微波实验系统说明书

合集下载

微波测量系统的使用和波导波长与晶体检波器的校准测量

微波测量系统的使用和波导波长与晶体检波器的校准测量

北京邮电大学电磁场与电磁波测量实验实验内容:微波测量系统的使用和波导波长与晶体检波器的校准测量学院:电子工程学院班级: 2014211202 执笔者:组员:2017年3月25日目录实验一微波测量系统的使用和信号源波长功率的测量 (1)1.实验内容 (1)1.1实验目的 (1)1.2实验原理 (1)1.3实验设备 (2)1.4实验步骤 (4)2.实验数据与分析 (6)2.1实验测量数据 (6)2.2理论分析 (6)2.3实验分析 (6)2.4误差分析 (7)3.实验心得与体会 (7)实验二波导波长的测量 (8)1.实验内容 (8)1.1【方法一】两点法 (8)1.2【方法二】间接法 (10)2.实验步骤 (11)2.1晶体检波率公式计算 (15)2.2误差分析 (15)2.3间接法测量波导波长 (16)3.思考题 (16)4.实验总结 (17)实验一微波测量系统的使用和信号源波长功率的测量1.实验内容1.1实验目的1.学习微波的基本知识;2.了解微波在波导中传播的特点,掌握微波基本测量技术;3.学习用微波作为观测手段来研究物理现象。

1.2实验原理测量微波传输系统中电磁场分布情况,测量驻波比、阻抗、调匹配等,是微波测量的重要工作,实验系统主要的工作原理如下图:1.3实验设备1.晶体检波器微波测量中,为指示波导(或同轴线)中电磁场强度的大小,是将它经过晶体二极管检波变成低频信号或直流电流,用电流电表的电流1来读数的。

从波导宽壁中点耦合出两宽壁间的感应电压,经微波二极管进行检波,调节其短路活塞位置,可使检波管处于微波的波腹点,以获得最高的检波效率。

2.波导管本实验所使用的波导管型号为BJ—100,其内腔尺寸为a=22.86mm,b=10.16mm。

其主模频率范围为8.20——12.50GHz,截止频率为6.557GHz。

3.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。

实验二、 波导测试系统实验-20140527

实验二、 波导测试系统实验-20140527

Hz 的最终公式为:
nπX
nπY
Hz=Anm cos
cos
e-jβgz
a
b
…..(3-10)
由公式 3-10 得出相关的横面 E 场和 H 场,直角坐标的麦克斯维方程为:
jωμmπ Anm nπX
nπY
Ex=
sin
e-jβgz
Kc2b cos a
b
-jωμnπ Anm nπX
nπY
Ey=
cos
e-jβgz
实验二:波导内的传播类型、波长和相位速度
1.实验目的 一、学习波导理论 二、通过实验学习自由空间与波导内的微波传播特性
2.实验理论 微波波导是矩形或圆形截面的空金属管。在本实验里使用的是矩形波
导。下面的数学分析是以矩形波导分析的。假设用户具有波动方程的基本 知识,那么圆形波导可以用圆柱坐标,并用相似的方法分析。我们从波动 方程开始分析。 A 、波动方程
圆柱型谐振腔频率计的主要技术参数: 1. 频率范围:f =8.2-12.4GHz; 2.有载 Q 值:Q≥800; 3.精确度≤0.3%.
3.5 可变衰减器 可变衰减器结构如图 3.5 示,图中:1-标准三厘米矩形波导,2-法兰,3-
调节机构,4-衰减片。
3
1
2
图 3.5 在标准三厘米矩形波导内 E 面安装衰减片 4,衰减片 4 上装有二个连杆,连 杆通过开在矩形波导内 H 面上的二个小孔与调节机构连接,调节机构使衰减片 4 在波导内 E 面移动,以改变衰减量,调节机构的园盘刻有对应于衰减片 4 在波导 内的衰减量 可变衰减器主要技术参数: 1. 频率范围:f =8.2-12.4GHz; 2. 输入驻波比≤1.25;
简化的波动方程表达如下:

Copper Mountain Tech PXIe-S5090 微波测试仪说明书

Copper Mountain Tech PXIe-S5090 微波测试仪说明书

PXIe VNA PXIe-S5090• Frequency range: 300 kHz - 9 GHz• Wide output power adjustment range: -45 dBm to +13 dBm • Dynamic range: 138 dB (10 Hz IF bandwidth) typ.• Measurement time per point: 16 µs per point, min typ.• Up to 16 logical channels with 16 traces each max• Automation programming in LabVIEW, IVI drivers, IVI-C drivers, drivers • Time domain and gating conversion included• Frequency offset mode, including vector mixer calibration measurements• Up to 500,001 measurement points• Multiple precision calibration methods and automatic calibrationE X T E N D Y O U R R E A C H T MMeasurement Accuracy 3Impedance50 Ohm Test port connector 3.5 mm, femaleNumber of test ports 2Frequency range300 kHz to 9 GHzFull frequency accuracy ±5·10⁻⁶Frequency resolution1 Hz Number of measurement points2 to 500,001Measurement bandwidths (with 1/1.5/2/3/5/7 steps) 1 Hz to 1 MHz Dynamic range ²300 kHz to 1 MHz 123 dB (129 dB typ.)1 MHz to 5 MHz 133 dB (138 dB typ.)5 MHz to 6.5 GHz 138 dB (140 dB typ.)6.5 GHz to 8.0 GHz 133 dB (136 dB typ.)8 GHz to 9 GHz125 dB (130 dB typ.)Primary Specifications300 kHz to 9 GHzDirectivity 46 dB Source match 40 dB Load match 46 dB Reflection tracking ±0.10 dB Transmission tracking±0.08 dBEffective System DataTest Port Output300 kHz to 6.5 GHzDirectivity 15 dB Source match 15 dB Load match15 dB6.5 GHz to 9 GHzDirectivity 10 dB Source match 15 dB Load match15 dB Uncorrected System PerformanceNoise floor300 kHz to 1 MHz -120 dBm/Hz 1 MHz to 5 MHz -130 dBm/Hz 5 MHz to 6.5 GHz -135 dBm/Hz 6.5 GHz to 8.0 GHz -133 dBm/Hz 8.0 GHz to 9 GHz-130 dBm/Hz Damage level+26 dBm Damage DC voltage35 VTest Port Input[1] All specifications subject to change without notice. [2] The dynamic range is defined as the difference between the specified maximum power level and the specified noise floor. The specification applies at 10 Hz IF bandwidth. [3] Reflection and transmission measurement accuracy applies over the temperature range of (73 ± 9) °F or (23 ± 5) °C after 40 minutes of warming-up, with less than 1 °C deviation fromPortExt Trig Out Maximum output current 20 mA Output levelLow level voltage 0.0 to 0.6 V High level voltage3.0 to 3.8 V Polaritypositive or negative Connector typeSMB, maleTrigger OutputOperating system Windows 7 and aboveCPU frequency 1.0 GHz RAM512 MBPower supply+3.3 V 1.5 A +12 V1.5 ASystem & PowerRecommended factory adjustment interval3 YearsFactory AdjustmentOperating temperature +5 °C to +40 °C (41 °F to 104 °F)Storage temperature -50 °C to +70 °C (-58 °F to 158 °F)Humidity90 % at 25 °C (77 °F)Atmospheric pressure70.0 kPa to 106.7 kPaEnvironmental SpecificationsPortExt Trig In Input levelLow threshold voltage 1.1 V High threshold voltage2.6 V Input level range 0 V to + 5 V Pulse width ≥2 µsPolaritypositive or negativeInput impedance ≥2 kOhm Connector typeSMB, maleTrigger InputPortRef OUT 10 MHzInternal reference frequency10 MHz Output reference signal level at 50 Ohm impedance -1 dBm to 3 dBm Connector typeSMB, maleFrequency Reference OutputLength 221 mm Width 129 mm Height 20 mm Weight0.6 kg (21.2 oz)DimensionsPortRef IN 10 MHz External reference frequency 10 MHz Input level-3 dBm to 3 dBmInput impedance 50 Ohm Connector typeSMB, maleFrequency Reference InputMeasurement SpeedFrequency Range Number of pointsUncorrected 2-port calibration511.7 ms 3.2 ms 201 4.5 ms 8.8 ms 4017.8 ms 15.1 ms 160127.0 ms 53.7 ms 511.2 ms2.7 ms 2013.7 ms 7.4 ms 4016.8 ms 13.6 ms 160123.4 ms 46.5 ms 512.3 ms 4.3 ms 201 6.6 ms 13.3 ms 40112.0 ms 23.6 ms 160144.0 ms 87.7 ms 511.9 ms 3.9 ms 201 5.9 ms 11.7 ms 40111.1 ms 22.1 ms 160140.2 ms 80.4 ms 517.7 ms 15.1 ms 20128.0 ms 55.8 ms 40154.8 ms 109.2 ms 1601215.0 ms 430.0 ms 517.3 ms 14.7 ms 20127.2 ms 54.7 ms 40153.9 ms 107.8 ms 1601211.4 ms423.0 msfrom 300 kHz to 9 GHz IF bandwidth 100 kHz from 4 GHz to 5 GHz IF bandwidth 100 kHz from 300 kHz to 9 GHz IF bandwidth 10 kHz from 4 GHz to 5 GHz IF bandwidth 10 kHz 16 µs typ.200 µsfrom 4 GHz to 5 GHz IF bandwidth 1 MHz from 300 kHz to 9 GHz IF bandwidth 1 MHz Port switchover timeTime per pointTypical cycle time vs number of measurement points 7Extended Effective System Data300 kHz to 1 MHzDirectivity0.005Source match0.010Load match0.005Reflection tracking0.012Transmission tracking0.009Isolation (max noise level) 1.0·10⁻⁵Compression0.65·10⁻³1 MHz to 5 MHzDirectivity0.005Source match0.010Load match0.005Reflection tracking0.012Transmission tracking0.009Isolation (max noise level) 3.2·10⁻⁶Compression0.65·10⁻³5 MHz to 6.5 GHzDirectivity0.005Source match0.010Load match0.005Reflection tracking0.012Transmission tracking0.009Isolation (max noise level) 1.8·10⁻⁶Compression0.65·10⁻³6.5 GHz to 8.0 GHzDirectivity0.005Source match0.010Load match0.005Reflection tracking0.012Transmission tracking0.009Isolation (max noise level) 2.2·10⁻⁶Compression 1.15·10⁻³8 GHz to 9 GHzDirectivity0.005Source match0.010Load match0.005Reflection tracking0.012Transmission tracking0.009Isolation (max noise level) 3.2·10⁻⁶Compression 4.0·10⁻³Reflection Magnitude ErrorsSpecifications are based on isolating DUT (S 21 = S 12 = 0)Specifications are based on isolating DUT (S 21 = S 12 = 0)Reflection Phase ErrorsSpecifications are based on isolating DUT (S 21 = S 12 = 0)Transmission Magnitude ErrorsTransmission Magnitude ErrorsSpecifications are based on matched DUT, and IF bandwidth of 10 HzSpecifications are based on matched DUT, and IF bandwidth of 10 HzTransmission Phase ErrorsTransmission Phase ErrorsSpecifications are based on matched DUT, and IF bandwidth of 10 HzSpecifications are based on matched DUT, and IF bandwidth of 10 HzTransmission Phase ErrorsSpecifications are based on matched DUT, and IF bandwidth of 10 HzSpecifications are based on matched DUT, and IF bandwidth of 10 Hz。

DH811A微波铁磁共振实验系统说明书

DH811A微波铁磁共振实验系统说明书
X轴
图 一微波铁磁共振实验系统框图
与P1/2对应的外加磁场之差(H2-H1)即为铁磁共振线宽ΔH。因此可以根据实验作出的图二曲线和上述P1/2的公式求出共振线宽ΔH 。
另外,由铁磁共振条件ωr=γHr和γ=ge/2mc,根据外加磁场Hr和微波频率,可求得g因子。
应该注意的是,在进行铁磁共振线宽测量时,必须注意样品的 μ′会使谐振腔的谐振频率发生偏移(频散效应)。要得到准确的共振曲线和线宽,必须在测量时消除频散,使装有样品的谐振腔频率始终与输出谐振腔的微波频率相同(调谐)。因此在逐点测绘铁磁共振曲线,相当于每一个外加的恒磁场都要稍微改变谐振腔的谐振频率,使它与微波频率调谐。
3.5.1 将白色外壳的单晶样品装到谐振腔内,将扫场接线与电磁铁扫场接线柱相连,将“扫场”选钮旋到正时针最大。
3.5.2磁共振实验仪的X轴与Y轴输出接到示波器的X、Y轴上,磁共振实验仪按键按在“扫场”位置,示波器选到X—Y工作方式。
3.5.3调节示波器X轴输入灵敏度,使荧光屏的X轴的扫描有适当显示,Y轴输入放置20mV位置。
3.6.3从电流1.2Aqi起,逐点记录磁共振实验仪的磁场电流表读数与检波指示的对应关系,在坐标纸上描绘出连续的曲线,即可得到铁磁共振曲线。按图二所示的样子,从求得数据所画的曲线上找出共振磁场Hr和线宽ΔH。操作熟练后,在只要求共振磁场Hr和线宽ΔH时,就不必逐点测量,由P1处可知Hr;由P0和P1求出P1/2,找出与P1/2对应的二个H,即可求出线宽ΔH。
1.可观察铁磁材料的共振现象;
2.可测量微波铁氧体的铁磁共振线宽ΔH;
3.测量微波铁氧体的朗德因子g值;
4.培养学生掌握微波实验系统的调试和测试方法;
微波铁磁共振实验系统 工作时的照片
2.系统的工作原理

Multiwave 5000 微波化学反应平台 说明书

Multiwave 5000 微波化学反应平台 说明书

微波化学反应平台Multiwave 5000Product name精准的痕量元素分析从卓越的样品制备开始。

即使采用最佳分析设备,样品制备仍是获得可靠测量值的关键因素。

Multiwave 5000 的开发融入了 40 多年的样品制备经验,可满足当今实验室化学专家的需求。

作为迄今为止最简单易用的微波系统,它节省了实验室的时间和资金。

满足您需求的微波化学反应平台 由于采用灵活的平台概念,您可以将 Multiwave 5000 配置为最适合您应用的设备。

Multiwave 5000 提供:各种类型样品的消解(难度或体积不同) |酸浸提|微波溶剂萃取|蒸发|微波辅助氧燃烧| 紫外消解|样品干燥和合成| </1287>开始运行 - 甚至可以远程运行装入 转子选择方法一个系统,无限可能支持网络全球化拥有 >500 个预安装程序方法库操作便捷用户界面先进的您的样品可能很复杂 – 但它对 MULTIWAVE 5000 来说却很简单。

简便的反应罐操作无需工具无需工具即可完成消解罐的操作手动即可快速完成 Multiwave 5000 转子、消解罐和传感器的开启和密封。

这种无需工具的独特处理方法简化了频繁重复的工作步骤,节省了宝贵的时间。

在所有情况下确保最佳安全在高温高压下操作,安全问题极为重要。

为保护用户和设备, Multiwave 5000 配备多项主动和被动安全功能:自检、软件联锁和再密封安全门。

每台仪器都经过单独测试。

知识中心:获取仪器上的所有信息只需点击几下,所有相关信息都可以在仪器上找到:说明手册、大型方法库或应用指南等。

如果您在操作时有任何问题,您可以直接在 10.1 英寸的仪器屏幕上观看视频手册。

这些重要信息会随软件一起更新,可以免费获取,并通过推送通知告知。

用于制药行业Multiwave 5000 符合药典、GMP、GAMP 5 和 21 CFR Part 11 等国家和国际标准。

LAC高性能实验室微波炉说明书

LAC高性能实验室微波炉说明书

The LAC high-performance bench-top oven uses horizontal recirculating airflow to ensure uniform temperatures throughout the oven. A high-volume fan circulates air through perforated, stainless steel walls to create a constant horizontal airflow across all sections of the oven. The result is proven reliability in demanding production and laboratory applications such as curing, drying, sterilizing, aging and other process-critical procedures.Advanced control. Protocol 3™ is a microprocessor-based temperature and hi-limit controller with large LCD display and real time clock for auto start capability. The LCD display shows temperature readings along with clear, detailed information on oven status. Protocol 3™ features three operating modes for quick and easy operation: Manual mode, Timer mode and Profile mode. The data-logging functionality enables reporting and analyzing and data files can be exported via the controller’s USB port. Modbus RS485 com-munications are included for easy data access.Easy to clean and service. Cleaning is easy due to the scratch- resistant, baked enamel exterior, 304 stainless steel interior, and smooth door surface. Servicing is easy due to convenient top access to the heater and fan.Superior quality. The Despatch LAC features sturdy,welded, double-wall construction, three inches (7.6cm) of glass fiber insulation and heavy-duty gaskets. Each oven receives a thorough quality and performance test before it is shipped. Heating elements carry a five-year warranty. All models are UL/C-UL listed.FEATURES AT A GLANCEu F our sizes: 3.7 to 18 cu ft (105 to 510 liter)u M aximum temperature of 260˚C (500˚F)u H orizontal recirculating airflow u H igh limit over-temperature protection u P rotocol 3TM control with large LCD display,integrated data logging capabilities and USB port for simple oven set-up and data exportu P C interface for remote input, monitoring and recording (RS485 connection)u E nd-of-cycle and high-limit indicators u R obust type 304 stainless steel interiorF R E S H A I RHEATING ELEMENT FANEXHAUSTu L AC High-Performance OvenWith horizontal airflow for ultimate temperature uniformityThermal Processing TechnologyOPTIONSu D oor interlock switch turns off heaterand fan when door is openedu C hart recordersu F orced exhaust for faster moistureremoval (not Class A)u D oor with window and interior lightoperating temperature and cooling times are based on 20°C ambient temperature measured at the fresh air inlet. Specifications are subject to change without notice. If the existing specifications differ from yours, ask about our customizing capabilities.u 2” access port for test wires u O ven standu R einforced shelves 200lb (91Kg) capacity u C E compliance u E lectric door locku 208V full performance packageWarning: Despatch LAC Ovens (without Class A option) arenot to be used with flammable solvents, combustible materi-als or enclosed containers. If your process involves flammable solvents, consult the factory about modifications.Model LFC1-38 (240 volt) is available for Class A operation.© 2016 ITW EAE, a division on Illinois Tool Works. All rights reserved. Despatch is a registered trademark in the U.S. and other countries. LAC 11-168860 207th Street West Minneapolis, MN 55044 USAGLOBAL HEADQUARTERSmain phone: 1-800-726-0110international/main: 1-952-469-5424 sales: 1-800-726-0550international/sales: 1-952-469-8240******************SERVICE AND TECHNICAL SUPPORTservice parts: 1-800-473-7373international service/main: 1-952-469-8230 service fax: 1-952-469-8193**************************************Thermal Processing Technology。

微波实验报告波导波长测量

微波实验报告波导波长测量

篇一:电磁场与微波实验报告波导波长的测量电磁场与微波测量实验报告学院:班级:组员:撰写人:学号:序号:实验二波导波长的测量一、实验内容波导波长的测量【方法一】两点法实验原理如下图所示:按上图连接测量系统,可变电抗可以采用短路片。

当矩形波导(单模传输te10模)终端(z=0)短路时,将形成驻波状态。

波导内部电场强度(参见图三之坐标系)表达式为:e =ey =e0 sin(?xa) sin?z在波导宽面中线沿轴线方向开缝的剖面上,电场强度的幅度分布如图三所示。

将探针由缝中插入波导并沿轴向移动,即可检测电场强度的幅度沿轴线方向的分布状态(如波节点和波腹点的位置等)。

yz两点法确定波节点位置将测量线终端短路后,波导内形成驻波状态。

调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置(读得对应的游标卡尺上的刻度值t1和t2),就可求得波导波长为:?g = 2 tmin-tmin由于在电压波节点附近,电场(及对应的晶体检波电流)非常小,导致测量线探针移动“足够长”的距离,选频放大器表头指针都在零处“不动”(实际上是眼睛未察觉出指针有微小移动或指针因惰性未移动),因而很难准确确定电压波节点位置,具体测法如下:把小探针位置调至电压波节点附近,尽量加大选频放大器的灵敏度(减小衰减量),使波节点附近电流变化对位置非常敏感(即小探针位置稍有变化,选频放大器表头指示值就有明显变化)。

记取同一电压波节点两侧电流值相同时小探针所处的两个不同位置,则其平均值即为理论节点位置:1tmin = ? t1 ? t2 ?2最后可得?g = 2 tmin- tmin (参见图四)【方法二】间接法矩形波导中的h10波,自由波长λ0和波导波长?g满足公式:?g =???? 1 ? ? ??2a?2其中:?g=3?108/f,a=2.286cm通过实验测出波长,然后利用仪器提供的对照表确定波的频率,利用公式cλ0=确定出λ0,再计算出波导波长?g。

DH406A0型波导参数测试系统说明书(参考Word)

DH406A0型波导参数测试系统说明书(参考Word)
3.3频率测量(谐振腔法):
3.3.1按图一所示的框图连接微波实验系统。
3.3.2将检波器及检波指示器接到被测件位置上。
3.3.3用波长表测出微波信号源的频率。旋转波长表的测微头,当波长表与被测频率谐振时,将出现吸收峰。反映在检波指示器上的指示是一跌落点,(参见图四)此时,读出波长表测微头的读数,再从波长表频率与刻度曲线上查出对应的频率。
图三:功率衰减法连接框图
3.2.1按图三连接仪器,使系统正常工作,精密衰减器置于“零”衰减刻度。
3.2.2将测量线的探针调到驻波波节点,调节精密可变衰减器,使电表指示在80刻度附近,并记下该指示值。
3.2.3将测量线的探针调到衰减器刻度并换算出衰减量的分贝值A。被测驻波系数为:
I
Imax
IminL
图二驻波分布图
其中:I:为选频放大器的指示值
L:为驻波在波导测量线中的相对位置
3.2 大驻波系数的测量
当被测件驻波系数很大时,驻波波腹点与波节点的电平相差较大,在一般的指示仪表上,很难将两个电平同时准确读出,晶体检波律在相差较大的两个电平可能也不同,因此不能将它们相比求出驻波系数。下面介绍用功率衰减法测量大驻波系数。
4.环境条件:按电子测量仪器环境试验总纲(GB6587.1-86)第二组标准
5.供电要求:试验用各种仪器均需用交流稳压电源
三.系统试验方法:
微波实验系统的使用在教材中有较为详尽的论述,本说明书只简单介绍几种测量方法。各高校可结合教学大纲,选取不同的选件扩展各种试验。(选件见附录)
3.1 驻波测量:
图一:驻波测量框图
检波指示器指示I
谐振点
波长表测微头刻度
图四:波长表的谐振点曲线
3.4波导波长的测量:

Sartorius 微波水分仪 LMA200PM 说明书

Sartorius 微波水分仪 LMA200PM 说明书

操作手册Sartorius 微波水分仪LMA200PM使用目的LMA200PM实验室水分测定仪是专门为水分含量在8%——100%的水溶液做快速水分分析而设计的。

使用玻璃纤维膜制的样品盘,用微波技术均匀加热样品而使水分蒸发。

分布均匀的微波能快速干燥,分析时间约40——120秒。

样品的水分含量通过计算由内置称重系统测得的样品加热前后的重量差而得到。

内置,低噪音的热敏打印机根据用户自定义GLP兼容的打印输出模式来记录分析结果。

LMA200PM尤其耐用且容易操作。

内容2使用目的3安全预警3仪器的整体结构图4使用入门6操作设计9设置16设置菜单下的参数18操作24数据输出功能26 数据界面28 保存数据28 故障分析29 维护30 技术参数30 附件32 机型尺寸安全预警安全信息注释:操作LMA200PM前务必仔细阅读操作说明书。

不正确的使用及操作会损坏仪器。

LMA200PM只能由专业人员安装、操作。

同时也要了解当地的国家相关法律,标准,规则,指导以及环境保护条文。

所有操作该仪器的人员都必须了解该安全预警。

警告LMA200PM的重量约22kg。

运输和安装过程中需要两个人搬动。

遵循安全规则操作。

移动LMA200PM前必须断开电源。

在稳定,水平,光滑的表面上安装LMA200PM。

不要在户外操作LMA200PM,也不要在有危险物的地方操作。

化学品包括气体和灰尘会腐蚀水分仪的外形和电缆。

LMA200PM不要暴露在强电磁场中(例如,靠近高压电线的地方),不能将其安装在靠近有磁场物质的地方。

不能将其安装在易燃易爆物体的附近。

不能将其暴露在腐蚀性化学气体或高温、高水分、高振动的环境中。

参考“技术参数”中的重要技术数据。

保证安装地点具有足够空间来散发实验产生的热。

仪器和墙之间至少间隔20厘米,与顶墙至少留有1米的距离。

保证冷却风扇能一直正常运行,若风扇有故障请立即关闭仪器并专业人士维修。

如果使用由别的厂家制造的电缆,必须先检查电缆的pin 分配图,若分配图与sartorius的不同请立即断开连接。

微波炉磁控管磁路仿真系统说明书

微波炉磁控管磁路仿真系统说明书

第一章前言1.1 项目背景微波炉作为一种新型的厨具。

它采用电磁感应电流(又称涡流)的加热原理打破了传统的明火烹调方式,微波炉的交变磁场是通过电子线路板组成部分来产生、当用含铁质锅具底部放置炉面时,锅具即切割交变磁力线的交变的电流(即涡流)在锅具底部金属部分产生,电磁感应电流使锅具铁分子无规则高速运动,其热能是因为分子相互碰撞、摩擦产生(故微波炉煮食的热源来自于锅具底部而不是微波炉本身发热传导给锅具,所以热效率要比所有饮具的效率均高出近1倍)来实现器具本身自行高速发热,用来加热和烹饪食物,从而达到煮食的目地。

1.2微波炉简介1.2.1微波炉的基本工作原理微波炉主要由交流进线电路、电源电路、LC振荡电路、功率控制电路、整流电路、EMC防护电路、滤波电路、同步电路、控制及显示电路、电压检测电路、锅具检测电路、过零检测电路、电流检测电路、主控CPU电路、高低压保护电路、IGBT模块等组成。

图1.1为微波炉的工作原理框图图1.1微波炉的工作原理框图1.2.2微波炉的基本组成1.加热部分:微波炉有搁板在锅体下面,也有励磁线圈。

对锅体进行加热是根据电磁感应产生涡电流。

2.控制部分:主要有电源开关,功率选择钮,温度调节按钮等。

由内部的控制电路来控制。

3.冷却部分:采用风冷的方式。

炉身的侧面有进风口和出风口,内部有风扇。

4.电气部分:由整流电路、逆变电路、控制回路、继电器、电风扇等组成。

5.烹饪部分:主要包括各种炊具,供用户使用。

1.2.3微波炉的优缺点微波炉作为一种新型的厨具,具有以下优点。

1.高效节能:微波炉降低了损耗,是因为其使锅具自身发热,大大提高了热效率,热效率可达到85%~99%,与传统加热方式不同,与电炉、液化气炉等炉具相比,节省了大量的能源。

如图1.2所示2.智能烹饪:智能控制是利用单片机进行,无须看管,具有定时预约功能,来实现自动烹饪的功能。

3.安全可靠:通过了国家安全验证,使用安全可靠。

4.环保卫生:锅具可实现自身发热,不会产生热辐射,并且不排放烟尘和一氧化碳等废气,使烹饪环境更加环保卫生。

科学家微波器 操作手册说明书

科学家微波器 操作手册说明书

3B SCIENTIFIC® PHYSICS1009950 (10,5 GHz, 115 V, 50/60 Hz)1009951 ( 9,4 GHz, 230 V, 50/60 Hz)Bedienungsanleitung09/17 ERL/ALFBetriebsgerät1 Anschluss für Empfänger2 Verstärkerausgang3 Verstärkerausgang (Masse)4 Anschluss für Sender5 Modulationseingang (Masse)6 Modulationseingang7 Wahlschalter für Modulation(intern/off/extern),8 Schalter für internen Laut-sprecher9 Regler für SignalverstärkungEmpfänger10 Buchse für Steckernetzgerät12 V AC (Gehäuserückseite)Zubehör11 Sender mit Hornantenne12 Auflageplatte für Prisma13 Prisma aus Paraffin14 Reflektorplatte15 Abdeckplatte für Doppelspalt16 Platte mit Doppelspalt17 Absorptionsplatte18 Polarisationsgitter19 Empfänger mit Hornantenne20 Mikrowellenbank21 Mikrowellensonde22 Mikrowellen-Gelenkbank mitPlattenhalterHF-Felder können in biologisches Gewebe ein-dringen und dieses erwärmen. Der enthaltene Mikrowellensender ist so leistungsschwach, dass Gefährdungen bei sachgemäßem Betrieb des Gerätes nicht auftreten.Bei bestimmungsmäßigem Gebrauch ist der si-chere Betrieb des Gerätes gewährleistet. Die Sicherheit ist jedoch nicht garantiert, wenn das Gerät unsachgemäß bedient oder unachtsam behandelt wird.∙Vor Inbetriebnahme sind Gehäuse und Netzleitung auf Beschädigungen zu über-prüfen.∙Wenn anzunehmen ist, dass ein gefahrlo-ser Betrieb nicht mehr möglich ist (z.B. beisichtbaren Schäden), ist das Gerät unver-züglich außer Betrieb zu setzen.∙Der Anschluss des Senders ist nur an das 3B-ELWE Betriebsgerät zulässig.∙In Schulen und Ausbildungseinrichtungen ist der Betrieb des Gerätes durch geschul-tes Personal verantwortlich zu überwachen. ∙Direktes Hineinblicken in den Antennen-trichter des Senders sowie in das reflek-tierte Strahlenbündel ist zu vermeiden.∙Gerät nur durch eine Fachkraft öffnen las-sen.Mit dem Gerätesatz können Mikrowellen er-zeugt und empfangen werden.Mit den enthaltenen Komponenten und Geräten sind vielfältige Experimente möglich, die sowohl qualitative als auch quantitative Aussagen er-möglichen.Das vom Sender ausgesandte und eng be-grenzte Bündel elektromagnetischer Wellen im cm-Bereich kann mit der Hornantenne (19) oder der Sonde (21) empfangen werden. Die Modu-lation des Empfängersignals kann über den in-ternen Lautsprecher hörbar gemacht werden, wobei die Intensität des akustischen Signals mit der Stärke des empfangenen Signals zu- oder abnimmt.Das Mikrowellengerät wird über ein Stecker-netzgerät 12 V AC gespeist.Das Mikrowellengerät 10,5 GHz (1009950) ist für eine Netzspannung von 115 V (±10 %) aus-gelegt, das Gerät 9,4 GHz (1009951) für 230 V (±10 %).1 Betriebsgerät1 Sender mit Hornantenne1 Empfänger mit Hornantenne1 Mikrowellensonde1 Mikrowellenbank, 800 mm1 Mikrowellen-Gelenkbank, 400 mm mit Plat-tenhalter1 Reflektorplatte 180 x 180 mm²1 Polarisationsgitter, 180 x 180 mm²1 Absorptionsplatte aus Faserstoff, 180 x 180mm²1 Prisma aus Paraffin1 Auflageplatte für Prisma1 Platte mit Doppelspalt1 Abdeckplatte für Doppelspalt1 BedienungsanleitungSender mit Hornantenne:Frequenz des Oszillators: 9,4 GHz (1009951)10,5 GHz (1009950)Sendeleistung: 10 mW bis 25 mW Modulationsart: AM Modulationssignal: über WahlschalterIntern /aus /extern Modulation intern: ca. 3 kHzca. 80 % AM Modulation extern: 100 Hz bis 20 kHzmax. 1 V Akustisches Signal: intern (schaltbar) Ausgangsspannung: max. 10 V Akustisches Signal: intern (schaltbar) Ausgangsspannung: max. 10 VEmpfänger mitHornantenne: Siliziumdiode mitResonator Mikrowellensonde: Siliziumdiode mitResonator Versorgungsspannung: 12 V AC über Ste-ckernetzgerät AbmessungenBetriebsgerät: 170 x 200 x 75 mm³5.1 Aufbau Schienensystem (Grundeinstel-lung)∙Zentrische Schraube unter der Skalen-scheibe in die Bohrung der langen Schiene einsetzen.Ausgangslage ist ein gestrecktes Schienensys-tem (Pfeil auf der langen Schiene weist auf …0°“ der Winkelskala).∙Gelenkfuß durch Schieben an der Zeiger-spitze auf Skalennullpunkt einstellen.Die Zeigerspitze weist in die Lotrichtung des Plattenhalters und ermöglicht somit das direkte Ablesen oder Einstellen des Einfallswinkels (Ablesung an der äußeren Ziffernskala). 5.2 Systemaufbau∙Netzanschluss herstellen.∙Empfänger mit Hornantenne bzw. Empfän-gersonde an Anschluss für Empfänger (1) an-schließen.∙Sender mit Hornantenne an Anschluss für Sender (4) anschließen.∙Sender und Empfänger entsprechend den Abbildungen zu den Experimenten auf Schienensystem anordnen.∙Lautstärke mit Regler für Signalverstärkung(9) auf mittlere Position stellen.∙Lautsprecher mit Schalter (8) einschalten. ∙Modulator mit Schalter (7) auf …INT“ schal-ten.Das abgestrahlte Mikrowellensignal wird recht-eckförmig moduliert, die Modulationsfrequenz kann über den eingebauten Lautsprecher hör-bar gemacht werden.An den Buchsen (2) und (3) kann das verstärkte Signal des Empfängers als Gleichspannung (nach abgeschalteter Modulation), als Recht-eckspannung (bei interner Modulation) oder als NF-Signal (durch externe Modulation) abgegrif-fen werden.Die Modulation ist mit der Mittelstellung des Schalters (7) deaktiviert. Am Buchsenpaar (3)(4) liegt eine, dem Pegel und der Verstär-kung proportionale Gleichspannung, die z.B. über ein Zeigerinstrument (z.B. Analogmultime-ter Escola 30 1013526) angezeigt werden kann. Wird mit Schalter (7) die Stellung …EXT“ ge-wählt, so können NF-Signale (z.B. von einem MP3 Player) über die Buchsen (5) und (6) ein-gekoppelt und über den internen Lautsprecher im Basisgerät wiedergegeben werden. (Adapter Klinkenstecker auf 4-mm Buchse erforderlich). Die Informationsübertragung erfolgt hierbei über das Mikrowellensignal zwischen Sender und Empfänger.(19) einander senk-Maximaler Empfang, wenn Öffnungen direkt ge-geradlinig aus (in homogenem Medium und auch im Va-(elektri-scher Isolator) zwischen Sender und Emp-Verstärkung (9) im mittleren Bereich einstel-Isolato-und einspannen Verstärkung im unteren Bereich einstellen.Mikro-da kein Empfangssig-angefeuchtete AbsorptionsplatteFolgerung: Beim Durchdringen von Stoffen mit ab-Reflektorplatte im Winkel von ca. 30°, 40°, einstellen; Winkel der langen Schiene ändern, bis ma-durchführen Folgerung: An elektrischen Leitern werden Mik-rowellen reflektiert. Das Reflexionsgesetz wirdcmgegenüberstellen Gesendete und reflektierte Welle überlagern(Markierungoben)Minima (Knoten) oder Maxima (Bäuche) bestim-/2).Frequenz≈6.6 BrechungGrundeinstellung vornehmen (5.1).Auflageplatte für Prisma (12) in die dem Prisma (13) auf Auflageplatte legen und Lange Schiene axial drehen, bis maxima-Folgerung: Mikrowellen durchdringen Paraf-fin. Beim Übergang der Welle von Luft in Pa-derende-Sender (11) ca. 20 cm vom Plattenhalter entfernt und Empfänger (19) in einem Ab-Plattenhaltereiner Kreisbahn so weit aus Wellenbündel her-aus bewegen, bis das Signal deutlich ab-Einfachspalt in den Plattenhalter einset-auf Folgerung: Die Mikrowelle wird am Spalt ge-dem Spalt wieder nachweisbar (hörbare Zunahmeder Sender ca. 20 cm vor der Metallplatte an-Platteabgeschattetendenabge-Platte mit Doppelspalt (16) im Plattenhal-Sender ca. 12 cm vor der Platte positio-Abstandzuauftretenden Maxima die Anzahl der Spalte übersteigt, istPlattenhalterhorizontalerPolarisationsgitters Empfangsmöglichkeit bei vertikaler Aus-richtung des Polarisationsgitters überprü-Folgerung: Da einmal ein Empfang nachge-kein Signal den Empfänger erreicht, wird demons-triert, dass die Hornantenne ein Wechselfeld erzeugt, das nur in einer Richtung schwingt, Mit dem Experiment wird der Nachweis einerWerden Sender und Empfänger gegeneinan-der horizontal und vertikal ausgerichtet, so istin den Strahlengang eingebracht und in der dar-ein abgeschwächtes Signal empfangen. Die Po-Sender und Empfänger einander gegen-Empfänger außerhalb der Schiene senk-Maximaler Empfang, wenn Öffnungen di-An Hand der internen Modulation (3 kHz Sig-nal) oder der externen Modulation (z.B. Ton-signal eines MP3 Players) kann InformationFolgerung: Mikrowellen (elektromagnetischedie-3B Scientific GmbH ▪ Ludwig-Erhard-Str. 20 ▪ 20459 Hamburg ▪ Deutschland ▪ 。

MG08S-2B型微波实验仪使用说明书

MG08S-2B型微波实验仪使用说明书
6. 打开微波腔体的炉门将被加热物料摆放均匀后,将其放入微波炉腔内。 7. 将测温传感器插入实验物料。 8. 打开磁力搅拌按钮开关(此时按钮灯亮),然后调节磁力搅拌“搅拌速度”旋钮至合适
的搅拌速度。 9. 关好微波炉门(若门没有关好,则高压无法打开),设置定时器的时间,
9
定时器的设定方法: 按照物料在实际使用中的具体要求,来设定“微波定时”的加热时间。 取下定时器罩壳,按“+”/“-”来分别设定 H-M-S 的档位及具体定时时间参数。
其中“H”代表小时,“M”代表分Байду номын сангаас,“S”代表秒。
(图七) 10.将“功率调节”旋钮调至“0”位,按下“微波开”按钮,此时定时器开始计时; 11.顺时针转动“功率调节”旋钮,观察面板上的“阳极电流”表的读数,该电流值的变化
与功率变化呈同比关系。具体参数的对照值可参见下图八。
(图八) 12.在须进行在线温度监控时,首先须在腔体内安装测温传感器,同时在温度表上设定控制
当物质吸收微波意味着微波能量传递给物质并转变为热能。因此,能深入物体的深度
2
多少,就表示物体被加热的范围所在。所以,红外线加热与微波加热的范围是大不相同的, 两者在加热方式上有本质的差别,微波加热表现为物体深度范围的加热,物体出现体热源 状况,而红外加热仅是对物体表层加热,若欲使物体整体加热,则必须通过积累在物体表 面的热量,依靠热传导方式逐次地向物体内层传递,最终才加热整个物体。这种依靠物体 表面热传导加热方式,称为常规加热方式,而微波加热,它不依靠表面热传导方式,开创 了一种新的加热方式,就可以避免常规加热方式存在地一些问题,诸如需要预热、加热时 间长和加热干燥速率慢等弊病。
1.3KVA 0~800W(连续可调)
2450±50 MHz 350(长)×215(高)×330(厚)mm 508(长)×345(高)×405(厚)mm 360(长)×160(高)×350(厚)mm

完整微波基本参数测量实验报告

完整微波基本参数测量实验报告

(完整)微波基本参数测量实验报告微波基本参数测量实验报告【引言】微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,微波的基本性质通常呈现为穿透、反射、吸收三个特性。

微波成为一门技术科学,开始于20世纪30年代。

微波技术的形成以波导管的实际应用为其标志,若干形式的微波电子管(速调管、磁控管、行波管等)的发明,是另一标志。

在第二次世界大战中,微波技术得到飞跃发展。

因战争需要,微波研究的焦点集中在雷达方面,由此而带动了微波元件和器件、高功率微波管、微波电路和微波测量等技术的研究和发展。

至今,微波技术已成为一门无论在理论和技术上都相当成熟的学科,又是不断向纵深发展的学科。

【实验设计】一、实验原理1、微波微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。

微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。

微波作为一种电磁波也具有波粒二象性。

微波的基本性质通常呈现为穿透、反射、吸收三个特性。

对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。

对于水和食物等就会吸收微波而使自身发热,微波炉就是利用这一特点制成的,而对金属类东西,则会反射微波。

2、微波的似声似光性微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多。

使得微波的特点与几何光学相似,即所谓的似光性。

因此使用微波工作,能使电路元件尺寸减小,使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。

由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。

3、波导管波导管是一种空心的、内壁十分光洁的金属导管或内敷金属的管子。

Biotage 第四代微波合成系统说明书

Biotage 第四代微波合成系统说明书

© Biotage 2020Microwave SynthesisFourth Generation Systems2Microwave Synthesis – Fourth Generation Systems© Biotage 2020Speeding up reactions has never been easier. Biotage microwave synthesizers are the first-choice tools for organic chemists who need to accelerate their production of new compounds.Diverse Exploration and Fast ResultsA Common Goal for Modern Chemistry LabsCONTENTS2 Diverse Exploration and Fast Results3 Microwave Vials4 Biotage ® Initiator+6 Biotage ®Initiator Robot Eight & Robot Sixty 7 Ordering InformationMicrowave heating is by far the superior choice for synthesizingnovel compounds and can offer advantages other than just speed. Working at temperatures and pressures not attainable through traditional heating, it allows chemists to perform reactions previously not possible.Discover the Advantages of Microwave SynthesisWhy Wait Hours, or Even Days, for Results?Simply by increasing temperature, microwave synthesis can complete reactions up to a thousand times faster than traditional reflux conditions.Why Limit the Range of Experiments?Quickly test your creative synthetic ideas and rapidly synthesize compounds of interest to fill gaps in your structure activity relationship (SAR). Reduce the iterative SAR cycle-time and increase productivity for the entire project team.Don’t Waste Time Supervising the Synthesis ProcessBiotage microwave systems are predictable, reliable and safe. Each instrument has precise control of time, temperature and pressure to ensure that methods are reproducible and easily transferred or scaled up. Systems are also available with reliable automation and will run an entire sequence without manual intervention.Will the Microwave Fit Into Your Process, Hood Space and Budget?Chemical synthesis has never been easier. Simply put the reaction mixture into the vial, cap it, insert the vial into the microwave, key in the reaction parameter, and run. The latest generation of microwave synthesis systems are compact,easy to use and very affordable.Introduction3Microwave VialsHigh Precision Glass VialsDurable and safe reactions at all times. Our highprecision microwave vials are designed and tested to withstand pressures beyond 30 bar in a wide range of conditions.Simplicity is one of the benefits of modern microwave equip-ment. Reactions are performed in glass vials sealed with caps and heated in the microwave cavity.Magnetic Stir BarsThe reaction mixture is continuously blended by magnetic stirring promoting homogenous heating throughout.Optimum Vial SizesMigrate directly to multi-gram scale without re-optimization* using the 10–20 mL vials. These larger vials can also be used for preparation of scaffolds and intermediates or for generating larger quantities of active compounds for testing.Each Biotage microwave vial has been designed for safe and efficient heating within its specified volume range. Together, the four vial types provide full scalability within the volume range 0.2–20 mL. Methods that are run at a lower volume are directly transferrable across the entire volume range of 0.2–20 mL.Features and Advantages»Reseal™ design allows the septum to beresealed after it has been penetrated for repeated additions of reagents or in-situ sampling.»Manufactured from contaminantfree microwave-safe glass.»Magnetic stirring promotes homogenoustemperature distribution.»Available sizes: 0.2–0.5 mL, 0.5–2.0 mL,2.0–5.0 mL and 10–20 mL.Biotage’s microwave vials are available in four sizes: 0.2–0.5 mL; 0.5–2.0 mL; 2.0–5.0 mL and 10–20 mL.*Biotage Microwave Vials 10–20 mL, cannot be used with temperatures above 250 °C and/or pressures above 20 bar.4Microwave Synthesis – Fourth Generation Systems© Biotage 2020Results can be emailed directly to the user after a run, ordownloaded through the USB port at the front of the instrument.FlexibleControlled temperatures and pressures up to 300 °C and 30 bar open new possibilities to complete difficult reactions. Even low boiling point solvents can now be run at higher temperatures. The system automatically senses and performs reactions at their highest possible temperatures.The Initiator+ supports all Biotage vials from 0.2 to 20 mL,delivering greater flexibility and direct scale-up from milligrams to grams. The four different vial sizes can be used in any order or combination without system modifications.The single-mode applicator and the Dynamic Field Tuning™ features offer faster and more powerful heating (400 W) of a broader range of solvents. The setting for low microwave absorbing solvents enhances the heating for e.g. toluene and 1, 4-dioxane.Press the large touch-screen and heat your organic reagents to 300 °C in just a few seconds. TheInitiator+ does just that, and adds intelligent features that make innovation fast, reliable and safe.The Biotage Initiator+ represents a new generation of synthe-sizer instruments for organic, medicinal, materials, nano and polymer chemistry professionals. It is an upgradeable and reliable platform allowing chemists to make great discoveries in less time.Easy to OperateInitiator+ facilitates the transition from traditional methods to microwave enhanced techniques. Learning microwave synthesis is fast and pleasant with the Initiator+. The large touch screen display makes the experience user friendly from set-up toresults. The built-in wizard guides the user through experiment set-up step by step and helps converting conventional condi-tions to microwave synthesis parameters.Biotage ®Initiator+Fourth Generation Microwave SynthesizerLargest screen on the market, with intuitive user interface and touch control.High grade aluminum casing for maximum robustness.Additional communications ports allows for remote control and monitoring.The reaction vessel is secured with a triple-tier safety lock to ensure maximum operator safety at all times.Easy access cover enables quick maintenance.USB port for quick transfer of results and methods.UpgradableEach compound synthesis has unique demands. A rangeof accessories are available to increase automation for higher throughput.Connecting the SP Wave module and the Robot Eight kit will transform this instrument into a microwave assisted peptide synthesizer, extending the scope of discoveries beyond small molecules.The novel vortex mixing unit ensures gentle but thorough homogeneous heat distribution. With the optional fiber optic probe, reaction temperature can be monitored inside the vial for even better visibility.Best-in-Class SafetyIn the early days of microwave synthesis, bursting vials were a menace. All Biotage microwave synthesizers are designed with a triple-tier safety lock for safe operation at elevated temperatures and pressures.Features and Advantages»300 °C controlled reaction temperature »30 bar controlled reaction pressure»Large 10” touchscreen»Modular automation solutions»Guided step-by-step wizard»In situ temperature measurement»Upgradable to run peptide synthesis»Safe and simple»Utilizes all Biotage vials, from 0.2 to 20 mL »Remote monitoringAccessories»Modules for automation (p. 6)»Vials (p. 3)»Peptide liquid handlersSpecificationsHeating ProcessTemperature range40–300 °CHeating rate Typically 2–5 °C/s depending on solventand power appliedReaction time Up to 96 hours. Typically, most reactionsrequire 2–15 minutes of irradiation.Pressure range0–30 bar (3 MPa; 435 psi)Power range0–400 W from magnetron at 2.45 GHzReaction volumes0.2–20 mLAgitation Variable magnetic stirrer (300–900 RPM)UpgradesUpgradable with Robot Eight and Robot SixtyProcessing capacity8 or 60 vials (with robot upgrade)Rack capacity 2 x 2 or 2 x 12 vials (large); 2 x 4 or 2 x30 vials (small)Technical specs.Electrical supply100–240V~, 50/60HzMax. power consumed1100 VACooling Pressurized air supply: >60 L/min (2.1cubic feet/min), 2.5–4.0 bar (0.25–0.40MPa; 36–58 psi)Weight21 kg (46.2 lbs)Dimensions (WxDxH)365 x 422 x 421 mm (14.4”x 16.6” x 16.6”)Max sound level70 dB(A)InterfacesTouch screen10.4”Ethernet LAN Complies with IEEE 802.3 (ANSI 8802-3)USB USB 3.0Archiving/back-up Via USBPrinting Via LANCertifications CE, CSA certified56Microwave Synthesis – Fourth Generation Systems© Biotage 2020The Initiator+ can be upgraded from a single-sample manual format to an automated 8- or 60-position system. The modular design allows a user to add on different automated sample processors dependent on throughput requirements.The 8-position sample bed gives the user a compact auto m ation solution to start scale-up process and library build-up. The 8-position system is useful in a multi-userenvironment or for queuing multiple reactions. Flexible opera-tion enables the use of both large and small vials in combina-tion at any time and in any order without manual intervention.The 60-position sample bed supports the production of focused libraries, multi-user environments and scale-out,and use of both large and small vials in any order without manual intervention.Biotage ®Initiator Robot Eight & Robot SixtyIntelligent AutomationSpecificationsSample processor Robot Eight/Robot Sixty Processing capacity 8 vials/60 vials Rack capacity (large) 2x2 vials/2x12 vials Rack capacity (small) 2x4 vials/2x30 vialsVial sizes0.2–0.5; 0.5–2; 2–5; 10–20 mL,Operating temperature 18–32 °C Storage temperature -25 °C to 60 °CHumidity 20–95% at room temperature Electrical supply Supplied by Initiator CertificationsCE, CSA certifiedWeight & Dimensions (WxDxH)Initiator+ Eight 28 kg (61.7 lbs)Initiator+ Sixty 34 kg (75 lbs)Initiator+ Eight 400 x 500 x 580 mm (15.7" x 19.7" x 22.8")Initiator+ Sixty625 x 422 x 470 mm (24.6" x 16.6" x 18.5")Ordering InformationProduct Part number InstrumentsInitiator+ Microwave System356700 Initiator+ Microwave Systemwith Robot Eight356702Initiator+ Microwave Systemwith Robot Sixty356703RobotsRobot Eight355380 Robot Sixty355381 Microwave Vials0.2–0.5 mL, qty. 100 3554580.2–0.5 mL, qty. 300 3556270.2–0.5 mL, qty. 500 3556280.5–2 mL, qty. 100 3520160.5–2 mL, qty. 300 3546250.5–2 mL, qty. 500 3556292–5 mL, qty. 100 3515212–5 mL, qty. 300 3546242–5 mL, qty. 500 35563010–20 mL, qty. 50 35483310–20 mL, qty. 100 35563110–20 mL, qty. 250 355632 Microwave vial caps and stir bars are included with vial orderOrdering informationProduct Part number AccessoriesSP Wave Module356013Vial caps included reseal septa, qty. 100 352298Manual cap crimper 353671Manual cap remover 353913Vial adapter 0.2–0.5 mL, qty. 10 355459Vial adapter 10–20 mL, qty. 12 355367O-rings 10–20 mL adapter, qty. 10 354838Vial rack Initiator 8, holds (4) 0.2–5 mL vials 355391Vial rack Initiator 8, holds (2) 10–20 mL vials 355390Vial rack Initiator 60, holds (30) 0.2–5 mL vials 353478Vial rack Initiator 60, holds (12) 10–20 mL vials 354798Stir bars 0.2–0.5 mL, qty. 25 355545Stir bars 0.5–2 mL, qty. 25 355544Stir bars 2–5 mL, qty. 25 355543Stir bars 10–20 mL, qty. 5 353930Waste Tray355366Biotage® Initiator+ SP WaveFurther UpgradingUpgrade from anInitiator+ by connectingthe SPWave peptidesynthesis module andthe Robot Eight kit toperform microwaveassisted peptidesynthesis with vortexmixing.For more information, please refer to the Peptide SynthesisWorkflow brochure (PPS446), available at .7© Biotage 2020Your Complete Partner forEffective ChemistryBiotage is a worldwide supplier ofinstruments and accessories designed to facilitate the work of laboratory chemists. With our deep knowledge of the industry, academic contacts and in-house R&D teams, we can deliver the best solutions to your challenges. We take great pride in our flexibility and ability to meet our customer’s individual needs. With strong foundations in both analytical and organic chemistry, we can offer the widest range of solutions available on the market.Literature Number: PPS299.v5© 2020 Biotage. All rights reserved. No material may be reproduced or published without the written permission of Biotage. Information in this document is subject to change without notice and does not represent any commitment from Biotage. E&OE. A list of all trademarks owned by Biotage AB is available at /legal. Other product and company names mentioned herein may be trademarks or registered trademarks and/or service marks of their respective owners, and are used only for explanation and to the owners’ benefit, without intent to infringe.EUROPEMain Office: +46 18 565900Fax: +46 18 591922Order Tel: +46 18 565710Order Fax: +46 18 565705*****************Support Tel: +46 18 56 59 11Support Fax: + 46 18 56 57 11*****************************NORTH & LATIN AMERICA Main Office: +1 704 654 4900Toll Free: +1 800 446 4752Fax: +1 704 654 4917Order Tel: +1 800 446 4752Order Fax: +1 704 654 4917************************Support Tel: +1 800 446 4752*****************************JAPANTel: +81 3 5627 3123Fax: +81 3 5627 3121*************************************************CHINATel: +86 21 68162810Fax: +86 21 68162829*************************************************KOREATel: +82 31 706 8500Fax: +82 31 706 8510***************************************************INDIATel: +91 11 45653772 *****************Distributors in other regions are listed on 。

MPI TS50 微波测试系统用户手册说明书

MPI TS50 微波测试系统用户手册说明书

FACT SHEET - TS50, QMS-C-AS-021-02, 11-2020 © MPI Corporation 2020 - Data subject to change without further notice.RF Calibration• Auxiliary chuck for calibration substrates • Built-in ceramic for accurate calibration•1 µm flatness for consistent contact qualityModular Chucks• Non-thermal chucks• Supports DC/CV and RF applicationsDC and RF Positioners• Supports 2-port RF and up to 6 DC positioners • Wide range of positioners available•Dedicated probe arms for DC/CV and RF measurementsChuck XY-Theta Stage Movement• 100 x 75 mm XY movement• Including 25 x 25 mm fine micrometer control • ±5° Theta fine adjustment • Quick release function•Independent fast XY navigationFront Mounted Vacuum Control• Easy access •Clearly markedMicroscope and Optics Options• Various optics options available• Stereo MPI ST45 or single tube MPI SZ10 with up to 10x zoom and 95 mm working distance •HDMI cameras, monitor user interface without computerMicroscope Mount and Movement• Stable bridge for high quality optics • Microscope pivot XY movement •50 mm linear Z with the focus blockAdjustable Platen Height• Micrometer control for precise adjustment •25 mm range for various applicationsProbe Platen• Stable and rigid design• Supports DC/CV and RF measurements•Rectangular adjustments for RF positionersUltra Small Footprint• 300 x 300 mm base plate designed for bench top use • Comes with vibration absorber base• Low profile design for maximum usability •Ideal for load pull applicationsMPI TS50 | 50 mm Manual Probe SystemFor accurate and reliable DC/CV and RF measurements***Available Options***• Vibration isolation platform • EMI-shielded DarkBox • Vacuum pump• Table with integrated rack for thermal controller, computer and keyboard push tray - Dual monitor stand option - Instrument shelf option。

安东帕微波消解pro中文手册

安东帕微波消解pro中文手册
该手册随Multiwave PRO提供,介绍仪器的安装、安全操作和使用仪器的规则。 特别注意该手册和仪器上的安全指南和警示标志。手册无法涵盖安全规章的所有内容。使用 者对仪器的安全使用负有最终责任。操作手册是产品的组成部分,请在仪器的使用期间妥善 保管,确保所有操作Multiwave PRO的人员都能方便地参考。
图3-2 Multiwave PRO的正面图 1、触摸屏 2、开门按钮 3、安全门 4、进气孔 5、赶酸装置的导出口(可选)
图3-3 Multiwave PRO的背面图 1、以太网连接口 2、排风单元 3、“PWM”信号排风单元接口 4、排风单元连接线接口 5、电源线接口 6、进气孔 7、开关按钮 8、排风管接口 9、选配件接口(校准件和溶剂传感器) 10、两个USB接口
3.2.2 温度监控 温度传感器位于微波腔内底部,检测反应管底部的温度,避免反应管过热。 为了测量反应管的内温,依据所用的转子类型,选择特殊的传感器(见3.6章节)。 每个磁控管都配有温度传感器,避免过热。 备注:建议至少每隔一年对IR温度传感器进行检查和校准。 3.2.3 转子检测 Multiwave PRO的传感器系统可以自动检测转子类型、转子盖和当前反应管位置。 3.3 部件和功能
Multiwave PRO Microwave Reaction System 微波样品制备仪操作手册(中文)
1 介绍
首先感谢您购买并使用Anton Paar公司的Multiwave PRO微波样品制备系统。我们十分感激 您的信任,我们将尽我们所能来确保您的设备在未来的日子里顺利运行。 Multiwave PRO 是一个全新设计的微波辅助样品制备系统。它采用模块化的转子系统,实现 高压高温条件下常规或微量样品的快速而完全的微波消解。

“电磁场与电磁波”和“微波技术”实验大纲及指导说明书

“电磁场与电磁波”和“微波技术”实验大纲及指导说明书

“电磁场与电磁波”和“微波技术”课内实验大纲及实验指导书唐万春,车文荃编制陈如山审定南京理工大学通信工程系2006年12月目录1.“电磁场与电磁波”课内实验大纲2.“电磁场与电磁波”课内实验指导说明书实验一电磁波参量的测定实验二电磁波的极化3.“微波技术”课内实验大纲4.“微波技术”课内实验指导说明书实验一传输线的工作状态及驻波比测量实验二微波网络散射参量测试5.“电磁场与电磁波”和“微波技术”课内实验评分标准南京理工大学实验教学大纲课程名称:电磁场与电磁波开课实验室:电磁场与微波技术实验室执笔人:唐万春审定人:陈如山修(制)订日期: 2005年4月*由学校出版、印刷的实验教材(或指导书),统一写作“南京理工大学出版”。

“电磁场与电磁波”课内实验指导书唐万春编写南京理工大学通信工程系二00六年十二月实验一电磁波参量的测定实验1.实验目的a)观察电磁波的传播特性。

b)通过测定自由空间中电磁波的波长,来确定电磁波传播的相位常数k和传播速度v。

c)了解用相干波的原理测量波长的方法。

2.实验内容a)了解并熟悉电磁波综合测试仪的工作特点、线路结构、使用方法。

b)测量信号源的工作波长(或频率)。

3.实验原理与说明a)所使用的实验仪器分度转台晶体检波器可变衰减器喇叭天线反射板固态信号源微安表实验仪器布置图如下:体检波器图1 实验仪器布置图参阅图1。

固态信号源所产生的信号经可变衰减器至矩形喇叭天线,由喇叭天线辐射出去,在接收端用矩形喇叭天线接收,接收到的信号经晶体检波器后通过微安表指示。

b) 原理本实验利用相干波原理,通过测得的电磁波的波长,再由关系式2,k v f kπωλλ===得到电磁波的主要参量k ,v 等。

实验示意图如图2所示。

图中0r P 、1r P 、2r P 和3r P 分别表示辐射喇叭、固定反射板、可动反射板和接收喇叭,图中介质板是一23030()mm ⨯的玻璃板,它对电磁波进行反射、折射后,可实现相干波测试。

DH809A微波顺磁共振系统说明书

DH809A微波顺磁共振系统说明书

DH809A型微波顺磁共振实验系统说明书北京大华无线电仪器厂目录1. 概述2. 系统的工作原理3.磁共振实验仪的要紧技术指标4. 系统的安装利用和操作5. 系统的成套性6.质量保证1.概述微波顺磁共振实验系统是依照高等院校近代物理实验教学大纲而设计的一套简单的教学装置,它适用于物理等专业的学生在微波频段做顺磁电子自旋共振实验:本实验装置能够完成以下实验任务:1.研究了解自旋共振现象:2.测量DPPH中的朗德因子g值;3.了解和把握微波器件在电子自旋共振中的应用;4.从矩形谐振腔长度的转变,进一步明白得谐振腔中的驻波场型,并确信波导波长λg。

5.利用样品有机自由基DPPH在谐振腔中的位置转变,探测微波磁场的情形,来确信微波的波导波长λg。

2.系统的工作原理微波顺磁共振实验系统是在三厘米频段(频率9370MHz周围)进行电子自旋共振实验的。

采纳了可调式矩形谐振腔,因此使整套装置结构简单明了,易于教学实验。

微波顺磁共振实验系统见图一图一:微波顺磁共振实验系统微波顺磁共振实验系统方框图见图二。

图中微波信号发生器为系统提供频率约为9370MHz 的微波信号,微波信号通过隔离器、衰减器、波长计到魔T的H臂,魔T将信号平分后别离进入相邻两臂。

可调矩形样品谐振腔,通过输入端的耦合片,可使微波能量进入微波谐振腔,矩形谐振腔的结尾是可移动的活塞,用来改变谐振腔的长度。

为了保证样品老是处于微波磁场的最强处,在谐振腔的宽边正中开了一条窄缝,通过机械传动装置可使实验样品处于谐振腔中的任何位置,并可从贴在窄边上的刻度直接读出,实验样品为密封于一段细玻璃管中的有机自由基DPPH。

系统中,磁共振实验仪的“X轴”输出为示波器提供同步信号,调剂“调相”旋钮可使正弦波的负半周扫描的共振吸收峰与正半周的共振吸收峰重合。

当用示波器观看时,扫描信号为磁共振实验仪的X轴输出的50Hz正弦波信号,Y轴为检波器检出的微波信号。

将磁场强度H的数值及微波频率f的数值代入磁共振条件就能够够求得朗德因子g值。

AA-24G-5KW-PT R.F.微波放大器系统用户手册说明书

AA-24G-5KW-PT R.F.微波放大器系统用户手册说明书

User ManualModel AA-24G-5KW-PTR.F. MICROWA VE AMPLIFIER SYSTEMAdvanced Test Equipment Corporation10401 Roselle StreetSan Diego, CA 92121Telephone: 808-404-2832(Image above may differ from the model number listed on manual)Table of ContentsPurpose of the Equipment (3)General System Introduction (4)Installation (4)TWTA connections (4)Front Panel Display (6)Operation (8)Remote Operation (11)Communication protocol over RS-232 (11)Status and analog readings data format (11)Explanations of analog values (13)Explanation of Faults and Flags (14)Purpose of the EquipmentThe 6548 TWTA is designed to amplify RF signals to high power levels. It consists of a TWT and other RF components, solid state electronic power supplies, control logic, built-in fault and status monitors so as to provide safety to the operator, the electronics, and the TWT.WARNING!•Do Not operate this equipment with the covers removed.•Do Not have the equipment plugged into AC Power with the covers removed.•Do Not remove the covers without waiting 5 minutes after the unit has been unplugged from AC power•Do Not operate this equipment without both RF input and RF output being properly terminated.•Do Not bypass or attempt to modify the operation of the Safety Interlock Switch.•Without covers in place, personnel can be subjected to dangerous High V oltages which can cause serious injury or death. Without the covers in place there will be inadequate cooling to the internal components resulting in serious damage.•Without the RF input and RF output being properly terminated, serious injury to personnel can occur.•Without the RF input and RF output being properly terminated, serious damage to the internal components can occur.CAUTIONRead the preceding paragraphs before operating the power supplies.General System IntroductionPrime power is connected to the TWTA via the three prong socket in the rear of the enclosure. It is fused and controlled by the Main Relay.The Front Panel Switches control the TWTA. The WARM UP button controls the Main Relay to power the TWTA. The STANDBY, OPERATE and RESET buttons control various stages of the TWTA operation.The computer interface, specified at time of manufacture allows the user to emulate the STANDBY, OPERATE and RESET buttons remotely.The Low V oltage Power Supply provides regulated and filtered low voltages to various components within the TWTA. It also contains a microprocessor to monitor cooling fan currents.The TWT is connected to the external termination points with various RF configurations specified at time of manufacture.InstallationLocate amplifier in such a manner that adequate cool air is available to the fan inlet on the front of the unit. Do not restrict space in the back of the unit such that exhaust air is confined or blocked. Properly terminate both RF input and RF output with appropriate RF components and at appropriate drive and frequency levels.Connect AC power to appropriate voltage and frequencies only, with 15 amp service minimum and adequate gauged wiring (12AWG recommended).Safety ground in connecter must be used, and, for 120vac applications, Line and Neutral must not be reversed. If reversed, the unit will not function.TWTA connections•Output sample –40 dB - Provides a sample of the output power at a 40 dB reduction for power monitoring and spectral analysis.•Input sample –20 dB - Provides a sample of the input power at a 20 dB reduction for power monitoring and spectral analysis.•Interstage sample –20 dB - A sample of the RF stream between the Solid State Amplifier and the TWT at a 20 dB reduction. Provides a means of TWT gain calibration.•Detected video output - A crystal-detected representation of the RF output power suitable for use with an oscilloscope.•Video pulses - Pulsed application only. Input for user-supplied video pulses.•RF input - TWT Input for user-supplied RF.•RF output - Amplified TWT RF output.•Computer interface - Connection for user-specified external communications.•Primary power - User-specified 120 or 240V AC 50-60 Hz power input. Picture 1: Front viewPicture 2: Back viewFront Panel DisplayFront panel display interface consists of 4 windows, Main, Floating Deck, High V oltage and Fault Log. There are buttons to switch between the windows on the bottom of the screen.Main window shows basic information about the unit status. It indicates which of the states the unit is in. In WARM UP state (Picture 3) the main window has a white background and shows how much time is left to finish the warm up. In STANDBY the background is yellow and the screen shows the word “Standby”. In OPERATE the background is green, the screen shows the word “Operate” and the status of the pulse input. Finally, in RESET, the main window shows the word “Reset” on a red background and indicates what faults were present at the time RESET was triggered (Picture 4).Picture 3: Front panel display, Main, Warm up Picture 4: Front panel display, Main, ResetMain window is shown by default after the unit turns on.Picture 5: Front Panel Display, Floating Deck Picture 6: Front Panel Display, High Voltage Floating Deck and High V oltage windows (picture 5 and 6) present readings of all the monitored parameters. When the unit is in WARM UP, STANDBY or OPERATE states the values are updated in real time. When the unit encounters a fault all the values represent readings from the moment the fault was encountered.Picture 7: Front Panel Display, Fault LogFault Log screen (picture 7), shows the count of faults which have occurred since the last time the fault log was cleared.OperationTerminate TWTA RF input and output. Connect external Interface as desired. Apply prime power.Caution: The TWTA must never be placed in Operate without proper RF termination. This can lead to TWT oscillations which can permanently damage the TWT.Power TWTA On:Press the manual WARM UP button to power the TWTA.The manual WARM UP button will illuminate. Front panel display will show “Warm up” and the remaining warm-up time on the status bar.At initial power-up, heater voltage will be less than nominal to limit excessive current drawn by a cold filament. As the filament warms it will draw less current and the filament voltage will increase until nominal voltage is reached. Negative Bias voltage is applied to the Grid. Body and Collector supplies are off. The standard warm-up period is 5 minutes.Standby from Warm-up:After the warm-up period has elapsed the TWTA is placed in STANDBY by the Main microprocessor. High voltage supplies and Grid voltage remain unchanged from the WARM UP state. The manual STANDBY button is illuminated and the WARM UP/OFF button is extinguished. The front panel display will indicate “Standby” on the status bar. The TWTA can be now placed in OPERATE.Operate:Press the OPERATE button to place the TWTA in OPERATE state.The OPERATE button is illuminated and the STANDBY button is extinguished. The front panel display will indicate “Operate”on the status bar and the background color will change to green.The Main microprocessor engages the Body and Collector supplies simultaneously within 5-30 ms after the OPERATE command is received. The microprocessor allows up to1.2seconds for the voltages to reach their nominal values. 320 ms after the high voltages have reached their nominal values,pulses are passed unaltered to the Floating Deck where they are subject to PRF(Pulse Frequency) and PW (Pulse Width) limiting. Therefore TWT beam current will be present in a range between slightly over 320 ms to 1520 ms after the TWTA is placed in operate.If RF and video pulses (pulsed units) are supplied, the TWTA will produce an amplified RF output.Standby from Operate:When placed in STANDBY by user command, the Main processor sequentially interrupts video pulses to the Floating Deck, disengages the Body and Collector supplies and returns the TWTA to STANDBY. The STANDBY button illuminates and the OPERATE button is extinguished. Front panel display shows “Standby” on the status bar again.Power TWTA Off:After placing the TWTA in STANDBY press WARM UP button to power-down the TWTA.If the TWTA was operating at high-duty the amplifier should be run in STANDBY an additional length of time to allow the TWT to cool.Reset:If any monitored parameter falls outside the limits set in the processors, the Main processor interrupts pulses and disengages the high voltage supplies in a fashion similar to STANDBY but latches the system in RESET. The RESET button is illuminated and the front panel display status bar shows the word “Reset” and lists the faults which triggered the RESET. When the unit is in RESET, values shown on the front panel display and sent by the 0x04 (status) remote command are the values latched in memory at the moment when unit encountered a fault.After the cause of the fault has been corrected press the RESET button to return the TWTA to STANDBY.TWT Temperature, cover Interlock and Anode V oltage are all directly monitored by the Main Control and will cause the Main Control processor to place the TWTA in RESET if the amplifier is in WARMUP, STANDBY or OPERATE.Heater V oltage and Current, Drive V oltage, Collector V oltage and Current, Body V oltage and Cathode Current are all directly monitored by the RF Control and will not trigger a fault until the TWTA is in operate.Grid V oltage and the RF Control Board +9V supply are handled uniquely; they are monitored by the RF Control processor but will initiate a Flashing Reset.Flashing Reset:Two conditions will cause the Reset button to flash: Grid voltage out of range or the RF Control Board +9V supply too high. High +9V supply or high grid voltage (absolute value) will cause a FLASHING RESET at any time while low grid voltage will cause a FLASHING RESET only in WARM UP or STANDBY. Low grid voltage in OPERATE will not cause a fault.When the TWTA is in this mode the Floating Deck Part C is disabled to protect the TWT against catastrophic damage. The TWTA will not communicate with an external PC. To clear a Flashing Reset the TWTA must be power-cycled. If the voltage that caused the reset remains out of range the amplifier will enter the Flashing Reset mode again after the power cycle.Remote/Local Lockout:The optional remote/local lockout feature prevents dual control of the TWTA; either the local or remote control is active, but not both. If the latching Remote switch is depressed the switch will illuminate and the TWTA can only be controlled by the external computer. When the switch is depressed again,control will be solely from the front panel switches. If the TWTA is in OPERATE and the Remote switch state is changed the TWTA will automatically be placed in STANDBY.Optionally (set at TWTA manufacture) the lockout feature will disable/enable remote control while retaining local control at all times.If the TWTA encounters a fault, the Reset button (physical or application) should be pressed before the Remote switch state is changed.Gassy TWT:If the TWTA has been inactive for several months the TWT may build up gasses. This allows the TWT to arc internally and cause repeated TWTA faults.To correct this condition, operate the TWTA for an extended period with no input pulses. When a fault occurs, reset the TWTA and return to operate. A TWT that is recovering will be evidenced by a widening period between faults. The length of time required will be determined by the particular TWT, possibly up to twenty-four hours.The TWTA should be operated periodically to prevent gassing.Remote OperationCommunication protocol over RS-232 Communications are via a simple byte protocol over standard RS-232 interface.The protocol consists of a set of single byte commands. No additional bytes should be sent before or after a command, as they might confuse the main processor and result in undefined behavior. There is no handshaking involved, and no hardware flow control, just a simple command - answer sequence. The commands cause the unit to echo the byte sent to it or send a specified number of bytes encoding the requested information. The length of the answer is specified for each command.Command Byte Response Length ResponseGo to standby0x011Echo 0x01Go to operate0x021Echo 0x02 Reset0x201Echo 0x20Send status and analog readings0x0431DA TAGo to standby command causes the amplifier to turn off the high voltage and go to STANDBY mode. It is equivalent to pressing the STANDBY button on the front panel.Go to operate command causes the amplifier to apply the high voltage to the tube and go to OPERATE mode. It is equivalent to pressing the OPERATE button on the front panel.Reset causes the amplifier to go back to STANDBY from RESET. It is equivalent to pressing the RESET button on the front panel.Send status and analog readings command causes the amplifier to send 31 bytes of data described in the following subsection.Status and analog readings data formatThe 0x04 command causes the amplifier to send 31 bytes of data to the computer.The first three bytes consist of flags indicating the status of the unit. Byte 3 and 4 indicate warm up time, and the rest encode the analog status values.Byte | bit | description0 7 : Body V fault0 6 : Heater V fault0 5 : Drive V fault0 4 : Heater I fault0 3 : Collector V fault0 2 : Collector I fault0 1 : Bias V fault (when triggered, the unit goes to FLASHING RESET)0 0 : Cathode I fault1 7 : (unused)1 6 : set if unit has a tube with a collector, cleared otherwise1 5 : (unused)1 4,3 : bit(4,3) == 0,0 – no pulses receivedbit(4,3) == 0,1 – pulses received, PW limitedbit(4,3) == 1,0 – pulses received, PRF limitedbit(4,3) == 1,1 – pulses received1 2 : set if local control disabled, cleared otherwise1 1 : (unused)1 0 : (unused)2 7,6 : bit(7,6) == 0,0 – the unit is in STANDBYbit(7,6) == 0,1 – the unit is in RESETbit(7,6) == 1,0 – the unit is in OPERATE2 5 : Interlock fault2 4 : Helix I fault2 3 : VSWR fault2 2 : (unused)2 1 : Tube temperature fault2 0 : (unused)Byte 3, 4 : Warm up timer,t = ((Byte 3) + (Byte 4)*256) * 0.032 sByte 5 : actual PWR out (optional)Byte 6 : (unused)Byte 7 : actual PWR in (optional)Byte 8 : actual VSWRByte 9 : actual Helix I,I = (Byte 9) * 0.4157 mAByte 10 : nominal PWR out (optional)Byte 11 : (unused)Byte 12 : nominal PWR inByte 13 : nominal VSWR in %Byte 14 : nominal Helix I,I = (Byte 14) * 0.4157 mAByte 15 : actual Cathode II = (Byte 15) * 1.867 mAByte 16 : actual Bias VV = (Byte 16) * 0.98 VByte 17 : actual Collector I,I = ((Byte 17) – 30) * 2.044 mAByte 18 : actual Collector V,V = (Byte 18) * 0.0548 kVByte 19 : actual Heater I,I = (Byte 19) * 0.0189 AByte 20 : actual Drive V,V = (Byte 20) * 1.0 VByte 21 : actual Heater V,V = ((Byte 21) – 106) * 0.0476 VByte 22 : actual Body V,V = (Byte 22) * 0.0548 kVByte 23 : nominal Cathode II = (Byte 23) * 1.867 mAByte 24 : actual Bias VV = (Byte 24) * 0.98 VByte 25 : actual Collector I,I = ((Byte 25) – 30) * 2.044 mAByte 26 : actual Collector V,V = (Byte 26) * 0.0548 VByte 27 : actual Heater I,I = (Byte 27) * 0.0189 AByte 28 : actual Drive V,V = (Byte 28) * 1.0 VByte 29 : actual Heater V,V = ((Byte 29) – 106) * 0.0476 VByte 30 : actual Body V,V = (Byte 30) * 0.0548 kVExplanations of analog values•PWR in and PWR out - If the optional power monitoring is not installed the first two lines of the display will read as shown.•VSWR - For pulsed amplifiers, VSWR will display either 0 or 255. If the reflected power is within acceptable levels the value is zero. If the reflected power is excessive the reading will shift to 255 and the TWTA will fault.For CW amplifiers VSWR indicates reflected power proportionate to actual reflected power.•Heater I, Heater V - TWT filament current and voltage.•Bias V (Grid V) - Indicates the voltage at the TWT grid. When the TWTA is in Warmup or Standby the grid voltage will be virtually identical to bias voltage, reflecting the bias voltage that is applied to the grid. The operator should not misinterpret the Grid display as a direct representation of bias voltage.When in Operate with pulses applied the Grid will display a lower (absolute) value due to the positive drive pulses interspersed with the negative bias voltage. The amount of reduction is directly proportional to the duty cycle of the pulses applied.•Drive V - Monitors positive drive voltage with maximum and minimum limits. Fault protocol similar to Heater; TWTA will not fault until placed in Operate.•Collector V - Indicates collector voltage. Collector voltage is present only when the TWTA is in Operate.•Collector I - Indicates collector current with maximum limits only. Collector current is present only when the TWTA is in Operate with pulses applied (pulsed TWTA’s). CW TWTAs will produce Collector current whenever the TWTA is in operate.•Body V - Indicates body voltage with maximum and minimum limits. Body voltage is present only when the TWTA is in Operate. Also known as Cathode or Helix voltage.•Cathode I- Indicates cathode current with maximum limits only. Cathode current is present only when the TWTA is in Operate and pulses are applied (pulsed TWTA’s). CW TWTA’s will produce Cathode current whenever the TWTA is in operate.•Helix I - Helix current is present only when the TWTA is in Operate and pulses are applied (pulsed TWTA’s). CW TWTA’s will produce Helix current whenever the TWTA is in operate.Explanation of Faults and Flags•Temperature - TWT temperature has exceeded acceptable levels or a cooling fan is outside its current range. Causes a fault.•Interlock - The enclosure cover has been removed or loosened. Causes a fault.•PRF - When the maximum Pulse Repetition Frequency limit of the TWTA has been exceeded and internal limiting circuitry engaged. Indication only, will not cause a fault.•PW (Pulse Width) - When the maximum Pulse Width limit of the TWTA has been exceeded and internal limiting circuitry engaged. Indication only, will not cause a fault.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图三:功率衰减法连接框图
3.2.1按图三连接仪器,使系统正常工作,精密衰减器置于“零”衰减刻度。
3.2.2将测量线的探针调到驻波波节点,调节精密可变衰减器,使电表指示在80刻度附近,并记下该指示值。
3.2.3将测量线的探针调到驻波波腹点,并增加精密衰减器的衰减量,使电表指示恢复到上述指示值,读取精密衰减器刻度并换算出衰减量的分贝值A。被测驻波系数为:
3.7介质ε及tgδ测试系统
使用步骤:
1.按图九连接测试系统,使信号源处于扫频工作状态。
2.在样品未插入腔内时,找出样品谐振腔的谐振频率。(即改变扫频信号源的扫频范围),从示波器观察谐振腔的谐振曲线,用波长表测量腔的谐振频率f0(见图十)。注:精密衰减器需单独配备
利用波长表在示波器上形成的“缺口尖端”为标志点,测定示波器横轴的频标系数K(即单位长度所对应的频率范围,以兆赫/格表示)作法是:调节波长表,使吸收峰在示波器横向移动适当距离△L,由波长表读出相应的频率差值△f,则频标系数K=△f/△L,一般可以做到K=0.4兆赫/格,谐振曲线的半功率频宽│f1-f2│ 可以由K和半功率点的距离│L1-L2│决定。
4.环境条件:按电子测量仪器环境试验总纲(GB6587.1-86)第二组标准
5.供电要求:试验用各种仪器均需用交流稳压电源
三.系统试验方法:
微波实验系统的使用在教材中有较为详尽的论述,本说明书只简单介绍几种测量方法。各高校可结合教学大纲,选取不同的选件扩展各种试验。(选件见附录)
3.1 驻波测量:
图一:驻波测量框图
3.3频率测量(谐振腔法):
3.3.1按图一所示的框图连接微波实验系统。
3.3.2将检波器及检波指示器接到被测件位置上。
3.3.3用波长表测出微波信号源的频率。旋转波长表的测微头,当波长表与被测频率谐振时,将出现吸收峰。反映在检波指示器上的指示是一跌落点,(参见图四)此时,读出波长表测微头的读数,再从波长表频率与刻度曲线上查出对应的频率。
数量
序号
名 称
数量
1
可变衰减器
1
16
介质材料样片(聚四氟乙烯)
3
2
波长表
1
17
介质材料样片(电工黑胶木)
3
3
检波器
1
18
波导支架
3
4
电缆
1
29
螺钉
40套
5
检波指示器
1
20
系统使用说明书
1
6
隔离器
2
21
合格证
1
7
环行器
1
8
可变电抗器
1
9
单螺调配器
1
10
直波导
1
11
匹配负载
1
12
短路板
1
13
样品谐振腔
1
3.5.2绝对功率测量:
波导开关旋至功率计通路,用功率计可测得绝对功率值。
3.6衰减的测量
定义:衰减量 dB
其中:P1为匹配状态下的输入功率。
P2为匹配状态下的输出功率。
图八:衰减器测量微波系统框图
3.6.1直接测量法:按图八所示的框图连接微波系统,使微波信号源处于最佳工作状态。
接入被测器件前,调整调配器,使测量线上测得得检波部分为匹配状态,并从指示器上读得电流I1。
DH406A型
微 波 实 验 系 统
(波导参数测试系统)
使用说明书
北京大华无线电仪器厂
一.实验系统概述
二.主要技术规格
三.系统试验方法
四.系统的成套性
五.产品质量保证
一.实验系统概述
本系统是为适应高等院校近代物理实验而配置的微波参数实验系统。它是由三公分微波波导元件组成,各学校可根据教学试验大纲要求,与选件配套组成各种试验系统,该系统主要功能可使学生通过实验学习并掌握下列基本知识:
V0……谐振腔体积
VS……样品的体积
注:作样品谐振腔的谐振曲线需用扫频信号源,若没有扫频信号源,则应逐点改变信号源的频率,并保持每个频率上有相同的输出功率。
图九:介质ε及tgδ测试系统方框图
P
P0
(P0-P1)/2
P1
f
f1f0f2
半功率点位置
图十:样品谐振腔的谐振曲线
四. 系统的成套性:
序号
名 称
1.了解各种微
4.熟悉驻波、衰减、波长(频率)和功率的测量
5.学会测量微波介质材料的介电常数和损耗角正切值
二.主要技术规格:
1.频率范围: 8600~9600MHz
2.波导标准:BJ100 (GB11450.2-89)
3.法兰盘型号:FB100
接入被测器件后,从指示器上读得电流I2。当检波器为平方律检波时:
3.6.2高频替代法
被测器件接入前,调节精密可变衰减器至A1,使指示器指示为I 。被测器件接入后,调节精密可变衰减器至A2,使指示器指示仍为I。被测器件的衰减量A=A2-A1,此法比直接测量法精确,其测试精度取决于衰减器的精度。
注意:进行衰减量测量时,被测器件应与测试系统匹配。
检波指示器指示I
谐振点
波长表测微头刻度
图四:波长表的谐振点曲线
3.4波导波长的测量:
图五:波导波长测量系统框图
3.4.1按图五连接测量系统。由于可变电抗的反射系数接近1,在测量线中入射波与反射波的叠加为接近纯驻波的图形,如图六所示,只要测得驻波相邻节点得位置L1、L2,由
,即可求得波导波长λg。
3.4.2 为了提高测量精度,在确定L1,L2时,可采用等指示度法测出最小点Imin对应的L(参看图六),即可测出I1(I1略大于Imin),相对应的两个位置 则:
3.1.1按图一所示的框图连接成微波实验系统。
3.1.2调整微波信号源,使其工作在方波调制状态。
3.1.3左右移动波导测量线探针使选频放大器有指示值。
3.1.4用选频放大器测出波导测量线位于相邻波腹和波节点上的Imax和Imin。
3.1.5当检波晶体工作在平方律检波情况时,驻波比S为:
其驻波分布如图二:
14
耦合片
1
15
介质材料样片(有机玻璃)
3
五.产品质量保证
我厂自发货之日起18个月内,如用户遵守运输、贮存和使用规则而产品质量低于技术标准规定时,本厂负责免费修理。
同理:即可求得精度较高的λg 。
I
Imax
I1
Imix
X’1L1X1″X’2L2X2”L
图六:电场沿测量线分布图
3.5 功率的测量
图七功率测量微波系统框图
按图七连接仪器,使系统正常工作。注意:开机前将系统中的全部仪器必须可靠接地,否则,功率头极易烧毁。
3.5.1相对功率测量:
波导开关旋至检波器通路,当检波器工作在平方率检波时,电表上的读数I与微波功率成正比:电流表的指示I∝P,即表示为相对功率。
3. 在样品插入后,改变信号源的中心工作频率,使谐振腔处于谐振状态,再用上述方法测量的谐振频率fs和半功率频宽︱f’1-f’2︱。
4. 利用公式
算出QL, Q’L
其中:QL……样品放入前的品质因数
Q’L……样品放入后的品质因数
利用公式
可以算出 和 ,
f0……谐振腔未放入样品前的谐振频率
fs……谐振腔放入样品后的谐振频率
I
Imax
IminL
图二驻波分布图
其中:I:为选频放大器的指示值
L:为驻波在波导测量线中的相对位置
3.2 大驻波系数的测量
当被测件驻波系数很大时,驻波波腹点与波节点的电平相差较大,在一般的指示仪表上,很难将两个电平同时准确读出,晶体检波律在相差较大的两个电平可能也不同,因此不能将它们相比求出驻波系数。下面介绍用功率衰减法测量大驻波系数。(精密衰减器需单独配备)
相关文档
最新文档