质,直线与双曲线相切的等价条件,属于中档题.8. 在中,角、、的对应边分别为,,,条件:,条件:,那么条件是条件成立的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】由条件p:a≤,利用余弦定理与基本不等式的性质可得:cosA=≥,当且仅当b=c=a时取等号.又A∈(0,π),可得.由条件q:A,B,C∈(0,π),A≤.取,C=,B=满足上述条件,但是a.即可判断出结论.【详解】由条件p:a≤,则cosA=≥=≥=,当且仅当b=c=a时取等号.又A∈(0,π),∴.由条件q:A,B,C∈(0,π),A≤.取,C=,B=满足上述条件,但是a.∴条件p是条件q成立的充分不必要条件.故选:A.【点睛】本题考查了余弦定理与基本不等式的性质、倍角公式、三角函数求值,考查了推理能力与计算能力,属于中档题.9. 在的展开式中,含项的系数为()A. B. C. D.【答案】B【解析】【分析】把x+看作一项,写出的展开式的通项,再写出的展开式的通项,由x的指数为5求得r、s的值,则答案可求.【详解】的展开式的通项为.的展开式的通项为=.由6﹣r﹣2s=5,得r+2s=1,∵r,s∈N,∴r=1,s=0.∴在的展开式中,含x5项的系数为.故选:B.【点睛】求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.10. 若,满足,则的最小值为()A. B. C. D.【答案】D【解析】【分析】画出约束条件表示的可行域,通过表达式的几何意义,求出表达式的最小值.【详解】令,,作出可行域,如图所示:,表示可行域上的动点到定点距离的平方,然后减去,故其最小值为定点到直线AB的距离的平方减去。
湖北省武汉市2018届高三毕业生四月调研测试理科数学试题(解析版)

故选:A.
【点睛】本题主要考查程序框图的识别和判断,根据条件结构,结合分段函数的表达式是解决本题的关键.
4.某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为()
A. B. C. D.
【答案】B
【解析】
【分析】
在该几何体的所有顶点中任取两个顶点,它们之间距离取最大值时,最大距离相当于一个长宽高分别为2,1,1的长方体的体对角线,进而得到答案.
A. B.ห้องสมุดไป่ตู้C. D.
【答案】B
【解析】
【分析】
推导出0=loga1<logab<logaa=1,由此利用对数函数的单调性能比较m,n,l的大小.
【详解】∵实数a,b满足a>b>1,m=loga(logab), , ,
∴0=loga1<logab<logaa=1,
∴m=loga(logab)<loga1=0,
14.已知向量 , , 满足 ,且 , , ,则 _________________.
【答案】
【解析】
【分析】
先根据已知得到 ,再计算出 ,再化简 得解.
【详解】因为 ,所以 ,
所以 .
故答案为:
【点睛】(1)本题主要考查向量的数量积运算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是通过观察想到消元消去 .
点睛:本题主要考查三角函数的图像和性质,意在考查学生对三角函数的图像性质等基础知识的掌握能力,考查学生数形结合分析推理的能力.要注意 ,这里不等式的右边不能取等,否则有可能有三个零点,这样与已知就不符了,写不等式一定要注意取等的问题.
12.过点 作抛物线 的两条切线,切点分别为 , , , 分别交 轴于 , 两点, 为坐标原点,则 与 的面积之比为( )
2018年武汉初三四调诊断数学试卷含答案

2018年武汉初三四调诊断·数学九年级·数学试卷第I 卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)1. A.4π- B.4π- C.42π- D.42π- 2.若代数式34a a--在实数范围内有意义,则实数a 的取值范围为() A.a =4 B.a >4C.a ≠4 D.a ≠3且a ≠4 3.下列计算结果不为m n a +的是()A.2m n m a a +÷B.m n a a ⋅C.m n a a +D.22m n+4.则这些运动员成绩的中位数、众数分别为()A.1.65、1.70B.1.65、1.75C.1.70、1.7D.1.70、1.75.将代数式245x x +-因式分解的结果为()A.(x +5)(x -1)B.(x -5)(x +1)C.(x +5)(x +1)D.(x -5)(x -1) 6.点A (-3,2)关于x 轴对称的点的坐标为() A.(3,-2)B.(3,2)C.(-3,-2) D.(2,-3)7.下面四个几何体中,主视图与俯视图不同的共有()A.1个B.2个C.3个D.4个8.如图,图1中有2个点,图2中有3个点,图3中有6个点,图4中有11个点……若每个图所含的点数与图的序号所成的函数关系为一次函数、二次函数和反比例函数中的一种,则图10中点的个数为()A.63B.74C.79D.839.已知一个三角形的三边长为3、5、7,则其外接圆半径为()10.如图,直线y=12x+1分别交x轴、y轴于A、B两点,将线段AB绕点M旋转180°得到线段CD,双曲线kyx= (k>0)恰好经过C、D、M三点,则k的值为().A.43B.1C.98D.89第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)11.计算(-2×3+(-3)=.12.化简1111x x-+-的结果是.13.已知矩形ABCD,AD>AB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为.图4图3图2图1DCBA14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.已知AB =AC ,tan A =2,BC =5,则△ABC 的面积为.6.如图,已知圆O 的半径为2,A 是圆上一定点,B 是OA 的中点,E 是圆上一动点,以BE 为边作正方形BEFG (B 、E 、F 、G 四点按逆时针顺序排列),当点E 绕⊙O 圆周旋转时,点F 的运动轨迹围成的图形的面积是.三、解答题(共8小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形 17.(本题8分)解方程x (2x -1)=-118.(本题8分)如图,已知CD =CF ,∠A =∠E =∠DCF =90°,求证:AD +EF =AECBAGAA C DEF19.(本题8分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,(1)本次问卷调查取样的样本容量为,表中的m 值为;(2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数 约为多少?20.(本题8分)某汽车专卖店销售A ,B 两种型号的汽车。
湖北省武汉市2018届高三毕业生四月调研测试数学(文)(答案打印版)

3 z 3 z 3 y x , 表示斜率为 , 纵截距为 的直线, 作直线 y x 并平移, 当直线过点 C (1, 1) 2 2 2 2 2
时,直线在 y 轴上的截距最小,此时 zmin 3 1 2 ( 1) 1 6.答案:B 解析:设 6 只鞋子为 A1 , A2 , B1 , B2 , C1 , C2 ,从中取出 2 只,所有可能的组合为 ( A1 , A2 ) ,
反过来,若 A ≤
BC A ,即 A ≤ ,可得 A ≤ ,举例说明,如 A , B , C , 2 2 3 3 2 6 bc .所以条件 p 是条件 q 成立充分不必要条件. a 3, b 2, c 1 ,此时不满足 a ≤ 2
9.答案:B 解析:该几何体为如图所示的四棱柱 ABCD A1 B1C1 D1 ,
当 0 t 2 时, S t 3t ,则 S (t ) 3t 2 3 3(t 1)(t 1) , 当 t [0,1) 时, S (t ) 0 , S (t ) 单调递减,
y
A
当 t (1, 2] 时, S (t ) 0 , S (t ) 单调递增,
( A1 , B1 ), ( A1 , B2 ), ( A1 , C1 ), ( A1 , C2 ), ( A2 , B1 ), ( A2 , B2 ), ( A2 , C1 ), ( A2 , C2 ), ( B1 , B2 ), ( B1 , C1 ), ( B1 , C2 ) ( B2 , C1 ), ( B2 , C2 ), (C1 , C2 ) 共 15 种情况,其中 2 只鞋成对的情况有 ( A1 , A2 ), ( B1 , B2 ), (C1 , C2 ) 共 3
2018年度湖北省武汉市东西湖区教育局九年级数学四调模拟试卷word版(含答案)

2018年度武汉某初中九年级四调模拟试卷数学试卷一、选择题(每题3分,共30分)1.计算(-9)-(-3)的结果是().A.﹣12 B.﹣6 C.6 D.122.若分式11xx+-有意义,则x的取值范围是().A.x≠1 B.x≠-1 C.x=1 D.x=-13.下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.-xy+xy=0 D.a4+a2=a64.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为().A.20 B.30 C.40 D.505.如果x2+kxy+9y2是一个完全平方式,那么k是().A.6 B.﹣6 C.±6 D.186.点P关于x轴的对称点P1的坐标是(4,﹣8),则P点关于y轴的对称点P2的坐标是()A.(-4,-8)B.(-4,8)C.(4,8)D.(4,-8)7.如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,俯视图改变B.左视图改变,俯视图改变C.俯视图不变,左视图改变D.主视图不变,左视图不变18.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.16,10.5 B.8,9 C.16,8.5 D.8,8.59.13个小朋友围成一圈做游戏,规则是从某一个小朋友开始按顺时针方向从1开始数数,数到第13,该小朋友离开;离开的小朋友的下一位从1数起,数到13的小朋友离开,这样继续下去,直到最后剩下一个小朋友.小明是1号,要使最后剩下的是小明自己,他应该建议从()小朋友开始数起.A.13号B.2号C.8号D.7号EDCBA10.如图,在△ABC 中,∠C =90°,点D 是BC 边上一动点,过点B 作BE ⊥AD 交AD 的延长线于E .若AC =6,BC =8,则ADDE的最大值为( ) A .31B .21 C .22 D .43二、填空题(每题3分,共18分) 11.= . 12.计算111---+x xx x 的结果是_________. 13.如图把一张长方形纸片ABCD 沿EF 折叠后,ED 交BC 于点G ,点D 、C 分别落在D ′、C ′位置上.若∠EFG =50°,那么∠EGB = .G CDFABC 1D 1EP ABCD14.甲盒装有3个相同的乒乓球,分别标号为1、2、3;乙盒装有2个相同的乒乓球,分别标号为1、2.现分别从每个盒中随机地取出1个球,则取出的两球标号之和为4的概率是_________ .15.如图,矩形ABCD 中,AD,P 是矩形内一点,且P A =2,PB PD =5,则∠APB 等于_. 16.已知二次函数y =x 2-(m +1)x -5m (m 为常数),在-3≤x ≤1的范围内至少有一个x 的值使y ≥2,则m 的取值范围是 . 三、解答题(共8小题,共72分)17.(本题8分)解方程组34y x y x =⎧⎨-=⎩18.(本题8分)如图,点E 、F 在BC 上,BE =FC ,AB =DC ,∠B =∠C .求证:∠A =∠D .FA BCDE19. (本题8分)2018年3月,江夏区一初中举行了“爱我中国•朗诵比赛”活动,根据学生的成绩划分为A 、B 、C 、D 四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题: (1)参加朗诵比赛的学生共有 人,并把条形统计图补充完整; (2)扇形统计图中,m = ,n = ; C 等级对应扇形有圆心角为 度;(3)学校欲从获A 等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A 等级的小明参加市朗诵比赛的概率.n %m %30%20%A BC D20.(本题8分)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元. (1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?21.(本题8分)如图,AB 是⊙O 的直径,点C 为⊙O 外一点,连接OC 交⊙O 于点D ,连接BD 并延长交线段AC 于点E ,∠CDE =∠CA D .(1)判断AC 与⊙O 的位置关系,并证明你的结论;(2)若AE =EC ,求tan B 的值.OEBCD A22.(本题10分)如图,直线y =12x +2分别交x ,y 轴于点A 、C ,点P 是该直线与反比例函数y =k x的图象,在第一象限内的交点,PB 丄x 轴,B 为垂足,S △ABP =9.(1)直接写出点A 的坐标 ;点C 的坐标 ;点P 的坐标 ; (2)已知点Q 在反比例函数y =kx的图象上,其横坐标为6,在第一个图的x 轴上确定一点M ,使MP +MQ 最小(保留作图痕迹)........,并求出点M 的坐标; (3)设点R 在反比例函数y =kx的图象上,且在直线PB 的右侧,做RT ⊥x 轴,T 为垂足,当△BRT 与△AOC 相似时,求点R 的坐标.23.(本题10分)已知在△ABC 中,边AB 上的动点D 由A 向B 运动(与A 、B 不重合),同时点E 由点C 沿BC 的延长线方向运动(E 不与C 重合),连接DE 交AC 于点F ,点H 是线段AF 上一点。
2018年武汉市九年级四调数学(含答案)

2017~2018学年武汉市九年级四月调考数学试卷考试时间:2018年4月17日14:30~16:30 一、选择题(共10小题,每小题3分,共30分)1.武汉地区春季日均最高气温15℃,最低7℃,日均最高气温比最低气温高( )A .22℃B .15℃C .8℃D .7℃2.若代数式41x 在实数范围内有意义,则实数x 得取值范围就是( ) A .x >-4 B .x =-4 C .x ≠0 D .x ≠-4 3.计算3x 2-2x 2得结果就是( )A .1B .x 2C .x 4D .5x 24.下表记录了一名球员在罚球线上投篮得结果,这名球员投篮一次,投中得概率约就是( )投篮次数 10 50 100 150 200 250 300 500 投中次数 4356078104123152251投中频率0、40 0、70 0、60 0、52 0、52 0、49 0、51 0、50A .0、7B .0、6C .0、5D .0、4 5.计算(a +2)(a -3)得结果就是( )A .a 2-6B .a 2+6C .a 2-a -6D .a 2+a -6 6.点A (-2,5)关于y 轴对称得点得坐标就是( )A .(2,5)B .(-2,-5)C .(2,-5)D .(5,-2)7.一个几何体得三视图如左图所示,则该几何体就是( )8.某公司有10名工作人员,她们得月工资情况如下表(其中x 为未知数).她们得月平均工资就是2、22万元.根据表中信息,计算该公司工作人员得月工资得中位数与众数分别就是( )A .2,4B .1、8,1、6C .2,1、6D .1、6,1、89.某居民小区得俯视图如图所示,点A 处为小区得大门,小方块处就是建筑物,圆饼处就是花坛,扇形处就是休闲广场,空白处就是道路.从小区大门口向东或向南走到休闲广场, 走法共有( )A .7种B .8种C .9种D .10种10.在⊙O 中,AB ,CD 就是互相垂直得两条直径,点E 在弧BC 上,CF ⊥AE 于点F .若点F职务 经理 副经理 A 类职员B 类职员C 类职员人数1 2 2 4 1 月工资/(万元/人) 532x0、8三等分弦AE ,⊙O 得直径为12,则CF 得长就是( )A .552 B .5102 C .556 D .5106 二、填空题(共6个小题,每小题3分,共18分)11.计算:2)32(-+得结果就是__________. 12.计算1112+--x x x得结果就是__________. 13.两个人玩“石头、剪子、布”得游戏,随机出手一次,其中一人获胜得概率就是________.14.一副三角板如图所示摆放,含45°得三角板得斜边与含30°得三角板得较长直角边重合.AE ⊥CD 于点E ,则∠ABE 得度数就是__________°.第14题图 第15题图15.如图,在□ABCD 中,AB =8 cm ,BC =16 cm ,∠A =60°.点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 运动速度为2 cm /s ,点F 运动速度为 1 cm /s ,它们同时出发,同时停止运动.经过__________s 时,EF =AB .16.已知二次函数y =x 2-2hx +h ,当自变量x 得取值在-1≤x ≤1得范围中时,函数有最小值n .则n 得最大值就是__________. 三、解答题(共8小题,共72分)17.(本题8分)解方程组⎩⎨⎧=-=+6342y x y x18.(本题8分)如图,B ,E ,C ,F 四点顺次在同一条直线上,AC =DF ,BE =CF ,AB =DE .求证:AB ∥DE .19.(本题8分)学校食堂提供A ,B ,C 三种套餐,某日中餐有1000名学生购买套餐,随机抽查部分订购三种套餐得人数,得到如下统计图.订购各类套餐人数条形统计图 订购各类套餐人数所占百分比扇形统计图(1) 一共抽查了_________人;(2) 购买A 套餐人数对应得扇形得圆心角得度数就是_________;(3) 如果A ,B ,C 套餐售价分别为5元,12元,18元,根据以上统计估计食堂当天中餐得总销售额大约就是多少元.20.(本题8分)下表中有两种移动电话计费方式.月使用费/元主叫限定时间/min主叫超时费/(元/min )方式一 58 200 0、20 方式二884000、25其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费. (1) 如果每月主叫时间不超过400 min ,当主叫时间为多少min 时,两种方式收费相同? (2) 如果每月主叫时间超过400 min ,选择哪种方式更省钱?21.(本题8分)如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,⊙O 分别与边AB ,AD ,DC相切,切点分别为E ,G ,F ,其中E 为边AB 得中点. (1) 求证:BC 与⊙O 相切;(2) 如图2,若AD =3,BC =6,求EF 得长.22.(本题10分)如图,点A ,B 分别就是x 轴,y 轴上得动点,A ( p ,0)、B (0,q ).以AB 为边,画正方形ABCD .(1) 在图1中得第一象限内,画出正方形ABCD .若p =4,q =3,直接写出点C ,D 得坐标;(2) 如图2,若点C ,D 在双曲线xky(x >0)上,且点D 得横坐标就是3,求k 得值; (3) 如图3,若点C ,D 在直线y =2x +4上,直接写出正方形ABCD 得边长.23.(本题10分)如图1,在四边形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于点P ,CD 2=DP ·DB .(1) 求证:∠BAC =∠CBD ;(2) 如图2,E ,F 分别为边AD ,BC 上得点,PE ∥DC ,EF ⊥BC .① 求证:∠PFC =∠CPD ;② 若BP =2,PD =1,锐角∠BCD 得正弦值为33,直接写出BF 得长.24.(本题12分)已知抛物线332++=bx ax y 与x 轴交于点A (1,0), B (3,0)两点,与y 轴交于点C .P 为抛物线得对称轴上得动点,且在x 轴得上方,直线AP 与抛物线交于另一点D .(1) 求抛物线得解析式;(2) 如图1,连接AC ,DC ,若∠ACD =60°,求点D 得横坐标;(3) 如图2,过点D 作直线3-=y 得垂线,垂足为点E ,若PD PE 2=,求点P 得坐标.2018年武汉市九年级四调数学(含答案)。
武汉市2018届高中毕业生四月调研测试理科试题及答案world版

武汉市2018届高中毕业生四月调研测试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数52i -的共轭复数是( )A .2i +B .2i -+C .2i --D .2i -2.已知集合2{|1}M x x ==,{|1}N x ax ==,若N M ⊆,则实数a 的取值集合为( )A .{1}B .{1,1}-C .{1,0}D .{1,1,0}-3.执行如图所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于( )A .[4,2]-B .[2,2]-C .[2,4]-D .[4,0]-4.某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为( )A C .. 5.一张储蓄卡的密码共有6位数字,每位数字都可以从09中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为( ) A .25 B .310 C .15 D .1106.若实数a ,b 满足1a b >>,log (log )a a m b =,2(log )a n b =,2log a l b =,则m ,n ,l 的大小关系为( )A .m l n >>B .l n m >>C .n l m >>D .l m n >> 7.已知直线1y kx =-与双曲线224x y -=的右支有两个交点,则k 的取值范围为( )A .(0,2 B .[1,]2C .(22-D .(1,2 8.在ABC ∆中,角A 、B 、C 的对应边分别为a ,b ,c ,条件p :2b c a +≤,条件q :2B CA +≤,那么条件p 是条件q 成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 9.在61(1)x x+-的展开式中,含5x 项的系数为( )A .6B .6-C .24D .24- 10.若x ,y 满足1212x y -++≤,则2222M x y x =+-的最小值为( )A .2-B .211 C .4 D .49- 11.函数()2sin()(0)3f x x πωω=+>的图象在[0,1]上恰有两个最大值点,则ω的取值范围为( )A .[2,4]ππB .9[2,)2ππ C .1325[,)66ππ D .25[2,)6ππ 12.过点(2,1)P -作抛物线24x y =的两条切线,切点分别为A ,B ,PA ,PB 分别交x 轴于E ,F 两点,O 为坐标原点,则PEF ∆与OAB ∆的面积之比为( )AC .12D .34二、填空题:本大题共4小题,每小题5分,共20分.13.已知sin 2cos αα=,则sin cos αα= .14.已知向量a ,b ,c 满足20a b c ++=,且1a =,3b =,2c =,则22a b a c b c ⋅+⋅+⋅= .15.已知(,)22x ππ∈-,()1y f x =-为奇函数,'()()tan 0f x f x x +>,则不等式()cos f x x >的解集为 .16.在四面体ABCD 中,1AD DB AC CB ====,则四面体体积最大时,它的外接球半径R = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知正数数列{}n a 满足:12a =,11212n n n n n a a a a ---+=+-(2)n ≥.(1)求2a ,3a ;(2)设数列{}n b 满足22(1)n n b a n =--,证明:数列{}n b 是等差数列,并求数列{}n a 的通项n a .18.如图,在棱长为3的正方体1111ABCD A B C D -中,E ,F 分别在棱AB ,CD 上,且1AE CF ==.(1)已知M 为棱1DD 上一点,且11D M =,求证:1B M ⊥平面11A EC .(2)求直线1FC 与平面11A EC 所成角的正弦值.19.已知椭圆Γ:22142x y +=,过点(1,1)P 作倾斜角互补的两条不同直线1l ,2l ,设1l 与椭圆Γ交于A 、B 两点,2l 与椭圆Γ交于C ,D 两点.(1)若(1,1)P 为线段AB 的中点,求直线AB 的方程;(2)记ABCDλ=,求λ的取值范围.20.在某市高中某学科竞赛中,某一个区4000名考生的参赛成绩统计如图所示.(1)求这4000名考生的竞赛平均成绩x (同一组中数据用该组区间中点作代表);(2)由直方图可认为考生竞赛成绩z 服正态分布2(,)N μσ,其中μ,2σ分别取考生的平均成绩x 和考生成绩的方差2s ,那么该区4000名考生成绩超过84.41分(含84.81分)的人数估计有多少人?(3)如果用该区参赛考生成绩的情况来估计全市的参赛考生的成绩情况,现从全市参赛考生中随机抽取4名考生,记成绩不超过...84.81分的考生人数为ξ,求(3)P ξ≤.(精确到0.001)附:①2204.75s =14.31=;②2(,)zN μσ,则()0.6826P z μσμσ-<<+=,(22)0.9544P z μσμσ-<<+=;③40.84130.501=.21.已知函数()(ln )xf x xe a x x =-+,a R ∈.(1)当a e =时,求()f x 的单调区间;(2)若()f x 有两个零点,求实数a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,l 的极坐标方程为(cos 2sin )10ρθθ+=,C 的参数方程为3cos 2sin x y θθ=⎧⎨=⎩(θ为参数,R θ∈). (1)写出l 和C 的普通方程;(2)在C 上求点M ,使点M 到l 的距离最小,并求出最小值.23.[选修4-5:不等式选讲] 已知()22f x ax x =--+.(1)在2a =时,解不等式()1f x ≤;(2)若关于x 的不等式4()4f x -≤≤对x R ∈恒成立,求实数a 的取值范围.武汉市2018届高中毕业生四月调研测试理科数学参考答案一、选择题1-5: BDABC 6-10: BDABD 11、12:CC二、填空题13.25 14. 13- 15. (0,)2π三、解答题17.(1)由已知212132a a a a +=+-,而12a =,∴2222232(2)a a -=+-,即222230a a --=.而20a >,则23a =.又由323252a a a a +=+-,23a =,∴233952(3)a a -=+-,即233280a a --=.而30a >,则34a =.∴23a =,34a =.(2)由已知条件可知:22112()21n n n n a a a a n ---=-+-,∴22221(1)(1)(1)n n a a n n ----=--,则22221(1)(1)(1)n n a n a n ---=---223(1)2a =⋅⋅⋅=--222(1)1a =--0=,而22(1)n n b a n =--,∴0n b =,数列{}n b 为等差数列.∴22(1)n a n -=.而0n a >,故1n a n =+.18.解:(1)过M 作1MT AA ⊥于点T ,连1B T ,则11AT =.易证:111AA E A B T ∆≅∆,于是111AA E A B T ∠=∠.由111190A B T ATB ∠+∠=,知11190AAE ATB ∠+∠=,∴11A E B T ⊥.显然MT ⊥面11AA B B ,而1AE ⊂面11AA B B ,∴1M T A E ⊥,又1B T MT T =,∴1A E ⊥面MTB ,∴11A E MB ⊥.连11B D ,则1111B D AC ⊥.又111D M A C ⊥,1111B D D M D =,∴11A C ⊥面11MD B ,∴111AC MB ⊥.由11A E MB ⊥,111AC MB ⊥,1111A E A C A =,∴1B M ⊥面11A EC .(2)在11D C 上取一点N ,使11ND =,连接EF .易知1//A E FN .∴1111A EFC N EFC E NFC V V V ---==11113(23)33332NFC S ∆=⋅⨯=⨯⨯⨯=.对于11A EC ∆,11AC =,1A E =1EC =,由余弦定理可知11cos EAC ∠==.∴11A EC ∆的面积11111sin 2S AC A E EAC =⋅∠12=⨯=.由等体积法可知F 到平面11A EC 之距离h 满足111113A EC A EFC S h V ∆-⋅=,则133h =,∴h =,又1FC =,设1FC 与平面1AEC 所成角为θ,∴sin 95θ===. 19.解:(1)设直线AB 的斜率为tan k α=,方程为1(1)y k x -=-,代入2224x y +=中,∴222[(1)]40x kx k +---=.∴222(12)4(1)2(1)40k x k k x k +--+--=.判别式222[4(1)]4(21)[2(1)4]k k k k ∆=--+--28(321)k k =++.设11(,)A x y ,22(,)B x y ,则12221224(1)212(1)421k k x x k k x x k -⎧+=⎪⎪+⎨--⎪=⎪+⎩.∵AB 中点为(1,1),∴12212(1)()1221k k x x k -+==+,则12k =. ∴直线的AB 方程为11(1)2y x -=-,即210x y -+=. (2)由(1)知12AB x =-==. 设直线的CD 方程为1(1)(0)y k x k -=--≠.同理可得CD =.∴0)ABk CD λ==≠.∴2241312k k k λ=++-41132k k=++-.令13t k k =+,则4()12g t t =+-,(,[23,)t ∈-∞-+∞.()g t 在(,-∞-,)+∞分别单调递减,∴2()1gt ≤<或1()2g t<≤+故221λ≤<或212λ<≤.即6(1,λ+∈. 20.解:(1)由题意知:∴450.1550.15650.2750.3x =⨯+⨯+⨯+⨯850.15950.170.5+⨯+⨯=,∴4000名考生的竞赛平均成绩x 为70.5分.(2)依题意z 服从正态分布2(,)N μσ,其中70.5x μ==,2204.75D σξ==,14.31σ=,∴z 服从正态分布22(,)(70.5,14.31)N N μσ=,而()(56.1984.81)0.6826P z P z μσμσ-<<+=<<=,∴10.6826(84.81)0.15872P z -≥==.∴竞赛成绩超过84.81分的人数估计为0.158********.8⨯=人634≈人.(3)全市竞赛考生成绩不超过84.81分的概率10.15870.8413-=.而(4,0.8413)B ξ,∴444(3)1(4)10.8413P P C ξξ≤=-==-⋅10.5010.499=-=.21.解:(1)定义域为:(0,)+∞,当a e =时,(1)()'()x x xe e f x x+-=.∴()f x 在(0,1)时为减函数;在(1,)+∞时为增函数.(2)记ln t x x =+,则ln t x x =+在(0,)+∞上单增,且t R ∈.∴()(ln )x f x xe a x x =-+()t e at g t =-=.∴()f x 在0x >上有两个零点等价于()t g t e at =-在t R ∈上有两个零点.①在0a =时,()t g t e =在R 上单增,且()0g t >,故()g t 无零点;②在0a <时,'()tg t e a =-在R 上单增,又(0)10g =>,11()10a g e a =-<,故()g t 在R 上只有一个零点; ③在0a >时,由'()0tg t e a =-=可知()g t 在ln t a =时有唯一的一个极小值(ln )(1ln )g a a a =-. 若0a e <<,(1ln )0g a a =->最小,()g t 无零点;若a e =,0g =最小,()g t 只有一个零点;若a e >时,(1ln )0g a a =-<最小,而(0)10g =>,由于ln ()x f x x =在x e >时为减函数,可知:a e >时,2a e e a a >>.从而2()0a g a e a =->,∴()g x 在(0,ln )a 和(ln ,)a +∞上各有一个零点.综上讨论可知:a e >时()f x 有两个零点,即所求a 的取值范围是(,)e +∞.22.解:(1)由l :cos sin 100ρθρϕ+-=,及cos x ρθ=,sin y ρθ=.∴l 的方程为2100x y +-=.由3cos x θ=,2sin y θ=,消去θ得22194x y +=. (2)在C 上取点(3cos ,2sin )M ϕϕ,则d=05cos()10ϕϕ=--. 其中003cos 54sin 5ϕϕ⎧=⎪⎪⎨⎪=⎪⎩,当0ϕϕ=时,d此时093sin 3cos 5ϕϕ==,0082sin 2cos 5ϕϕ==,98(,)55M . 23.解:(1)在2a =时,2221x x --+≤.在1x ≥时,(22)(2)1x x --+≤,∴15x ≤≤;在2x ≤-时,(22)(2)1x x --++≤,3x ≥,∴x 无解;在21x -≤≤时,(22)(2)1x x ---+≤,13x ≥-,∴113x -≤≤.综上可知:不等式()1f x ≤的解集为1{|5}3x x -≤≤.(2)∵224x ax +--≤恒成立,而22(1)x ax a x +--≤+,或22(1)4x ax a x +--≤-+, 故只需(1)4a x +≤恒成立,或(1)44a x -+≤恒成立,∴1a =-或1a =.∴a 的取值为1或1-.。
湖北省武汉市2018届高中毕业生四月调研测试理科数学试题(精编含解析)

∴S△PEF= 解方程①可得 x=2k, ∴A(2+2 ,3+2 ),B(2﹣2 ,3﹣2 ), ∴直线 AB 方程为 y=x+1,|AB|=8,
原点 O 到直线 AB 的距离 d= ,
∴S△OAB=
,
∴△PEF 与△OAB 的面积之比为 . 故答案为:C
【点睛】本题主要考查直线和抛物线的位置关系,考查三角形的面积,意在考查学生对这些知识的掌握水
A.
B.
【答案】D
【解析】
C.
D.
【分析】 画出约束条件表示的可行域,通过表达式的几何意义,求出表达式的最小值.
【详解】令
,
,
,作出可行域,如图所示:
表示可行域上的动点到定点
距离的平方,然后减去 ,故其最小值为
定点
到直线 AB 的距离的平方减去 。
AB:
定点
到直线 AB 的距离:
∴ 故选: 【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次 确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等, 最后结合图形确定目标函数最值取法、值域范围.
15. 已知
,
【答案】 【解析】 【分析】
为奇函数,
,则不等式
的解集为_________.
令 g(x)= ,
,根据函数的单调性求出 g(x)>g(0),从而求出不等式的解集即可.
【详解】∵y=f(x)﹣1 为奇函数,
∴f(0)﹣1=0,即 f(0)=1,
令 g(x)= ,
,
则 g′(x)=
>0,
故 g(x)在 f(x)>cosx,
【答案】 【解析】 【分析】
2018年4月武汉市九年级数学调考(附答案)

2017~2018学年度武汉市部分学校九年级四月调研测试数学试卷考试时间:2018年4月17日14:30~16:30一、选择题(共10小题,每小题3分,共30分)1.武汉地区春季日均最高气温15℃,最低7℃,日均最高气温比最低气温高( ) A .22℃ B .15℃ C .8℃D .7℃2.若代数式41+x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-4 B .x =-4 C .x ≠0 D .x ≠-4 3.计算3x 2-2x 2的结果( )A .1B .x 2C .x 4D .5x 2 4.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率约是( )投篮次数 10 50 100 150 200 250 300 500 投中次数 4 35 60 78 104 123 152 251 投中频率0.400.700.600.520.520.49 0.510.50A .0.7B .0.6C .0.5D .0.4 5.计算(a +2)(a -3)的结果是( ) A .a 2-6B .a 2+6C .a 2-a -6D .a 2+a -6 6.点A (-2,5)关于y 轴对称的点的坐标是( ) A .(2,5) B .(-2,-5)C .(2,-5)D .(5,-2)7.一个几何体的三视图如左图所示,则该几何体是( )8.某公司有10名工作人员,他们的月工资情况如下表(其中x 为未知数).他们的月平均工资是2.22万元.根据表中信息,计算该公司工作人员的月工资的中位数和众数分别是( ) 职务 经理 副经理 A 类职员B 类职员C 类职员人数1 2 2 4 1 月工资/(万元/人)532x0.89.某居民小区的俯视图如图所示,点A 处为小区的大门,小方块处是建筑物, 圆饼处是花坛,扇形处是休闲广场,空白处是道路.从小区大门口向东或向南 走到休闲广场,走法共有( )A .7种B .8种C .9种D .10种10.在⊙O 中,AB 、CD 是互相垂直的两条直径,点E 在BC 弧上,CF ⊥AE 于点F .若点F 三等分弦AE ,⊙O 的直径为12,则CF 的长是( )A .552 B .5102 C .556 D .5106 二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:2)32(-+的结果是__________ 12.计算1112+--x x x 的结果是__________13.两个人玩“石头、剪子、布”的游戏,随机出手一次,其中一人获胜的概率是__________14.一副三角板如图所示摆放,含45°角的三角板与含30°角的三角板的较长直角边重合.AE ⊥CD 于点E ,则∠ABE 的度数是__________°15.如图,在□ABCD 中,AB =8 cm ,BC =16 cm ,∠A =60°.点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 运动速度为2 cm /s ,点F 运动速度为1 cm /s ,它们同时出发,同时停止运动.经过__________s 时,EF =AB .16.已知二次函数y =x 2-2hx +h ,当自变量x 的取值在-1≤x ≤1的范围中时,函数有最小值n ,则n 的最大值是__________三、解答题(共8题,共72分)17.(本题8分)解方程组⎩⎨⎧=-=+6342y x y x18.(本题8分)如图,B 、E 、C 、F 四点顺次在同一条直线上,AC =DF ,BE =CF ,AB =DE ,求证:AB ∥DE19.(本题8分)学校食堂提供A 、B 、C 三种套餐,某日中餐有1000名学生购买套餐,随机抽查部分订购三种套餐的人数,得到如下统计图订购各类套餐人数条形统计图 订购各类套餐人数所占百分比扇形统计图 (1) 一共抽查了_________人(2) 购买A 套餐人数对应的圆心角的度数是_________(3) 如果A 、B 、C 套餐售价分别为5元、12元、18元,根据以上统计估计食堂当天中餐的总销售额大约是多少元20.(本题 月使用费/元主叫限定时间/min主叫超时费/(元/min )方式一 58 200 0.20 方式二884000.25其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费(1) 如果每月主叫时间不超过400 min ,当主叫时间为多少min 时,两种方式收费相同? (2) 如果每月主叫时间超过400 min ,选择哪种方式更省钱?21.(本题8分)如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,⊙O 分别与边AB 、AD 、DC 相切,切点分别为E 、G 、F ,其中E 为边AB 的中点 (1) 求证:BC 与⊙O 相切(2) 如图2,若AD =3,BC =6,求EF 的长22.(本题10分)如图,点A 、B 分别是x 轴、y 轴上的动点,A (p ,0)、B (0,q ).以AB 为边,画正方形ABCD (1) 在图1中的第一象限内,画出正方形ABCD .若p =4,q =3,直接写出点C 、D 的坐标. (2) 如图2,若点C 、D 在双曲线xky(x >0)上,且点D 的横坐标是3,求k 的值; (3) 如图3,若点C 、D 在直线y =2x +4上,直接写出正方形ABCD 的边长.23.(本题10分)如图1,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点P ,CD 2=DP ·DB (1) 求证:∠BAC =∠CBD(2) 如图2,E 、F 分别为边AD 、BC 上的点,PE ∥DC ,EF ⊥BC ① 求证:∠PFC =∠CPD② 若BP =2,PD =1,锐角∠BCD 的正弦值为33,直接写出BF 的长24.(本题12分)已知抛物线332++=bx ax y 与x 轴交于点A (1,0)、B (3,0)两点,与y 轴交于点C .P 为抛物线的对称轴上的动点,且在x 轴的上方,直线AP 与抛物线交于另一点D (1) 求抛物线的解析式(2) 如图1,连接AC 、DC .若∠ACD =60°,求点D 的横坐标(3) 如图2,过点D 作直线3-=y 的垂线,垂足为点E .若PD PE 2=,求点P 的坐标2017~2018学年度武汉市部分学校九年级四月调研测试数学试卷考试时间:2018年4月17日14:30~16:30 武汉巨人童威编辑 一、选择题(共10小题,每小题3分,共30分)1.武汉地区春季日均最高气温15℃,最低7℃,日均最高气温比最低气温高( ) A .22℃ B .15℃ C .8℃D .7℃2.若代数式41+x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-4 B .x =-4 C .x ≠0 D .x ≠-4 3.计算3x 2-2x 2的结果( )A .1B .x 2C .x 4D .5x 2 4.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率约是( )投篮次数 10 50 100 150 200 250 300 500 投中次数 4 35 60 78 104 123 152 251 投中频率0.400.700.600.520.520.49 0.510.50A .0.7B .0.6C .0.5D .0.4 5.计算(a +2)(a -3)的结果是( ) A .a 2-6B .a 2+6C .a 2-a -6D .a 2+a -6 6.点A (-2,5)关于y 轴对称的点的坐标是( ) A .(2,5) B .(-2,-5)C .(2,-5)D .(5,-2)7.一个几何体的三视图如左图所示,则该几何体是( )8.某公司有10名工作人员,他们的月工资情况如下表(其中x 为未知数).他们的月平均工资是2.22万元.根据表中信息,计算该公司工作人员的月工资的中位数和众数分别是( ) A .2、4B .1.8、1.6C .2、1.6D .1.6、1.89.某居民小区的俯视图如图所示,点A 处为小区的大门,小方块处是建筑物, 圆饼处是花坛,扇形处是休闲广场,空白处是道路.从小区大门口向东或向南 走到休闲广场,走法共有( )A .7种B .8种C .9种D .10种10.在⊙O 中,AB 、CD 是互相垂直的两条直径,点E 在BC 弧上,CF ⊥AE 于点F .若点F 三等分弦AE ,⊙O 的直径为12,则CF 的长是( )A .552 B .5102 C .556 D .5106 二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:2)32(-+的结果是__________ 12.计算1112+--x x x的结果是__________ 13.两个人玩“石头、剪子、布”的游戏,随机出手一次,其中一人获胜的概率是__________14.一副三角板如图所示摆放,含45°角的三角板与含30°角的三角板的较长直角边重合.AE ⊥CD 于点E ,则∠ABE 的度数是__________°15.如图,在□ABCD 中,AB =8 cm ,BC =16 cm ,∠A =60°.点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 运动速度为2 cm /s ,点F 运动速度为1 cm /s ,它们同时出发,同时停止运动.经过__________s 时,EF =AB16.已知二次函数y =x 2+2hx +h ,当自变量x 的取值在-1≤x ≤1的范围中时,函数有最小值n ,则n 的最大值是__________三、解答题(共8题,共72分)17.(本题8分)解方程组⎩⎨⎧=-=+6342y x y x18.(本题8分)如图,B 、E 、C 、F 四点顺次在同一条直线上,AC =DF ,BE =CF ,AB =DE ,求证:AB ∥DE19.(本题8分)学校食堂提供A 、B 、C 三种套餐,某日中餐有1000名学生购买套餐,随机抽查部分订购三种套餐的人数,得到如下统计图订购各类套餐人数条形统计图 订购各类套餐人数所占百分比扇形统计图 (1) 一共抽查了_________人(2) 购买A 套餐人数对应的圆心角的度数是_________(3) 如果A 、B 、C 套餐售价分别为5元、12元、18元,根据以上统计估计食堂当天中餐的总销售额大约是多少元20.(本题 月使用费/元主叫限定时间/min主叫超时费/(元/min )方式一 58 200 0.20 方式二884000.25其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费(1) 如果每月主叫时间不超过400 min ,当主叫时间为多少min 时,两种方式收费相同? (2) 如果每月主叫时间超过400 min ,选择哪种方式更省钱?21.(本题8分)如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,⊙O 分别与边AB 、AD 、DC 相切,切点分别为E 、G 、F ,其中E 为边AB 的中点 (1) 求证:BC 与⊙O 相切(2) 如图2,若AD =3,BC =6,求EF 的长22.(本题10分)如图,点A 、B 分别是x 轴、y 轴上的动点,A (p ,0)、B (0,q ).以AB 为边,画正方形ABCD (1) 在图1中的第一象限内,画出正方形ABCD .若p =4,q =3,直接写出点C 、D 的坐标 (2) 如图2,若点C 、D 在双曲线xky(x >0)上,且点D 的横坐标是3,求k 的值 (3) 如图3,若点C 、D 在直线y =2x +4上,直接写出正方形ABCD 的边长23.(本题10分)如图1,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点P ,CD 2=DP ·DB (1) 求证:∠BAC =∠CBD(2) 如图2,E 、F 分别为边AD 、BC 上的点,PE ∥DC ,EF ⊥BC ① 求证:∠PFC =∠CPD② 若BP =2,PD =1,锐角∠BCD 的正弦值为33,直接写出BF 的长24.(本题12分)已知抛物线332++=bx ax y 与x 轴交于点A (1,0)、B (3,0)两点,与y 轴交于点C .P 为抛物线的对称轴上的动点,且在x 轴的上方,直线AP 与抛物线交于另一点D (1) 求抛物线的解析式(2) 如图1,连接AC 、DC .若∠ACD =60°,求点D 的横坐标(3) 如图2,过点D 作直线3-=y 的垂线,垂足为点E .若PD PE 2=,求点P 的坐标2017-2018学年度武汉市部分学校九年级调研测试数学参考答案及评分标准1112、21 1x-;13、13;14、105;15、83或163;16、14.三、解答题17、解:①+②,得5x=10x=2…………………4分把x=2代入①,得4+y=4y=0…………………7分∴这个方程组的解是2xy=⎧⎨=⎩…………………8分18、证明:∵BE=CF,∴BC=EF…………………2分在△ABC和△DEF中,∵AC DF AB DE CB FE=⎧⎪=⎨⎪=⎩∴△ABC≌△DEF…………………5分∴∠ABC=∠DEF…………………6分∴AB∥DE…………………8分19、⑴100;…………………2分⑵108°;………………4分⑶解:根据样本信息,可知订A类套餐的人数占30%,订B类套餐的人数占45%,、估计食堂当天中餐的总销售额大约是:1000×(0.3×5+0.48×12+0.22×18)=11220(元)答:食堂当天中餐的总销售额大约是11220元.…………………8分20、解:设主叫时间为x min⑴当x≤200时,方式一收费低于方式二收费;当200<x≤400时,依题意,得0.2(x-200)+58=88 ……………………2分解这个方程,得x=350 ……………………………3分答:当主叫时间为350min时,两种方式收费相同…………………4分⑵当x>400时,方式一收费:0.2(x-200)+58=0.2x+18……………5分方式二收费:0.25(x-400)+88=0.25x-12……………6分计算两种收费的差,得0.2x+18-(0.25x-12)=-0.05x+30当x=600时,-0.05x+30=0;当x>600时,-0.05x+30<0;当x>600时,-0.05x+30>0.所以,当主叫时间大于600min时,选择方式一更省钱;当主叫时间等于600min时,选择两种方式收费相同;当主叫时间少于600min时,选择方式二更省钱;21、⑴证明:连接OE,OG,过点O作OH⊥BC于点H,则∠BHO=90°∵AB⊥BC,∴∠B=90°∵AD∥BC,∠A=90°∵AB、AD与⊙O相切∴∠AEO=∠AGO=90°x yD C O B A y x O N M A B C D∴四边形AEOG 为矩形 ……………………2分 ∴OG =AE∵AE =BE , ∴BE =OG∵∠BEO =∠B =∠BHO =90° ∴四边形EBHO 为矩形 ∴OH =BE , ∴OH =OG∴BC 与⊙O 相切 ……………………4分⑵过点D 作DP ⊥BC 于点P ,延长BA 、CD 相交于点N ,连接ON 交EF 于点M . 设⊙O 的半径为r ,则DF =DG =3-r ,PD =AB =2r ,PC =3,CF =CH =6-r , 在Rt △DPC 中,(3-r +6-r )2=(2r )2+9,解得 r =2 ……………5分 ∴AB =4,AE =OE =2∵△NAD ∽△NBC ,BC =2AD ,NB =2AB =8 ∴NE =6∵NE 、NF 与⊙O 相切,∴NE =NF ,NO 平分∠ENF ,NO 垂直平分EF在Rt △NEO 中,ON 2226 10 ……………………6分 因为EM ⊥ON ,∴∠OEM =∠ONE因为tan ∠ONE =OE NE =13, tan ∠OEM =OM EM =13,tan ∠EMN =EM NM =13,即EM =3OM ,NM =3EM =9OM ,EM =310ON 3105所以,EF =2EM 6105……………………8分22.解:(1)图如下:∵点C (3,7),点D (7,4). …………………………………3分(2)以AB 为边作正方形ABCD , 过点C 作CM ⊥y 轴于M ,过点D 作DN ⊥x 轴于N . 则△BCM ≌△ABO ≌△DAN , ∴CM =BO =AN ,BM =AO =DN , ∴C (q ,q +p ),D (q +p ,p ). ………………………………5分 ∵点C ,D 在同一双曲线上,∴q (q +p )=p (q +p )=k .∵点D 的横坐标是3,∴q +p =3,∴p =q =32.∴k =92 ………………………………7分同理 k =-92. ………………………………8分(3)453 或457 . ………………………………10分23、解:(1)∵CD 2=DP ·DB ,∴DC DP =DBDC.∵∠PDC =∠CDB ,∴△PDC ∽△CDB . ………………………2分∴∠PCD =∠CBD .∵AB ∥CD ,∴∠PCD =∠CAB . ∴∠PBC =∠BAC .∴∠BCP =∠ACB . ……………………………………4分(2)延长EP 交BC 于点N .M P E F D G O C NB∵EP∥DC,∴△APE∽△ACD.∴EPDC=APAC.同理,PNDC=BP BD.∵AB∥CD,∴BPBD=AP AC.∴EP=PN.……………………………………6分∵EF⊥BC,∴PF=PN∴∠PFN=∠PNF∵PN∥DC∴∠PNF=∠DCB∵△PDC∽△CDB∴∠CPD=∠DCB∴∠PFC=∠CPD………………………………8分②3………………………………10分24、⑴∵抛物线经过A(1,0),B(3,0)两点∴a+b+0,9a+3b+0解得a b=-∴抛物线的解析式为:y2-+………………3分⑵连接BC,延长CD交x轴于点M∵B(3,0),C(∴OC=OB=3∴tan∠OBC∴∠ABC=60°∵∠ACD=60°,∴∠ABC=∠ACD∵∠CAM=∠BAC,∴△ACB∽△AMC…………………………4分∴AC2=AB AM∵A(1,0),∴OA=1在Rt△OAC中,AC2=OA2+OC2=28∵AB=OB-OA=2,∴AM=14∴OM=15,∴M(15,0)…………………………5分设直线CM的解析式为y=kx+∴15k+0,解得k∴直线CM的解析式为y x+与抛物线解析式y2-+解得x=195或x=0(舍去)∴点D的横坐标是195……………7分⑶过点P作PQ⊥直线DE,垂足为Q,抛物线的对称轴与x轴和直线y为点H、M,则M(23AD的解析式为y=mx+n ∵点A(1,0),∴m+n=0,即m=-n,则点P的坐标为(2,m)联立y=mx-m和y32-3+3得32-(3m)x+3m=0(x-1)3-3m)=0∴x1=1,x2=33m………………9分∴点D的横坐标是33∴ME 3+1在Rt△PME中,PM=m3ME 3+1,∴tan∠PEM3∴∠PEM=60°∴∠PEQ=30°∴PE=2PQ∵PE2,∴PQ2∴∠PQD=45°…………………………11分∵PQ∥x轴,所以直线AP与x轴的夹角为45°,则△PHA为等腰直角三角形∴PH=AH=1∴点P的坐标是P(2,1)…………………………12分。
湖北省武汉市2018届高三4月调研测试试题(数学理)

湖北省武汉市2018届高中毕业生四月调研测试理科数学 2018.4一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数52i -的共轭复数是( ) A .2i + B .2i -+ C .2i -- D .2i - 2.已知集合2{|1}M x x ==,{|1}N x ax ==,若N M ⊆,则实数a 的取值集合为( )A .{1}B .{1,1}-C .{1,0}D .{1,1,0}- 3.执行如图所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于( ) A .[4,2]- B .[2,2]- C .[2,4]- D .[4,0]- 4.某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为( )A 3B 6C .3.6 5.一张储蓄卡的密码共有6位数字,每位数字都可以从09中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为( ) A .25 B .310 C .15 D .1106.若实数a ,b 满足1a b >>,log (log )a a m b =,2(log )a n b =,2log a l b =,则m ,n ,l 的大小关系为( )A .m l n >>B .l n m >>C .n l m >>D .l m n >> 7.已知直线1y kx =-与双曲线224x y -=的右支有两个交点,则k 的取值范围为( ) A .5(0,)2 B .5[1,2C .55(22-D .5(1,28.在ABC ∆中,角A 、B 、C 的对应边分别为a ,b ,c ,条件p :2b c a +≤,条件q :2B CA +≤,那么条件p 是条件q 成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 9.在61(1)x x+-的展开式中,含5x 项的系数为( ) A .6 B .6- C .24 D .24- 10.若x ,y 满足1212x y -++≤,则2222M x y x =+-的最小值为( ) A .2- B .211 C .4 D .49- 11.函数()2sin()(0)3f x x πωω=+>的图象在[0,1]上恰有两个最大值点,则ω的取值范围为( ) A .[2,4]ππ B .9[2,)2ππ C .1325[,)66ππ D .25[2,)6ππ 12.过点(2,1)P -作抛物线24x y =的两条切线,切点分别为A ,B ,PA ,PB 分别交x 轴于E ,F 两点,O 为坐标原点,则PEF ∆与OAB ∆的面积之比为( )A .12 D .34二、填空题:本大题共4小题,每小题5分,共20分.13.已知sin 2cos αα=,则sin cos αα= .14.已知向量a ,b ,c 满足20a b c ++=,且1a =,3b =,2c =,则22a b a c b c ⋅+⋅+⋅= .15.已知(,)22x ππ∈-,()1y f x =-为奇函数,'()()tan 0f x f x x +>,则不等式()cos f x x >的解集为 .16.在四面体ABCD 中,1AD DB AC CB ====,则四面体体积最大时,它的外接球半径R = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知正数数列{}n a 满足:12a =,11212n n n n n a a a a ---+=+-(2)n ≥.(1)求2a ,3a ;(2)设数列{}n b 满足22(1)n n b a n =--,证明:数列{}n b 是等差数列,并求数列{}n a 的通项n a .18.如图,在棱长为3的正方体1111ABCD A B C D -中,E ,F 分别在棱AB ,CD 上,且1AE CF ==. (1)已知M 为棱1DD 上一点,且11D M =,求证:1B M ⊥平面11A EC . (2)求直线1FC 与平面11A EC 所成角的正弦值.19.已知椭圆Γ:22142x y +=,过点(1,1)P 作倾斜角互补的两条不同直线1l ,2l ,设1l 与椭圆Γ交于A 、B 两点,2l 与椭圆Γ交于C ,D 两点.(1)若(1,1)P 为线段AB 的中点,求直线AB 的方程;(2)记ABCDλ=,求λ的取值范围.20.在某市高中某学科竞赛中,某一个区4000名考生的参赛成绩统计如图所示.(1)求这4000名考生的竞赛平均成绩x (同一组中数据用该组区间中点作代表);(2)由直方图可认为考生竞赛成绩z 服正态分布2(,)N μσ,其中μ,2σ分别取考生的平均成绩x和考生成绩的方差2s ,那么该区4000名考生成绩超过84.41分(含84.81分)的人数估计有多少人? (3)如果用该区参赛考生成绩的情况来估计全市的参赛考生的成绩情况,现从全市参赛考生中随机抽取4名考生,记成绩不超过...84.81分的考生人数为ξ,求(3)P ξ≤.(精确到0.001)附:①2204.75s =14.31=;②2(,)zN μσ,则()0.6826P z μσμσ-<<+=,(22)0.9544P z μσμσ-<<+=;③40.84130.501=.21.已知函数()(ln )xf x xe a x x =-+,a R ∈. (1)当a e =时,求()f x 的单调区间; (2)若()f x 有两个零点,求实数a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,l 的极坐标方程为(cos 2sin )10ρθθ+=,C 的参数方程为3cos 2sin x y θθ=⎧⎨=⎩(θ为参数,R θ∈).(1)写出l 和C 的普通方程;(2)在C 上求点M ,使点M 到l 的距离最小,并求出最小值. 23.[选修4-5:不等式选讲] 已知()22f x ax x =--+.(1)在2a =时,解不等式()1f x ≤;(2)若关于x 的不等式4()4f x -≤≤对x R ∈恒成立,求实数a 的取值范围.理科数学参考答案一、选择题1-5: BDABC 6-10: BDABD 11、12:CC二、填空题13.25 14. 13- 15. (0,)2π三、解答题17.(1)由已知212132a a a a +=+-,而12a =,∴2222232(2)a a -=+-,即222230a a --=.而20a >,则23a =.又由323252a a a a +=+-,23a =,∴233952(3)a a -=+-,即233280a a --=.而30a >,则34a =.∴23a =,34a =.(2)由已知条件可知:22112()21n n n n a a a a n ---=-+-,∴22221(1)(1)(1)n n a a n n ----=--, 则22221(1)(1)(1)n n a n a n ---=---223(1)2a =⋅⋅⋅=--222(1)1a =--0=,而22(1)n n b a n =--,∴0n b =,数列{}n b 为等差数列.∴22(1)n a n -=.而0n a >,故1n a n =+.18.解:(1)过M 作1MT AA ⊥于点T ,连1B T ,则11AT =.易证:111AA E A B T ∆≅∆,于是111AA E A B T ∠=∠.由111190A B T ATB ∠+∠=,知11190AA E ATB ∠+∠=,∴11A E B T ⊥.显然MT ⊥面11AA B B ,而1A E ⊂面11AA B B ,∴1MT A E ⊥,又1B T MT T =,∴1A E ⊥面MTB ,∴11A E MB ⊥.连11B D ,则1111B D A C ⊥.又111D M A C ⊥,1111B D D M D =,∴11A C ⊥面11MD B ,∴111AC MB ⊥.由11A E MB ⊥,111AC MB ⊥,1111A EA C A =,∴1B M ⊥面11A EC .(2)在11D C 上取一点N ,使11ND =,连接EF .易知1//A E FN .∴1111A EFC N EFC E NFC V V V ---==11113(23)33332NFC S ∆=⋅⨯=⨯⨯⨯=.对于11A EC ∆,11AC =,1A E =1EC ,由余弦定理可知11cos EAC ∠==.∴11A EC ∆的面积11111sin 2S AC A E EAC =⋅∠12=⨯=. 由等体积法可知F 到平面11A EC 之距离h 满足111113A EC A EFC S h V ∆-⋅=,则133h =,∴h =,又1FC ,设1FC 与平面1AEC 所成角为θ,∴sin θ===. 19.解:(1)设直线AB 的斜率为tan k α=,方程为1(1)y k x -=-,代入2224x y +=中, ∴222[(1)]40x kx k +---=.∴222(12)4(1)2(1)40k x k k x k +--+--=.判别式222[4(1)]4(21)[2(1)4]k k k k ∆=--+--28(321)k k =++.设11(,)A x y ,22(,)B x y ,则12221224(1)212(1)421k k x x k k x x k -⎧+=⎪⎪+⎨--⎪=⎪+⎩.∵AB 中点为(1,1),∴12212(1)()1221k k x x k -+==+,则12k =. ∴直线的AB 方程为11(1)2y x -=-,即210x y -+=. (2)由(1)知12AB x =-==.设直线的CD 方程为1(1)(0)y k x k -=--≠.同理可得CD =.∴0)ABk CD λ==≠.∴2241312k k k λ=++-41132k k=++-.令13t k k =+, 则4()12g t t =+-,(,[23,)t ∈-∞-+∞.()g t 在(,-∞-,)+∞分别单调递减, ∴2()1g t-≤<或1()2g t <≤+故221λ≤<或212λ<≤.即6(1,λ+∈. 20.解:(1)由题意知:∴450.1550.15650.2750.3x =⨯+⨯+⨯+⨯850.15950.170.5+⨯+⨯=, ∴4000名考生的竞赛平均成绩x 为70.5分.(2)依题意z 服从正态分布2(,)N μσ,其中70.5x μ==,2204.75D σξ==,14.31σ=,∴z 服从正态分布22(,)(70.5,14.31)N N μσ=,而()(56.1984.81)0.6826P z P z μσμσ-<<+=<<=,∴10.6826(84.81)0.15872P z -≥==. ∴竞赛成绩超过84.81分的人数估计为0.158********.8⨯=人634≈人. (3)全市竞赛考生成绩不超过84.81分的概率10.15870.8413-=.而(4,0.8413)B ξ,∴444(3)1(4)10.8413P P C ξξ≤=-==-⋅10.5010.499=-=.21.解:(1)定义域为:(0,)+∞,当a e =时,(1)()'()x x xe e f x x+-=.∴()f x 在(0,1)时为减函数;在(1,)+∞时为增函数.(2)记ln t x x =+,则ln t x x =+在(0,)+∞上单增,且t R ∈. (3)∴()(ln )xf x xe a x x =-+()te at g t =-=.∴()f x 在0x >上有两个零点等价于()tg t e at =-在t R ∈上有两个零点. ①在0a =时,()tg t e =在R 上单增,且()0g t >,故()g t 无零点; ②在0a <时,'()t g t e a =-在R 上单增,又(0)10g =>,11()10a g e a=-<,故()g t 在R 上只有一个零点; ③在0a >时,由'()0tg t e a =-=可知()g t 在ln t a =时有唯一的一个极小值(ln )(1ln )g a a a =-. 若0a e <<,(1ln )0g a a =->最小,()g t 无零点; 若a e =,0g =最小,()g t 只有一个零点;若a e >时,(1ln )0g a a =-<最小,而(0)10g =>, 由于ln ()x f x x=在x e >时为减函数,可知:a e >时,2a e e a a >>. 从而2()0ag a e a =->,∴()g x 在(0,ln )a 和(ln ,)a +∞上各有一个零点. 综上讨论可知:a e >时()f x 有两个零点,即所求a 的取值范围是(,)e +∞. 22.解:(1)由l :cos sin 100ρθρϕ+-=,及cos x ρθ=,sin y ρθ=.∴l 的方程为2100x y +-=.由3cos x θ=,2sin y θ=,消去θ得22194x y +=. (2)在C 上取点(3cos ,2sin )M ϕϕ,则d=05cos()10ϕϕ=--. 其中003cos 54sin 5ϕϕ⎧=⎪⎪⎨⎪=⎪⎩,当0ϕϕ=时,d此时093sin 3cos 5ϕϕ==,0082sin 2cos 5ϕϕ==,98(,)55M . 23.解:(1)在2a =时,2221x x --+≤. 在1x ≥时,(22)(2)1x x --+≤,∴15x ≤≤; 在2x ≤-时,(22)(2)1x x --++≤,3x ≥,∴x 无解; 在21x -≤≤时,(22)(2)1x x ---+≤,13x ≥-,∴113x -≤≤. 综上可知:不等式()1f x ≤的解集为1{|5}3x x -≤≤. (2)∵224x ax +--≤恒成立,而22(1)x ax a x +--≤+,或22(1)4x ax a x +--≤-+,故只需(1)4a x +≤恒成立,或(1)44a x -+≤恒成立, ∴1a =-或1a =.∴a 的取值为1或1-.。
2017-2018学年度武汉市九年级四月调考数学试卷(word版含答案)

2017-2018学年度武汉市九年级四月调考数学试卷(word版含答案)2017~2018学年度武汉市部分学校九年级四月调研测试数学试卷考试时间:2018年4月17日14:30~16:30 一、选择题(共10小题,每小题3分,共30分)1.武汉地区春季日均最高气温15℃,最低7℃,日均最高气温比最低气温高( )A .22℃B .15℃C .8℃D .7℃2.若代数式41x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-4 B .x =-4 C .x ≠0 D .x ≠-4 3.计算3x 2-2x 2的结果是( )A .1B .x 2C .x 4D .5x 24 )投篮次数 10 50 100 150 200 250 300 500 投中次数 4 35 60 78 104 123 152 251 投中频率0.400.700.600.520.520.490.510.50A .0.7B .0.6C .0.5D .0.45.计算(a +2)(a -3)的结果是( )A .a 2-6B .a 2+6C .a 2-a -6D .a 2+a -66.点A (-2,5)关于y 轴对称的点的坐标是( )A .(2,5)B .(-2,-5)C .(2,-5)D .(5,-2)7.一个几何体的三视图如左图所示,则该几何体是( )8.某公司有10名工作人员,他们的月工资情况如下表(其中x 为未知数).他们的月平均工资是2.22万元.根据表中信息,计算该公司工作人员的月工资的中位数和众数分别是( )A .2,4B .1.8,1.6C .2,1.6D .1.6,1.89.某居民小区的俯视图如图所示,点A 处为小区的大门,小方块处是建筑物,圆饼处是花坛,扇形处是休闲广场,空白处是道路.从小区大门口向东或向南走到休闲广场, 走法共有( )A .7种B .8种C .9种D .10种10.在⊙O 中,AB ,CD 是互相垂直的两条直径,点E 在弧BC 上,CF ⊥AE 于点F .若点F三等分弦AE ,⊙O 的直径为12,则CF 的长是( )职务 经理 副经理 A 类职员B 类职员C 类职员人数1 2 2 4 1 月工资/(万元/人) 532x0.8A .552B .5102C .556D .5106二、填空题(共6个小题,每小题3分,共18分) 11.计算:2)32(-+的结果是__________. 12.计算1112+--x x x的结果是__________. 13.两个人玩“石头、剪子、布”的游戏,随机出手一次,其中一人获胜的概率是________.14.一副三角板如图所示摆放,含45°的三角板的斜边与含30°的三角板的较长直角边重合.AE ⊥CD 于点E ,则∠ABE 的度数是__________°.第14题图 第15题图15.如图,在□ABCD 中,AB =8 cm ,BC =16 cm ,∠A =60°.点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 运动速度为2 cm /s ,点F 运动速度为1 cm /s ,它们同时出发,同时停止运动.经过__________s 时,EF =AB .16.已知二次函数y =x 2-2hx +h ,当自变量x 的取值在-1≤x ≤1的范围中时,函数有最小值n .则n 的最大值是__________.三、解答题(共8小题,共72分)17.(本题8分)解方程组⎩⎨⎧=-=+6342y x y x18.(本题8分)如图,B ,E ,C ,F 四点顺次在同一条直线上,AC =DF ,BE =CF ,AB =DE .求证:AB ∥DE .19.(本题8分)学校食堂提供A ,B ,C 三种套餐,某日中餐有1000名学生购买套餐,随机抽查部分订购三种套餐的人数,得到如下统计图.订购各类套餐人数条形统计图订购各类套餐人数所占百分比扇形统计图(1) 一共抽查了_________人;(2) 购买A套餐人数对应的扇形的圆心角的度数是_________;(3) 如果A,B,C套餐售价分别为5元,12元,18元,根据以上统计估计食堂当天中餐的总销售额大约是多少元.20.月使用费/元主叫限定时间/min主叫超时费/(元/min)方式一58 200 0.20方式二88 400 0.25 其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费.(1) 如果每月主叫时间不超过400 min,当主叫时间为多少min时,两种方式收费相同?(2) 如果每月主叫时间超过400 min,选择哪种方式更省钱?21.(本题8分)如图,在四边形ABCD中,AD∥BC,AB⊥BC,⊙O分别与边AB,AD,DC 相切,切点分别为E,G,F,其中E为边AB的中点.(1) 求证:BC与⊙O相切;(2) 如图2,若AD=3,BC=6,求EF的长.22.(本题10分)如图,点A ,B 分别是x 轴,y 轴上的动点,A ( p ,0)、B (0,q ).以AB 为边,画正方形ABCD .(1) 在图1中的第一象限内,画出正方形ABCD .若p =4,q =3,直接写出点C ,D 的坐标;(2) 如图2,若点C ,D 在双曲线xky(x >0)上,且点D 的横坐标是3,求k 的值; (3) 如图3,若点C ,D 在直线y =2x +4上,直接写出正方形ABCD 的边长.23.(本题10分)如图1,在四边形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于点P ,CD 2=DP ·DB .(1) 求证:∠BAC =∠CBD ;(2) 如图2,E ,F 分别为边AD ,BC 上的点,PE ∥DC ,EF ⊥BC .① 求证:∠PFC =∠CPD ;② 若BP =2,PD =1,锐角∠BCD 的正弦值为33,直接写出BF 的长.24.(本题12分)已知抛物线332++=bx ax y 与x 轴交于点A (1,0), B (3,0)两点,与y 轴交于点C .P 为抛物线的对称轴上的动点,且在x 轴的上方,直线AP 与抛物线交于另一点D .(1) 求抛物线的解析式;(2) 如图1,连接AC ,DC ,若∠ACD =60°,求点D 的横坐标;(3) 如图2,过点D 作直线3-=y 的垂线,垂足为点E ,若PD PE 2=,求点P 的坐标.。
推荐-武汉市2018-2018学年高三年级四月调研考试数学试卷(理科) 精品

武汉市2018-2018学年高三年级四月调研考试数学试卷(理科)本试卷分第 I 卷(选择题)和第 Ⅱ 卷(非选择题)两部分,全卷满分 150 分,考试时间 120 分钟。
第 I 卷(选择题,共 50 分)注意事项:1 .答题前,考生务必将自己的姓名、考试证号填在试卷的答题卡上,并认真核对条形码上的准考证号,在规定的位置贴好条形码。
2 .每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如果需要改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效。
参考公式:如果事件A 、B 互斥,那么 P (A +B )=P (A )+P (B )如果事件A 、B 互相独立,那么 P (A •B )=P (A )•P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()kn kk n n p P C k P --=1球的表面积公式 S =4πR 2其中R 表示球的半径 球的体积公式334R V π=其中R 表示球的半径一、选择题:本题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数1212)(2--+=x x x x f 的定义域是(A ){x |x ≠-21}(B ){x |x >-21}(C ){x |x ≠-21且x ≠1}(D ){x |x >-21且x ≠1} 2.复数z =(a +i)(3-4i )∈R ,则实数a 的值是(A )-43 (B )43 (C )34 (D ) -34 3.已知曲线)(x f y =过原点,以点P (x 0,f (x 0))为切点的切线的斜率是2 x 0-1,那么曲线)(x f y =的方程是(A )y =x 2-x (B ) y =x 2+x (C ) y =2x 2-x (D )y =2x 2+x4.把一枚硬币掷三次,三次都出现正面的概率为 (A )41 (B )21 (C ) 43 (D )815.设xx x f 11)(-+=,则0lim ()x f x →的值是(A )21 (B )1 (C )-21(D )∞ 6.若数列{a n }满足a n +1=1-1na :且1a =2,则2006a = (A )1 (B )-21 (C )32 (D )217.若n -m 表示[m ,n ](m <n )的区间长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018武汉四调数学试卷及答案(Word精校版)第2页 / 共21页2017-2018学年度武汉市九年级四月调考数学试卷一、选择题(共10小题,每小题3分,共30分) 1.武汉地区春季日均最高气温15℃,最低7℃,日均最高气温比最低气温高( )A .22℃B .15℃C .8℃D .7℃2.若代数式14x +在实数范围内有意义,则实数x 的取值范围是( )A .x >-4B .x =-4C .x ≠0D . x ≠-43.计算2232x x -的结果是( )A .1B .2x C . 4x D . 25x 4.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率约是( )投篮次数 10 50 100 150 200 250 300 500投中次数 4 35 60 78 104 123 152 251投中频率0.40 0.70 0.60 0.52 0.52 0.49 0.51 0.50 A 5.计算(a +2)(a -3)的结果是( )A .26a - B .26a + C . 26a a -- D . 26a a +- 6.点A (-2,5)关于y 轴对称的点的坐标是( ) A .(2,5) B .(-2,-5) C .(2,-5)D.(5,-2)7.一个几何体的三视图如左图所示,则该几何体是A.B.C.D.8.某公司有10名工作人员,他们的月工资情况如下表(其中x为未知数).他们的月平均工资是2.22万元,根据表中信息,计算该公司工作人员的月工资的中位数和众数分别是( )职务经理副经理A类职员B类职员C类职员人数12241月工资/(万元/人)532x0.8 A.2, 4 B.1.8, 1.6C.2, 1.6 D.1.6, 1.89.某居民小区的俯视图如图所示,点A处为小区的大门,小方块处是建筑物,圆饼处是花坛,扇形处是休闲广场,空白处是道路,从小区大门口向东或向南走到休闲广场,走法共有( )A.7种B.8种C.9种D.10种三视图第3页 / 共21页第4页 / 共21页10.在☉O 中,AB ,CD 是互相垂直的两条直径,点E 在弧BC 上,CF ⊥AE 于点F .若点F 三等分弦AE ,☉O 的直径为12,则CF 的长是( ) A 25 B .210 C 65 D 610二、填空题(共6小题,每小题3分,共18分) 11.计算232的结果是 . 12.计算2111x x x --+的结果是 . 13.两个人玩“石头,剪子,布”的游戏,随机出手一次,其中一人获胜的概率是 . 14.一副三角板如图所示摆放,含45°的三角板的斜边与含30°的三角板的较长直角边重合.AE ⊥CD 于点E ,则∠ABE 的度数是 °.南东AFAOBE BC DBAF E第5页 / 共21页15.如图,在ABCD 中,AB =8cm ,BC =16cm ,∠A =60°.点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向C 运动,点E 运动速度为2cm /s ,点F 的运动速度为1cm /s ,它们同时出发,同时停止运动,经过 s 时,EF =A B .16.已知二次函数22y x hx h =-+,当自变量x 的取值在-1≤x ≤1的范围中时,函数有最小值n ,则n 的最大值是 .三、解答题(共8小题,共72分) 17.(本小题满分8分)解方程组2436x y x y +=⎧⎨-=⎩①②第6页 / 共21页18.(本小题满分8分)如图,B ,E ,C ,F 四点顺次在同一条直线上,AC =DF ,BE =CF ,AB =DE . 求证:AB ∥DE .19.(本小题满分8分)学校食堂提供A ,B ,C 三种套餐,某日中餐有1000名学生购买套餐,随机抽查部分订购三种套餐的人数,得到如下统计图.(1)一共抽查了 人;(2)购买A 套餐人数对应的扇形的圆心角的度数是 ;(3)如果A ,B ,C 套餐售价分别为5元,12元,18元,根据以上统计估计食堂当天中餐的总销售额大约是多少元?第18题图BC FE 订购各类套餐人数所占百分比扇形统计图订购各类套餐人数条形统计图%%B C 22%A 2230CBA人数/个020.(本小题满分8分)下表中有两种移动电话计费方式.月使用费/元主叫限定时间/min主叫超时费/(元/min)方式一582000.20方式二884000.25其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费.(1)如果每月主叫时间不超过400min,当主叫时间为多少min时,两种方式收费相同?(2)如果每月主叫时间超过400min,选择哪种方式更省钱?第7页 / 共21页第8页 / 共21页21.(本小题满分为8分)如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,⊙O 分别与边AB ,AD ,DC 相切,切点分别为E ,G ,F ,其中E 为边AB 的中点.(1)求证:BC 与⊙O 相切;(2)如图2,若AD =3,BC =6,求EF 的长.22.(本小题满分10分)如图,点A ,B 分别是x 轴,y 轴上的动点,A (p ,0),B (0,q ).以AB 为边画正方形ABC D .(1)在图1中的第一象限内,画出正方形ABCD ,若p =4,q =3,直接写出点C ,D 的坐标; (2)如图2,若点C ,D 在双曲线(0)k y x x>上,且点D 的横坐FOEFOEDD第9页 / 共21页标是3,求k 的值;(3)如图3,若点C ,D 在直线y =2x +4上,直接写出正方形ABCD 的边长.xxxy yyy=2x+4OOOBA第10页 / 共21页23.(本小题满分10分)如图1,在四边形ABCD 中,AB ∥CD ,对角线A C .BD 相交于点P ,2CD DP DB , (1)求证:∠BAC =∠CBD ;(2)如图2,E 、F 分别为边AD 、BC 上的点,PE ∥DC ,EF ⊥B C .①求证:∠PFC =∠CPD ;②若BP =2,PD =1,锐角∠BCD 3,直接写出BF 的长.FEPPDCCDB第11页 / 共21页第12页 / 共21页24.(本小题满分12分)已知抛物线233y ax bx =++x 轴交于点A (1,0),B (3,0)两点,与y 轴交于点C ,P 为抛物线的对称轴上的动点,且在x 轴的上方,直线AP 与抛物线交于另一点D . (1)求抛物线的解析式;(2)如图1,连接AC ,DC ,若∠ACD =60°,求点D 的横坐标.3y =-2PE PD =,求点P 的坐标xxy yBA OD BA COP第13页 / 共21页2017-2018学年度武汉市九年级四月调考数学试卷参考答案一、选择题题号1 2 3 4 5 6 7 8 9 10 答案C D B C C A C B D D 第10题【解析】: 方法一延长CF ,交AB 于点G ,AE 与CD 交于点H ,连结BE 易证∠AFG =∠AEB =90° ∴GF ∥BE则:23AG AF AB AE == ∴AG =8,OG =2,CG 22+=210OG OC 易证△COG ≌△AOH ∴OH =OG =2,CH =4 易证COG CFH ∆∆∽∴CH ·OC =CF ·CG ∴CF = 6105方法二连结CE 、AC 、CB易证:∠AEC =∠ABC =45°即有:△FEF 为等腰直角三角形 AF =2EF =2CF而2222+62=+=5AC OA OC AF CF CF =HOAEFGOBEAF第14页 / 共21页∴CF =6105答案:D二、填空题3 12. 211x - 13. 13 14. 105 15. 83或16316. 0.2516题【解析】:2y 2x hx h =-+, 易知对称轴为x h = 因此,当1h ≤-,12132n h h h =++=+≤--11h ≤≤,2221n 24h h h h h =-+=-+≤ 1h≤,1210n h h h =-+=-≤ 综上,n 的最大值为14三、解答题 17. 【解析】解:由①+②得:510x = ∴2x = 把2x =代入①得:44y += ∴0y =所以原方程的解为:2x y =⎧⎨=⎩18. 【解析】证明:∵BE =CF ∴BE +EC =CF +EC 即BC =EF第15页 / 共21页在△ABC 和△DEF 中,AC DF AB DE BC EF =⎧⎪=⎨⎪=⎩所以△ABC ≌△DEF (SSS ) ∴∠B =∠DEF ∴AB ∥DE .19.【解析】⑴一共抽查了100人;⑵购买A 套餐人数对应的扇形的圆心角的度数是108°; ⑶100030%5100048%12100022%1811220⨯⨯+⨯⨯+⨯⨯=(元)∴根据统计食堂当天中餐的总销售额大约是11220元.20.【解析】⑴设每月主叫时间x 分钟,则两种收费方式的费用分别为 ①当0200x ≤≤时,方式一收费58元,方式二收费88元,故不存在两种方式收费相同; ②当200400x <≤时,方式一:()1580.22000.218y x x =+-=+ 方式二:()2880.254000.2512y x x =+-=- 则有0.21888x +=,解得350x =∴当每月主叫时间不超过400分钟时,主叫时间为350分钟时,两种方式收费相同. ⑵根据题意得0.2180.2512x x +=-,解得600x =第16页 / 共21页∴当400600x <<时,选择方式二省钱; 当600x =时,两种方式收费相同; 当600x >时,选择方式一省钱.21. 【解析】 (1)证明:连接OG ,OE .作OH ⊥BC 交BC 于H . 90AB BC AD BC A B ⊥∴∠=∠=︒∥O 与 AB 相切于点E ,O 与AD 相切于点G 90,OEA OGA OE OG r ∴∠=∠=︒==∴四边形OEAG 为正方形,AE OG r ∴== E 为AB 中点 AE EB ∴= EB OG r ∴== 90,B OEB OHB OE EB r ∠=∠=∠=︒==∴四边形OEBH 为正方形 OH EB r ∴== 即BC 与O 相切(2)过D 点作DJ BC ⊥交BC 于点J ,,,AB BC CD AD 均为O 切线又3,6AD BC == 3,CH CF 6r DG DF r ∴==-==- DJ BC ⊥ ∴四边形ABJD 为矩形 2,3DJ AB r BJ AD ∴==== 3JC ∴=222DJ JC DC += ()()2222336r r r ∴+=-+- 2r ∴=FOE第17页 / 共21页连EO 并延长交O 于R ,过F 作FQ ⊥BC 交BC 于点Q ,交ER 于N13,6,22AD BC AE EB ER ===== 4,5,3DJ AB DC JC ∴==== 4sin 5DJ FQC DC FC ∴∠===又64FC r =-= 1612sin cos 55FQ C FC CQ C FC ∴=∠==∠=又90NEB B BQN ∠=∠=∠=︒1825EB NQ EN BQ BC CQ ∴====-=166255FN FQ NQ ∴=-=-=在Rt △ENF 中 2222218655EF EN NF ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭6105EF ∴22. 【解析】解:(1)C (3,7) D (7,4)(2)①当0q >时,如图2,由(1)得易证AOB △≌△BEC ,AOB △≌DFA △ ()(),,C q p q D p q p ∴++C ,D 在双曲线k y x=上 CCDDx y x y k ∴== 即()()q p q p p q k +=+= ,C D在第一象限 0,0p q ∴>> 0p q +≠ p q ∴= 3Dx = 3p q ∴+= 32p q == ()39322k p p q ∴=+=⨯= ②当0q <时,如图3,由(1)得易证AOB △≌△BEC ,AOB △≌DFA △ ()(),,C q p q D p q p ∴--+-- C ,D 在双曲线k y x=上 CCDDx y x y k ∴== 即()()q p q p p q k --+=--= 36-r3-r 2rr r rFO E N FOER第18页 / 共21页3D x = 3p q ∴-= ∴(3)3q p k -⋅-=-⋅=即q p =-由3p q p q -=⎧⎨+=⎩∴解得3232p q ⎧=⎪⎪⎨⎪=-⎪⎩ ∴92k =- ∴综上所述92k =或92k =-45345723.【解析】(1)证明:∵2CDDP DB=⋅,∴CD DBDP CD=.又∵BDC CDP ∠=∠,∴CDP BDC ∆∆∽, ∵CBD DCP ∠=∠,又∵CD AB ∥,∴BAC DCP ∠=∠,∴CBD BAC ∠=∠.(2)①证明:延长EP 交BC 于M .∵DC PE ∥,∴AC PA CD PE =,BC BMCD PM =,又∵AB PM ∥,∴BC BM AC PA =,∴CDPM CD PE =,∴PM PE =,因为BC EF ⊥,∴︒=∠90EFM ,∴xxyy 第22题图2第22题图3E D(p+q,p)C (q,p+q )OEFC (-q,-p+q )D(p-q,-p)OB A B AF第23题图2第23题图2N M FEPFEPDCCDBB第19页 / 共21页PM EM PF ==21,∴PMF PFC ∠=∠,又∵CD PM ∥,∴DCB PMF ∠=∠,∴DCBPFC ∠=∠,由(1)可知BDC CDP ∆∆∽,∴BCD CPD ∠=∠,∴CPD PFC ∠=∠.(3)322=BF .分析:过D 作BC DN ⊥于N 点,由DBC DCP ∆∆∽可得3=CD ,由33sin =∠BCD ,可得DN =1,2=CN ,由222BN DN BD =-得22=BN ,∴23=BC .再证BCP BPF ∆∆∽,得BCBF BP⋅=2,∴232=BF .24.【解析】解:(1)将点A (1,0),B (3,0)代入抛物线有 03309333a b a b ⎧=++⎪⎨=++⎪⎩①②得3a =,43b =-抛物线解析式为:234333y x x =-+(2)过点A 作直线AH ⊥CA ,交直线CD 于点H ,作HQ ⊥AB 于点Q∵∠COA =∠CAH =∠HQA =90°yHDB A COPQ第20页 / 共21页∴∠OCA =∠HAQ ,∠CAO =∠AHQ ∴COA AQH ∽又∵△CAH 为直角三角形 ∴3tan tan30CA CHA AH =∠=︒ ∴3HA HQ AQ CA OA CO==,33OC = ,1OA = ∴3HQ =,9AQ = ,3)H设直线CH 的解析式为y mx n =+ ,将点(0,33)C ,3)H 代入有CH 直线解析式为:333y =+D 为CH 与抛物线交点23333333y x x y ⎧=-+⎪⎨=+⎪⎩2193305x x =, 12190,5x x ==,即D 点的横坐标为195(3)设直线AP :y kx k =-xyMEF DBAOP第21页 / 共21页 234333y x x y kx k⎧=-+⎪⎨=-⎪⎩消去y ()2343+330x k x k -+= ∴33A D x x ⋅=,1A x =,∴33Dx = ∴333D k ⎛ ⎝ ∴333E ⎛+- ⎝ 抛物线的顶点(2,3F -,∴直线3y =-F ,点()P 2,k过点D 作DM ⊥PF 于点M ,在Rt △PDM 中,由勾股定理得:()2221+13PD k ⎛=+ ⎝ 在Rt △PEF 中,由勾股定理得:22213133PE ⎛⎛=++ ⎝⎝ 由题意得:222PEPD = ()222221+1131333k ⎛⎛⎛=++ ⎝⎝⎝∴()24=21+k∴()11k k ==-或舍∴点P 的坐标为(2,1).。