85一元线性回归分析案例精品PPT课件
合集下载
2、一元线性回归 PPT课件
假设零均值同方差 E( )=0
无序列相关性
i
假设零均值同方差 无序列相关性
Var( i)= 2
E(Yi )= 0 1 X i
Var(Yi /X i )= 2
假设零均值同方差 Cov( i , j)=0 Cov(Yi , Y j)=0
无序列相关性
二、普通最小二乘法
给定一元线性回归模型
回归函数(方程)
E(Y
X
)=
i
0 1X i
估计
回归模型
估计
Yi 0 1 X i i
样本(实际) Yˆi ˆ0 ˆ1Xi Yi ˆ0 ˆ1Xi ei
2.2 一元线性回归模型的参数估计
一元线性回归模型是最简单的线性回归模型,在模型中只有 一个自变量,其参数估计方法普通最小二乘法也是最普 遍使用的。
n
X
2 i
(
X i )( Yi ) Xi )2
将ˆ1代入正规方程组,令 X
ˆ0 Y ˆ1 X
Xi n
,Y
Yi
n
,得ˆ0表达式
令
xi
差
Xi X
,则
,
ˆ0
yi Yi Y ,即分别代表样本值与其平均值的离 、ˆ1表达式可简写为
ˆ1
质,即最小二乘估计量还具有一致性:当样本容量趋于无 穷时,估计量收敛于总体参数真值。
高斯—马尔可夫定理(Gauss-Markov theorem)
在给定经典线性回归的假定下,最小二乘估计 量是具有最小方差的线性无偏估计量。
2、无偏性,即估计量ˆ0 、 ˆ1 的均值(期望)等于总体回归
一元线性回归PPT演示课件
196.2
15.8
16.0
102.2
12.0
10.0
本年固定资产投资额 (亿元) 51.9 90.9 73.7 14.5 63.2 2.2 20.2 43.8 55.9 64.3 42.7 76.7 22.8 117.1 146.7 29.9 42.1 25.3 13.4 64.3 163.9 44.5 67.9 39.7 97.1
6. r 愈大,表示相关关系愈密切.
例 11.7
根据例11.6的样本数据,计算不良贷款、贷款余额、应收 贷款、贷款项目、固定资产投资额之间的相关系数.
解:用Excel计算的相关系数矩阵如下.
三、相关系数的显著性检验
(一) r 的抽样分布
当样本数据来自正态总体,且 0 时,则
t r n 2 ~ t(n 2) 1 r2
时,yˆ ˆ0 .
二、参数的最小二乘估计
假定样本数据 (xi , yi ) , i 1,2,, n ,满足一元线性回归模 型, 根据(11.6)式则样本回归方程为
yˆi ˆ0 ˆ1xi , i 1,2,, n
(11.7)
最小二乘法是使因变量的观察值 yi 与估计值 yˆi 之间的离差平
i1 i1
n
n
n
n
n xi2 ( xi )2 n yi2 ( yi )2
i 1
i 1
i 1
i 1
( 11.1 ) ( 10.2 )
相关系数的取值范围及意义
1. r 的取值范围为[-1,1].
2. r 1 ,称完全相关,既存在线性函数关系.
r =1,称完全正相关. r =-1,称完全负相关. 3. r =0,称零相关,既不存在线性相关关系. 4. r <0,称负相关. 5. r >0,称正相关.
第二节-一元线性回归分析PPT课件
-0.8208
-2.2882
-0.9263
0.9676
1.0619
2.9156
-1.6404
6.3038
-1.8122
0.6708
-1.3033
-0.1802
-0.5911
-2.2869
1.0443
0.8245
0.4687
-1.5557
0.8935
2.3470
-1.5233
-1.1970
-2.1237
三相关关系的描述与测度散点图scatterdiagram用直角坐标的横轴表示变量x的值纵轴表示变量y的值每组数据在直角坐标系中用一个点表示n组数据在直角坐标系中形成的n个数据点称为散布点或散点由坐标及其散点形成的二维数据图
8-1
第八章 相关与回归分析
学习目的:
1. 理解现象之间存在的相关关系; 2. 能利用相关系数对相关关系进行测定分析; 3. 明确相关分析与回归分析的主要内容以及它们 各自的特点;
不可观测的随机变量,表示 x和 y的关系中不确定因素的影响,我们 称之为随机误差;响应变量 y为随机变量。
模型的三个假定
1. 随机误差 e的期望值为0,即 E(e)0 2. 对于所有的x值,e的方差都相同 ; 3. 随机误差 e是一个服从正态分布的随机变量,且各次观测的随机误
差 e1,e2,,en相互独立。
• 回归模型(regression model) 描述响应变量与回归变量和误差项之间的因果关系的数学表达式
称为回归模型。
-
8
8-9第二节 一元线性回归分析
一、一元线性回归模型
理论回归模型
yAB xe
式中A和B是未知常数,称作回归系数(coefficient);回归变量 x
一元线性回归模型PPT课件
b1、b2
Yi B1 B2 Xi ui
ei
第18页/共67页
3.3 参数的最小二乘估计
• 参数估计:普通最小二乘法(OLS)
• 普通最小二乘法就是要选择参数 ,使得残差平方和(residual sum of squares, RSS) 最小。
•即
b1、b2
ei2
Q ei2
Yi Yˆi 2
Xi 也称 自变量(independent variable)
称为 参数(parameter)
B , B 1 称2为 随机扰动项(random error term)
ui
第13页/共67页
3.2 随机扰动项的来源
• 上式如何解释?
• 可以认为,在给定家庭收入水平 上,第i个学生的数学分数可以表达为两部分之和:
第14页/共67页
3.2 随机扰动项的来源
•
第15页/共67页
3.2 随机扰动项的来源
• 性质1:扰动项代表了未纳入模型变量的影响。例如个人健康状况、居住区域等等。 • 性质2:反映了人类行为的内在随机性。即使模型中包括了决定数学分数的所有变量,其内在随机性也
不可避免,这是做任何努力都无法解释的。 • 性质3:还代表了度量误差,例如收入的数据可能不等于真实值。 • 性质4:“奥卡姆剃刀原则”——即描述应该尽可能简单,只要不遗漏重要的信息,此时可以把影响Y
第8页/共67页
3.1 回归的涵义
• 样本回归函数(sample regression function, SRF) • 可用样本回归函数(SRF)表示样本回归线:
其中, 总体条件均值
的估计量;
Yˆi b1 b2 Xi
Yˆ E Y X • 并非所有样本数据都准确地i落在样本回归线上,因此建立随机i 样本回归函数:
一元线性回归分析PPT课件
第18页/共40页
拟合程度评价
拟合程度是指样本观测值聚集在样本回归线周围的紧
密程度. ( Y t Y ) ( Y ˆ t Y ) ( Y t Y ˆ t)
n
n
n
(Y t Y )2 (Y ˆt Y )2 (Y t Y ˆ)2
t 1
t 1
t 1
n
(Yt Y)2 :总离差平方和,记为SST;
t1
n
第8页/共40页
例
食品序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
求和
脂肪Xt 4 6 6 8 19 11 12 12 26 21 11 16 14 9 9 5
热量Yt 110 120 120 164 430 192 175 236 429 318 249 281 160 147 210 120
第1页/共40页
回归分析的分类
一个自变量
一元回归
回归分析
两个及以上自变量
多元回归
线性 回归
非线性 回归
线性 回归
非线性 回归
第2页/共40页
一元线性回归模型
(一)总体回归函数
Yt=0+1Xt+ut
ut是随机误差项,又称随机干扰项,它是一个特殊的 随机变量,反映未列入方程式的其他各种因素对Y的 影响。
(ˆ1t(n2)Sˆ1)
2
第15页/共40页
回归分析的Excel实现
“工具”->“数据分析”->“回归”
第16页/共40页
ˆ 0
S ˆ 0
ˆ 1
S ˆ 1
(ˆ0t(n2)Sˆ0)
2
(ˆ1t(n2)Sˆ1)
2
第17页/共40页
拟合程度评价
拟合程度是指样本观测值聚集在样本回归线周围的紧
密程度. ( Y t Y ) ( Y ˆ t Y ) ( Y t Y ˆ t)
n
n
n
(Y t Y )2 (Y ˆt Y )2 (Y t Y ˆ)2
t 1
t 1
t 1
n
(Yt Y)2 :总离差平方和,记为SST;
t1
n
第8页/共40页
例
食品序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
求和
脂肪Xt 4 6 6 8 19 11 12 12 26 21 11 16 14 9 9 5
热量Yt 110 120 120 164 430 192 175 236 429 318 249 281 160 147 210 120
第1页/共40页
回归分析的分类
一个自变量
一元回归
回归分析
两个及以上自变量
多元回归
线性 回归
非线性 回归
线性 回归
非线性 回归
第2页/共40页
一元线性回归模型
(一)总体回归函数
Yt=0+1Xt+ut
ut是随机误差项,又称随机干扰项,它是一个特殊的 随机变量,反映未列入方程式的其他各种因素对Y的 影响。
(ˆ1t(n2)Sˆ1)
2
第15页/共40页
回归分析的Excel实现
“工具”->“数据分析”->“回归”
第16页/共40页
ˆ 0
S ˆ 0
ˆ 1
S ˆ 1
(ˆ0t(n2)Sˆ0)
2
(ˆ1t(n2)Sˆ1)
2
第17页/共40页
一元线性回归方程PPT课件
第一章 一元线性回归模型
以下设 x 为自变量(普通变量) Y 为因变量(随机变 量) .现给定 x 的 n 个值 x1,…, xn, 观察 Y 得到相应的 n 个 值 y1,…,yn, (xi ,yi) i=1,2,…, n 称为样本点.
以 (xi ,yi) 为坐标在平面直角坐标系中描点,所得到 的这张图便称之为散点图.
Yi = 0 + 1 Xi + εi
其中: Yi——被解释变量; Xi——解释变量;
ε I ——随机误差项; 0,1—回归系数
随机变量ε i包含:
回归模型中省略的变量; 确定数学模型的误差; 测量误差
第3页/共28页
假设调查了某社区所有居民,他们的人均可支 配收入和消费支出数据如下:
X 80 100 Y
=
(Xi X )2
=
( Xi X )Yi (Xi X )2
ˆ 令 ki
(Xi X) (Xi X )2
xi xi2
代入上式,得:
1
kiYi
同理可证:0也具有线性特性 。
第15页/共28页
2、无偏性
ki
(Xi - X) (Xi - X )2
xi xi2
证明: E(ˆ1) = E( kiYi ) = E [ki (0 1Xi i ] = 0E[ ki 1 ki Xi kii ] = 1E [ki (Xi X )] E (kiui )
Y
55
80 100 120140 160
X
第5页/共28页
二、随机误差项εi的假定条件
为了估计总体回归模型中的参数,需对随机误差项作出如下假定:
假定1:零期望假定:E(εi) = 0。 假定2:同方差性假定:Var(εi) = 2。 假定3:无序列相关假定:Cov(εi, εj) = 0, (i j )。 假定4: εi 服从正态分布,即εi N (0, 2 )。 前三个条件称为G-M条件
以下设 x 为自变量(普通变量) Y 为因变量(随机变 量) .现给定 x 的 n 个值 x1,…, xn, 观察 Y 得到相应的 n 个 值 y1,…,yn, (xi ,yi) i=1,2,…, n 称为样本点.
以 (xi ,yi) 为坐标在平面直角坐标系中描点,所得到 的这张图便称之为散点图.
Yi = 0 + 1 Xi + εi
其中: Yi——被解释变量; Xi——解释变量;
ε I ——随机误差项; 0,1—回归系数
随机变量ε i包含:
回归模型中省略的变量; 确定数学模型的误差; 测量误差
第3页/共28页
假设调查了某社区所有居民,他们的人均可支 配收入和消费支出数据如下:
X 80 100 Y
=
(Xi X )2
=
( Xi X )Yi (Xi X )2
ˆ 令 ki
(Xi X) (Xi X )2
xi xi2
代入上式,得:
1
kiYi
同理可证:0也具有线性特性 。
第15页/共28页
2、无偏性
ki
(Xi - X) (Xi - X )2
xi xi2
证明: E(ˆ1) = E( kiYi ) = E [ki (0 1Xi i ] = 0E[ ki 1 ki Xi kii ] = 1E [ki (Xi X )] E (kiui )
Y
55
80 100 120140 160
X
第5页/共28页
二、随机误差项εi的假定条件
为了估计总体回归模型中的参数,需对随机误差项作出如下假定:
假定1:零期望假定:E(εi) = 0。 假定2:同方差性假定:Var(εi) = 2。 假定3:无序列相关假定:Cov(εi, εj) = 0, (i j )。 假定4: εi 服从正态分布,即εi N (0, 2 )。 前三个条件称为G-M条件
一元线性回归模型ppt课件
差e的原因.
例1.(多选)在如图所示的四个散点图,适合用一元线性回
归模型拟合其中两个变量的是( AC ).
例2.在一元线性回归模型中,下列关于Y=bx+a+e的说法正确的是( C )
A.Y=bx+a+e是一次函数
B.响应变量Y是由解释变量x唯一确定的
C.响应变量Y除了受解释变量x的影响外,可能还受到其他因素的影响,这
Y bx a e
(1)
2
E (e ) 0,D(e ) .
追问3.对于父亲身高为xi的某一名男大学生,他的身高yi一定是bxi+a吗?
对于父亲身高为的某一名男大学生,他的身高 并不一定为
bxi+a ,它仅是该子总体的一个观测值,这个观测值与均值有一个误
差项ei=yi -(+a).
相关程度较高.
编号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
父亲身高/cm 174
170
173
169182172180172168
166
182
173
164
180
儿子身高/cm 176
176
170
170
185
176
178
174
170
168
178
172
165
182
问题2.根据表中的数据,儿子身高和父亲身高这两个变量之间的关系可以
参数;e是Y与bx+a之间的随机误差. 模型中的Y也是随机变量,其值虽不能由变
量x的值确定,但却能表示为bx+a与e的和,前一部分由x所确定,后一部分是随
《一元线性回归》ppt课件
做该样本的散点图 样本散点图近似于一条直线,这与 总体中表达的X和Y的关系是一致的。 画一条直线以尽能够地拟合该散点 图,由于样本取自总体,可用该线近 似地代表总体回归线。 该线称为样本回归线〔sample regression lines〕。
记样本回归线的函数方式为:
Y ˆif(X i)ˆ0ˆ1X i
计量经济学
Econometrics
第二章 一元线性回归模型
§ 2.1 回归分析概述 § 2.2 一元线性回归模型的参数估计 § 2.3 一元线性回归模型的统计检验 § 2.4 一元线性回归模型的运用:预测 § 2.5 实例:时间序列问题
§2.1 回归分析概述
一、回归分析的根本概念 二、总体回归函数 三、随机干扰项 四、样本回归函数
1969 1991 2046 2068 2101
968 1045 1243 1474 1672 1881 1078 1254 1496 1683 1925
2189 2233
1122 1298 1496 1716 1969 1155 1331 1562 1749 2013
2244 2299
1188 1364 1573 1771 2035 1210 1408 1606 1804 2101
3500 1/6
2585
〔4〕描出散点图发现:随着收入X的添加,消费“平均地说〞也在添加, 且Y的条件均值均落在一条正斜率的直线上。这条线,我们称为总体回归 线〔population regression line,PRL〕
每 月 消 费 支 出 Y 〔元〕
3500 3000 2500 2000 1500 1000
A2:回归分析与因果关系
虽然回归分析通常用于研讨具有因果关系的变量之间的详细依赖关系, 但是回归关系式本身并不一定意味着因果关系
第一元线性回归PPT实用课件
间没有任何关系 人们发现它的应用很广,而不仅限于从一代到下一代豌豆大小问题
函数,记为 y = f (x),其中 x 在【Prediction interval】下选中【Mean】和【Individual】(输出置信区间和预测区间) 称为自变量,y 称为因变量
3. 各观测点落在一条线上
x
相关关系
第 9 章 一元线性回归
9.1 变量间的关系
变量间是什么样的关系? 用散点图描述相关关系 用相关系数度量关系强度
怎样分析变量间的关系?
建立回归模型时,首先需要弄清楚变量之 间的关系。分析变量之间的关系需要解决 下面的问题
变量之间是否存在关系? 如果存在,它们之间是什么样的关系? 变量之间的关系强度如何? 样本所反映的变量之间的关系能否代表总体
变量之间的关系?
9.1 变量间的关系
变量间是什么样的关系?
函数关系
1. 是一一对应的确定关系
在【残差】分析选项中选择所需的选项
设有两个变量 一元线性回归模型
(基本假2定. )
x
和
y
,变量
y 随变量 x 一起变化,并完 散点图
(销售收入和广告费用的散点图) Galton被誉为现代回归和相关技术的创始人。
❖ 若P< ,拒绝H0
相关系数的显著性检验
(例题分析)
❖ 【例93】检验销售收入与广告费用之间的相关系数 是否显著 ( 0.05)
❖ 提出假设H0
;H1
0
❖ 计算检验的统计量
t 0.930620210.789 10.93026
❖ 3. 用Excel中的【TDIST】函数得双尾 P=2.743E09< 0.05,拒绝H0,销售收入与广告 费用之间的相关系数显著
函数,记为 y = f (x),其中 x 在【Prediction interval】下选中【Mean】和【Individual】(输出置信区间和预测区间) 称为自变量,y 称为因变量
3. 各观测点落在一条线上
x
相关关系
第 9 章 一元线性回归
9.1 变量间的关系
变量间是什么样的关系? 用散点图描述相关关系 用相关系数度量关系强度
怎样分析变量间的关系?
建立回归模型时,首先需要弄清楚变量之 间的关系。分析变量之间的关系需要解决 下面的问题
变量之间是否存在关系? 如果存在,它们之间是什么样的关系? 变量之间的关系强度如何? 样本所反映的变量之间的关系能否代表总体
变量之间的关系?
9.1 变量间的关系
变量间是什么样的关系?
函数关系
1. 是一一对应的确定关系
在【残差】分析选项中选择所需的选项
设有两个变量 一元线性回归模型
(基本假2定. )
x
和
y
,变量
y 随变量 x 一起变化,并完 散点图
(销售收入和广告费用的散点图) Galton被誉为现代回归和相关技术的创始人。
❖ 若P< ,拒绝H0
相关系数的显著性检验
(例题分析)
❖ 【例93】检验销售收入与广告费用之间的相关系数 是否显著 ( 0.05)
❖ 提出假设H0
;H1
0
❖ 计算检验的统计量
t 0.930620210.789 10.93026
❖ 3. 用Excel中的【TDIST】函数得双尾 P=2.743E09< 0.05,拒绝H0,销售收入与广告 费用之间的相关系数显著
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
8.5一元线性回归分析案例
课题:选修2-3 8.5 回归分析案例
数学3——统计内容
再冷的石头,坐上三年也会暖 !
1. 画散点图
2. 了解最小二乘法的思想
3. 求回归直线方程
y=bx+a
4. 用回归直线方程解决应用问题
课题:选修2-3 8.5 回归分析案例
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
y 水稻产量
500
450
· ·· y x
400
·
350 ···
300
施化肥量
10 20 30 40 50
x
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
对于一组具有线性相关关系的数据 (x1, y1), (x2 , y2 ),..., (xn , yn ),
i
i1
n
xi2
n
2
x
,
i1
i1
aˆ y bˆx
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
2.求回归直线的方法——最小二乘法:
yˆ bˆx aˆ
n
n
bˆ =
(xi -x)(yi -y) i=1
n i=1(xi
-x)2
=
xi yi -nxy i=1 i=n1xi2-nx 2
y(min)
100 200 210 185 155 135 170 205 235 125
(1)y与x是否具有线性相关关系;
(2)如果具有线性相关关系,求回归直线方程;
(3)预测当钢水含碳量为160个0.01%时,应冶炼多少分钟
课题:选修2-3 8.5 回归分析案例
解:(1)列出下表,并计算
再冷的石头,坐上三年也会暖 !
水稻产量y 330 345 365 405 445 450 455
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
施化肥量x 15 20 25 30 35 40 45
水稻产量y 330 345 365 405 445 450 455
y
500 水稻产量
450
· ··
400
·
350 · · ·
应用:利用回归直线方程对总体进行线性相关性的检验
例1、炼钢是一个氧化降碳的过程,钢水含碳量的多少 直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼 时间的关系。如果已测得炉料熔化完毕时,钢水的含碳 量x与冶炼时间y(从炉料熔化完毕到出刚的时间)的一 列数据,如下表所示:
x(0.01%) 104 180 190 177 147 134 150 191 204 121
(x, y) 称为样本点的中心。
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
1、回归直线方程
1、所求直线方程叫做回归直线方程;
相应的直线叫做回归直线。
2、对两个变量进行的线性分析叫做线性回归分析。
n
n
y bˆ
(xi
i1 n
x)( yi0
施化肥量
10 20 30 40 50
x
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
1、相关关系的定义:
自变量取值一定时,因变量的取值带有一定 随机性的两个变量之间的关系叫做相关关系。
注 1):相关关系是一种不确定性关系; 2): 对具有相关关系的两个变量进行统计 分析的方法叫回归分析。
复习 变量之间的两种关系
再冷的石头,坐上三年也会暖 !
问题1:正方形的面积y与正方形的边长x之间
的函数关系是
y = x2
确定性关系
问题2:某水田水稻产量y与施肥量x之间是否
有一个确定性的关系? 例如:在 7 块并排、形状大小相同的试验田上
进行施肥量对水稻产量影响的试验,得
到如下所示的一组数据:
施化肥量x 15 20 25 30 35 40 45
x 159.8, y 172,
x y x y 10
10
2 265448,
2
10
312350,
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
现实生活中存在着大量的相关关系。 如:人的身高与年龄; 产品的成本与生产数量; 商品的销售额与广告费; 家庭的支出与收入。等等
探索:水稻产量y与施肥量x之间大致有何规 律?
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
,
aˆ=y-bˆ x.
其中x
=
1 n
n xi,y= i=1
1 n
n yi. i=1
(x , y ) 称为样本点的中心。
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
4、求回归直线方程的步骤:
(1)求x
1 n
n i 1
xi , y
1 n
n i 1
yi
n
n
(2)求 xi2 , xi yi. n
我们知道其回归方程的截距和斜率的最小二乘估计公式分别为:
^
^
a y b x,......(1)
n
n
y ^
(xi x)( yi y)
xi
nx y
i
b i1 n
(xi x)2
i 1 n
xi2
2
nx
,......(2)
i 1
i 1
其中x
1 n
n i 1
xi ,
y
1 n
n i 1
yi .
n
i 1
i 1
y (xi x)(yi y)
xi
nx y
i
b i1 n
(3)代入公式
(xi x)2
i1
i1 n
xi2 nx2
,
i1
^
a y bx,......(1)
(4)写出直线方程为y^=bx+a,即为所求的回归直线方程。
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
施化肥量x 15 20 25 30 35 40 45
水稻产量y 330 345 365 405
y
500 水稻产量
450
· ··
400
·
350 · · ·
300
445 450 455 散点图
施化肥量
10 20 30 40 50
x
发现:图中各点,大致分布在某条直线附近。
探索2:在这些点附近可画直线不止一条,哪条直 线最能代表x与y之间的关系呢?
i
1
2
3
4
5
6
7
8
9
10
xi 104 180 190 177 147 134 150 191 204 121 yi 100 200 210 185 155 135 170 205 235 125 xiyi 10400 36000 39900 32745 22785 18090 25500 39155 47940 15125
再冷的石头,坐上三年也会暖 !
8.5一元线性回归分析案例
课题:选修2-3 8.5 回归分析案例
数学3——统计内容
再冷的石头,坐上三年也会暖 !
1. 画散点图
2. 了解最小二乘法的思想
3. 求回归直线方程
y=bx+a
4. 用回归直线方程解决应用问题
课题:选修2-3 8.5 回归分析案例
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
y 水稻产量
500
450
· ·· y x
400
·
350 ···
300
施化肥量
10 20 30 40 50
x
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
对于一组具有线性相关关系的数据 (x1, y1), (x2 , y2 ),..., (xn , yn ),
i
i1
n
xi2
n
2
x
,
i1
i1
aˆ y bˆx
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
2.求回归直线的方法——最小二乘法:
yˆ bˆx aˆ
n
n
bˆ =
(xi -x)(yi -y) i=1
n i=1(xi
-x)2
=
xi yi -nxy i=1 i=n1xi2-nx 2
y(min)
100 200 210 185 155 135 170 205 235 125
(1)y与x是否具有线性相关关系;
(2)如果具有线性相关关系,求回归直线方程;
(3)预测当钢水含碳量为160个0.01%时,应冶炼多少分钟
课题:选修2-3 8.5 回归分析案例
解:(1)列出下表,并计算
再冷的石头,坐上三年也会暖 !
水稻产量y 330 345 365 405 445 450 455
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
施化肥量x 15 20 25 30 35 40 45
水稻产量y 330 345 365 405 445 450 455
y
500 水稻产量
450
· ··
400
·
350 · · ·
应用:利用回归直线方程对总体进行线性相关性的检验
例1、炼钢是一个氧化降碳的过程,钢水含碳量的多少 直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼 时间的关系。如果已测得炉料熔化完毕时,钢水的含碳 量x与冶炼时间y(从炉料熔化完毕到出刚的时间)的一 列数据,如下表所示:
x(0.01%) 104 180 190 177 147 134 150 191 204 121
(x, y) 称为样本点的中心。
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
1、回归直线方程
1、所求直线方程叫做回归直线方程;
相应的直线叫做回归直线。
2、对两个变量进行的线性分析叫做线性回归分析。
n
n
y bˆ
(xi
i1 n
x)( yi0
施化肥量
10 20 30 40 50
x
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
1、相关关系的定义:
自变量取值一定时,因变量的取值带有一定 随机性的两个变量之间的关系叫做相关关系。
注 1):相关关系是一种不确定性关系; 2): 对具有相关关系的两个变量进行统计 分析的方法叫回归分析。
复习 变量之间的两种关系
再冷的石头,坐上三年也会暖 !
问题1:正方形的面积y与正方形的边长x之间
的函数关系是
y = x2
确定性关系
问题2:某水田水稻产量y与施肥量x之间是否
有一个确定性的关系? 例如:在 7 块并排、形状大小相同的试验田上
进行施肥量对水稻产量影响的试验,得
到如下所示的一组数据:
施化肥量x 15 20 25 30 35 40 45
x 159.8, y 172,
x y x y 10
10
2 265448,
2
10
312350,
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
现实生活中存在着大量的相关关系。 如:人的身高与年龄; 产品的成本与生产数量; 商品的销售额与广告费; 家庭的支出与收入。等等
探索:水稻产量y与施肥量x之间大致有何规 律?
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
,
aˆ=y-bˆ x.
其中x
=
1 n
n xi,y= i=1
1 n
n yi. i=1
(x , y ) 称为样本点的中心。
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
4、求回归直线方程的步骤:
(1)求x
1 n
n i 1
xi , y
1 n
n i 1
yi
n
n
(2)求 xi2 , xi yi. n
我们知道其回归方程的截距和斜率的最小二乘估计公式分别为:
^
^
a y b x,......(1)
n
n
y ^
(xi x)( yi y)
xi
nx y
i
b i1 n
(xi x)2
i 1 n
xi2
2
nx
,......(2)
i 1
i 1
其中x
1 n
n i 1
xi ,
y
1 n
n i 1
yi .
n
i 1
i 1
y (xi x)(yi y)
xi
nx y
i
b i1 n
(3)代入公式
(xi x)2
i1
i1 n
xi2 nx2
,
i1
^
a y bx,......(1)
(4)写出直线方程为y^=bx+a,即为所求的回归直线方程。
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
施化肥量x 15 20 25 30 35 40 45
水稻产量y 330 345 365 405
y
500 水稻产量
450
· ··
400
·
350 · · ·
300
445 450 455 散点图
施化肥量
10 20 30 40 50
x
发现:图中各点,大致分布在某条直线附近。
探索2:在这些点附近可画直线不止一条,哪条直 线最能代表x与y之间的关系呢?
i
1
2
3
4
5
6
7
8
9
10
xi 104 180 190 177 147 134 150 191 204 121 yi 100 200 210 185 155 135 170 205 235 125 xiyi 10400 36000 39900 32745 22785 18090 25500 39155 47940 15125