信息论第2章作业

合集下载

信息论编码与基础课后题(第二章)

信息论编码与基础课后题(第二章)

第二章习题解答2-1、试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍? 解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3} 八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0===所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。

2、 设某班学生在一次考试中获优(A )、良(B )、中(C )、及格(D )和不及格(E )的人数相等。

当教师通知某甲:“你没有不及格”,甲获得了多少比特信息?为确定自己的成绩,甲还需要多少信息? 解:根据题意,“没有不及格”或“pass”的概率为54511pass =-=P 因此当教师通知某甲“没有不及格”后,甲获得信息在已知“pass”后,成绩为“优”(A ),“良”(B ),“中”(C )和“及格”(D ) 的概率相同:41score )pass |()pass |()pass |()pass |(=====D P C P B P A P P 为确定自己的成绩,甲还需信息bits 241loglog score score =-=-=P I 3、中国国家标准局所规定的二级汉字共6763个。

设每字使用的频度相等,求一个汉字所含的信息量。

设每个汉字用一个1616⨯的二元点阵显示,试计算显示方阵所能表示的最大信息。

显示方阵的利用率是多少?解:由于每个汉字的使用频度相同,它们有相同的出现概率,即67631=P 因此每个汉字所含的信息量为bits 7.1267631loglog =-=-=P I 字每个显示方阵能显示256161622=⨯种不同的状态,等概分布时信息墒最大,所以一个显示方阵所能显示的最大信息量是bits 322.054loglog passpass =-=-=P Ibits 25621loglog 256=-=-=P I 阵显示方阵的利用率或显示效率为0497.02567.12===阵字I I η 4、两个信源1S 和2S 均有两种输出:1 ,0=X 和1 ,0=Y ,概率分别为2/110==X X P P ,4/10=Y P ,4/31=Y P 。

信息论与编码第二章答案

信息论与编码第二章答案

2-1、一阶马尔可夫链信源有3个符号{}123,,u u u ,转移概率为:1112()u p u=,2112()u p u =,31()0u p u =,1213()u p u = ,22()0u p u =,3223()u p u =,1313()u p u =,2323()u p u =,33()0u p u =。

画出状态图并求出各符号稳态概率。

解:由题可得状态概率矩阵为:1/21/20[(|)]1/302/31/32/30j i p s s ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦状态转换图为:令各状态的稳态分布概率为1W ,2W ,3W ,则: 1W =121W +132W +133W , 2W =121W +233W , 3W =232W 且:1W +2W +3W =1 ∴稳态分布概率为:1W =25,2W =925,3W = 6252-2.由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:P(0|00)=0.8,P(0|11)=0.2,P(1|00)=0.2,P(1|11)=0.8,P(0|01)=0.5,p(0|10)=0.5,p(1|01)=0.5,p(1|10)=0.5画出状态图,并计算各符号稳态概率。

解:状态转移概率矩阵为:令各状态的稳态分布概率为1w 、2w 、3w 、4w ,利用(2-1-17)可得方程组。

1111221331441132112222332442133113223333443244114224334444240.80.50.20.50.50.20.50.8w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w =+++=+⎧⎪=+++=+⎪⎨=+++=+⎪⎪=+++=+⎩ 且12341w w w w +++=;0.8 0.2 0 00 0 0.5 0.5()0.5 0.5 0 00 0 0.2 0.8j i p s s ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦解方程组得:12345141717514w w w w ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩ 即:5(00)141(01)71(10)75(11)14p p p p ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2-3、同时掷两个正常的骰子,也就是各面呈现的概率都是16,求:(1)、“3和5同时出现”事件的自信息量;(2)、“两个1同时出现”事件的自信息量; (3)、两个点数的各种组合的熵或平均信息量; (4)、两个点数之和的熵; (5)、两个点数中至少有一个是1的自信息量。

第三版信息论答案

第三版信息论答案

【】设有 12 枚同值硬币,其中有一枚为假币。

只知道假币的重量与真币的重量不同,但不知究竟是重还是轻。

现用比较天平左右两边轻重的方法来测量。

为了在天平上称出哪一枚是假币,试问至少必须称多少次?解:从信息论的角度看,“12 枚硬币中,某一枚为假币”该事件发生的概率为P 1;12“假币的重量比真的轻,或重”该事件发生的概率为P 1;2为确定哪一枚是假币,即要消除上述两事件的联合不确定性,由于二者是独立的,因此有I log12log2log 24 比特而用天平称时,有三种可能性:重、轻、相等,三者是等概率的,均为P 1 ,因此天3平每一次消除的不确定性为Ilog 3 比特因此,必须称的次数为I1log24I2log3次因此,至少需称 3 次。

【延伸】如何测量?分 3 堆,每堆 4 枚,经过 3 次测量能否测出哪一枚为假币。

【】同时扔一对均匀的骰子,当得知“两骰子面朝上点数之和为 2”或“面朝上点数之和为 8”或“两骰子面朝上点数是 3 和 4”时,试问这三种情况分别获得多少信息量?解:“两骰子总点数之和为 2”有一种可能,即两骰子的点数各为 1,由于二者是独立的,因此该种情况发生的概率为P1 16 61,该事件的信息量为:36I log 36比特“两骰子总点数之和为 8”共有如下可能:2 和 6、3 和 5、4 和 4、5 和 3、6 和2,概率为P 1 1 56 65,因此该事件的信息量为:36I log365比特“两骰子面朝上点数是 3 和 4”的可能性有两种:3 和 4、4 和 3,概率为P因此该事件的信息量为:1 121,6 6 18I log18比特【】如果你在不知道今天是星期几的情况下问你的朋友“明天星期几?”则答案中含有多少信息量?如果你在已知今天是星期四的情况下提出同样的问题,则答案中你能获得多少信息量(假设已知星期一至星期日的顺序)?解:如果不知今天星期几时问的话,答案可能有七种可能性,每一种都是等概率的,均为P 1,因此此时从答案中获得的信息量为7I log 7比特而当已知今天星期几时问同样的问题,其可能性只有一种,即发生的概率为1,此时获得的信息量为0 比特。

信息论习题答案第二章陈前斌版

信息论习题答案第二章陈前斌版

第2章习题2-3 同时掷两个正常的骰子,也就是各面呈现的概率都是l/6,求: (1) “3和5同时出现”事件的自信息量; (2)“两个1同时出现”事件的自信息量;(3)两个点数的各种组合(无序对)的熵或平均信息量; (4) 两个点数之和(即 2,3,…,12构成的子集)的熵; (5)两个点数中至少有一个是1的自信息。

解:(1)P (3、5或5、3)=P (3、5)+P (5、3)=1/18I =log2(18)= 4.1699bit 。

(2)P (1、1)=l/36。

I =log2(36)=5.1699bit 。

(3)相同点出现时(11、22、33、44、55、66)有6种,概率1/36。

不同点出现时有15种,概率1/18。

H (i ,j )=6*1/36*log 2(36)+15*1/18*log 2(18)=4.3366bit/事件。

2/36 1/36)=3.2744bit/事件。

(5)P (1、1or1、j or i 、1)=1/36+5/36+5/36=11/36。

I =log2(36/11)=1.7105bit/2-5 居住某地区的女孩中有25%是大学生,在女大学生中有75%身高为1.6m 以上,而女孩中身高1.6m 以上的占总数一半。

假如得知“身高1.6m 以上的某女孩是大学 生”的消息,问获得多少信息量?、解:P (女大学生)=1/4;P (身高>1.6m / 女大学生)=3/4;P (身高>1.6m )=1/2; P (女大学生 / 身高>1.6m )=P (身高>1.6m 、女大学生)/P (身高>1.6m ) =3/4*1/4*2=3/8 I =log2(8/3)=1.4150bit 。

2-7两个实验123{,,}X x x x =和123{,,}Y y y y =,联合概率()i j ij p x y p =为1112132122233132337/241/2401/241/41/2401/247/24p p p p p p p p p ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1)如果有人告诉你X 和Y 的实验结果,你得到的平均信息量是多少? (2)如果有人告诉你Y 的实验结果,你得到的平均信息量是多少?(3)在已知Y 的实验结果的情况下,告诉你X 的实验结果,你得到的平均信息量是多少? 解:(1)3311(,)(,)log (,)2.301/i j i j i j H X Y p x y P x y bit symbol===-=∑∑(2)31()()log ()1.5894/j j j H Y p y p y bit symbol==-=∑(3)(|)(,)()2.301 1.58940.7151/H X Y H X Y H Y bit symbol=-=-=2.11某一无记忆信源的符号集为{}0,1,已知01/4p =,13/4p =。

信息论与编码第二章答案

信息论与编码第二章答案

第二章信息的度量2.1信源在何种分布时,熵值最大?又在何种分布时,熵值最小?答:信源在等概率分布时熵值最大;信源有一个为1,其余为0时熵值最小。

2.2平均互信息量I(X;Y)与信源概率分布q(x)有何关系?与p(y|x)又是什么关系?答:若信道给定,I(X;Y)是q(x)的上凸形函数;若信源给定,I(X;Y)是q(y|x)的下凸形函数。

2.3熵是对信源什么物理量的度量?答:平均信息量2.4设信道输入符号集为{x1,x2,……xk},则平均每个信道输入符号所能携带的最大信息量是多少?答:kk k xi q xi q X H i log 1log 1)(log )()(2.5根据平均互信息量的链规则,写出I(X;YZ)的表达式。

答:)|;();();(Y Z X I Y X I YZ X I 2.6互信息量I(x;y)有时候取负值,是由于信道存在干扰或噪声的原因,这种说法对吗?答:互信息量)()|(log );(xi q yj xi Q y x I ,若互信息量取负值,即Q(xi|yj)<q(xi),说明事件yi 的出现告知的是xi 出现的可能性更小了。

从通信角度看,视xi 为发送符号,yi 为接收符号,Q(xi|yj)<q(xi),说明收到yi 后使发送是否为xi 的不确定性更大,这是由于信道干扰所引起的。

2.7一个马尔可夫信源如图所示,求稳态下各状态的概率分布和信源熵。

答:由图示可知:43)|(41)|(32)|(31)|(41)|(43)|(222111110201s x p s x p s x p s x p s x p s x p 即:43)|(0)|(41)|(31)|(32)|(0)|(0)|(41)|(43)|(222120121110020100s s p s s p s s p s s p s s p s s p s s p s s p s s p 可得:1)()()()(43)(31)()(31)(41)()(41)(43)(210212101200s p s p s p s p s p s p s p s p s p s p s p s p得:114)(113)(114)(210s p s p s p )]|(log )|()|(log )|()[()]|(log )|()|(log )|()[()]|(log )|()|(log )|()[(222220202121211111010100000s s p s s p s s p s s p s p s s p s s p s s p s s p s p s s p s s p s s p s s p s p H 0.25(bit/符号)2.8一个马尔可夫信源,已知:0)2|2(,1)2|1(,31)1|2(,32)1|1(x x p x x p x x p x x p 试画出它的香农线图,并求出信源熵。

(信息论)第二、三章习题参考答案

(信息论)第二、三章习题参考答案

第二章习题参考答案2-1解:同时掷两个正常的骰子,这两个事件是相互独立的,所以两骰子面朝上点数的状态共有6×6=36种,其中任一状态的分布都是等概的,出现的概率为1/36。

(1)设“3和5同时出现”为事件A ,则A 的发生有两种情况:甲3乙5,甲5乙3。

因此事件A 发生的概率为p(A)=(1/36)*2=1/18 故事件A 的自信息量为I(A)=-log 2p(A)=log 218=4.17 bit(2)设“两个1同时出现”为事件B ,则B 的发生只有一种情况:甲1乙1。

因此事件B 发生的概率为p(B)=1/36 故事件B 的自信息量为I(B)=-log 2p(B)=log 236=5.17 bit (3) 两个点数的排列如下:因为各种组合无序,所以共有21种组合: 其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4) 参考上面的两个点数的排列,可以得出两个点数求和的概率分布:sym bolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)“两个点数中至少有一个是1”的组合数共有11种。

bitx p x I x p i i i 710.13611log )(log )(3611116161)(=-=-==⨯⨯=2-2解:(1)红色球x 1和白色球x 2的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡2121)(21x x x p X i 比特 12log *21*2)(log )()(2212==-=∑=i i i x p x p X H(2)红色球x 1和白色球x 2的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡100110099)(21x x x p X i 比特 08.0100log *100199100log *10099)(log )()(22212=+=-=∑=i i i x p x p X H (3)四种球的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡41414141)(4321x x x x x p X i ,42211()()log ()4**log 4 2 4i i i H X p x p x ==-==∑比特2-5解:骰子一共有六面,某一骰子扔得某一点数面朝上的概率是相等的,均为1/6。

第二章 信源熵-习题答案

第二章 信源熵-习题答案

· 1 ·2.1 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍? 四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0=== 所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。

2.2 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。

假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量?设随机变量X 代表女孩子学历X x 1(是大学生) x 2(不是大学生)P(X)0.250.75设随机变量Y 代表女孩子身高 Y y 1(身高>160cm )y 2(身高<160cm )P(Y)0.50.5已知:在女大学生中有75%是身高160厘米以上的 即:bit x y p 75.0)/(11=求:身高160厘米以上的某女孩是大学生的信息量 即:bit y p x y p x p y x p y x I 415.15.075.025.0log)()/()(log )/(log )/(11111111=⨯-=-=-=2.3 一副充分洗乱了的牌(含52张牌),试问 (1) 任一特定排列所给出的信息量是多少?(2) 若从中抽取13张牌,所给出的点数都不相同能得到多少信息量?(1) 52张牌共有52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是:!521)(=i x pbit x p x I i i 581.225!52log )(log )(==-=(2) 52张牌共有4种花色、13种点数,抽取13张点数不同的牌的概率如下: bitCx p x I C x p i i i 208.134log)(log )(4)(135213135213=-=-==· 2 ·2.4 设离散无记忆信源⎭⎬⎫⎩⎨⎧=====⎥⎦⎤⎢⎣⎡8/14/1324/18/310)(4321x x x x X P X,其发出的信息为(202120130213001203210110321010021032011223210),求 (1) 此消息的自信息量是多少?(2) 此消息中平均每符号携带的信息量是多少?(1) 此消息总共有14个0、13个1、12个2、6个3,因此此消息发出的概率是: 62514814183⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛=p 此消息的信息量是:bit p I 811.87log =-=(2) 此消息中平均每符号携带的信息量是:bit n I 951.145/811.87/==2.5 从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%,如果你问一位男士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含多少信息量,平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量是多少?男士: symbolbit x p x p X H bitx p x I x p bit x p x I x p ii i N N N Y Y Y / 366.0)93.0log 93.007.0log 07.0()(log )()( 105.093.0log )(log )(%93)( 837.307.0log )(log )(%7)(2=+-=-==-=-===-=-==∑女士:symbol bit x p x p X H ii i / 045.0)995.0log 995.0005.0log 005.0()(log )()(2=+-=-=∑2.6 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡17.016.017.018.019.02.0)(654321x x x x x x X P X,求这个信源的熵,并解释为什么H(X) >log6不满足信源熵的极值性。

信息论与编码习题与答案第二章

信息论与编码习题与答案第二章

第一章信息、消息、信号的定义?三者的关系? 通信系统的模型?各个主要功能模块及作用? 第二章信源的分类?自信息量、条件自信息量、平均自信息量、信源熵、不确定度、条件熵、疑义度、噪声熵、联合熵、互信息量、条件互信息量、平均互信息量以及相对熵的概念?计算方法? 冗余度?具有概率为)(x i p 的符号x i 自信息量:)(log )(x x i i p I -= 条件自信息量:)(log )(y x y x iiiip I -=平均自信息量、平均不确定度、信源熵:∑-=ii i x x p p X H )(log )()(条件熵:)(log ),()(),()(y x y x y x y x jijijijijiji p p I p Y X H ∑∑-==联合熵:),(log ),(),(),()(y x y x y x y x ji jiji ji jiji p p I p Y X H ∑∑-==互信息:)()(log)()()()(log),();(y x yx yx y x yy x jiji jiji jijjiji p p p p p p p Y X I ∑∑==熵的基本性质:非负性、对称性、确定性2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

解:(1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bit x p x I x p i i i 170.5361log)(log )(3616161)(=-=-==⨯=(3)两个点数的排列如下:11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 6162 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)两个点数求和的概率分布如下:sym bolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5){(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),(1,1)}bit x p x I x p i i i 710.13611log)(log )(3611116161)(=-=-==⨯⨯=2.7 设有一离散无记忆信源,其概率空间为123401233/81/41/41/8X x x x x P ====⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭(1)求每个符号的自信息量(2)信源发出一消息符号序列为{202 120 130 213 001 203 210 110 321 010 021 032 011 223 210},求该序列的自信息量和平均每个符号携带的信息量 解:122118()log log 1.415()3I x bit p x === 同理可以求得bit x I bit x I bit x I 3)4(,2)3(,2)2(===因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和 就有:123414()13()12()6()87.81I I x I x I x I x bit =+++=平均每个符号携带的信息量为87.811.9545=bit/符号 2.8 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0===所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。

信息论第二章答案(南邮研究生作业).doc

信息论第二章答案(南邮研究生作业).doc

2-1 同时掷两个正常的骰子,也就是各面呈现的概率都是1/6,求:(1)“3和5同时出现”这事件的自信息量。

(2)“两个1同时出现”这事件的自信息量。

(3)两个点数的各种组合(无序对)的熵或平均信息量。

(4)两个点数之和(即2,3,…,12构成的子集)的熵。

(5)两个点数中至少有一个是1的自信息。

解:(1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bit x p x I x p i i i 170.5361log)(log )(3616161)(=-=-==⨯=(3)两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:symbolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)bitx p x I x p i i i 710.13611log )(log )(3611116161)(=-=-==⨯⨯=2-2 设有一离散无记忆信源,其概率空间为[]⎥⎦⎤⎢⎣⎡=====8/14/14/18/332104321x x x x P X(1) 求每个符号的自信息量;(2) 若信源发出一消息符号序列为(202 120 130 213 001 203 210 110 321 010 021 032 011 223 210),求该消息序列的自信息量及平均每个符号携带的信息量。

彭代渊王玲-信息论与编码理论-第二章习题解答

彭代渊王玲-信息论与编码理论-第二章习题解答
⑶ I ( X;Y ),I ( X;Z ),I (Y;Z ),I ( X;Y | Z ),I (Y;Z | X ) 和 I ( X;Z | Y ) 。
I ( X ; Y ) H ( X ) H ( X | Y ) 1 0.81 0.19bit / 符号 I (Y ; Z ) H (Y ) H (Y | Z ) 1 0.87 0.13bit / 符号
第2章
信息的度量
第 2 章 信息的度量
2.1 同时扔一对质地均匀的骰子,当得知“两骰子面朝上点数之和为 5”或“面朝上点数 之和为 8”或“两骰子面朝上点数是 3 和 6”时,试问这三种情况分别获得多少信息量? 解: 某一骰子扔得某一点数面朝上的概率是相等的,均为 1/6,两骰子面朝上点数的状态共 有 36 种,其中任一状态出现都是等概率的,出现概率为 1/36。设两骰子面朝上点数之和为事 件 a,有: ⑴ a=5 时,有 1+4,4+1,2+3,3+2,共 4 种,则该事件发生概率为 4/36=1/9,则信息 量为 I(a)=-logp(a=5)=-log1/9≈3.17(bit) ⑵ a=8 时, 有 2+6, 6+2, 4+4, 3+5, 5+3, 共 5 种, 则 p(a)=5/36,则 I(a)= -log5/36≈2.85(bit) ⑶ p(a)=2/36=1/18,则 I(a)=-log1/18≈4.17(bit) 2.2 如果你在不知道今天是星期几的情况下问你的朋友“明天是星期几”,则答案中含 有多少信息量?如果你在已知今天是星期三的情况下提出同样的问题,则答案中你能获得 多少信息量(假设已知星期一至星期日的排序)? 解: 设“明天是星期几”为事件 a: ⑴ 不知道今天是星期几:I(a)=-log1/7≈2.81(bit) ⑵ 知道今天是星期几:I(a)=-log1=0 (bit) 2.3 居住某地区的女孩中有 20%是大学生, 在女大学生中有 80%是身高 1 米 6 以上的, 而女孩中身高 1 米 6 以上的占总数的一半。假如我们得知“身高 1 米 6 以上的某女孩是大学 生”的消息,求获得多少信息量? 解: 设“居住某地区的女孩是大学生”为事件 a,“身高 1 米 6 以上的女孩”为事件 b,则有: p(a)= 0.2,p(b|a)=0.8,p(b)=0.5, 则“身高 1 米 6 以上的某女孩是大学生”的概率为:

信息论第二章课后习题解答

信息论第二章课后习题解答
这样,平均每个像素携带的信息量为:
每帧图像含有的信息量为:
按每秒传输30帧计算,每秒需要传输的比特数,即信息传输率 为:
(2)需30个不同的色彩度,设每个色彩度等概率出现,则其概 率空间为:
由于电平与色彩是互相独立的,因此有
这样,彩色电视系统的信息率与黑白电视系统信息率的比值为
【2.13】每帧电视图像可以认为是由3×105个像素组成,所以 像素均是独立变化,且每一像素又取128个不同的亮度电平,并 设亮度电平等概率出现。问每帧图像含有多少信息量? 若现有一广播员在约 10000 个汉字的字汇中选 1000 个来口述 此电视图像,试问广播员描述此图像所广播的信息量是多少 (假设汉字是等概率分布,并且彼此无依赖)?若要恰当地描 述此图像,广播员在口述中至少需用多少汉字?
解: 信源为一阶马尔克夫信源,其状态转换图如下所示。
根据上述c) ,
【2.20】黑白气象传真图的消息只有黑色和白色两种,即信源, X={白 黑} ,设黑色出现的概率为 P(黑) =0.3 ,白色出现的 概率为P(白)=0.7。 (1) 假设图上黑白消息出现前后没有关联,求熵H(X) ; (2) 假设消息前后有关联,其依赖关系为P(白|白)=0.9 , P(白|黑)=0.2 ,P(黑|白)=0.1 ,P(黑|黑)=0.8 ,求此一阶马 尔克夫信源的熵H2 。 (3) 分别求上述两种信源的冗余度,并比较H(X)和H2的大小, 并说明其物理意义。
解:(1)如果出现黑白消息前后没有关联,信息熵为:
(2)当消息前后有关联时,首先画出其状态转移图,如下所 示:
设黑白两个状态的极限概率为Q(黑) 和Q (白) ,
解得:
此信源的信息熵为: (3)两信源的冗余度分别为:
结果表明:当信源的消息之间有依赖时,信源输出消息的不确 定性减弱。有依赖时前面已是白色消息,后面绝大多数可能 是出现白色消息;前面是黑色消息,后面基本可猜测是黑色 消息。这时信源的平均不确定性减弱,所以信源消息之间有 依赖时信源熵小于信源消息之间无依赖时的信源熵,这表明 信源熵正是反映信源的平均不确定的大小。而信源剩余度正 是反映信源消息依赖关系的强弱,剩余度越大,信源消息之 间的依赖关系就越大。

信息论第2章作业

信息论第2章作业

第2章作业1. 同时扔一对均匀的骰子,当得知“两骰子面朝上点数之和为2”或“面朝上点数之和为8”或“两骰子面朝上点数是3和4”时,试问这三种情况分别获得多少信息量?2. 居住在某地区的女孩中有25%是大学生,在大学生中有75%是身高1.6以上的,而女孩中身高1.6米以上的占总数一半.假如我们得知“身高1.6米以上的某女孩是大学生”的消息,问获得多少信息量?解:信息量:比特3. 设离散无记忆信源123401233/81/41/41/8X a a a a P ====⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,其发出的消息为(202120130213001203210110321010021032011223210),求(1) 求每个符号的自信息量;(2) 若信源发出一消息符号序列为(202 120 130 213 001 203 210 110 321 010 021 032有一信源输出X∈{0,1,2},其概率为p0=1/4,p1=1/4,p2=1/2。

设计两个独立实验去观察它,其结果为Y1∈{0,1}和Y2∈{0,1}。

已知条件概率为P(Y1|X) 0 1 P(Y2|X) 0 10 1 0 0 1 01 0 1 1 1 02 1/2 1/2 2 0 1 求:1)I(X;Y1)和I(X;Y2),并判断哪一个实验好些。

2)I(X;Y1,Y2),并计算做Y1和Y2两个实验比做Y1或Y2中的一个实验各可多得多少关于X的信息。

3)I(X;Y1/Y2)和I(X;Y2/Y1),并解释它们的含义。

);(21Y Y X I - I(X;Y 2)=1.5-1=0.5 bit/sym故做Y 1和Y 2两个实验比做Y 1或Y 2中的一个实验各可多得1 bit/sym 和0.5 bit/sym 。

(3));(21Y Y X I =)(2Y X H -)(21Y Y X H=[][]);()();()(212Y Y X I X H Y X I X H ---=);();(221Y X I Y Y X I -=0.5 bit/sym 同理,得出);(12Y Y X I =);();(121Y X I Y Y X I -=1 bit/sym结果说明,在做完实验Y 1或Y 2的条件下再做第二个实验,并没有获得更多的信息,因为Y 1和Y 2相互独立,没有任何关联。

信息论与编码第二版第2章习题答案

信息论与编码第二版第2章习题答案
(4) 参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:
2 3 4 5 6 7 8 9 10 11 12 X 1 1 1 1 5 1 5 1 1 1 1 = P ( X ) 36 18 12 9 36 6 36 9 12 18 36 H ( X ) = −∑ p ( xi ) log p ( xi )
画出状态图,并计算各状态的稳态概率。 解: p (0 | 00) = p (00 | 00) = 0.8
p (0 | 01) = p (10 | 01) = 0.5 p (0 |10) = p (00 |10) = 0.5 p (1| 01) = p (11| 01) = 0.5 p (1|10) = p (01|10) = 0.5
15 25 35 45 55 65
16 26 36 46 56 66
1 1 1 × = 6 6 36
1 1 1 × = 6 6 18
1 1 1 1 H ( X ) = −∑ p ( xi ) log p ( xi ) = − 6 × log + 15 × log = 4.337 bit / symbol 36 18 18 36 i
2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为: p (0 | 00) =0.8, p (0 |11) =0.2,
p (1| 00) =0.2, p (1|11) =0.8, p (0 | 01) =0.5, p (0 |10) =0.5, p (1| 01) =0.5, p (1|10) =0.5。
87.81 = 1.95 bit/符号 45
2-14 (1)
P(ij)=
P(i/j)=
(2) 方法 1:

信息论第二章习题

信息论第二章习题

(3) H(X1X2…X100)=H(X1)+H(X2)+…+H(X100)=100H(X) =100×0.81=81比特
已知一个马尔可夫信源,转移概率为p(s1/s1)=2/3, p(s2/s1)=1/3, p(s1/s2)=1, p(s2/s2)=0,试画出状态转移图并求信源熵
解:
2 P 3 1
p(a1/b2) I (a1;b2)=log p(a1)
P(b2)=P(b2,a1)+P(b2,a2)=P(b2/a1)P(a1)+ P(b2/a2)P(a2)
=ε*1/2 + (1-ε)*(1/2) =1/2
P(a1,b2)= P(b2/a1)*P(a1)= 1/2* ε P(a1/b2)=P(a1,b2)/ P(b2)=ε
已知信源发出a1和 a2,,且p(a1)=p(a2)=1/2,在信道上传输时, 传输特性为p(b1/a1)=p(b2/a2)=1-ε, p(b1/a2)=p(b2/ a1)=ε,求互信 息量 I(a1;b1)和I (a1;b2)
解: p(a 1/b1) p(a 1/b1) I(a1;b1)=log =log
(3) P(红)=P(白)=P(蓝)=P(黄)=1/4
所以 H(X)= 4 x ( 1 log 2 1)
4 4
= 2比特/球
一个消息由符号0,1,2,3组成,已知p(0)=3/8, p(1)=1/4, p(2)=1/4, p(3)=1/8,求60个符号构成的消息 所含的信息量和平均信息量。
解: 平均信息量 H(X)=3/8log2(8/3)+2/4log24+1/8log28 =1.905比特/符号 信息量 H1(X)=60*1.905=114.3比特
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章作业
1. 同时扔一对均匀的骰子,当得知“两骰子面朝上点数之和为2”或“面朝上点数之和为
8”或“两骰子面朝上点数是3和4”时,试问这三种情况分别获得多少信息量?
2. 居住在某地区的女孩中有25%是大学生,在大学生中有75%是身高1.6以上的,而女孩中
身高1.6米以上的占总数一半.假如我们得知“身高1.6米以上的某女孩是大学生”的消息,问获得多少信息量?
解:
信息量:
比特
3. 设离散无记忆信源123401233/81/41/41/8X a a a a P ====⎡⎤⎡⎤
=⎢⎥⎢⎥⎣⎦⎣⎦
,其发出的消息为(202120130213001203210110321010021032011223210),求
(1) 求每个符号的自信息量;
(2) 若信源发出一消息符号序列为(202 120 130 213 001 203 210 110 321 010 021 032
有一信源输出X∈{0,1,2},其概率为p0=1/4,p1=1/4,p2=1/2。

设计两个独立实验去观察它,其结果为Y1∈{0,1}和Y2∈{0,1}。

已知条件概率为
P(Y1|X) 0 1 P(Y2|X) 0 1
0 1 0 0 1 0
1 0 1 1 1 0
2 1/2 1/2 2 0 1 求:
1)I(X;Y1)和I(X;Y2),并判断哪一个实验好些。

2)I(X;Y1,Y2),并计算做Y1和Y2两个实验比做Y1或Y2中的一个实验各可多得多少关
于X的信息。

3)I(X;Y1/Y2)和I(X;Y2/Y1),并解释它们的含义。

);(21Y Y X I - I(X;Y 2)=1.5-1=0.5 bit/sym
故做Y 1和Y 2两个实验比做Y 1或Y 2中的一个实验各可多得1 bit/sym 和0.5 bit/sym 。

(3));(21Y Y X I =)(2Y X H -)(21Y Y X H
=[][]);()()
;()(212Y Y X I X H Y X I X H ---
=);();(221Y X I Y Y X I -=0.5 bit/sym 同理,得出);(12Y Y X I =);();(121Y X I Y Y X I -=1 bit/sym
结果说明,在做完实验Y 1或Y 2的条件下再做第二个实验,并没有获得更多的信息,因为Y 1和Y 2相互独立,没有任何关联。

5. 为了传输一个由字母A 、B 、C 、D 组成的符号集,把每个字母编码成两个二元码脉冲序
列,以00代表A,01代表B,10代表C,11代表D 。

每个二元码脉冲宽度为5ms 。

(1) 不同字母等概率出现时,计算传输的平均信息速率?
(2) 若每个字母出现的概率分别为p A =1/5,p B =1/4,p C =1/4,p D =3/10,试计算传输
的平均信息速率?
(1) 因为A,B,C,D 四个字母,每个字母用两个码,每个码为5ms, 所以每个字母用10ms 当信源等概率分布时,信源熵为H(X)=log(4)=2 平均信息传递速率为=2bit/ms=200bit/s
(2) 信源熵为 H(X)=
传输的平均信息速率为
=0.198bit/ms=198bit/s
6. (1)为了使电视图像获得良好的清晰度和规定的适当的对比度,需要用5×105个像素和
10个不同亮度电平,设每秒要传送30帧图像,所有像素是独立变化的,且所有亮度电平等概率出现,求传送此图像所需的信息率(bit/s )。

(2)设某彩电系统,除了满足对于黑白电视系统的上述要求外,还必须有30个不同的色彩度,试证明传输这彩色系统的信息率要比黑白系统的信息率大约2.5倍。

解:(1)需要5×105个像素和10个不同亮度电平,则可能出现的不同画面为5
10510

每个画面等概率出现,P=1/5
10510⨯
每帧图像的熵 H(X)= Log(5
10510
⨯)=5×5
10﹒Log10=1.66×6
10比特
.若有二个串接的离散信道,它们的信道矩阵都是
0010001⎡⎤
⎢⎥
11.有一个一阶平稳马尔可夫链X1,X2,……X r……,各X r取值于集合A={a1,a2,a3}。

已知起始概率p(X r)为p1=1/2,p2=p3=1/4,转移概率如下。

j
1 2 3
i
1 1/
2 1/4 1/4
2 2/
3 0 1/3
3 2/3 1/3 0
(1)求(X1,X2,X3)的联合熵和平均符号熵。

(2)求这个链的极限平均符号熵。

(3)求H0,H1,H2和它们所对应的冗余度。

21.0585
.1251
.11100=-=-
=∞H H R 115.0414.1251.11111=-=-
=∞H H R 0251
.1251
.11122=-=-
=∞H H R 11.设有一个马尔可夫信源,它的状态集为{s 1,s 2,s 3},符号集为{a 1,a 2,a 3},及在某状态下发
符号的概率为P(a k/ s i )(i,k=1,2,3),如图所示。

(1)求出图中马尔可夫信源的状态极限概率并找出符号的极限概率。

(2)计算信源处在某一状态下输出符号的条件熵H (X /S =j )(j= s 1,s 2,s 3)。

(3)求出马尔可夫信源熵∞H 。

a 3
:1/2
a 2
:1/2
a 1
:1
a 3
:1/4
a 2
:1/4
a 1
:1/2
S 1
S 2
S 3。

相关文档
最新文档