填料塔基础知识
化工原理5.6 填料塔
选择气体输
送设备
设计填料塔
的塔径
5.6
5.6.4
填料塔
填料塔的附件
5.6.4.1 支承板
(1)支承板是用以支撑填料和塔内持液的部件。
(2)基本条件:
① 足够的机械强度
② 支承板的自由截面积不应小于填料层的自由截面积,以免气液在通过支承板时
流动阻力过大,在支承板处首先发生液泛。
,1
L ,1
B
Τ
2
2′
பைடு நூலகம்2
∗ =
A
2′ 2
1′
1
X
5.6
填料塔
【例5-12】 填料塔逆流吸收,2 降低,其余操作条件不变,2 、1 、吸收操作线如何
变化?
解:
Y
′
(1) 和S 的变化情况:
Y1
=
/
1
=
=
+
1
Ω
率的三次方之比。
② 特点:反映气体通过湿填料时的流动特性。当流体流过填料时,填料实际空
隙率变小,填料的实际比表面积也发生变化。
5.6
5.6.2.2
填料塔
填料的类型
(1)按装填方式来分——乱堆填料和整砌填料
(2)按使用效率来分——普通填料和高效填料
(3)按结构类型来分——实体填料和网体填料
(4)常见的填料:
(2)逆流操作与并流操作平均吸收推动力的比。(1.83倍)
5.6
填料塔
(2)吸收剂的流量 L
若填料塔的入口条件 , , 一定,吸收剂流量 ↑,即Τ ↑ ,则吸收操作
填料塔
共軛环
④矩鞍型(intolox saddle):矩 鞍形填料结构不对称,堆积时不 重叠,均匀性高。该填料气流阻 力小,处理能力大,构造简单, 是一种性能优良的填料 ⑤环矩鞍(Intalox):兼具环型、 鞍型填料的优点。敞开的侧壁有 利于气体和液体通过,减少了填 料层内滞液死区。填料层内流体 孔道增多,使气液分布更加均匀, 传质效率得以提高。
方形窗口,这种结构使填料层内
气、液分布性能大为改善,尤其
是环的内表面得到充分利用。与
同样尺寸的拉西环相比,鲍尔环
的气液通量可提高50%,而压降
仅为其一半,分离效果也得到提
高。
③阶梯环:鲍尔环基础上改 造得出,其高度为直径的一 半。由于高径比的减少,使 得气体绕填料外壁的平均路 径大为缩短,减少了阻力。 喇叭口一边,不仅增加了机 械强度,而且使填料之间为 点接触,有利于液膜的汇集 与更新,提高了传质效率。 • 目前所使用的环型填料中最 为优良的一种。
①拉西环(Rasching ring) :使用
较早,为外径与高度相等的圆环,
拉西环结构简单,制造容易,但堆
积时相邻环间易形成线接触,填料
内十字环
层的均匀性差,因而存在严重的向
壁偏流和沟流现象,致使传质效率
低。其改善方面有θ 形、十字格形
的拉西环。
环
②鲍尔环(pall ring):鲍尔环是
在拉西环的壁上开一层或两层长
⑴喷洒型: 单孔式: 直管 弯管 缺口管 多孔式 :①环管式分布器: 单环管分布器 多环管分布器 ②排管式分布器: 垂直引入的排管式分布器 水平引入的排管式分布器 ③莲蓬头式分布器 ⑵溢流型:①槽式分布器图 ②盘式分布器
⑶冲击型:反射板式分布器 宝塔式分布器
填料塔的结构及其工作原理
填料塔的结构及其工作原理填料塔是一种常见的化工设备,用于气体和液体之间的传质和传热操作。
它由塔壳、填料层、进料口、出料口、塔底和塔顶等组成。
下面将详细介绍填料塔的结构及其工作原理。
一、填料塔的结构1. 塔壳:填料塔的主体部分,通常由圆柱形或方形的金属壳体构成。
塔壳具有足够的强度和刚度,以承受内部压力和外部环境力的作用。
2. 填料层:填料塔内部的填料层是实现气液传质和传热的关键部分。
填料一般采用金属网格、塑料网格或陶瓷制成,具有大表面积和良好的润湿性,以增加气液接触面积,促进传质和传热效果。
3. 进料口和出料口:填料塔的进料口用于引入待处理的气体或液体,而出料口用于排出经过处理的气体或液体。
进出料口的位置和数量根据具体的工艺要求和设备设计而定。
4. 塔底:填料塔的底部通常设有液体收集装置,用于收集和排除从填料层中下降的液体。
液体收集装置可以是平板、集液器或集液槽等形式。
5. 塔顶:填料塔的顶部通常设有气体排放装置,用于排出处理后的气体。
气体排放装置可以是排气管、排气扇或排气管道等形式。
二、填料塔的工作原理填料塔的工作原理基于气体和液体之间的质量传递过程。
当气体通过填料层时,气体分子与填料表面接触,从而发生吸附、吸收、化学反应或物理吸附等过程。
这些过程使得气体中的污染物质或有害物质被吸附或吸收到液体中,从而实现气体的净化和处理。
具体而言,填料塔的工作过程包括以下几个步骤:1. 进料:待处理的气体或液体通过进料口引入填料塔。
在进料口处,气体与液体发生接触,开始进行传质和传热过程。
2. 填料层:气体通过填料层时,与填料表面接触,发生吸附、吸收或化学反应。
填料层的大表面积和良好的润湿性有利于增加气液接触面积,提高传质效果。
3. 液体收集:填料层中的液体由于重力作用逐渐下降,最终被收集到塔底的液体收集装置中。
液体收集装置可以将液体排出或重新循环使用。
4. 气体排放:经过填料层处理的气体从塔顶的气体排放装置排出。
填料塔手册
《填料塔手册》目录图表目录1. 简介1.1 填料塔的定义和用途1.2 填料塔的历史发展1.3 填料塔在化工、环保等领域的应用1.4 填料塔应用案例2. 填料塔的基本结构2.1 塔体2.2 填料层2.3 液体分布器2.4 气体分布器2.5 支撑板2.6 除雾器2.7 各部件的材质选择指南2.8 不同类型填料塔的结构差异比较3. 填料类型3.1 规整填料3.1.1 金属规整填料3.1.2 陶瓷规整填料3.1.3 塑料规整填料3.2 散堆填料3.2.1 鞍形填料3.2.2 拉西环3.2.3 球形填料3.3 各类填料的优缺点比较3.4 新型填料材料介绍4. 填料塔设计考虑因素4.1 操作条件(温度、压力、流量)4.2 物料特性4.3 塔径和塔高的确定4.4 填料选择4.5 液体分布系统设计4.6 设计软件介绍和使用指南4.7 不同行业特殊设计要求5. 填料塔的操作5.1 启动程序5.2 正常运行参数监控5.3 常见问题及解决方案5.4 停机程序5.5 自动化控制系统介绍5.6 不同工况下的操作参数调整指南6. 填料塔的维护6.1 日常检查项目6.2 定期维护计划6.3 填料更换指南6.4 清洗和除垢方法6.5 预测性维护技术介绍6.6 常见故障的诊断和排除方法7. 填料塔性能优化7.1 压降控制7.2 传质效率提高7.3 能耗降低策略7.4 优化案例分析7.5 新技术在性能优化中的应用8. 安全注意事项8.1 操作安全规程8.2 个人防护装备要求8.3 紧急情况处理8.4 安全培训计划的制定指南8.5 国际安全标准介绍9. 环境保护考虑9.1 废水处理9.2 废气排放控制9.3 噪音控制9.4 绿色生产技术在填料塔中的应用9.5 环境影响评估方法介绍10. 填料塔相关计算10.1 传质单元数(NTU)计算10.2 压降计算10.3 填料层高度计算10.4 计算实例10.5 常用计算公式的推导过程11. 新技术和发展趋势11.1 高效填料开发11.2 智能控制系统应用11.3 模拟和优化软件使用11.4 行业专家对未来发展的预测11.5 国际先进技术介绍12. 案例研究12.1 不同行业填料塔应用实例12.2 不同规模填料塔案例分析12.3 问题诊断和解决案例12.4 失败案例分析及经验教训13. 常见问题解答14. 附录14.1 常用填料参数表14.2 填料塔故障排查清单14.3 相关标准和规范列表14.4 常用符号和缩略语表14.5 相关专业术语的多语言对照表15. 参考文献索引本手册旨在为填料塔的设计、操作和维护人员提供全面的指导。
化工设备之填料塔
化工设备之填料塔填料塔是一种常见的化工设备,用于进行物理或化学反应、蒸馏和吸收过程等。
填料塔中填充着各种不同的填料,以增加气液质量传递的表面积,从而提高设备的效率。
下文将从填料的种类、作用原理、设计和应用等方面介绍填料塔。
一、填料的种类1.球形填料:常见的球形填料有陶瓷球、金属球和塑料球等。
球形填料具有流体阻力小、气液分布均匀等特点,是填料塔中常见的一种填料。
2.环形填料:环形填料分为金属材质和塑料材质两种。
环形填料的特点是表面积大,容积小,具有良好的液膜形成和固定的优势,适合于处理液相粘度大的情况。
3.网状填料:网状填料具有表面积大、空隙率高、液滴分布均匀等特点,能有效地扩大气液接触界面,增强气液质量传递效果。
4.格栅填料:格栅填料通常用于液压分离时使用,能够有效地增加间隙面积,并保持间隙的大小和位置不变。
二、填料塔的作用原理填料塔的主要作用原理是通过填充物增加气液接触面积,从而提高传质、反应和分离的效率。
当气体和液体在填料塔中产生接触时,由于填料的存在,气体和液体必须通过填料内的波流道隙缝,从而导致气液混合,进而进行物理或者化学反应,提高传质效果,以达到分离、纯化的目的。
三、填料塔的设计1.填料:填料的类型和形态直接影响到填料塔的效果,应根据具体工艺要求和特点选择。
2.塔径和塔高:要根据设备的工作流量、物理性质和反应特性等因素来确定,应该选择适当的塔径和塔高,以保证设备的高效运行。
3.塔体冷却:在进行冷却反应时,应考虑在塔体中安装冷却器,以保证反应温度不会过高。
4.进口液流速:为保证液相在填料层内形成实际的液膜,应保证进口液速不低于一定值,通常为1~1.5m/s。
5.进口液体含气量:液体中的气体含量越高,气液分布越均匀,但气体含量过高会影响填料塔内流体的反应效率,因此进口液中的气体应控制在一定范围内。
四、填料塔的应用填料塔广泛应用于化工、石化、冶金、环保等领域,主要用于分离、回收、蒸馏、吸收等物理和化学反应过程。
填料塔的结构
具有结构简单,造价低廉 ,制造方便,便于处理腐 蚀性物料,气液接触效果 好,压力降小等优点,在 处理容易产生泡沫的物料 以及用于真空操作时,更 有其独特的优越性。
.
填料塔的内部构件及辅助设备
1.填料塔的基础知识
填料塔的结构、操作原理
塔体:一般取为圆筒形,可由金属、塑料或陶瓷 制成,金属筒体内壁常衬以防腐材料。 填料:大致可分为散装填料和规整填料两大类, 是传热和传质的场所。 塔内件:包括填料支承与压紧装置、液体与气体 分布器、液体再分布器以及气体除沫器等。 操作原理:液体经塔顶喷淋装置均匀分布于填料 上,依靠重力作用沿填料表面自上而下流动, 并与在压强差推动下穿过填料空隙的气体相互 接触,发生传热和传质。
液体气体规整填料塑料丝网波纹填料散装填料塑料鲍尔环填料填料塔的结构操作原理填料塔的优缺点优点具有结构简单造价低廉制造方便便于处理腐蚀性物料气液接触效果好压力降小等优点在处理容易产生泡沫的物料以及用于真空操作时更有其独特的优越性
第2节 认识填料塔
1 2 3 4
填料塔的基础知识
填料的类型及性能
填料的选择及安装
7
液体
6 5
4 8 3
2
1
气体Βιβλιοθήκη 规整填料 塑料丝网波纹填料
散装填料 塑料鲍尔环填料
填料塔的优缺点
优点
缺点
体积大,重量大,传质效率差, 不适用于处理污浊液体和含尘气 体,操作稳定性差,填料容易堵 塞,以及容易发生沟流等现象。 但是近年来由于填料的的不断改 进,新型、高效、高负荷填料的 开发既提高了塔的通过能力和传 质效率,又改善了沟流现象,同 时还保留了其原有的优点因此填 料塔已被推广到许多大型气液操 作中。.
化工设备之填料塔
化工设备之填料塔引言填料塔是化工生产中常用的一种设备,用于进行气体或液体的传质与传热操作。
填料塔通过将流体引导经过填料层,增大接触面积,从而提高传质传热效率。
本文将从填料塔的定义、结构、工作原理、应用领域等方面进行详细介绍。
一、填料塔的定义填料塔(Packed tower)是一种用于气体液体传质、传热的设备。
其结构包括塔体、填料层、进出口管道、槽外冷凝器等部分。
填料塔的塔体一般由塔筒、进出料口、塔底及塔顶等组成。
二、填料塔的结构填料塔的结构主要包括以下几个部分:1. 塔筒塔筒是填料塔的主体部分,一般由圆柱形或方形的金属材料制成。
塔筒的内部通常经过抛丸除锈、防腐处理等工艺,以提高其耐腐蚀性能。
2. 填料层填料层是填料塔的核心部分,其作用是增大流体接触面积。
常见的填料材料包括金属、陶瓷、塑料等,其形状有条形、环形、片状等多种。
3. 进出口管道填料塔的进出口管道用于引导流体进入和流出塔体。
进口管道通常设置在塔底,而出口管道则设置在塔顶。
4. 槽外冷凝器槽外冷凝器是填料塔中常用的辅助设备,用于将气体冷凝成液体。
冷凝后的液体可以回流到塔底,进一步提高传质效率。
三、填料塔的工作原理填料塔的工作原理是通过在塔内设置填料层,使流体在填料层上形成薄膜状,增加液体和气体之间的接触面积,从而促进传质和传热的发生。
具体的工作原理如下:1.液体从塔顶通过喷淋器均匀地引入填料层,流经填料层后形成薄膜状。
2.气体从塔底通过进口管道引入塔内,顺着填料层向上流动。
3.在填料层的作用下,液体和气体之间进行传质传热,液体中的溶质逐渐均匀地分布到气体中。
4.溶质逐渐从气体中传到液体中,达到传质的目的。
5.冷凝的气体在填料层中与液体接触,被冷凝器冷凝成液体后回流到塔底。
6.反复循环以上步骤,直到达到预定的传质、传热效果。
四、填料塔的应用领域填料塔广泛应用于化工、石油、冶金、环保等行业,其主要应用领域包括:1.吸附分离:填料塔在吸附分离过程中起到重要作用,可用于气体分离、液体分离等。
填料塔的简单介绍及其相应计算教材
目录一、塔设备的概述 (2)1.1 填料塔 (3)1.2 板式塔 (4)1.3填料塔与板式塔的比较 (5)二、塔设备设计的基本步骤 (6)三、塔设备的强度和稳定性计算 (6)3.1塔设备的载荷分析和设计准则 (6)3.2 质量载荷 (8)3.3地震载荷 (8)3.4偏心弯矩 (8)3.5最大弯矩 (8)3.6 圆筒轴向应力核核 (9)3.6.1 圆筒轴向应力 (9)3.6.2 圆筒稳定校核 (9)3.6.3 圆筒拉应力校核 (10)3.7裙座轴向应力校核 (10)3.7.1 裙座底截面的组合应力 (10)4.7.2裙座检查孔和较大管线引出孔截面处组合应力 (11)4.8轴向应力校核条件 (12)五、心得体会 (13)一、塔设备的概述塔设备是石油化工、化学工业、石油工业等生产中最重要的设备之一。
它可使气(汽)液或液液相之间进行充分接触,达到相际传热及传质的目的。
在塔设备中能进行的单元操作有:精馏、吸收、解吸,气体的增湿及冷却等。
表1中所示为几个典型的实例。
表1 塔设备的投资及重量在过程设备中所占的比例实现气(汽)—液相或液—液相之间的充分接触,从而达到相际传质和传热的目的。
塔设备广泛用于蒸馏、吸收、介吸、萃取、气体的洗涤、增湿及冷却等单元操作中,它的操作性能好坏,对整个装置性能好坏、对整个装置的生产,产品产量、质量、成本以及环境保护、“三废”处理等都有较大的影响。
因此对设备的研究一直是工程界所关注的热点。
随着石油、化工的发展,塔设备的合理造型及设计将越来越受到关注和重视。
为了使塔设备能更有效、更经济的运行,除了要求它满足特定的工艺条件,还应满足以下基本要求。
①满足特定的工艺条件;②气—液两相能充分接触,相际传热面积大;③生产能力大,即气、液处理量大;④操作稳定,操作弹性大,对工作负荷的波动不敏感;⑤结构简单、制造、安装、维修方便,设备投资及操作成本低;⑥耐腐蚀,不易堵塞。
为了便于研究和比较,人们从不同的角度对塔设备进行分类。
4.5.填料塔
2.整装填料 将金属丝网或多孔板 压制成波纹状,然后
组装成若干个某种高
度 ( 50 ~ 250mm ) 的 填料层,分层整装进
塔内。
二、气液两相在填料层内的流动
持液量(liquid hold up):
单位体积填料层中滞留的液体体积。 液体流量一定时,气体流量越大,持液量越大,气 体通过填料层的压力降液也越大。 空塔气速:
用高,但塔径小,设备费用低。
四、填料塔的附件
(一)填料支承装置
(二)液体分布装置
(三)液体再分布器
气体在空塔中流过的速度,即气体体积流量除以塔 截面积所得的流速。
(一)气体通过填料层的压力降与液体流量及空 塔气速之间的关系
(二)泛点气速与压力降的关联图
三、塔径的操作条件下混合气流量,m3/s; U—混合气的空塔气速,m/s。 空塔气速小,则气体的压力降小,动力消耗少,操作费 用低,但塔径大,设备费用高。 空塔气速大,则气体的压力降大,动力消耗多,操作费
第五节
填料塔
一、填料塔结构及填料
(一)填料塔结构
(二)填料
1.散装填料 (1)拉西环 特点:高度和直径相等 缺点:横卧放置时内表面不易湿润,气 液接触面积小。 (2)鲍尔环 特点:提高了环内空间和环内表面的利 用程度,减小流体阻力,增大气液接触 面积。 (3)矩鞍形 特点:填料相堆放时的接触面积小较小, 空隙率教大,流体阻力较小,气液接触 面积较大。
化工设备之填料塔
化工设备之填料塔首先,选择合适的填料是非常重要的。
填料的选择应根据反应物性质、反应条件、以及产物分离要求等因素综合考虑。
填料的表面积越大,对气液间传质速度越快,因此填料材料的选择应以增大界面传质作用并提高传质速度为目标。
其次,填料塔的设计应该具备良好的传质和传热性能,保证反应的高效进行。
为了达到这一目的,填料塔通常采用多层填料结构,以增大气液接触面积,并通过设置冷却与加热设备,以保持较大的温差,提高传热效率。
另外,填料塔的操作应该严格按照操作规程进行,操作人员要经过专门的培训,熟悉填料塔的操作流程和事故处理方法,以确保生产过程的安全性。
最后,填料塔的维护和保养也是非常重要的。
定期对填料塔内部进行清洗和维护,检查填料的磨损情况,及时更换老化的填料,以确保填料塔的正常运行。
总之,填料塔的设计、选择填料、操作和维护都是非常重要的,必须严格按照相关规定和要求进行。
只有这样,才能保证填料塔的正常运行,确保生产过程的稳定和产品质量的可靠。
填料塔是化工设备的重要组成部分,主要用于进行气液或液液的接触与反应、物料分离、物质传递等工艺操作。
为了保证填料塔的正常工作,需要特别注意以下几个方面。
首先,填料选型是填料塔设计的关键环节。
填料的种类、形状、密度、比表面积等特性直接影响着填料塔的传质传热效率。
因此,在填料选型过程中,需要充分考虑填料与气体或液体的接触方式、传递速度、传质效率等因素。
另外,填料的物理和化学性质也要符合所需的反应条件,以避免对反应过程产生不利影响。
同时,在填料选型过程中还要考虑填料的耐腐蚀性和耐磨性,以确保填料的使用寿命和稳定性。
其次,填料塔的结构设计以及气液分布方式也是填料塔设计中必须重视的方面。
在设计填料塔时,需要考虑填料的密度、堆积方式、气体液体的分布方式、流态特性等多方面因素,以保证填料的均匀与充分分布,从而实现较高的传质传热效率。
特别需要关注气液入口的设计和布置,以确保气液在填料层内的均匀分布和高效接触。
填料塔
填料塔一、填料塔的概念及示意图填料塔是以塔内填料作为气液两相间接触构件的传质设备。
填料塔的塔身是一直立式圆筒(如上图所示),底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。
填料的上方安装填料压板,以防被上升气流吹动。
液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。
气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。
填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。
当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。
壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。
因此,当填料层较高时,需要进行分段,中间设置再分布装置。
液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。
二、填料塔的特点优点:生产能力大。
填料塔内件开孔率大,空隙率大,液泛点高。
分离效率高填料每米论级远大于板式塔,尤其在减压及常压条件下。
压降小。
空隙率高,阻力小。
持液量小、操作弹性大缺点:填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。
三、填料的类型及性能评价1 填料(packings)的类型1).分类按填料形状分:网体填料、体填料按填料的装填方式分:散装填料、整填料按材质分:金属填料、料填料、瓷填料、墨填料2).常用的几种填料①拉西环(Rasching ring) :拉西环是工业上最早使用的一种填料,为外径与高度相等的圆环,通常由陶瓷或金属材料制成。
拉西环结构简单,制造容易,但堆积时相邻环间易形成线接触,填料层的均匀性差,因而存在严重的向壁偏流和沟流现象,致使传质效率低。
塔基本知识介绍课件
学习交流PPT
16
浮动舌形塔盘是综合了舌形和浮阀得优点而研制出的一 种塔盘,其结构如图5-9所示。浮动舌形塔盘既有舌形塔盘 生产能力大、压降小、雾沫夹带少的优点,又有浮阀塔盘 的操作弹性大、塔盘效率高、稳定性能好等优点,其缺点 是舌片易损坏。
学习交流PPT
20
(二)气泡夹Biblioteka 液体横向流过塔盘,与气体接触后由降液管流到下层塔
2.吸收塔、解吸塔 利用混合气中各组分在溶液中溶解度 的不同,通过吸收液体来分离气体的工艺操作称为吸收; 将吸收液通过加热等方法使溶解于其中的气体释放出
学习交流PPT
3
来的过程称为解吸。实现吸收和解吸操作过程的塔设备称 为吸收塔、解吸塔。如催化裂化装置中的吸收、解吸塔, 从炼厂气中回收汽油、从裂解气中回收乙烯和丙烯,以及 气体净化等都需要吸收、解吸塔。
二、塔设备的分类及一般构造
学习交流PPT
2
随着炼油、化工生产工艺的不断改进和发展,与之相适 应的塔设备也形成了形式繁多的结构和类型,以满足各种 特定的工艺要求。为了便于研究和比较,人们从不同的角 度对塔设备进行分类。如按工艺用途分类,按操作压力分 类,也可按其内部结构进行分类。
(一)按用途分类
1.精馏塔 利用液体混和物中各组分挥发度的不同来分离 其各液体组分的操作称为蒸馏,反复多次蒸馏的过程称为 精馏,实现精馏操作的塔设备称为精馏塔。如常减压装置 中的常压塔、减压塔,可将原油分离为汽油、煤油、柴油 以及润滑油等。
填料塔知识要点(填料、分布器等)
填料塔资料(填料及分布器)填料塔知识点提要近年来,工程界对填料塔进行了大量的研究工作,主要集中在以下几个方面:1.开发多种形势、规格和材质的高效、低压降、大流量的填料;2.与不同填料相匹配的塔内件结构;3.填料层中液体的流动及分布规律;4.蒸馏过程的模拟。
物理过程:液体分布、液体收集、液体再分布。
一、填料填料是填料塔的核心内件,为气-液两相接触进行传质和换热提供了表面,与塔的其他内件共同决定了填料塔的性能。
在乱堆的散装填料塔内,气液两相的流动路线往往是随机的,加之填料装填时难以做到各处均一,因而容易产生沟流等不良情况,从而降低塔的效率。
规整填料是一种在塔内按均匀的几何图形规则、整齐地堆砌的填料,这种填料人为地规定了填料层中气、液的流路,减少了沟流和壁流的现象,大大降低了压降,提高了传热、传质的效果。
规整填料的种类,根据其结构可分为丝网波纹填料及板波纹填料。
通常填料盘的直径略小于塔体的内径。
上下相邻两盘填料交错90°排列。
对于小塔径,填料整盘装填,对于直径在1.5m以上的大塔或无法兰连接的不可拆塔体,则可用分块形式从人孔吊入塔内再拼装。
金属丝网波纹填料的缺点是造价高,抗污能力差,难以清洗。
填料的选用主要根据其效率、通量、压降三个重要的性能参数决定。
内件的作用是为了保证气液更好地接触,以便发挥填料塔的最大效率和生产能力。
因此内件设计的好坏直接影响到填料性能的发挥和整个填料塔的效率。
填料举例:BX型金属丝网波纹填料,结构尺寸列于下表:分布器将液相加料及回流液均匀地分布到填料的表面上,形成液体的初始分布。
分布器安装于塔内,主要包括液体分布器、液体再分布器,液体分布器置于填料上端,将回流液和液相加料均匀分布到填料表面上,形成液体的初始分布;液体再分布器与收集器连接,将上段下来的液体再分布。
设计应考虑液体分布点的密度,分布点的布液方式及布液的均匀性等因素,其中包括分布器的结构形式、几何尺寸的确定,液位高度或压头大小,阻力等。
填料塔基础知识
填料层的持液量可由实验测出,也可由经验公式计算。 一般来说,适当的持液量对填料塔操作的稳定性和传 质是有益的,但持液量过大,将减少填料层的空隙和 气相流通截面,使压降增大,处理能力下降。
气体通过填料层的压力降
填 料 表 面
填 料 表 面
持液量
适宜操作应在载点气速和泛点气速之间
液体喷淋密度是指单位塔截面积上,单位时间内喷淋 的液体体积,以U表示,单位为m3/(m2·s)。为保证填 料层的充分润湿,必须保证液体喷淋密度大于某一极 限值,该极限值称为最小喷淋密度,以Umin表示
Umin (Lw )min
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
金属波纹填料主要有: 金属刺孔波纹填料、金属板网波纹填料、 金属孔板波纹填料、金属丝网波纹填料等
(2)规整填料:波纹填料
金属孔板波纹填料
陶瓷孔板波纹填料
பைடு நூலகம்
与散装填料相比,规整填料具有以下优点:
传质效率高、压降低、处理量大、持液量小、放 大效应不明显、操作弹性大等一系列优点。同时使大 塔径的填料塔工业化成为可能。
从环形填料、鞍形填料到鞍环形填料,从个体填料、 到规整填料,人们千方百计地改进填料结构,目的是增加 填料比表面积以提高传质效率,增加填料的空隙率以降低 流动阻力、加大流体通量,改善填料堆积性能以防止填料 的嵌套叠合,从而有利于液体的均布、降低壁效应。
填料塔的概念
填料塔的概念
答案:
所谓填料塔,指塔的内件是一定高度的填料。
液体自塔顶沿填料表面向下流动,气体自塔底向上流动,与液体进行逆流传质。
两相的组分浓度沿塔高呈连续变化。
填料塔的主要部件包括塔体、塔体支座、除沫器、接管、人孔和手孔,以及塔内件。
塔体是塔设备的外壳。
常见的塔体由等直径、等壁厚的圆筒及作为顶盖和底盖的椭圆形封头组成。
随着化工装置的大型化,为了节约材料,有用不等直径、不等壁厚的塔体。
塔体支座是塔体安放到基础上的连接部分,一般采用裙座。
其高度按照工艺条件的附属设备(如再沸器、泵)及管道布置决定。
它承受各种情况下的全塔重量,以及风力、地震等载荷,为此它应具有足够的强度及刚度。
扩展:
填料塔是一种塔设备,其特点是在塔内填充一定高度的填料,以增加两种流体间的接触表面。
填料塔广泛应用于气体吸收、蒸馏、萃取等操作,在正常操作状态下,气相通常为连续相,液相为分散相。
以气体吸收为例,液体通过塔上部的分布器进入,沿填料表面下降,而气体则从塔底送入,通过填料层的空隙逆流而上,与液体在填料表面密切接触,进行传质过程,从而使废气中的有害组分被吸收去除。
填料塔的结构相对简单,检修方便,且适用于流体阻力较小、气体处理量大而液体量小的过程。
填料塔_10
填 料 塔
2.格栅板
• 格栅板由格条、栅条以及边圈组成,如图3-41 所示。当塔径小于800nm时,可采用整块式格 栅板,当塔径大于800mm时,应采用分块式 格栅板。栅板条间距t一般为100 ~ 200mm, 塔径小时取小值。格板条间距t1一般为 300~400mm,塔径小时取小值。格栅板通常 由碳钢制成。当介质腐蚀性较大时,可采用不 锈钢制造。 • 格栅板的缺点是如将散装填料直接乱堆在栅板 上,则会将空隙堵塞从而减少其开孔率,故这 种支撑装置广泛用于规整填料塔。
填 料 塔
图3-38 阶梯环填料结构
图3-39 鞍形填料结构
9
填 料 塔
6.金属环矩鞍填料 • 1978年美国Norton公司首先开发出金属环矩鞍 填料。这种填料将开孔环形填料和矩鞍填料的 特点相结合,吸取了环形和鞍形填料的优点, 结构如图3-37(f)所示。由于这种填料是一种开 敞的结构,所以流体的通量大、压降低、滞留 量小,也有利于液体在填料表面的分布及液体 表面的更新,从而提高传质效率。金属环矩鞍 填料是综合性能较好的新型填料,特别适用于 乙烯、苯乙烯等减压操作。
1
填 料 塔
一、填料塔的总体结构
1、结构: • 填料塔由塔体、喷淋装置、填料、液体再分布器、 填料支撑装置、支座以及进出口等部件组成。 • 各层之间设置液体再分布器的目的是将液体重新 均匀分布于塔截面上,以防止壁流的产生。在不 同部位设置的液体分布装置作用相同,结构不同, 为区别将最上层填料上部的液体分布装置称为喷 淋装置,而将填料层之间设置的分布装置称为液 体再分布器。 2、工作原理: • 液体自塔上进入,通过液体喷淋装置均匀淋洒在 塔截面上,气体由塔底进入塔内,通过填料缝隙 中的自由空间上升,从塔上部排出,气液两相在 填料塔内呈逆流,得到充分接触,从而达到传热 和传质的目的。 填料塔总体结构
填料塔理论知识
填料塔、工程、机械、化学工程摘要塔设备有许多种类型,塔设备是化工、石油化工和炼油生产中最重要的设备之一。
它可使气液或液液两相之间进行紧密接触,达到相际传质及传热的目的。
可在塔设备中完成常见的单元操作有:精馏、吸收、解吸和萃取等。
此外,工业气体的冷却与回收、气体的湿法净制和干燥,以及兼有气液两相传质和传热的增在吸收塔当中又有许多种类型。
其中有填料塔,版式塔。
填料塔为本设计所设计的吸收塔类别。
填料塔所选取的填料为矩鞍填料。
矩鞍填料(Intalox saddle),它属于乱堆敞开式填料。
填料塔的作用是起到吸收作用。
本设计所设计的填料塔的主要作用是洗磷。
它的作用是通过洗淋将三氯化磷中的磷吸收掉,在洗淋过程中填料的作用是将液体均匀分布,从而增大液体与气体的接触面积,没有吸收完的磷经过循环后再吸收直到吸收干净为止。
填料是填料塔中的传质元件,它可以有不同的分类。
填料的类型有两大类:拉西环矩鞍填料;鲍尔环;鲍尔环是在拉西环的壁面上开一层或两层长方形小窗。
波纹填料有丝网形和孔板形两大类。
对填料的基本要求有:传质效率高,要求填料能提供大的气液接触面。
即要求具有大的比表面积,并要求填料表面易于被液体润湿。
只有润湿的表面才是气液接触表面。
生产能力大,气体压力降小。
因此要求填料层的空隙率大。
不移引起偏流和沟流。
经久耐用具有良好的耐腐蚀性,较高的机械强度和必要的耐热性。
取材容易,价格便宜。
填料塔以填料作为气液接触元件,气液两相在填料层中逆向连续接触。
它具有结构简单,压力降小,易于用耐腐蚀非金属材料制造等优点,对于气体吸收,真空蒸馏以及处理耐腐蚀性流体的操作,颇为实用。
当塔径增大时,引起气液分布不均匀,接触不良等,造成效率下降,称为放大效应。
与次同时,填料塔还具有重量大,造价高,清理检修麻烦,填料损耗大等缺点。
关键词:关键词1:塔设备;关键词2:填料塔;关键词3:填料:。
第六节 填料塔
液泛 在泛点气速下,持液量的增多使液相由分散相变为 连续相,而气相则由连续相变为分散相,此时气体呈气泡 形式通过液层,气流出现脉动,液体被大量带出塔顶,塔 的操作极不稳定,甚至会被破坏,此种情况称为淹塔或液 泛。影响液泛的因素很多,如填料的特性、流体的物性及 操作的液气比等。 填料特性的影响集中体现在填料因子上。填料因子F 值越小,越不易发生液泛现象。 流体物性的影响体现在气体密度、液体的密度和粘度 上。气体密度越小,液体的密度越大、粘度越小,则泛点 气速越大。 操作的液气比愈大,则在一定气速下液体喷淋量愈大 ,填料层的持液量增加而空隙率减小,故泛点气速愈小。
填料的性能评价
填料性能的优劣通常根据效率、通量及压降
三要素衡量。在相同的操作条件下,填料的比表
面积越大,气液分布越均匀,表面的润湿性能越
好,则传质效率越高;填料的空隙率越大,结构
越开敞,则通量越大,压降亦越低。
填料塔的流体力学性能 填料塔的流体力学性能主要包括填料层的持液 量、填料层的压降、液泛、填料表面的润湿及返混等。
填料层的持液量
在一定操作条件下,在单位体积填料层 内所积存的液体体积,以(m3液体)/(m3填 料)表示。
一般来说,适当的持液量对填料塔操作的稳 定性和传质是有益的,但持液量过大,将减少填 料层的空隙和气相流通截面,使压降增大,处理 能力下降。
填料层的压降
在逆流操作的填料塔中,从塔顶喷淋下来的 液体,依靠重力在填料表面成膜状向下流动,上 升气体与下降液膜的摩擦阻力形成了填料层的压 降。填料层压降与液体喷淋量及气速有关,在一 定的气速下,液体喷淋量越大,压降越大;在一 定的液体喷淋量下,气速越大,压降也越大。
拉西环
பைடு நூலகம்
填料的性能评价
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气体通过填料层的压力降
L3
大
L2 L1 —液泛区 干塔
p,kPa
填 料 表 面
填 料 表 面
泛点
—载液区
载点
持液量
3
2 1 0
—恒持液量区 L3> L2> L1
u, m/s (空塔气速)
填料层的 p~u 关系
适宜操作应在载点气速和泛点气速之间
u (0.6 ~ 0.8)uF
(双对数坐标系)
L---喷淋量
填料塔
一、填料塔结构及填料 二、填料塔的流体力学性能 三、填料塔的附属结构
填料塔结构及填料
填 料 塔
塔体 填料塔结构 液体分布器 填料 填料支承板 液体收集器 液体再分布器
进气管
填料
比 表 面 积 填料特性 空 隙 率 填 料 因 子
类型: 散装填料
规整填料
在选择填料时,一般要求: 比表面积及空隙率要大, 填料的润湿性要好, 气体通过能力大,阻力小,
陶瓷弧鞍 Berl saddle
(1)散装填料:鞍形 属敞开型填料。
矩鞍形填料结构不对称, 堆积时不会重叠,填料均匀性 大为提高。
矩鞍形填料传质性能比拉 西环好,但比鲍尔环差,但在 制造上比鲍尔环方便。 矩鞍形填料的缺点是,因 开放式结构使其强度差,特别 是瓷质填料,易破碎。
矩鞍 Intalox saddle ring
U min ( Lw )min
规整填料已有很多,如波纹填料(金属、陶 瓷)、栅格类填料 。 金属波纹填料主要有: 金属刺孔波纹填料、金属板网波纹填料、 金属孔板波纹填料、金属丝网波纹填料等
(2)规整填料:波纹填料
金属孔板波纹填料 陶瓷孔板波纹填料
与散装填料相比,规整填料具有以下优点: 传质效率高、压降低、处理量大、持液量小、放 大效应不明显、操作弹性大等一系列优点。同时使大 塔径的填料塔工业化成为可能。 从环形填料、鞍形填料到鞍环形填料,从个体填料、 到规整填料,人们千方百计地改进填料结构,目的是增加 填料比表面积以提高传质效率,增加填料的空隙率以降低 流动阻力、加大流体通量,改善填料堆积性能以防止填料 的嵌套叠合,从而有利于液体的均布、降低壁效应。
液泛
埃 克 特 (Eckert) 通 用 关 联 图
填料的润湿性能和液体喷淋密度 填料表面的润湿状况取决于塔内的液体喷淋密度及填料 材质的表面润湿性能。 液体喷淋密度是指单位塔截面积上,单位时间内喷淋 的液体体积,以U表示,单位为m3/(m2· s)。为保证填 料层的充分润湿,必须保证液体喷淋密度大于某一极 限值,该极限值称为最小喷淋密度,以Umin表示
液体滞留量小,
单位体积填料的重量轻, 造价低,并有足够的机械强度。
(1)散装填料:环形 高度和外径相等; 可用陶瓷和金属制造, 存在严重的壁偏流和沟流现象, 液体滞留量大, 传质效率不高, 气体通过能力低, 阻力大。 拉西环 Ras空间与环内表面的 利用率,而且使气液流 通顺畅,有利于气液进 入环内。 因此,鲍尔环比拉 西环传质效率高、气体 通过能力大。
(1)散装填料:鞍环形
金属鞍环填料综合 了环形填料通量大及鞍 形填料的液体再分布性 能好的优点,其性能优 于环形填料和鞍形填料。
金属鞍环 Intalox saddle ring
塑料花环 rostte ring
多面空心球 Ball Packing
海尔环 Hillis ring
(2)规整填料:
以整砌的方式装填在塔内
鲍尔环 Pall ring
(1)散装填料:环形
阶梯环 Cascade ring
高度仅为直径的一半; 环的一端制成喇叭口,这种喇叭结构,使填料个体之间多呈点接触; 与鲍尔环相比,其气体通量高,阻力小,传质效率大。
OX环 DC环 DC ring
扁 环 共軛环
(1)散装填料:鞍形
属敞开型填料,敞开型 填料的特点是: 表面全部敞开,不分内 外,因而表面利用率高, 不易积液,气体流动阻力 小,制造也方便。 弧鞍形填料是两面对称 结构,在塔内堆积时容易 造成填料相互重叠,从而 产生沟流,目前已较少使 用。
填料塔的流体力学性能 填料层的持液量 填料层的持液量是指在一定操作条件下,在单位体积填 料层内所积存的液体体积,以(m3液体)/(m3填料)表示
Ht H c H s
填料层的持液量可由实验测出,也可由经验公式计算。 一般来说,适当的持液量对填料塔操作的稳定性和传 质是有益的,但持液量过大,将减少填料层的空隙和 气相流通截面,使压降增大,处理能力下降。