【最新】中考数学总复习学案:第15课时 二次函数图象和性质

合集下载

2023年中考数学总复习专题15二次函数与角综合问题(学生版)

2023年中考数学总复习专题15二次函数与角综合问题(学生版)

(全国通用)专题15二次函数与角综合问题二次函数与角综合问题,常见的主要有三种类型:1.特殊角问题:(1)利用特殊角的三角函数值找到线段之间的数量关系(2)遇到特殊角可以构造特殊三角形,如遇到45°构造等腰直角三角形,遇到30°、60°构造等边三角形,遇到90°构造直角三角形2.角的数量关系问题(1)等角问题:借助特殊图形的性质、全等和相似的性质来解决;构造圆,利用圆周角的性质来解决(2)二倍角问题:利用角平分线的性质、等腰三角形的性质、对称、辅助圆等知识来解答(3)角的和差问题3.角的最值问题:利用辅助圆等知识来解答【例1】(2022•西宁)如图,抛物线y=ax2+bx+3与x轴交于点A(3,0),与y轴交于点B,点C在直线AB上,过点C作CD⊥x轴于点D(1,0),将△ACD沿CD所在直线翻折,使点A恰好落在抛物线上的点E处.(1)求抛物线解析式;(2)连接BE,求△BCE的面积;(3)抛物线上是否存在一点P,使∠PEA=∠BAE?若存在,求出P点坐标;若不存在,请说明理由.【例2】(2022•益阳)如图,在平面直角坐标系xOy中,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P 在抛物线F:y=ax2上,直线x=t与抛物线E,F分别交于点A,B.(1)求a的值;(2)将A,B的纵坐标分别记为y A,y B,设s=y A﹣y B,若s的最大值为4,则m的值是多少?(3)Q是x轴的正半轴上一点,且PQ的中点M恰好在抛物线F上.试探究:此时无论m为何负值,在y轴的负半轴上是否存在定点G,使∠PQG总为直角?若存在,请求出点G的坐标;若不存在,请说明理由.【例3】.(2022•鄂尔多斯)如图,在平面直角坐标系中,抛物线y=ax2+bx+2经过A(,0),B(3,)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P在抛物线上,过P作PD⊥x轴,交直线BC于点D,若以P、D、O、C为顶点的四边形是平行四边形,求点P的横坐标;(3)抛物线上是否存在点Q,使∠QCB=45°?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【例4】(2022•菏泽)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y 轴交于点C(0,4),连接AC、BC.(1)求抛物线的表达式;(2)将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,直接写出点D的坐标,并求出四边形OADC的面积;(3)点P是抛物线上的一动点,当∠PCB=∠ABC时,求点P的坐标.1.(2022•江岸区模拟)已知:抛物线y=﹣(x+k)(x﹣7)交x轴于A、B(A左B右),交y轴正半轴于点C,且OB=OC.(1)如图1,求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,连接AP,AP交y轴于点D,设P的横坐标为m,CD的长为d,求d与m的函数解析式(不要求写出自变量m的取值范围);(3)如图3,在(2)的条件下,过点P作PE⊥y轴于点E,延长EP至点G,使得PG=3CE,连接CG 交AP于点F,且∠AFC=45°,连接AG交抛物线于T,求点T的坐标.2.(2022•沈阳模拟)如图1,在平面直角坐标系中.抛物线y=ax2+bx+2与x轴交于A(﹣4,0)和B(1,0),与y轴交于点C,连接AC,BC.(1)求该抛物线的解析式;(2)如图2,点M为直线AC上方的抛物线上任意一点,过点M作y轴的平行线,交AC于点N,过点M作x轴的平行线,交直线AC于点Q,求△MNQ周长的最大值;(3)点P为抛物线上的一动点,且∠ACP=45°﹣∠BAC,请直接写出满足条件的点P的坐标.3.(2022•沈阳模拟)如图1,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于A,B两点(点B在点A的右边),点A坐标为(1,0),抛物线与y轴交于点C,S△ABC=3.(1)求抛物线的函数表达式;(2)点P(x,y)是抛物线上一动点,且x>3.作PN⊥BC于N,设PN=d,求d与x的函数关系式;(3)在(2)的条件下,过点A作PC的平行线交y轴于点F,连接BF,在直线AF上取点E,连接PE,使PE=2BF,且∠PEF+∠BFE=180°,请直接写出P点坐标.4.(2022•成都模拟)如图,已知抛物线表达式为y=ax2﹣ax﹣2a+1(a≠0),直线y=x+与坐标轴交于点A,B.(1)若该抛物线过原点,求抛物线的表达式.(2)试说明无论a为何值,抛物线一定经过两个定点,并求出这两个定点的坐标.点P为两定点所在直线上的动点,当点P到点A的距离和到直线AB的距离之和最小时,求点P的坐标;(3)点N是抛物线上一动点,点M(﹣4,0),且∠NMA+∠OBA=90°,若满足条件的点N的个数恰好为3个,求a的值.5.(2022•成都模拟)如图1所示,直线y=x+3与x轴、y轴分别相交于点A,点B,点C(1,2)在经过点A,B的二次函数y=ax2+bx+c的图象上.(1)求抛物线的解析式;(2)点P为线段AB上(不与端点重合)的一动点,过点P作PQ∥y轴交抛物线于点Q,求PQ+PB 取得最大值时点P的坐标;(3)如图2,连接BC并延长,交x轴于点D,E为第三象限抛物线上一点,连接DE,点G为x轴上一点,且G(﹣1,0),直线CG与DE交于点F,点H在线段CF上,且∠CFD+∠ABH=45°,连接BH 交OA于点M,已知∠GDF=∠HBO,求点H的坐标.6.(2022•洪山区模拟)如图,在平面直角坐标系中,抛物线与x轴交于点A(﹣1,0),B(3,0),与y 轴交于点C(0,3),与直线l:y=k(x﹣3)+3(k>0)交于D,E两点.(1)求抛物线的解析式;(2)如图1,连接BD,若△BDE的面积为6,求k的值;(3)如图2,若直线l与抛物线交于M,N两点,与BC交于点P,且∠MBC=∠NBC.求P点的坐标.7.(2022•洪山区模拟)抛物线y=ax2﹣2ax﹣3a与x轴交于A、B两点(点A在点B的左边),与y轴的正半轴交于C点,△ABC的面积为6.(1)直接写出点A、B的坐标为;抛物线的解析式为.(2)如图1,连结AC,若在第一象限抛物线上存在点D,使点D到直线AC的距离为,求点D 的坐标;(3)如图2,平行于AC的直线交抛物线于M、N两点,在抛物线上存在点P,当PQ⊥y轴时,PQ恰好平分∠MPN,求P点坐标.8.(2022•泰安模拟)如图,抛物线y=mx2+3mx﹣2m+1的图象经过点C,交x轴于点A(x1,0),B(x2,0)(点A在点B左侧),且x2﹣x1=5,连接BC,D是AC上方的抛物线一点.(1)求抛物线的解析式;(2)连接BC,CD,S△DCE:S△BCE是否存在最大值?若存在,请求出其最大值及此时点D的坐标;若不存在,请说明理由;(3)第二象限内抛物线上是否存在一点D,DF垂直AC于点F,使得△DCF中有一个锐角等于∠BAC 的两倍?若存在,求点D的横坐标,若不存在,请说明理由.9.(2022•青山区模拟)抛物线y=x2+(t﹣2)x﹣2t(t>0)与x轴交于A、B两点(A在B左边),与y轴交于点C.(1)直接写出A点坐标、B点坐标、C点坐标;(2)如图1,直线y=kx+b与抛物线交于M、N两点(M不与A重合,M在N左边),连接MA,作NH ⊥x轴于点H,过点H作HP∥MA交y轴于点P,PH交MN于点Q,求点Q的横坐标;(3)如图2,直线y=d(d>0)与抛物线交于第二象限点D,若∠ADB=45°,求d﹣t的值.10.(2022•丹阳市二模)如图所示,抛物线y=﹣x2+bx+3经过点B(3,0),与x轴交于另一点A,与y轴交于点C.(1)求抛物线所对应的函数表达式;(2)如图,设点D是x轴正半轴上一个动点,过点D作直线l⊥x轴,交直线BC于点E,交抛物线于点F,连接AC、FC.①若点F在第一象限内,当∠BCF=∠BCA时,求点F的坐标;②若∠ACO+∠FCB=45°,则点F的横坐标为.11.(2022•东港区校级一模)如图1,抛物线y=ax2+bx+3经过A(1,0)、B(3,0)两点,与y轴交于点C,(1)求抛物线的函数解析式;(2)如图2,M是x轴下方的抛物线上一点,连接MO、MB、MC,若△MOC的面积是△MBC面积的3倍,求点M的坐标;(3)如图3,连接AC、BC,在抛物线上是否存在一点N(不与点A重合),使得∠BCN=∠ACB?若存在,求点N的横坐标;若不存在,请说明理由.12.(2022•宁津县模拟)如图,抛物线与x轴交于点A和点C(﹣1,0),与y轴交于点B (0,3),连接AB,BC,对称轴PD交AB与点E.(1)求抛物线的解析式;(2)如图2,试探究:线段BC上是否存在点M,使∠EMO=∠ABC,若存在,求出点M的坐标;若不存在,请说明理由;(3)如图3,点Q是抛物线的对称轴PD上一点,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围.13.(2022•南山区模拟)已知抛物线y=ax2+bx+c(a﹣1不为整数)的顶点D(,),AB⊥BC.(1)直接得出抛物线解析式.(2)如图1所示,点P为抛物线一动点,∠PBC=3∠ABO,求x P;(3)如图2,延长DB交x轴于点E,EF平分∠BEO,交线段AB于点F.x轴正半轴有一点S,且AS =12EF.过点F作FG∥x轴,交抛物线的对称轴于点G.该对称轴交x轴于点H.过点G作线段IM、NQ,且NH=MH=IH=QH.线段IQ交直线FG于点R,若线段MN恰好交FG于点F.那么请求出R 点坐标.并试问∠EF A与∠RSE是否存在倍数关系?若存在,请分别求出它们的角度大小并写出存在的倍数关系;若不存在,请说明理由.14.(2022•大连二模)抛物线y=x2﹣4x+c与直线I:y=kx交于点G(1,m)和点H,﹣1≤m<0,直线x =m﹣1交直线l于点A,交抛物线于点B.(1)求c和k的值(用含m的代数式表示);(2)过点A作x轴的平行线交抛物线于M,N两点(M在N的左侧),交y轴于点C.求的取值范围;(3)在(2)的条件下,过点B作x轴的平行线,与抛物线另一个交点为D,若点E是线段BD的中点,探究∠MEN与∠ABC的数量关系,并说明理由.15.(2022•新抚区模拟)如图,直线y=mx+n与抛物线y=﹣x2+bx+c交于A(﹣2,0),B(2,2)两点,直线AB与y轴交于点C.(1)求抛物线与直线AB的解析式;(2)点P在抛物线上,直线PC交x轴于Q,连接PB,当△PBC的面积是△ACQ面积的2倍时,求点P的坐标;(3)点M为坐标轴上的动点,当∠AMB=45°时,直接写出点M的坐标.16.(2022•铁岭模拟)如图1,抛物线y=ax2﹣x+c与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,直线l与抛物线交于A、D两点,其中D点的横坐标为2.(1)求抛物线的解析式以及直线AD的解析式;(2)点P是抛物线上位于直线AD下方的动点,过点P作x轴,y轴的平行线,交AD于点E、F,当PE+PF取最大值时,求点P的坐标;(3)如图2,连接AC,点Q在抛物线上,且满足∠QAB=2∠ACO,求点的坐标.17.(2022•平房区二模)如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+4与x轴交于点A、B(点A在点B左侧),与y轴交于点C,直线y=﹣x+4经过B、C两点,OB=4OA.(1)求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点,过点P作PD⊥x轴交BC于点D,垂足为N,连接PC交x轴于点E,设点P的横坐标为t,△PCD的面积为S,求S与t的函数关系式;(3)在(2)的条件下,如图3,过点P作PF⊥PC交y轴于点F,PF=PE.点G在抛物线上,连接PG,∠CPG=45°,连接BG,求直线BG的解析式.18.(2022•新民市一模)如图,已知抛物线y=﹣x2+bx+c经过点A(0,2),B(8,0),点D是第一象限抛物线上的一点,CD⊥AB于点C.(1)直接写出抛物线的表达式;(2)如图1,当CD取得最大值时,求点D的坐标,并求CD的最大值;(3)如图2,点D满足(2)的条件,点P在x轴上,且∠APD=45°,直接写出点P的横坐标.19.(2022•大庆二模)如图,抛物线y=mx2+(m2+3)x﹣(6m+9)与x轴交于点A,B,与y轴交于点C,已知点B(3,0).(1)求直线BC及抛物线的函数表达式;(2)P为x轴上方抛物线上一点.①若S△PBC=S△ABC,请直接写出点P的坐标;②如图,PD∥y轴交BC于点D,DE∥x轴交AC于点E,求PD+DE的最大值;(3)Q为抛物线上一点,若∠ACQ=45°,求点Q的坐标.20.(2022•运城二模)如图,已知抛物线y=ax2+bx﹣8与x轴交于点A(﹣2,0),B(8,0)两点,与y 轴交于点C,点P是直线BC下方抛物线上一动点,过点P作直线PE∥y轴,交直线BC于点D,交x 轴于点F,以PD为斜边,在PD的右侧作等腰直角△PDF.(1)求抛物线的表达式,并直接写出直线BC的表达式;(2)设点P的横坐标为m(0<m<3),在点P运动的过程中,当等腰直角△PDF的面积为9时,请求出m的值;(3)连接AC,该抛物线上是否存在一点M,使∠ACO+∠BCM=∠ABC,若存在,请直接写出所有符合条件的点M的坐标,若不存在,请说明理由.21.(2022•永安市模拟)已知二次函数y=x2+(k﹣2)x﹣2k.(1)当此二次函数的图象与x轴只有一个交点时,求该二次函数的解析式;(2)当k>0时,直线y=kx十2交抛物线于A,B两点(点A在点B的左侧),点P在线段AB上,过点P做PM垂直x轴于点M,交抛物线于点N.①求PN的最大值(用含k的代数式表示);②若抛物线与x轴交于E,F两点,点E在点F的左侧.在直线y=kx+2上是否存在唯一一点Q,使得∠EQO=90°?若存在,请求出此时k的值;若不存在,请说明理由.22.(2022•南岗区三模)在平面直角坐标系中,点O为坐标系的原点,经过点B(3,6)的抛物线与x轴的正半轴交于点A.(1)求抛物线的解析式;(2)如图1,点P为第一象限抛物线上的一点,且点P在抛物线对称轴的右侧,连接OP,AP,设点P 的横坐标为t,△OP A的面积为S,求S与t的函数解析式(不要求写出自变量t的取值范围);(3)如图2,在(2)的条件下,当时,连接BP,点C为线段OA上的一点,过点C作x轴的垂线交BP的延长线于点D,连接OD,BC,若,求点C的坐标.23.(2022•同安区二模)已知抛物线y=ax2+bx+c(a<0)过点A(﹣1,0)和C(0,3),与x轴交于另一点B,顶点为D.(1)求a、b满足的关系式;(2)对于抛物线上的任意两点P1(x1,y1),P2(x2,y2),当y1=y2时,恒有|x1﹣1|=|x2﹣1|.①求抛物线解析式;②AC与BD的延长线交于点H,在x轴上方的抛物线上是否存在点P,使得∠OPB=∠AHB.若存在,求出一个符合条件的点P的坐标;若不存在,请说明理由.24.(2022•伊宁市模拟)抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的函数表达式;(2)如图1,点M是第一象限内抛物线上一动点,过点M作MF⊥x轴于点F,作ME⊥y轴于点E,当矩形MEOF周长最大时,求M点坐标.(3)如图2,点P是该抛物线上一动点,连接PC,AC,直接写出使得∠PCB=∠ACO时点P的坐标.。

初三数学复习教案二次函数的图像与性质

初三数学复习教案二次函数的图像与性质

初三数学复习教案二次函数的图像与性质初三数学复习教案:二次函数的图像与性质一、引言二次函数是数学中非常重要且常见的一类函数,研究二次函数的图像与性质既有助于我们对函数的理解,也对解决实际问题具有重要意义。

本篇教案将重点介绍二次函数的图像和性质,以帮助初三学生系统复习与掌握这一知识点。

二、二次函数的定义和一般式1. 定义:二次函数是形如 y = ax² + bx + c 的函数,其中a ≠ 0,且 a、b、c 是常数。

2. 一般式:二次函数通常可以用一般式表示,即 y = ax² + bx + c。

三、二次函数的图像1. 抛物线的开口方向:当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

2. 顶点坐标的求解:二次函数的顶点坐标可以通过公式 x = -b / (2a) 求得。

3. 对称轴和对称性:二次函数的对称轴是经过顶点的一条垂直于 x 轴的直线。

二次函数关于对称轴对称,即对于任意 x,有 f(x) = f(2p - x),其中 p 为对称轴的横坐标。

4. 零点的求解:二次函数的零点即方程 ax² + bx + c = 0 的解,可以通过求根公式x = [-b ± √(b² - 4ac)] / (2a) 求得。

四、二次函数的性质1. 判别式:二次函数的判别式Δ = b² - 4ac 反映了二次函数的根的情况。

- 当Δ > 0 时,函数有两个不相等的实根;- 当Δ = 0 时,函数有两个相等的实根;- 当Δ < 0 时,函数无实根。

2. 函数的增减性:当 a > 0 时,二次函数在顶点左侧(对称轴左侧)是单调递增的;当 a < 0 时,二次函数在顶点右侧(对称轴右侧)是单调递增的。

3. 函数的最值:若 a > 0,则二次函数的最小值是顶点的纵坐标;若 a < 0,则二次函数的最大值是顶点的纵坐标。

中考数学复习 第三单元 函数 第15课时 二次函数的实际应用数学课件

中考数学复习 第三单元 函数 第15课时 二次函数的实际应用数学课件
满足的函数关系为p=at2+bt+c(a,b,c是常数), 得 16 + 4 + = 0.8,
25 + 5 + = 0.5.
如图15-3记录了三次实验的数据.根据上述
= -0.2,
函数模型和实验数据,可以得到最佳加工时
解得 = 1.5,
间为(
)
= -2,
A.3.50分钟
即 p=-0.2t2+1.5t-2,
[解析]设售价定为x元/千克,则每千克获利(x-4.1)元.
∵价格每上涨0.1元,每天少卖出20千克,
∴每天的销售量为200-20(x-4.1)÷0.1=-200x+1020(千克).
设每天获利W元,则W=(-200x+1020)(x-4.1)
=-200x2+1840x-4182=-2(100x2-920x+2116)+4232-4182=-2(10x-46)2+50.
图15-1
2.某品牌钢笔每支进价8元,按10元1支出售
[答案] D
时每天能卖出20支,市场调查发现,如果每支 [解析]设每天的利润为w元,涨价x元.
涨价1元,每天就少卖出2支,为了每天获得最 由题意得,每天利润为:
大利润,其售价应定为(
)
w=(2+x)(20-2x)=-2x2+16x+40
A.11元
后 4 s 滑行 24 m.
7.春节期间,物价局规定某种蔬菜的最低价格为4.1元/千克,最高价格为4.5元/千克,
小王按4.1元/千克购入,若原价出售,则每天平均可卖出200千克,若价格每上涨0.1
元,则每天少卖出20千克,则蔬菜售价定为

初三数学二次函数的图象和性质教案

初三数学二次函数的图象和性质教案

初三数学二次函数的图象和性质教案初三数学二次函数的图象和性质教案作为一名老师,通常需要准备好一份教案,教案是备课向课堂教学转化的关节点。

如何把教案做到重点突出呢?下面是小编为大家收集的初三数学二次函数的图象和性质教案,仅供参考,希望能够帮助到大家。

教学目标:1.经历探索二次函数y=ax2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。

2.能够利用描点法作出函数y=ax2的图象,并能根据图象认识和理解二次函数y=ax2的性质,初步建立二次函数表达式与图象之间的联系。

3.能根据二次函数y=ax2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标)。

教学重点:二次函数y=ax2的图象的作法和性质教学难点:建立二次函数表达式与图象之间的联系教学方法:自主探索,数形结合教学建议:利用具体的二次函数图象讨论二次函数y=ax2的性质时,应尽可能多地运用小组活动的形式,通过学生之间的合作与交流,进行图象和图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系,以达到学生对二次函数性质的真正理解。

教学过程:一、认知准备:1.正比例函数、一次函数、反比例函数的图象分别是什么?2.画函数图象的方法和步骤是什么?(学生口答)你会作二次函数y=ax2的图象吗?你想直观地了解它的性质吗?本节课我们一起探索。

二、新授:(一)动手实践:作二次函数y=x2和y=-x2的图象(同桌二人,南边作二次函数y=x2的图象,北边作二次函数y=-x2的图象,两名学生黑板完成)(二)对照黑板图象议一议:(先由学生独立思考,再小组交流)1.你能描述该图象的形状吗?2.该图象与x轴有公共点吗?如果有公共点坐标是什么?3.当x<0时,随着x的增大,y如何变化?当x>0时呢?4.当x取什么值时,y值最小?最小值是什么?你是如何知道的?5.该图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点。

(三)学生交流:1.交流上面的五个问题(由问题1引出抛物线的概念,由问题2引出抛物线的顶点)2.二次函数y=x2和y=-x2的图象有哪些相同点和不同点?3.教师出示同一直角坐标系中的两个函数y=x2和y=-x2图象,根据图象回答:(1)二次函数y=x2和y=-x2的图象关于哪条直线对称?(2)两个图象关于哪个点对称?(3)由y=x2的图象如何得到y=-x2的图象?(四)动手做一做:1.作出函数y=2 x2和y= -2 x2的图象(同桌二人,南边作二次函数y= -2 x2的图象,北边作二次函数y=2 x2的图象,两名学生黑板完成)2.对照黑板图象,数形结合,研讨性质:(1)你能说出二次函数y=2 x2具有哪些性质吗?(2)你能说出二次函数y= -2 x2具有哪些性质吗?(3)你能发现二次函数y=a x2的图象有什么性质吗?(学生分小组活动,交流各自的发现)3.师生归纳总结二次函数y=a x2的图象及性质:(1)二次函数y=a x2的图象是一条抛物线(2)性质a:开口方向:a>0,抛物线开口向上,a〈 0,抛物线开口向下[b:顶点坐标是(0,0)c:对称轴是y轴d:最值:a>0,当x=0时,y的最小值=0,a〈0,当x=0时,y 的最大值=0e:增减性:a>0时,在对称轴的左侧(X<0),y随x的`增大而减小,在对称轴的右侧(x>0),y随x的增大而增大,a〈0时,在对称轴的左侧(X<0),y随x的增大而增大,在对称轴的右侧(x>0),y随x的增大而减小。

数学中考一轮复习专题15二次函数的图象及其性质课件

数学中考一轮复习专题15二次函数的图象及其性质课件

知识点1:二次函数的概念
典型例题
【例1】下列函数解析式中,一定为二次函数的是( )
A. y=3x-1
B. y=ax2+bx+c
C. s=2t2-2t+1
D. y x2 1 x
【考点】二次函数的定义.
【解析】解:根据二次函数的定义:形如y=ax2+bx+c(a≠0)判定即可.
A. y=3x-1是一次函数;B. y=ax2+bx+c不一定是几次函数;
C. s=2t2-2t+1符合二次函数定义;D. y x2 1 不符合二次函数定义. x
故答案为:C.
典型例题
知识点1:二次函数的概念
【例2】(4分)(202X·甘肃庆阳)将二次函数y=x2-4x+5化 成y=a(x-h)2+k的情势为________.
【答案】 y=(x-2)2+1. 【分析】将二次函数y=x2-4x+5按照配方法化成y=a(x-h)2+k的情势即可. 【解答】y=x2-4x+5=(x-2)2+1.
典型例题
知识点2:二次函数的图象和性质
【例5】(3分)(202X•包头10/26)已知二次函数y=ax2-bx+c (a≠0)的图象经
过第一象限的点(1,-b),则一次函数y=bx-ac的图象不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【考点】二次函数图象上点的坐标特征;一次函数的性质;二次函数的性质 【分析】根据二次函数y=ax2-bx+c (a≠0)的图象经过第一象限的点(1,-b), 可以判断b<0和ac异号.再根据一次函数的性质即可求解.
知识点梳理
知识点1:二次函数的概念

二次函数中考复习专题教案

二次函数中考复习专题教案

二次函数中考复习专题教案一、教学目标1. 理解二次函数的定义、性质及图像;2. 掌握二次函数的求解方法,包括顶点式、标准式和一般式;3. 能够运用二次函数解决实际问题,提高数学应用能力;4. 培养学生的逻辑思维能力和团队合作精神。

二、教学内容1. 二次函数的定义与性质二次函数的定义:函数f(x) = ax^2 + bx + c(a≠0);二次函数的图像:开口方向、顶点、对称轴、单调区间。

2. 二次函数的图像与性质图像特点:开口方向、顶点、对称轴;性质:单调性、最值。

3. 二次函数的求解方法顶点式:f(x) = a(x h)^2 + k;标准式:f(x) = ax^2 + bx + c;一般式:ax^2 + bx + c = 0。

4. 实际问题求解应用二次函数解决几何问题;应用二次函数解决物理问题;应用二次函数解决生活中的问题。

5. 二次函数的综合应用二次函数与其他函数的结合;二次函数与方程组的结合;二次函数与不等式的结合。

三、教学过程1. 复习导入:回顾一次函数和指数函数的相关知识,为二次函数的学习打下基础;2. 知识讲解:分别讲解二次函数的定义、性质、图像与求解方法;3. 案例分析:分析实际问题,引导学生运用二次函数解决实际问题;4. 课堂练习:布置练习题,巩固所学知识;四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况;2. 练习完成情况:检查学生完成练习题的情况,巩固所学知识;3. 课后作业:布置课后作业,检查学生对知识的掌握程度;4. 小组讨论:评估学生在小组讨论中的表现,培养团队合作精神。

五、教学资源1. PPT课件:展示二次函数的相关概念、性质、图像等;2. 练习题:提供不同难度的练习题,巩固所学知识;3. 实际问题案例:提供与生活相关的实际问题,引导学生运用二次函数解决;4. 教学视频:讲解二次函数的求解方法和解题技巧。

六、教学策略1. 案例分析:通过分析具体案例,让学生了解二次函数在实际问题中的应用;2. 数形结合:利用图形展示二次函数的性质,加深学生对二次函数的理解;3. 小组讨论:鼓励学生进行小组讨论,培养团队合作精神和沟通能力;4. 分层教学:针对不同学生的学习水平,给予相应的指导和辅导;5. 激励评价:及时给予学生鼓励和评价,提高学生的学习积极性。

2024年中考第一轮复习 二次函数的图象与性质 课件

2024年中考第一轮复习 二次函数的图象与性质 课件
∵顶点坐标为(m,-m+1),且顶点与 x 轴的两个交点构成等腰直角三角形,
∴|-m+1|=|m-(m- - + 1)|,解得 m=0 或 1,
∴存在 m=0 或 1,使得函数图象的顶点与 x 轴的两个交点构成等腰直角三角形,故结
论②正确;
∵x1+x2>2m,
1 + 2

>m.
2
∵二次函数 y=-(x-m)2-m+1(m 为常数)的图象的对称轴为直线 x=m,
数y=ax2+bx+c(a≠0)在-3≤x≤3内既有最大值又有最小值,∴结论④正确.
2.[2020·温州]已知(-3,y1),(-2,y2),(1,y3)是 [答案]B
抛物线y=-3x2-12x+m上的点,则
(
[解析] 由对称轴

-12
x=- ==-2,知
2 2×(-3)
)
(-3,y1)和(-1,y1)关于对称轴对称.因为
②b-2a<0;③b2-4ac<0;④a-b+c<0.正确的是(
A.①②
B.①④
C.②③
D.②④
)
图13-2
[答案]A
[解析] ∵抛物线开口向下,且与 y 轴的正半轴相交,
∴a<0,c>0,∴ac<0,故①正确;
∵对称轴与

x 轴交点的横坐标在-1 至-2 之间,∴-2<-2 <-1,
∴4a<b<2a,∴b-2a<0,故②正确;
若已知二次函数的图象与x轴的两个交点的坐标(x1,0),(x2,0),设所求二次函数表达
式为y=a(x-x1)(x-x2),将第三个点(m,n)的坐标(其中m,n为常数)或其他已知条件代

二次函数的图像和性质 复习课教案

二次函数的图像和性质 复习课教案

yxOyx O二次函数的图像和性质复习课(一)一、复习目标1.掌握并理解二次函数的性质。

2.会用二次函数的性质解决相关的问题。

二、复习重、难点重点:二次函数的性质及应用。

难点:综合应用二次函数的性质解题。

三、课前准备重点知识扫描1.二次函数的定义:形如 (a 、b 、c 为常数,a )的函数是二次函数。

2.二次函数的图像:它是一条 ,图像是 对称图形。

3.二次函数的图像和性质4.求二次函数的解析式的方法(1)若知道抛物线上任意三个点的坐标,则设为一般式: , (2)若知道抛物线的顶点坐标(h , k ),则设为顶点式: ,二次函数顶点式: )0()(2≠+-=a k h x a y一般式:)0(2≠++=a c bx ax y图 象a >0a <0 a >0a <0开 口对称轴 直线 x = 直线 x = 顶点坐标( , )( , )最 值当x = 时,=最小y当x = 时,=最大y当x = 时,=最小y当x = 时,=最大y增减性当x 时y 随x 的增大而减小;当x 时y 随x 的增大而增大。

当x 时y 随x 的增大而增大; 当x 时y 随x 的增大而减小。

当x 时y 随x 的增大而减小; 当x 时y 随x 的增大而增大。

当x 时y 随x 的增大而增大; 当x 时y 随x 的增大而减小。

(3)若知道抛物线与x 轴的两个交点的坐标(1x ,0),(2x ,0),则设为交点式:)0)()((21≠--=a x x x x a y5.抛物线的平移6.二次函数)0(2≠++=a c bx ax y 的图像特征与系数a 、b 、c 及ac b 42-的关系项目字母字母符号 图像特征 aa >0 开口向上 a <0开口向下 bb=0对称轴是y 轴a 、b 同号 对称轴在y 轴左侧 左同 右异a 、b 异号对称轴在y 轴右侧cc=0 经过原点 c >0 与y 轴的正半轴相交 c <0与y 轴的负半轴相交 ac b 42-ac b 42-=0与x 轴有唯一交点(顶点)ac b 42->0与x 轴有两个交点 ac b 42-<0与x 轴有没有交点四、考点剖析考点1:二次函数的定义例1.下列函数是二次函数的有( )12)5(;)4();3()3(;2)2(;1)1(222+=++=-==-=x y c bx ax y x x y xy x y A 、1个; B 、2个; C 、3个; D 、4个考点2:二次函数的图像和性质的应用例2.已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x -1)2+m 的图象上,若x 1>x 2>1,则y 1 y 2考点3:二次函数图像的平移例3.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )(A)23(1)2y x =-- (B)23(1)2y x =+- (C )23(1)2y x =++ (D )23(1)2y x =-+ 考点4:二次函数的图像与系数关系例4.如图为二次函数y=ax 2+bx+c (a≠0)的图象,则下列说法:①b c >0 ②2a+b=0 ③a+b+c>0 ④ac b 42-﹤0其中正确的个数为( )A .1B .2C .3D .4 考点5:求二次函数的解析式例5.一条抛物线经过(-2,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式.五、变式训练1.二次函数22(1)3y x =-+的图象的最低点的坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)2.如图所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 .3.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是 。

(九年级数学教案)二次函数图像和性质导学案

(九年级数学教案)二次函数图像和性质导学案

二次函数图像和性质导学案九年级数学教案
1. 二次函数的图像和性质
&gt;0
&lt;0
开口
对称轴
顶点坐标
最值当x= 时,y有最值当x= 时,y有最值
增减性在对称轴左侧y随x的增大而y 随x的增大而在对称轴右侧y随x的增大而y随x的增大而
2. 二次函数用配方法可化成的形式,其中
= , = .
3. 二次函数的图像和图像的关系.
4. 二次函数中的符号的确定.
【思想方法】
数形结合
【例题精讲】
例1.已知二次函数,
(1) 用配方法把该函数化为
(其中a、h、k都是常数且a≠0)形式,并画
出这个函数的图像,根据图象指出函数的对称轴和顶点坐标.
(2) 求函数的图象与x轴的交点坐标.
例2. (____年大连)如图,直线和抛物线
都经过点A(1,0),B(3,2).
⑴求m的值和抛物线的解析式;
⑵求不等式的解集.(直接写出答案)
【当堂检测】
1. 抛物线的顶点坐标是.
2.将抛物线向上平移一个单位后,得到的抛物线解析式是.
3. 如图所示的抛物线是二次函数
的图象,那么的值是&n。

中考复习二次函数的图象与性质教案

中考复习二次函数的图象与性质教案

九年级第一轮复习中考复习二次函数的图象与性质教案授课教师:一、中考要求:1.理解二次函数的概念;2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3.会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(x-h)2+k的图象,了解特殊与一般相互联系和转化的思想;4.会用待定系数法求二次函数的解析式;5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。

二、知识要点:1.二次函数的图象在画二次函数y=ax2+bx+c(a≠0)的图象时通常先通过配方配成y=a(x+ )2+ 的形式,先确定顶点( , ),然后对称找点列表并画图,或直接代用顶点公式来求得顶点坐标.2.理解二次函数的性质抛物线的开口方向由a的符号来确定,当a>0时,在对称轴左侧y随x的增大而 ;在对称轴的= ;反之当右侧,y随x的增大而 ;简记左减右增,这时当x= 时,y最小值= .a<•0时,简记左增右减,当x= 时y最大值3.待定系数法是确定二次函数解析式的常用方法(1)一般地,在所给的三个条件是任意三点(或任意三对x,y•的值)•可设解析式为y=ax2+bx+c,然后组成三元一次方程组来求解;(2)在所给条件中已知顶点坐标或对称轴或最大值时,可设解析式为y=a(x-h)2+k,顶点是(h,k);4.二次函数与一元二次方程的关系抛物线y=ax2+bx+c当y=0时抛物线便转化为一元二次方程ax2+bx+c=0,即(1)当抛物线与x轴有两个交点时,方程ax2+bx+c=0有两个不相等实根;(2)当抛物线y=ax2+bx+c与x轴有一个交点,方程ax2+bx+c=0有两个相等实根;(3)当抛物线y=ax2+bx+c与x轴无交点,•方程ax2+bx+c=0无实根.5.抛物线y=ax2+bx+c中a、b、c符号的确定(一) 热身练习 针对实际中考考题及学生的实际情况,学生先独立完成,然后小组讨论,准确求解(教师注重个别学生的辅导,使绝大多数学生能够考好基本知识,不丢失基本分) 1. 二次函数52++=bx x y 配方后k x y +-=2)2(则b 、k 的值分别为( ) (A )0.5 (B )0.1 (C )—4.5 (D )—4.12. 如图1所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 .3. 二次函数2365y x x =--+的图像的顶点坐标是 ( )A .(-1,8)B .(1,8)C .(-1,2)D .(1,-4)4.把抛物线y =x 2+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象为y =x 2-3x +5,则 ( )A .b =3,c =7B .b =6,c =3C .b =-9,c =-5D .b =-9,c =21 5.下列四个函数图象中,当x >0时,y 随x 的增大而增大的是( )(二)重点练习 利用实际中考考题,通过板演让学生重点突破,教师加强个别辅导 例1已知实数y x y x x y x +=-++则满足,033,2的最大值为?例2如图,抛物线254y ax ax a =-+与x 轴相交于点A 、B ,且过点(54)C ,. (1)求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.5,4)例3:(10广州)已知抛物线y =-x 2+2x +2.(1)该抛物线的对称轴是 ,顶点坐标 ;(2(3)若该抛物线上两点A (1,1),B (2,2)的横坐标满足1>2>1,试比较1与y 2的大小.(三)课堂小结今天复习二次函数的图象与性质,你有什么收获?你做错的题目找到原因了吗?你订正了吗? (四)当堂检测(主要是基础练习,强化学生基本分得分能力)1.已知抛物线103:2-+=x x y C ,将抛物线C 平移得到抛物线C '若两条抛物线C 、C ' 关于直线1=x 对称,则下列平移方法中,正确的是 ( ) A .将抛物线C 向右平移25个单位 B .将抛物线C 向右平移3个单位C .将抛物线C 向右平移5个单位D .将抛物线C 向右平移6个单位2.已知二次函数y =Ax 2+Bx +C 的图象如图所示,则下列结论正确的是( ) A .a >0 B .c <0 C .b 2-4ac <0 D .a +b +c >03.已知二次函数c bx axy ++=2的图象如图所示,记b a c b a q b a c b a p -+++=+++-=2,2,则p 与q 的大小关系为 ( )A.q p >B.q P =C.q p <D.p 、q 大小关系不能确定4.将抛物线y =-(x -1)2+3先向右平移1个单位,再向下平移3个单位,则所得抛物线的解析式为____________________.5.抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( ) A .1x =B .1x =-C .3x =-D .3x =6.将抛物线221216y x x =-+绕它的顶点旋转180°,抛物线解析式是( ).A .221216y x x =--+B .221216y x x =-+-C .221219y x x =-+-D .221220y x x =-+- 7、提高题:(有能力的同学自己课后完成)(2010江西)如图,已知经过原点的抛物线y=-2x 2+4x 与x 轴的另一交点为A ,现将它向右平移m (m >0)个单位,所得抛物线与x 轴交与C 、D 两点,与原抛物线交与点P. (1)求点A 的坐标,并判断△PCA 存在时它的形状(不要求说理)(2)在x 轴上是否存在两条相等的线段,若存在,请一一找出,并写出它们的长度(可用含m 的式子表示);若不存在,请说明理由;(3)△CDP 的面积为S ,求S 关于m 的关系式。

中考数学专题复习之二次函数图象和性质

中考数学专题复习之二次函数图象和性质


y最大值=



(-

a>0时,
在对称轴左侧递减
在对称轴右侧递增
a>0时,
在对称轴左侧递增
在对称轴右侧递减
4. 用待定系数法求解析式
步骤:
一般式
顶点式
设、代、求、写.
y=ax2+bx+c (a≠0)
图象过一般的三点,常设一般式
y=a (x-h)2+k (a≠0) 知顶点坐标或对称轴或最值,常设顶点式
④x>1时,y随x的增大而减小.其中正确结论的个数为( C )
A.1
B.2
C.3
D.4
例2:(1).同一直角坐标系中,函数y=mx+m和y=﹣mx2+x+1(m是常数,且
m≠0)的图象可能是( D )
A
B
C
D
2
(2).如图,函数 y=ax ﹣2x+1 和 y=ax﹣a(a 是常数,且 a≠0)在同一平面直角
ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c<0;④当x>1时,y随x的增大
而减小;⑤2a﹣b=0;⑥b2﹣4ac>0.下列结论一定成立的是()
B
A.①②④⑥ B.①②③⑥ C.②③④⑤⑥ D.①②③④
(4).对于抛物线y=﹣2(x+1)2+3,下列结论:
①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);
(2).已知抛物线 = ( − 1)2 −3( ≠ 0),如图所示,下列命题:
① > 0;②对称轴为直线 = 1;③抛物线经过(2, 1 ),(4,2 )
两点,则1 > 2 ;④顶点坐标是((1, −3),其中真命题的概率是( C )

最新人教版九年级上册数学第22章二次函数第15课时二 次函数y=a(x-h)2+k的图象和性质

最新人教版九年级上册数学第22章二次函数第15课时二  次函数y=a(x-h)2+k的图象和性质
第二十二章 二 次 函 数
第15课时 二次函数y=a(x-h)2+k的图象和性质
目录
01 本课目标 02 课堂演练
1. 会用描点法画出二次函数y=a(x-h)2+k的图象,并能根据图 象掌握二次函数y=a(x-h)2+k的性质. 2. 掌握二次函数y=a(x-h)2+k与y=ax2,y=ax2+k,y=a(x-h)2之 间的关系,理解“上加下减,左加右减”的平移规律. 3. 借助数形结合的思想方法,灵活理解二次函数y=a(x-h)2+k 的图象性质.
y=-5(x+2)2-6 __向__下____ ___直__线__x_=_-_2_____
顶点坐标 __(_-__3_,_5_)___ __(_1_,_-__2_)___ __(_3_,_7_)_____ __(_-__2_,_-__6_)_
返回目录
举一三
3. 抛物线y=-2(x+3)2-1的对称轴是___直__线__x_=_-__3____, 顶点坐标是___(__-__3_,__-__1_)___.当x___<_-__3__时,y随x的增大 而增大;当x__>_-__3___时,y随x的增大而减小;当x___=_-_3___ 时,y取得最____大____值___-__1___.
返回目录
典例精析
【例2】抛物线y=-2(x-3)2+7的开口向____下____,顶点坐 标为___(_3_,__7_)___,对称轴为___直__线__x_=_3_______. 当 x___<__3___时,y随x的增大而增大;当x___>__3___时,y随x 的增大而减小;当x___=_3____时, y的最___大_____值是 ___7_____. 思路点拨:由解析式知抛物线开口方向,顶点坐标,利 用数形结合或二次函数y=a(x-h)2+k的性质直接作答.

中考数学二次函数图象及性质总复习课件

中考数学二次函数图象及性质总复习课件

4. 点的位置及其坐标特征: ①.各象限内的点: ②.各坐标轴上的点: ③.各象限角平分线上的点: ④.对称于坐标轴的两点: ⑤.对称于原点的两点:
y
Q(b,-b)
(-,+)
M(a,b)
Q(0,b) C(m,n)
(+,+)
P(a,0)
N(a,-(b-,)-)
o
x
(+,-)
PD(a(-,ma),-n)
当a<0时,在对称轴的 左侧,y随着x的增大而 增大。
当a<0时,在对称轴的 右侧,y随着x的增大而 减小。
二次函数y=ax2的性质
1、抛物线y=ax2的顶点是原点,对称轴是 y轴。
2、当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并 且
向上无限伸展; 当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并 且 向下无限伸展。 3、当a>0时,在对称轴的左侧,y随着x的增大而减小; 在对称轴右侧,y随着x的增大而增大。当x=0时函数y的值最小。 当a<0时,在对称轴的左侧,y随着x的增大而增大; 在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大。
二次函数y=ax2的图象和性质
二次函数y=ax2的图象和性质
y
x
一. 平面直角坐标系: 1. 有关概念:
P (a,b) 第二象限
y(纵轴) b
第一象限
2. 平面内点的坐标:
a
o
x(横轴)
第三象限
第四象限
3. 坐标平面内的点与有序 实数对是: 一一对应.
坐标平面内的任意一点M,都有唯一一对有序实数(x,y)与它对应; 任意一对有序实数(x,y),在坐标平面内都有唯一的点M与它对应.

(教案)二次函数图象和性质复习教案(共五篇)

(教案)二次函数图象和性质复习教案(共五篇)

(教案)二次函数图象和性质复习教案(共五篇)第一篇:(教案)二次函数图象和性质复习教案《二次函数的图象和性质》复习课教案海洲初级中学初三数学备课组内容来源:初中九年级《数学(上册)》教科书教学内容:二次函数图像与性质复习课时:两课时教学目标:1.根据二次函数的图象复习二次函数的性质,体会配方、平移的作用以及在解决相关问题的过程中进一步体会数形结合的数学思想。

2.会利用二次函数的图象判断a、b、c的取值情况。

3.在解决二次函数相关问题时,渗透解题的技巧和方法,培养学生的中考意识。

教材分析:二次函数是学生在中学阶段学习的第三种函数,是中考的重要考点之一,它与学生前面所学的一元二次方程有密切的联系,也是初中数学与高中数学的一个知识的交汇点。

本节课通过二次函数的图象和性质的复习,从特殊到一般,再由普遍的一般规律去指导具体的函数问题,加深学生对函数图象和性质之间的联系,构建知识网络体系,发展技能,归纳解题方法,让学生在练习中体会数形结合思想。

学情分析学生具有初步的、零散的关于二次函数的图象和性质的知识基础,但是还没有形成系统的知识体系,缺乏解决问题有效的、系统的方法,解决问题办法单一,较难想到运用函数的图象解决问题。

本节课针对班级学生特点采取小组合作进行教学,通过小组的交流、讨论和展示,提高学生学习的积极性和有效性。

通过本节课的学习使学生把函数的图象和性质紧密联系在一起,掌握解决一类问题的常用方法。

教学过程一、旧知回顾1、已知关于x的函数y=2、已知函数y=-2x-2,化为y=a+3x-4是二次函数,则a的取值范围是.+k的形式:此抛物线的开口向,对称轴为,顶点坐标;当x= 时,抛物线有最值,最值为;当x 时,y随x的增大而增大;当x 时,y随x的增大而减少。

3、二次函数y=-3的图象向右平移1个单位,再向上平移3个单位,所得到抛物线的解析式为4、若二次函数y=2x+m的图象与x轴有两个交点,则m的取值范围是5、抛物线的顶点在(-1,-2)且又过(-2,-1),求该抛物线的解析式。

中考数学复习第15课时《函数的应用》说课稿

中考数学复习第15课时《函数的应用》说课稿

中考数学复习第15课时《函数的应用》说课稿一. 教材分析《函数的应用》是中考数学复习的第15课时,这部分内容在教材中的地位十分重要。

它不仅是初中数学的重要知识点,也是高中数学的基础。

本课时主要让学生了解函数的概念,能运用函数解决实际问题,培养学生的数学应用能力。

二. 学情分析初中生对函数的认识大多停留在表面的理解,能够运用函数解决实际问题的能力较弱。

在学习过程中,学生需要通过大量的练习,逐步理解和掌握函数的应用。

此外,学生在这一阶段的学习中,容易对函数的概念和性质产生混淆,需要教师耐心引导,帮助学生理清思路。

三. 说教学目标1.知识与技能:让学生掌握函数的基本概念,了解函数的性质,能运用函数解决实际问题。

2.过程与方法:通过观察、分析、归纳等方法,引导学生自主探索函数的性质,提高学生的数学思维能力。

3.情感态度与价值观:培养学生对数学的兴趣,增强学生的自信心,使学生感受到数学在生活中的重要作用。

四. 说教学重难点1.教学重点:函数的基本概念,函数的性质。

2.教学难点:函数在实际问题中的应用,函数图象的识别和分析。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,激发学生的学习兴趣,提高学生的参与度。

2.教学手段:利用多媒体课件、教学实物模型、数学软件等辅助教学,使抽象的函数概念具体化、形象化。

六. 说教学过程1.导入新课:通过生活中的实例,引出函数的概念,激发学生的学习兴趣。

2.自主学习:让学生通过阅读教材,了解函数的性质,培养学生自主学习的能力。

3.课堂讲解:讲解函数的基本概念,运用实例讲解函数的性质,引导学生理解函数的应用。

4.练习巩固:布置相关的练习题,让学生在实践中运用所学知识,巩固课堂所学。

5.课堂小结:对本节课的内容进行总结,帮助学生梳理知识体系。

6.课后作业:布置适量的作业,让学生进一步巩固函数的知识。

七. 说板书设计板书设计要清晰、简洁,能够突出函数的重点知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共2页) 山东世纪金榜科教文化股份有限公司 第15课时 二次函数图象和性质
一、选择题
1.抛物线422-=x y 的顶点坐标是( )
A .(1,-2) B.(0,-2) C.(1,-3) D.(0,-4)
2.二次函数y=ax 2+bx+c 的图像如图,则点M (b ,c a
)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
3.已知二次函数y=ax 2
+bx+c (a≠0)的图象如图所示,•则下列结论:①a、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( )
A .1个
B .2个
C .3个
D .4个
第2题图 第3题图
4.若(2,5)、(4,5)是抛物线c bx ax y ++=2上两个点,则它的对称轴是 ( )A.a
b x -= B.1=x C.2=x D.3=x
5.在同一直角坐标系中b ax y +=2与)0,0(≠≠+=b a b ax y 图象大致为( )
二、填空题
6.抛物线y =2x 2+4x+5的对称轴是x=_________
7.抛物线432-+=x x y 与y 轴的交点坐标是 ,与x 轴的交点坐标是 .
8.把抛物线22
3x y -=向左平移3个单位,再向下平移4个单位, 所得的抛物线的函数关系式为 .
9.抛物线 y=ax 2
+bx+c 过第一、二、四象限,则a 0, b 0,c 0.
10.已知抛物线 y=ax 2+bx+c 与x 轴的交点都在原点的右侧,则点
第2页(共2页) 山东世纪金榜科教文化股份有限公司 M (a , c )在第 象限.
11.二次函数y=ax 2+bx+c 的图象如图所示, 则a 0, b 0, c 0,ac b 42
- 0,
a +
b +
c 0,a -b +c 0;
三、解答题
12. 已知:二次函数为y=x 2-x+m ,
(1)写出它的图像的开口方向,对称轴及顶点坐标;
(2)m 为何值时,顶点在x 轴上方,
(3)若抛物线与y 轴交于A ,过A 作AB∥x 轴交抛物线于另一点B ,
当S △AOB =4时,求此二次函数的解析式.
13.(2008南京)已知二次函数2y x bx c =++中,函数y 与自变量x 的
部分对应值如下表:
(1)求该二次函数的关系式;
(2)当x 为何值时,y 有最小值,最小值是多少?
(3)若1()A m y ,,2(1)B m y +,两点都在该函数的图象上,试比较1y 与2y 的大小.
第11题图。

相关文档
最新文档