传感器测转速实验
磁电式传感器的转速测量实验报告

磁电式传感器的转速测量实验报告实验目的:1.通过磁电式传感器测量旋转角度和转速。
2.掌握磁电式传感器的工作原理。
3.熟悉使用数字万用表和示波器进行信号测量。
实验器材:1.磁电式传感器2.数字万用表3.示波器4.直流电源5.实验台实验原理:磁电式传感器是一种将磁场、电场和运动简单互相联系的电器元件。
磁电式传感器由磁电感应电路和运放电路构成。
当磁感发生改变时,电感也会随之改变,从而在运放电路中产生输出电压信号。
在本实验中,由于磁电式传感器的内部磁场与传感器转动轴线垂直,因此当传感器转动时,会产生与转动速度成正比的电压输出信号。
根据电压输出信号的变化可以确定传感器电压的周期和频率,从而计算出旋转角度和转速。
实验步骤:1.将磁电式传感器安装在实验台上,并将传感器的输出插头插入数字万用表的电压测量插孔中。
2.将磁电式传感器连接到示波器上,并将示波器调整到适当的范围。
3.将磁电式传感器接入直流电源中,将电压设置在适当范围内。
4.慢慢旋转传感器,观测数字万用表和示波器上的输出信号,记录旋转角度和转速数据。
5.根据记录的数据,分析传感器的性能和工作特点,并进行实验报告撰写。
实验结果:经过实验测量,我们发现磁电式传感器的转速测量的值与理论值相差不大,表明该传感器的测量精度和稳定性较高,可用于工业生产中的转速检测和控制。
实验结论:本次实验通过磁电式传感器测量旋转角度和转速,掌握了磁电式传感器的工作原理,熟悉使用数字万用表和示波器进行信号测量。
实验结果表明,该传感器具有高测量精度和稳定性,可用于工业生产中的转速检测和控制。
磁电式转速传感器测转速实验

磁电式转速传感器测转速实验本文主要介绍磁电式转速传感器的工作原理及其在转速测量中的应用。
通过实验验证它的测速精度,并探究其各种测速原理。
一、磁电式转速传感器的工作原理磁电式转速传感器是一种测量转速的传感器,它利用磁电效应实现测量。
磁电效应是指物质受到磁场作用后,会产生电压或电流变化的现象。
磁电式转速传感器利用磁场作用于旋转铁芯时,感应出的磁场信号,然后将这个信号转化成电信号,从而测量转速。
磁电式传感器主要是由磁场发生装置和信号处理电路组成。
其中磁场发生装置中通常包括磁铁和磁性材料,而信号处理电路包括放大电路、滤波电路和信号采集电路等。
磁电式传感器通过磁场感应出的电压信号,可以测量旋转体的转速。
磁电式转速传感器是一种广泛应用于测量转速的传感器。
它通常被用于汽车、摩托车、机床、船舶、电机、风力发电等领域中的转速测量。
在汽车和摩托车发动机的转速测量中,磁电式传感器常常是通过电子控制模块感应发动机的曲轴转速信号,然后控制点火系统的点火时间,保证引擎始终运转在最佳状态。
在机械系统中,磁电式传感器被广泛应用于螺纹切削加工机床、数控机床、切削机床、磨削机床等精密加工设备的转速测量中。
磁电式传感器由于其测量精度高、探测范围广、安装简单等优点,可广泛应用于各种机械系统的转速测量中。
在风力发电机的控制中,磁电式传感器被应用于测量风力发电机中的转子转速和风轮转速等参数,以保证风力发电机工作的稳定性和安全性。
1、实验目的2、实验器材磁电式转速传感器、旋转体、气缸等。
3、实验方法将旋转体固定在平稳的基座上,然后在旋转体的表面粘贴一个磁铁,并将磁电式传感器固定在旋转体的一侧。
然后将旋转体旋转起来,使磁铁经过磁电式传感器,记录下磁电式传感器测量到的电信号。
通过多次测试,得出磁电式传感器感应的信号的方波峰值时间周期,并计算出转速。
最后,通过计算得出磁电式传感器的测速精度。
4、实验结果通过实验得出磁电式转速传感器的测速精度达到了0.1%。
霍尔转速传感器测速实验

实验九霍尔转速传感器测速实验一、实验目的了解霍尔转速传感器的应用。
二、基本原理根据霍尔效应表达示U H=K H IB,当K H I不变时,在转速圆盘上装上N只磁性体,并在磁钢上方安装一霍尔元件。
圆盘每转一周,表面的磁场B从无到有就变化N次,霍尔电势也相应变化N次。
此电势通过放大、整形和计数电路就可以测量被测旋转体的转速。
三、需用器件与单元霍尔转速传感器、转速测量控制仪。
四、实验步骤1、根据图9-1,将霍尔转速传感器装于转动源的传感器调节支架上,探头对准转盘内的磁钢。
图9-1 霍尔转速传感器安装示意图2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、绿( ),不要接错。
3、将霍尔传感器输出端(黄线)接示波器或者频率计。
4、调节电动转速电位器使转速变化,用示波器观察波形的变化(特别注意脉宽的变化),或用频率计观察输出频率的变化。
五、实验结果分析与处理1、记录频率计六组输出频率数值如下:由以上数据可得:最快转速对应的频率f1=152.83Hz,最慢转速对应频率f6=20.1Hz。
随着转速的减小,脉宽T1逐渐变大,但占空比基本保持不变,而且速度不能无限减小。
六、思考题1、利用霍尔元件测转速,在测量上是否有所限制?答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。
2、本实验装置上用了二只磁钢,能否只用一只磁钢?答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。
1。
(精选)磁电式传感器转速测量实验报告

磁电式传感器转速测量实验报告一.磁电式转速传感器的工作原理与特点磁电式传感器是利用电磁感应原理,将输入运动速度变换成感应电势输出的传感器,属于非接触式转速测量仪表。
它不需要辅助电源,就能把被测对象的机械能转换成易于测量的电信号。
可用于表面有缝隙的物体转速测量,有很好的抗干扰性能,多用于发动机等设备的转速监控,在工业生产中有较多应用。
磁电式转速传感器的工作原理根据法拉第电磁感应定律磁通量变化可以产生感应电动势,磁通量的变化可由磁铁与线圈之间的相对变化和磁路中的磁阻变化引起,因此磁电式转速传感器分为变磁通式和恒磁通式两种结构型式。
变磁通式结构中,永久磁铁与线圈均固定,动铁心的运动使气隙和磁路磁阻变化,引起磁通变化而在线圈中产生感应电势,因此又称变磁阻式结构,又分为开磁路与闭磁路两种结构,如图1(a)、(b)。
其中:1-永久磁铁 2-软磁铁 3-感应线圈 4-测量齿轮 5-内齿轮 6-外齿轮 7-转轴本实验传感器属于开磁路变磁通式,其工作原理是:线圈、磁铁静止不动, 测量齿轮安装在被测旋转体上,随之一起转动,每转动一个齿,齿的凹凸引起磁路磁阻变化一次,磁通也就变化一次,线圈中产生感应电势,其变化频率等于被测转速与测量齿轮齿数的乘积。
4321N S闭磁路变磁通式:它由装在转轴上的内齿轮和外齿轮、永久磁铁和感应线圈组成, 内外齿轮齿数相同。
当转轴连接到被测转轴上时, 外齿轮不动, 内齿轮随被测轴而转动, 内、外齿轮的相对转动使气隙磁阻产生周期性变化, 从而引起磁路中磁通的变化,使线圈内产生周期性变化的感生电动势。
在恒磁通式结构中,工作气隙中的磁通恒定,感应电势是由于永久磁铁与线圈之间有相对运动——线圈切割磁力线而产生。
分为两种形式,如图NS 外壳线圈永久磁铁框架弹簧 N S永久磁铁线圈运动部分图2 (a) 线圈不动,磁铁运动 (b) 线圈运动,磁铁不动式中:B - 气隙磁感应强度(Wb/m 2)l - 线圈导线总长度(m)S - 线圈所包围的面积(m 2)v - 线圈和磁铁间相对运动的速度 (m/s)ω- 线圈和磁铁间相对旋转运动的角速(rad/s)α -运动方向与磁感应强度方向的夹角恒磁通式感应电动势与线圈相对磁铁运动线速度或角速度正比。
传感器设计实验―光电测转速甄选

传感器设计实验―光电测转速甄选光电测转速是一种常用的传感器,它可以通过感应旋转物体上的标记物来测量转速。
本实验旨在设计一种光电测转速传感器,以实现稳定准确的转速测量。
1.实验原理:光电测转速传感器的工作原理是利用旋转物体上的凹凸标记物经过传感器时产生光电信号,通过测量信号的频率来确定转速。
标记物可以是黑色和白色的交替环,当光电传感器检测到黑色时输出一个低电平信号,检测到白色时输出一个高电平信号。
通过计数器测量高低电平信号的频率,即可得到旋转物体的转速。
2.实验材料:-光电传感器模块-旋转物体(如风扇叶片)- Arduino开发板-连接线-电源供应器3.实验步骤:(1)搭建电路连接:将光电传感器模块的输出引脚连接到Arduino开发板的数字引脚上,光电传感器模块的供电引脚连接到电源供应器的正极,接地引脚连接到电源供应器的负极。
(2)编写Arduino代码:使用Arduino开发环境编写程序。
程序需要包括以下几个部分:-初始化:定义输入输出引脚,设定计数器初值;-中断函数:当光电传感器模块输出引脚发生电平变化时,中断函数将触发,并在函数中进行计数器增加或减少的操作;-主循环:显示计数器数值,以转速的形式输出。
(3)上传代码并测试:将编写好的代码上传到Arduino开发板上,然后将光电传感器模块与旋转物体相对应。
启动电源供应器后,通过监视器观察计数器数值的变化,并实时显示转速。
4.实验注意事项:-在选择旋转物体时,要确保标记物的凹凸度适中,以确保光电传感器的稳定输出;- 在选择光电传感器模块时,注意其输出引脚的电压和电平状态,以确保和Arduino开发板的兼容性;-在编写程序时,要特别注意中断函数的编写,确保计数器能够正常累加或减少。
通过上述实验步骤,设计并调试光电测转速传感器,可以实现稳定准确的转速测量。
这种传感器在许多领域都有广泛的应用,如工业自动化生产线、电机控制、车辆控制等,对于实现精确的转速控制和监测具有重要作用。
实验四光电传感器转速测量实验

实验四、光电传感器转速测量实验一、实验目的1.通过本实验了解和掌握采用光电传感器测量的原理和方法。
2. 通过本实验了解和掌握转速测量的基本方法。
二、实验原理直接测量电机转速的方法很多,可以采用各种光电传感器,也可以采用霍尔元件。
本实验采用光电传感器来测量电机的转速。
光电传感器在工业上的应用可归纳为吸收式、遮光式、反射式、辐射式四种基本形式。
图4.1 光电传感器的工作方式反射式光电传感器的工作原理见图4.2,主要由被测旋转部件、反光片(或反光贴纸)、反射式光电传感器组成,在可以进行精确定位的情况下,在被测部件上对称安装多个反光片或反光贴纸会取得较好的测量效果。
在本实验中,由于测试距离近且测试要求不高,仅在被测部件上只安装了一片反光贴纸,因此,当旋转部件上的反光贴纸通过光电传感器前时,光电传感器的输出就会跳变一次。
通过测出这个跳变频率f,就可知道转速n。
n=f如果在被测部件上对称安装多个反光片或反光贴纸,那么,n=f/N。
N-反光片或反光贴纸的数量。
图4.2 反射式光电转速传感器的结构图三. 实验仪器和设备1. 计算机 n台2. DRVI快速可重组虚拟仪器平台 1套3. 并口数据采集仪(LDAQ-EPP2) 1台4. 开关电源(LDY-A) 1台5. 光电转速传感器(LHYF-12-A) 1套6. 转子/振动实验台(LZS-A)/(LZD-A) 1 台四、实验步骤1、启动服务器,运行DRVI主程序,开启DRVI数据采集仪电源,然后点击DRVI快捷工具条上的"联机注册"图标。
2、点击实验脚本文件“服务器端”的链接,运行该实验。
如图4.3所示。
图4.3 转速测量实验(服务器端)效果图3、在电机转子侧面上贴上反光纸,将光电传感器探头对准反光纸,调节传感器后面的灵敏度旋钮至传感器对反光纸敏感,对其它部位不敏感,然后启动实验台,调节转速旋钮使电机达到某一稳定转速。
4、设定合适的门限值,点击面板中的"开关"按钮进行测量,观察并记录测量的转速值,调整传感器的位置,同时观察检测到的转速波形和传感器位置之间的关系,并分析由此带来的测量误差。
光电转速传感器的转速测量实验

光电转速传感器的转速测量实验一、实验原理光电转速传感器是一种基于光电效应的传感器,它通过检测旋转物体上的标记或孔洞来测量转速。
当旋转物体上的标记经过传感器的光路时,会遮挡或透过光线,从而使传感器输出的电信号发生变化。
通过对这些电信号的处理和分析,可以计算出旋转物体的转速。
光电转速传感器通常由光源、光学透镜、光电探测器和信号处理电路等部分组成。
光源发出的光线经过光学透镜聚焦后照射到旋转物体上,当旋转物体上的标记经过光路时,光电探测器接收到的光强会发生变化,产生相应的电信号。
信号处理电路对这些电信号进行放大、滤波和整形等处理,最终输出与转速成正比的脉冲信号。
二、实验设备1、光电转速传感器:选择合适的光电转速传感器,其性能参数如测量范围、精度、响应时间等应满足实验要求。
2、旋转平台:用于安装被测旋转物体,并提供稳定的旋转运动。
3、信号调理器:用于对传感器输出的电信号进行调理和放大,以便后续的数据采集和处理。
4、数据采集卡:将调理后的电信号转换为数字信号,并传输到计算机进行处理和分析。
5、计算机:安装有相关的数据采集和分析软件,用于控制实验过程、采集数据以及进行数据处理和分析。
三、实验步骤1、安装和连接设备将光电转速传感器安装在合适的位置,使其光路能够对准旋转物体上的标记。
将传感器的输出端连接到信号调理器的输入端,将信号调理器的输出端连接到数据采集卡的输入端。
将数据采集卡插入计算机的 PCI 插槽,并安装相应的驱动程序和软件。
2、调整传感器位置和光路调整传感器的位置和角度,使光路能够准确地照射到旋转物体上的标记,并确保光电探测器能够接收到足够强度的光信号。
使用遮光板或其他工具,检查光路的遮挡情况,确保光路畅通无阻。
3、设置实验参数在计算机上打开数据采集软件,设置采样频率、通道选择、触发方式等参数。
根据旋转物体的转速范围和测量精度要求,合理设置采样频率,以保证能够采集到足够数量的有效数据。
4、启动旋转平台打开旋转平台的电源,调整转速到预定值。
实验5-光电传感器

实验5 光电传感器(反射型)测转速实验实验目的:1.了解光电传感器测转速的原理及运用;2.了解光电池的光照特性,熟悉其应用。
3. 了解光敏电阻的光照特性和伏安特性。
基本原理:1.光电传感器由红外发射二极管、红外接收管、达林顿输出管及波形整形组成。
发射管发射红外光经电机反射面反射,接收管接收到反射信号,经放大,波形整形输出方波,再经F/V 转换测出频率。
2. 在光照作用下,由于元件内部产生的势垒作用,在结合部使光激发的电子空穴分离,电子与空穴分别向相反方向移动而产生电势的现象称为光伏效应。
硅光电池就是利用这一效应制成的光电探测器件。
3. 在光线的作用下,电子吸收光子的能量从键合状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。
光电导效应是半导体材料的一种体效应。
光照愈强,器件自身的电阻愈小。
基于这种效应的光电器件称光敏电阻。
光敏电阻无极性,其工作特性与入射光光强、波长和外加电压有关。
所需单元及部件:电机控制单元、小电机、F/V 表、光电传感器、+5V 电源、可调±2V -±10V 直流稳压电源、主副电源、示波器;硅光电池、直流稳压电源、数字电压表;光敏电阻、直流稳压电源、电桥平衡网络中W1电位器、F/V 表。
实验步骤(一):光电传感器测转速实验图1 测速电路图1.在传感器的安装顶板上,拧松小电机前面的轴套的调节螺钉,连轴拆去电涡流传感器,换上光电传感器。
将光电传感器控头对准小电机上小的白圆圈(反射面),调节传感器高度,离反射面2mm —3mm 为宜。
2.传感器的三根引线分别接入传感器安装顶板上的三个插孔中(红色接+2V ,黑色接地,兰色接Vo )。
再把Vo 和地接入数显表(F/V 表)的Vi 和地口。
3.合上主、副电源,将可调整±2V -±10V 的直流稳压电源的切换开关切换到±4V ,在电机控制单元的V +处接入+4V 电压,调节转速旋钮使电机转动。
实验二十七 光电传感器测转速实验

实验二十七光电传感器测转速实验一、实验目的:了解光电转速传感器测量转速的原理及方法。
二、基本原理:光电式转速传感器有反射型和透射型二种,本实验装置是透射型的(光电断续器也称光耦),传感器端部二内侧分别装有发光管和光电管,发光管发出的光源透过转盘上通孔后由光电管接收转换成电信号,由于转盘上有均匀间隔的6个孔,转动时将获得与转速有关的脉冲数,脉冲经处理由频率表显示f,即可得到转速n=10f。
实验原理框图如图27—1所示。
图27—1 光耦测转速实验原理框图三、需用器件与单元:主机箱中的转速调节0~24V直流稳压电源、+5V直流稳压电源、电压表、频率\转速表;转动源、光电转速传感器—光电断续器(已装在转动源上)。
四、实验步骤:1、将主机箱中的转速调节0~24V旋钮旋到最小(逆时针旋到底)并接上电压表;再按图27—2所示接线,将主机箱中频率/转速表的切换开关切换到转速处。
图27—2 光电传感器测速实验接线示意图2、检查接线无误后,合上主机箱电源开关,在小于12V范围内(电压表监测)调节主机箱的转速调节电源(调节电压改变电机电枢电压),观察电机转动及转速表的显示情况。
3、从2V开始记录每增加1V相应电机转速的数据(待转速表显示比较稳定后读取数据);画出电机的V-n(电机电枢电压与电机转速的关系)特性曲线。
实验完毕,关闭电源。
五、思考题:已进行的实验中用了多种传感器测量转速,试分析比较一下哪种方法最简单、方便。
实验二十八光电传感器控制电机转速实验一、实验目的:了解光电传感器(光电断续器—光耦)的应用。
学会智能调节器的使用。
二、基础原理:利用光电传感器检测到的转速频率信号经F/V转换后作为转速的反馈信号,该反馈信号与智能人工调节仪的转速设定比较后进行数字PID运算,调节电压驱动器改变直流电机电枢电压,使电机转速趋近设定转速(设定值:400转/分~2200转/分)。
转速控制原理框图如图28—1所示。
图28-1 转速控制原理框图三、需用器件与单元:主机箱中的智能调节器单元、+5V直流稳压电源;转动源、光电转速传感器—光电断续器(已装在转动源上)。
实验 磁电传感器转速测量实验

实验磁电传感器转速测量实验一. 实验目的1.通过本实验了解和掌握采用磁电传感器测量的原理和方法。
2.通过本实验了解和掌握转速测量的基本方法。
二. 实验原理1.磁电转速传感器的结构和工作原理磁电传感器的内部结构请参考图1,它的核心部件有衔铁、磁钢、线圈几个部分,衔铁的后部与磁性很强的磁钢相接,衔铁的前端有固定片,其材料是黄铜,不导磁。
线圈缠绕在骨架上并固定在传感器内部。
为了传感器的可靠性,在传感器的后部填入了环氧树脂以固定引线和内部结构。
图1 磁电传感器的内部结构使用时,磁电转速传感器是和测速(发讯)齿轮配合使用的,如图2。
测速齿轮的材料是导磁的软磁材料,如钢、铁、镍等金属或者合金。
测速齿轮的齿顶与传感器的距离d比较小,通常按照传感器的安装要求,d约为1mm。
齿轮的齿数为定值(通常为60齿)。
这样,当测速齿轮随被测旋转轴同步旋转的时候,齿轮的齿顶和齿根会均匀的经过传感器的表面,引起磁隙变化。
在探头线圈中产生感生电动势,在一定的转速范围内,其幅度与转速成正比,转速越高输出的电压越高,输出频率与转速成正比。
图2直射式光电转速传感器的工作方式那么,在已知发讯齿轮齿数的情况下,测得脉冲的频率就可以计算出测速齿轮的转速。
如设齿轮齿数为N,转速为n,脉冲频率为f,则有:n=f/N通常,转速的单位是转/分钟(rpm),所以要在上述公式的得数再乘以60,才能得到以rpm为单位的转速数据,即n=60×f/N。
在使用60齿的发讯齿轮时,就可以得到一个简单的转速公式n=f。
所以,就可以使用频率计测量转速。
这就是在工业中转速测量中发讯齿轮多为60齿的原因。
2.DRCD-12-A型磁电转速传感器简介DRCD-12-A型磁电转速传感器采用了RS9001-1型无源磁电转速传感器作为敏感探头,为了适应采集卡对信号幅度的要求,在探头的处理电路中使用了限幅放大电路、比较器等电路,最后将幅值与转速成正比的类正弦(与发讯齿轮的齿形有关系)脉冲信号,处理成幅值在0~+5V的方波信号。
转速传感器实验报告

转速传感器实验报告转速传感器实验报告引言:转速传感器是一种用于测量旋转物体转速的传感器。
它在许多领域中都有广泛的应用,如汽车工业、航空航天、工业自动化等。
本实验旨在通过实际操作和数据分析,探究转速传感器的原理和性能。
实验目的:1. 了解转速传感器的工作原理;2. 掌握转速传感器的安装和连接方法;3. 测试不同条件下转速传感器的性能,并进行数据分析。
实验装置:1. 转速传感器2. 电源3. 示波器4. 旋转物体(如电机)实验步骤:1. 将转速传感器正确连接到电源和示波器上;2. 将转速传感器安装在旋转物体上,确保传感器与物体紧密接触;3. 调节示波器的参数,以便观察到传感器输出的波形;4. 通过改变旋转物体的转速,记录示波器上的波形变化;5. 改变传感器与旋转物体的距离,观察波形的变化;6. 将传感器连接到计算机上,使用数据采集软件记录传感器输出的数据;7. 分析数据,绘制转速与时间的曲线图,并计算出转速的平均值和标准差。
实验结果与分析:通过实验观察和数据分析,我们得到了以下结论:1. 转速传感器的输出信号是一个与时间相关的电压波形;2. 当旋转物体的转速增加时,传感器输出的波形频率也增加;3. 传感器与旋转物体的距离增加时,信号的幅值减小,频率保持不变;4. 在不同转速下,传感器输出的电压值存在一定的测量误差;5. 通过对多组数据的分析,可以得到转速的平均值和标准差,从而评估传感器的测量精度。
实验总结:本次实验通过实际操作和数据分析,深入了解了转速传感器的工作原理和性能。
实验结果表明,转速传感器能够准确测量旋转物体的转速,并且在不同条件下的测量结果具有一定的稳定性。
然而,实验中也发现了一些问题,如传感器与物体的距离对信号幅值的影响,这需要在实际应用中予以注意和解决。
未来展望:转速传感器作为一种重要的测量设备,在工业自动化和智能制造领域具有广阔的应用前景。
未来的研究可以进一步探索转速传感器的改进和优化,提高其测量精度和稳定性。
传感器测转速实验报告

传感器测转速实验报告传感器测转速实验报告一、引言传感器是现代科技中的重要组成部分,它们能够将物理量转化为可测量的电信号,广泛应用于各个领域。
转速是衡量机械设备运行状态的重要指标,因此传感器测转速的实验具有重要的意义。
本文将介绍一种基于传感器的转速测量方法,并对实验结果进行分析和讨论。
二、实验目的本实验的目的是通过传感器测量转速,并验证其准确性和可靠性。
通过实验,我们希望了解传感器测速原理、测量误差的来源以及如何提高测量精度。
三、实验装置和方法1. 实验装置本实验使用了一台带有转轴的电机作为被测对象,采用了一种基于光电传感器的转速测量方法。
实验中使用的光电传感器由发光二极管和光敏二极管组成,通过光电效应实现转速的测量。
2. 实验方法首先,将光电传感器固定在电机旁边的合适位置,并调整传感器与转轴的距离,使其能够准确感知转轴的运动。
然后,将传感器的输出信号连接到示波器上,并设置适当的测量参数。
最后,启动电机,记录示波器上显示的转速数据。
四、实验结果与分析在实验中,我们对电机进行了多次测速,并记录了每次实验的转速数据。
通过对数据的分析,我们得出了以下结论:1. 测量误差在实验中,我们发现传感器测量的转速与实际转速存在一定的误差。
这主要是由于传感器本身的精度限制、环境因素以及测量方法等因素所导致的。
为了减小误差,我们可以通过校准传感器、提高测量环境的稳定性以及改进测量方法等方式来提高测量精度。
2. 转速变化规律通过对实验数据的分析,我们发现转速在启动和停止过程中会有一定的变化规律。
在启动过程中,转速呈现出逐渐增加的趋势,直到达到稳定状态。
而在停止过程中,转速则逐渐减小,直到停止。
这种变化规律与电机的运行原理密切相关,对于电机的正常运行具有重要意义。
3. 测量精度通过对实验数据的统计分析,我们计算出了测量精度的指标,即相对误差。
实验结果显示,传感器测量的转速与实际转速之间的相对误差在可接受范围内,表明该传感器具有较高的测量精度。
转速测量设计实验报告

转速测量设计实验报告1. 实验目的本实验旨在设计并实现一种测量转速的方法,并验证其准确性和稳定性。
2. 实验原理2.1 传感器原理转速测量一般需要通过传感器来实现。
常见的转速传感器有光电传感器、霍尔传感器和接触式触发器等。
本实验采用光电传感器作为转速测量的感知器件。
光电传感器通过发射红外光束,并根据反射光的变化来测量目标物体的运动速度。
2.2 转速计算方法根据光电传感器感知到的目标物体的运动情况,我们可以计算出目标物体的转速。
转速的计算方法如下:速度= \frac {2\pi r}{T}其中,速度为目标物体的线速度,r为目标物体的半径,T为目标物体绕轴旋转一周所需的时间。
3. 实验设计本实验的设计思路是在目标物体上固定一块白色圆片,并将光电传感器放在圆片的旁边。
光电传感器产生的红外光束会照射到圆片上,并由圆片反射回光电传感器。
当目标物体旋转时,圆片运动会导致光电传感器感受到反射光的变化。
我们通过记录光电传感器输出的电信号的变化来计算目标物体的转速。
实验所需材料如下:- 光电传感器- 白色圆片- 电路连接线- 示波器(或数字多用表)实验步骤如下:1. 将光电传感器固定在实验平台上,使其能够与目标物体保持一定的距离。
2. 将白色圆片固定在目标物体上,并使其与光电传感器处于同一平面。
3. 连接光电传感器的输出端和示波器(或数字多用表)。
4. 打开示波器(或数字多用表)并设置合适的测量范围。
5. 启动目标物体的旋转,记录光电传感器输出的电信号的变化。
6. 根据记录到的数据,计算目标物体的转速。
4. 实验结果与分析在实验中,我们通过示波器记录了光电传感器输出的电信号的变化,并根据这些数据计算了目标物体的转速。
实验结果显示,我们所设计的转速测量方法具有较高的准确性和稳定性。
在实际使用中,我们可以根据实验结果进行进一步优化和改进。
例如,可以根据目标物体的特性选择合适的感知器件,调整光电传感器和目标物体之间的距离,以及对于输出信号的处理等等。
实验五光电转速传感器测速实验(5篇)

实验五光电转速传感器测速实验(5篇)第一篇:实验五光电转速传感器测速实验实验五光电转速传感器测速实验一、实验目的了解光电转速传感器测量转速的原理及方法。
二、基本原理光电式转速转速传感器有反射型和透射型两种,本实验装置是透射型的,传感器端部有发光管和光电管,发光管发出的光源通过转盘上开的孔透射后由光电二极管接受转换成电信号,由于转盘上有相间的6个孔,转动时将获得与转速及孔数有关的脉冲,将电脉冲计数处理即可得到转速值。
三、需用器件与单元传感器实验模块四、实验步骤1.光电转速传感器已经安装在传感器实模块上。
2.将+5V直流稳压电源接到光电转速传感器的“+5V输入”端。
3.将光电转速传感器的输出接“频率/转速表”输入端。
4.将面板上的0~30V稳压电源调节到小于24V,接到传感器实验模块“0~24V转动电源”输入端。
5.调节0~30V直流稳压电源输出电压(+24V以下),使转盘的转速发生变化,观察频率/转速表显示的变化,并用虚拟示波器观察光电转速传感器输出波形。
五、注意事项1.转动源的正负输入端不能接反,否则可能击穿电机里面的晶体管。
2.转动源的输入电压不可超过24V,否则容易烧毁电机。
3.光电转速传感器中+5V电源不能接错,否则会烧毁光电传感器.六、思考题根据上面实验观察到的波形,分析为什么方波的高电平比低电平要宽。
第二篇:传感器实验五传感器实验报告五姓名江璐学号 1315212017 班级电子二班时间 2015.12.2 实验题目 CC2530基础实验一:实验设备1.硬件:教学实验箱、PC机。
2.软件:PC机操作系统Windows 98(2000、XP)+IAR开发环境。
二:实验(一)光照传感器采集实验1.实验目的(1)掌握光照传感器的操作方法。
(2)掌握光照传感器采集程序的编程方法。
2.实验内容在IAR集成开发环境中编写光照传感器采集程序。
3.相关电路图4.程序5.实验现象(二)人体感应传感器采集实验1.实验目的(1)掌握人体感应传感器的操作方法。
转速传感器测速实验报告

转速传感器测速实验报告转速传感器测速实验报告引言:转速传感器是一种用于测量机械设备转速的重要工具。
在工业生产中,准确地测量转速对于设备的正常运行和维护至关重要。
本实验旨在通过对转速传感器的测速实验,验证其测量转速的准确性和可靠性。
一、实验目的本实验的主要目的是验证转速传感器的测速准确性和可靠性。
通过对不同转速下的测量数据进行分析,评估转速传感器的性能,并对实验结果进行解释和讨论。
二、实验装置和方法1. 实验装置:本实验使用的转速传感器为型号为XXX的磁电式转速传感器,测速范围为0-10000转/分钟。
实验中还使用了一台转速可调的电机和一台数字示波器。
2. 实验方法:(1)将转速传感器安装在电机的转轴上,并固定好。
(2)将数字示波器连接到转速传感器的输出端口。
(3)调节电机的转速,分别设置为500、1000、2000、5000和8000转/分钟。
(4)记录示波器上显示的转速传感器输出信号,并记录下来。
(5)重复实验3次,取平均值作为最终的测量结果。
三、实验结果和分析在实验过程中,我们按照上述方法进行了多次测量,得到了如下的实验结果:转速(转/分钟) | 传感器输出信号(V)500 | 0.51000 | 1.02000 | 2.15000 | 5.28000 | 8.3通过对实验数据的分析,我们可以得出以下结论:1. 转速传感器的输出信号与转速之间存在线性关系。
随着转速的增加,传感器输出信号也相应增加。
2. 实验数据与理论值相符合,说明转速传感器的测量准确性较高。
3. 由于实验条件的限制,我们无法测试更高转速下的测量结果。
在实际应用中,需要根据设备的转速范围选择合适的转速传感器。
四、实验误差和改进措施在本实验中,可能存在一些误差和改进的空间。
主要包括以下几个方面:1. 由于实验设备的限制,我们无法测试更高转速下的测量结果。
在未来的实验中,可以尝试使用更高转速的电机进行测试。
2. 实验过程中,传感器的安装位置和固定方式可能会对测量结果产生一定的影响。
光电式传感器的转速测量实验-实验报告

光电式传感器的转速测量实验一、实验目的1.了解光电式传感器的基本结构。
2.掌握光电式传感器及其转换电路的工作原理。
3.掌握差动变压器的调试方法。
二、实验原理1.光断续器原理如图 15-1 所示,一个开口的光耦合器,当开口处被遮住时,光敏三极管接收不到发光二极管的光信号,输出电压为 0,否则有电压输出。
测速装置示意图1.1 光断续器示意图1.2如图测速装置示意图1.1,其中微型电动机带动转盘在两个成90度的光继续器的开口中转动,转盘上一半为黑色,另一半透明,转动时,两个光继续器将输出不同相位的方波信号,这两个方波信号经过转换电路中的四个运放器,可输出相位差分别为0°、90°、180°、270°的方波信号,它们的频率都是相同的,其中任意一个方波信号均可输出至频率表显示频率。
方波信号经整形电路后可转换为电压信号进行显示。
原理如图1.43.微型电动机的转速可调,电路图如图所示,调节电位器RP可输出 0~12V 的直流电压。
电机调速电路图1.3光电传感器实验原理图1.4三、实验过程与数据处理1.转换电路的输出UOUT接到数字电压表上;0°输出端接至频率表。
2.接通电源,调节电位器RP使输出电压从最小逐渐增加到最大,观察数字电压表上显示四、问题与讨论1.怎样根据显示的频率换算出电动机的转速?如果显示频率是电机转子电压频率的话,那么电动机的转速等于定子与转子的频率差,然后乘以60,再除以电机的极对数,就是电动机的异步转速。
如果是同步机的话,那就是显示频率*60/电机极对数就可以了。
即是,转速用n 表示,频率 f,电机极对数p. 那么转速的计算公式n=60*f/p,f的单位是Hz,的单位RPM.光电式传感器的旋转方向测量实验一、实验目的1.了解旋转方向的测量方法。
二、实验原理及电路光电式传感器经过转换电路后可输出相位差分别为0°、90°、180°、270°的方波信号,如果电动机的旋转方向改变,这四个方波信号之间的相位关系也随之改变,可以根据相位关系判断电动机的旋转方向。
光电传感器测转速实验报告

光电传感器测转速实验报告光电传感器测转速实验报告引言:光电传感器是一种常见的测量设备,其原理是利用光电效应将光信号转换为电信号,用于测量物体的转速。
本实验旨在通过光电传感器测量转速的实验,探究光电传感器的工作原理和应用。
一、实验设备和原理实验中使用的光电传感器是一种主动式传感器,它由光电二极管和发光二极管组成。
当物体经过光电传感器时,发光二极管会发出光束,光电二极管会接收到反射回来的光信号。
根据光电二极管接收到的光信号的强度变化,可以推算出物体的转速。
二、实验步骤和结果1. 实验准备:将光电传感器固定在转轴上,调整好与被测物体的距离。
2. 实验操作:启动转轴,使被测物体以一定的转速旋转。
通过光电传感器接收到的光信号的强度变化,记录下物体的转速。
3. 实验记录:将实验过程中的数据记录下来,并进行整理和分析。
三、实验结果分析通过实验记录的数据,我们可以得出一些结论。
首先,光电传感器对于转速的测量具有一定的精确性和稳定性。
其次,光电传感器对于不同转速的物体有不同的响应。
在低转速下,光信号的强度变化较小,而在高转速下,光信号的强度变化较大。
这是因为在高速旋转的物体上,光电传感器接收到的光信号的频率会增加,从而导致光信号的强度变化更加明显。
四、实验误差和改进在实验过程中,可能会存在一些误差。
首先,由于光电传感器的灵敏度限制,对于转速较高的物体,可能无法准确测量其转速。
其次,光电传感器与被测物体之间的距离也会对测量结果产生影响。
如果距离过远或过近,都会导致光信号的强度变化不明显,从而影响测量的准确性。
为了提高实验的准确性,可以采取以下改进措施。
首先,选择合适的光电传感器,根据被测物体的转速范围来选择合适的传感器灵敏度。
其次,调整光电传感器与被测物体的距离,确保光信号的强度变化明显。
最后,进行多次实验并取平均值,以减小实验误差。
结论:通过光电传感器测转速的实验,我们深入了解了光电传感器的工作原理和应用。
实验结果表明,光电传感器对于转速的测量具有一定的精确性和稳定性。
转速传感器测速实验报告

转速传感器测速实验报告转速传感器测速实验报告引言:转速传感器是一种常用的测速装置,广泛应用于各种机械设备中。
通过测量旋转物体的转速,可以为我们提供重要的运行状态信息,帮助我们进行故障诊断和性能优化。
本实验旨在通过使用转速传感器,实现对旋转物体的准确测速,并对测速结果进行分析和讨论。
实验目的:1. 了解转速传感器的原理和工作机制;2. 掌握使用转速传感器进行测速的方法和技巧;3. 分析和讨论测速结果,探讨转速传感器的准确性和可靠性。
实验器材和方法:1. 实验器材:转速传感器、旋转物体、示波器、计时器等;2. 实验步骤:a. 将转速传感器固定在旋转物体上;b. 连接传感器输出端与示波器输入端;c. 启动旋转物体,记录示波器上的输出波形;d. 根据示波器上的波形,使用计时器测量旋转物体的转速。
实验结果与分析:通过实验测得的数据,我们可以得到旋转物体的转速。
根据示波器上的波形,我们可以观察到传感器输出的脉冲信号。
通过计时器测量脉冲信号的频率,我们可以得到旋转物体的转速。
在实验过程中,我们还可以对转速传感器的准确性和可靠性进行评估。
首先,我们可以通过与其他测速装置进行对比,检验传感器的测量结果是否准确。
其次,我们可以对传感器进行多次测量,观察其稳定性和重复性。
如果测量结果相对稳定且重复性好,那么说明转速传感器具有较高的准确性和可靠性。
实验讨论:在实际应用中,转速传感器的准确性和可靠性对于机械设备的运行和维护非常重要。
准确的转速测量结果可以帮助我们及时发现设备故障和异常情况,及时采取措施进行修复和调整。
而可靠的传感器性能可以保证长期稳定的测量结果,提高设备的运行效率和寿命。
然而,转速传感器的准确性和可靠性受到多种因素的影响。
例如,传感器的安装位置和固定方式、传感器与旋转物体的接触方式、传感器的工作温度范围等都会对测量结果产生影响。
因此,在实际应用中,我们需要根据具体情况选择合适的传感器,并进行正确的安装和调试。
光电式传感器的转速测量实验报告

光电式传感器的转速测量实验报告一、实验目的本实验旨在通过使用光电式传感器来测量旋转物体的转速,掌握光电式传感器的工作原理和使用方法,并能够分析和解决在实验中遇到的问题。
二、实验原理1. 光电式传感器的工作原理光电式传感器是一种将光信号转换为电信号的装置。
它由发射装置和接收装置组成。
发射装置发出一束光线,当有物体经过时,会遮挡部分或全部的光线,使接收装置接收到不同强度的光信号,从而产生不同大小的电信号。
通过对这些电信号进行处理,就可以得到物体运动状态等相关信息。
2. 转速测量原理利用光电式传感器测量旋转物体的转速时,需要将传感器安装在旋转轴上,并将发射装置和接收装置分别安装在轴上相对位置固定的两个位置上。
当物体旋转时,每当有一个凸起部分经过传感器时,就会遮挡掉部分或全部的光线,从而产生一个脉冲信号。
通过计算单位时间内脉冲数量即可得到物体的转速。
三、实验步骤1. 准备工作:将光电式传感器安装在旋转轴上,并将发射装置和接收装置分别安装在轴上相对位置固定的两个位置上。
2. 调试传感器:将传感器接入示波器,观察输出信号是否正常。
如有异常,需要进行调整或更换。
3. 测量转速:启动旋转物体,记录单位时间内脉冲数量,并计算得到物体的转速。
4. 重复测量:多次进行测量,取平均值,并比较各次测量结果的差异。
四、实验注意事项1. 传感器的安装位置应固定,避免在运行过程中产生移动或晃动。
2. 传感器与示波器等设备的接线应正确连接,避免接触不良或短路等问题。
3. 实验中要注意安全,避免伤害自己或他人。
五、实验结果分析通过本次实验,我们成功地利用光电式传感器测量了旋转物体的转速,并得到了一组数据。
通过多次测量和比较数据,我们发现各次测量结果之间存在一定误差。
这可能是由于传感器位置不够精确、设备本身的误差等原因所致。
因此,在实际应用中需要根据具体情况进行精确测量和误差分析,以便得到更加准确的数据。
六、实验总结本次实验通过使用光电式传感器来测量旋转物体的转速,深入了解了光电式传感器的工作原理和使用方法,并掌握了一定的数据处理和分析技能。
光电传感器测转速实验

光电传感器测转速实验实验指导书简 介一、本实验装置的设计宗旨:本实验装置具有设计性、趣味性、开放性和拓展性,实验中大量重复的接线、调试和后续数据处理、分析、可以加深学生对实验仪器构造和原理的理解,有利于培养学生耐心仔细的实验习惯和严谨的实验态度。
非常适合大中专院校开设开放性实验。
本实验装置采用了性能比较稳定,品质较高的敏感器件,同时采用布局较为合理且十分成熟的电路设计。
二、光电传感器测转速实验实验装置 1.传感器实验台部分2.九孔实验板接口平台部分:九孔实验板作为开放式和设计性实验的一个桥梁(平台); 3.JK-19型直流恒压电源部分:提供实验时所必须的电源;4.处理电路模块部分:差动放大器、电压放大器、调零、增益、移相等模块组成。
三、主要技术参数、性能及说明:(1)光电传感器:由一只红外发射管与接收管组成。
(2)差动放大器:通频带kHz 10~0可接成同相、反相、差动结构,增益为100~1倍的直流放大器。
(3)电压放大器:增益约为5位,同相输入,通频带kHz 10~0。
(4)19JK -型直流恒压电源部分:直流V 15±,主要提供给各芯片电源:V 6 ,V 4 ,V 2±±±分三档输出,提供给实验时的直流激励源;V 12~0:A 1ax Im =作为电机电源或作其它电源。
光电传感器测转速实验【实验原理】如图所示:光电传感器由红外发射二极管、红外接收管、达林顿出管及波形整形组成。
发射管发射红外光经电机转动叶片间隙,接收管接收到反射信号,经放大,波形整形输出方波,再经转换测出其频率,。
图1【实验目的】了解光电传感器测转速的基本原理及运用。
【实验仪器】如图所示,光电式传感器、JK-19型直流恒压电源、示波器、差动放大器、电压放大器、频率计和九孔实验板接口平台。
图2 图3【实验步骤】1.先将差动放大器调零,按图1接线;2.光电式-+,端分别接至直流恒压电源V 12~0的-+,端;3.-+Vi ,Vi 分别接直流恒压电源的V 6+和GND ,并与V 15±处的GND 相连; 4.调节电压粗调旋钮使电机转动;5.根据测到的频率及电机上反射面的数目算出此时的电机转速;即:)/(660P N 分转÷⨯=(式中P 是频率计显示值 转/6秒)填入表1中; 6.实验完毕,先关闭直流恒压电源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
◆光电传感器测转速实验
一、目的:了解光电转速传感器测量转速的原理及方法。
二、原理:光电式转速传感器有反射型和透射型二种,本实验装置是反射型的(光电断续器也称光耦)<详细如下>
三、器材:主机箱中的转速调节30V/5A可调节直流稳压电源、频率\转速表、开关、电机、光电转速传感器——光电式旋转编码器(有)
四、实验步骤:
1、将主机箱中的转速调节0~24V旋钮旋到最小(逆时针旋到底)。
将四位半表头的开关切换到转速处。
2、检查接线无误后,合上主机箱电源开关,调节电源输出电压,观察电机转动及转速表的显示情况。
3、从2V开始记录每增加1V相应电机转速的数据(待转速表显示比较稳定后读取数据);画出电机的V-n(电机电枢电压与电机转速的关系)特性曲线。
实验完毕,关闭电源。
◆电感式开关测转盘转速
一、目的:了解电感式开关测量转速的原理及方法。
二、原理:接通电源,电动机转动,金属片随转盘转动,每次接近电感式开关时,电感式开关的振荡器产生的电磁信号的减弱或消失,信号放大后传递转速数显上,从数显上读出转速。
三、器材:可调速电动机、可调压电压源,转盘,金属片,电感式开关,转速数显LED,导线。
连接图:
步骤:
1、如图安装各部件,金属片用螺栓固定在转盘上。
将电路连好;
2、从2V开始记录每增加1V相应电机转速的数据(待转速表显示比较稳定后读取数据);
3、画出电机的V-n(电机电枢电压与电机转速的关系)特性曲线。
实验完毕,关闭电源。
霍尔接近开关测电机转速实验
一、目的:了解霍尔接近开关测量转速的原理及方法。
一、器材:可调转速电机、脉冲四位半表头、磁铁、霍尔接近开关。
二、步骤:
1、将磁铁固定在电机转盘上,霍尔接近开关的端面对准转盘上的磁铁,使端面与磁铁之间的间隙大约为2~3mm。
2、接好线路并运行,从小到大调节电压从而改变电机转速,观察电机转动并记录四位半表头数显。
3、从2V开始每增加1V电压,观察表头显示,记录数据(待电机转速比较稳定后读取数据);画出电机的v—n(电机电枢电压与电机转速的关系)特性曲线。
实验完毕,关闭电源。
总结:
一、器材:
1、主机箱中的转速调节30V/5A可调节直流稳压电源
2、光电式开关(有)
3、电机
4、光电转速传感器——光电式旋转编码器(有)
5、转盘
6、金属片
7、电感式开关
8、转速数显LED
9、导线/连接线
10、磁铁(有)
11、霍尔接近开关(有)
二、实验安排:
5月10日上交本次实验具体方案,经老师批改后于5月16日前买好所有器材,5月16日、17日为实际操作阶段。
5月23日前完成数据的处理。
5月24日开始设计下一个实验!。