12章光的干涉(3)
工程光学第十二章课后答案
w.
(2) 0 q 1
n 1.5 600 0.00336(rad ) 2 2n' 1h 2 0.067 2 10 6
co
R10=0.67(mm)
当中心是亮纹时 q=1 当中心是暗纹时 q=0.5 其它情况时为一个分数
1 n 1.5 600 N 1 q q 1=0.067(rad ) 3.843o 6 2 10 n' h (mm) RN 20 0.067 13.4
m
2n
解 : (1)斜率k
0.1 1 100 1000
y kx
1 x 1000
0 x 100mm | y | z2 2R
z 2 R 2 ( R y ) 2 2 R | y | | y |2 h 1 z2 x z2 x 常数 - - - (1) 1000 2 R 1000 2000
x x2 x1 6 m
2。在杨氏实验中,两小孔距离为 1mm,观察屏离小孔的距离为 50cm,当用一片折射率 1.58 的透明薄片帖住其中一个小孔时发现屏上的条纹系统移动了 0.5cm,试决定试件厚度。
案 网
r2 D
w.
2 1 2 2 2 2
S1
x=5mm
后 答
L
da
r1
S2
r1
CT C / D, C 2
课
长度。
解:
当 =632.8nm 时
w.
相干长度
ww
7。直径为 0.1mm 的一段钨丝用作杨氏实验的光源,为使横向相干宽度大于 1mm,双孔必 须与灯相距多远?
bc
kh
光学第12章_干涉和干涉系统-2010精简
这个范围大则空间相干性好;范围小则空间相干性差.
右图中光源尺寸一定, 干涉孔径角即确定,孔 径角内的两点,距离愈 近,相干性愈好;角外 的两点不相干。
S1
S1
S2
S 2
三、光源非单色性的影响和时间相干性
光程差ΔL越大,折射光越落 后于反射光。ΔL过大,将超 过列波长度L。这时a、b光将 无法进行相干叠加。
劈尖
不规则表面
利用劈尖的等厚干涉可以测量很小的角度。
如: 今在玻璃劈尖上,垂直入射波长为 5893Å 的钠光, 测得相邻暗条纹间距为 5.0mm,若玻璃的折射率为 1.52,求此劈尖的夹角。
检查立方体
标 准 角 规 标 准 角 规
被检体
被检体
干涉膨胀仪
装置
C:铟钢作成的,热 膨胀极小; M:被检体。 M
相邻条纹的角间距:
n 1 2 2n' 1N h
反比于角间距,中心条纹疏,呈里疏外密分布。 反比于h,厚度越大,条纹越密。
透射光的等倾条纹
可见度降低,与反射互补
三、楔形平板产生的等厚干涉
(一)定域面和定域深度
油膜上的彩色条纹即为厚度很小时的等厚干涉条纹
(二)楔形平板产生的等厚条纹
在双孔后的空间,是相干光波的交叠区,形成干 涉.这种干涉,相干光波来自同一原子的发光,叫做 自相干.
双光束干涉,干涉场中某点的光强,与该点到两 光源的距离有关.因此,光强有稳定的空间分布. 在干涉场中距离双孔不太近,又不太远的区域, 处处有干涉.这种干涉称为不定域干涉.
2. 屏幕上光强分布规律 屏幕上P点光强为:
2 2 2 2
2 A1 A2 A1 A2
2 2
振幅相等:K=1 目视干涉仪:K>0.75 好 K>0.5 满意 K=0.1 可辨认
大学物理-12章:光的干涉
iD
n1
e
A
C n2 n1
B
n1
薄膜干涉
§4 分波面双光束干涉
一、杨氏双缝实验(1801)
装置: 稳定、明暗相间条纹
P
S1
Sd
r1
r2
y o
S2
D
物理分析:
d sin d tg yd
D
P
S1
d
r1
r2
y
o
S2 r2 r1
D
yd D
2k
2 (2k 1)
亮纹
暗纹
2
明、暗纹位置:
k 3, 2n1e / 3 368nm
讨论:
1 2k k 0,1, 2
I I1 I2 2 I1I2
if I1 I2 4I1
光的强度为最大值,干涉极大
I I1 I2 2 I1I2 cos
讨论:
2 (2k 1) k 0,1, 2
I I1 I2 2 I1I2
if I1 I2
0
光的强度为最小值,干涉极小
§3 两列单色波的干涉
2e
n22
n12
sin2
i
2
k
2ne 2 k
4ne 41.301.0107 5.20107
2k 1
2k 1
2k 1
k=1时: 5.20 107 m ----绿色光
k=2时: 1.733107 m
----紫外光,不可见
练习:一油轮漏油(n1=1.2)污染海面,在 海水(n2=1.3)表面形成一层薄油污。
随机变化
cos(2
1)
1
cos(2 1)dt 0
0
I I1 I2 非相干叠加加!
12章光的干涉(3)
温度升高
相邻两条纹中 h 心对应高度差 2 条纹整体移N H N 根,高度变化 2 条纹偏向膜(空气)厚部, 表示平面上有凸起。
平面上有凹坑。
5、测凸透镜的曲率半径
n1 >n2 <n3
n2 =1
R
明 k 2hn2 2k 1 暗 2 2 中心 h 0 2 顶点处为一暗斑
且这些彩色随着肥皂泡的增大而改变.解释此现 象.当肥皂泡将要破裂时,将呈现什么颜色?
三、用白光光源进行双缝实验,若用一纯红色滤光片盖 住一条缝,用一个纯蓝色滤光片盖住另一缝,则( D ) A. 干涉条纹宽度发生变化 C. 干涉条纹亮度将变化 B. 产生红色和蓝色两 套干涉条纹 D. 不产生干涉条纹 不是相干光
l Nh N
λ=539.1nm
2
l 0.620nm
N 23
6、两个直径有微小差别彼此平行的滚柱间的距离为L,夹在 两平玻璃(足够长)中间,形成空气劈尖。当单色光垂直照 射时,产生等厚干涉条纹。若两柱间距离L变大,则在L范围 内(1)干涉条纹的数目如何变化?(2)间距如何变化? 数目不变,间距变大
牛顿环
将凸透镜放在平板玻璃上,形成空气间隙.透镜与 玻璃之间形成厚度不均的空气层,空气层的厚度
自切点向四周逐渐增加,等厚点的轨迹是以切点
为中心的圆,因此等厚干涉条纹是一系列以切点 为圆心的圆环,称牛顿环.
测凸透镜的曲率半径
明 k 2hn2hk )2 rk2 rk R 2 2 2 2 Rhk hk rk rk 2hk
I max
I0 I 0 2 I1 I 2 2 1.5I 0 2 I 0 2.9 I 0
物理光学第十二章 第四节 平板的双光束干涉(楔形平板产生的等厚干涉、斐索干涉仪和迈克尔逊干涉仪)
根据光的干涉原理组成的一个仪器,通过对这个仪器所产生的干涉 条纹的测量而达到某种测量目的,这样的光学仪器就是干涉仪。干 涉仪的种类很多,在科学研究、生产和 计量部门都有广泛的应用,但各 种干涉仪在光路结构上都存在某 些相似之处,这里了解几种典型 的双光束干涉仪。
(一)、斐索干涉仪 (二)、迈克耳逊干涉仪
kdrrdh?????????811822122激光球面干涉仪11kdn???42211213动态演14示名称用途工作原理干涉条纹性质斐索干涉仪名称用途工作原理干涉条纹性质斐索干涉仪1测定平板表面的平面度和局部误差测定平板表面的平面度和局部误差2测量平行平板的平行度和小角度光楔的楔角测量平行平板的平行度和小角度光楔的楔角3测量透镜的曲率半径1使标准平晶的下表面与待检平面构成空气平板使标准平晶的下表面与待检平面构成空气平板2去掉标准平晶可直接利用被测平板上下表面形成双光束干涉去掉标准平晶可直接利用被测平板上下表面形成双光束干涉3将标准平晶换成球面样板使球面样板曲面和待测曲面间将标准平晶换成球面样板使球面样板曲面和待测曲面间构成空气板进行检测1形成等厚干涉条纹2根据检测对象不同干涉光束来自不同的标准反射面和被测面根据检测对象不同干涉光束来自不同的标准反射面和被测面3干涉光反射面选择不同对应定域面位置不同干涉光反射面选择不同对应定域面位置不同典型的双光束干涉系统15率半径构成空气板进行检测迈克耳孙干涉仪迈克耳孙干涉仪1确定零光程差位置确定零光程差位置2进行样品或长度测量进行样品或长度测量3精确测量单色光波长精确测量单色光波长1白光照明时加上补偿板能够同时补偿各色光的光程差以获得零级白光条纹用于准确确定零光程差位置作为精确测量基准白光照明时加上补偿板能够同时补偿各色光的光程差以获得零级白光条纹用于准确确定零光程差位置作为精确测量基准2因为干涉仪能将参考光和测量光束分开所以可将样品放置于测量光路中观察干涉条纹的变化
第十二章光的干涉和干涉系统ppt课件
而任意一个中心发出的光波经过双孔或双缝后都能在接受屏上 由于 干涉而形成干涉强度分布,但由于各个发光中心在光源S上的位置 不同,因而在接受屏上所形成的干涉花样的位置也不同,如图所示 L、M、N所形成的干涉花样的零级条纹的位置分别为OL、OM、 ON。不同的光源所发出的光波之间不能干涉,因而只能将干涉强 度简单相加,即不同的干涉花样会相互交叠。那么观察屏上的光强 分布是什么样?
(W d ) D
其中W称为是到达屏(干涉场)上某点的两条相干光线间的夹角 叫做相干光束的会聚角。上式表明条纹间距正比于相干光的波长, 反比于相干光束的会聚角。
二、两个单色相干点光源在空间形成的干涉场
在屏幕上得到等距的直线干涉条纹是有条件的,即d《D,并且在z 轴附近的小范围内观察。但是,屏幕的位置实际上是可以在S1和S2 发出的两个光波的交叠区域内任意放置的;在屏幕任意放置的情况 下,一般就得不到等距的直线条纹。在点光源照明下,干涉条纹是 空间位置对S1和S2等光程差点的集合。
1)干涉条纹强度分布:
I
4I0
cos2
d D
x
当
x m D
d
(m,在0,干1涉, 场2中, 的) 点有最大光强
I 4I0
当
x (m 1) D
,在干涉场中的点有最小光强
(m 0, 1, 2, )
2d
2)条I纹间0 隔:
或
,为亮纹。 ,为暗纹。
e D
d
e
W
3)在屏幕上得到等距的直线干涉条纹
本章学习要求:
1、理解获得相干光的方法,了解干涉条纹的定域性。
2、掌握条纹可见度的定义以及空间相干性、时间相干性和光源 振幅比对条纹可见度的影响。
3、掌握以杨氏干涉装置为典型的分波前法双光束干涉,熟悉光 强分布的计算,分析干涉条纹的特征,如条纹形状、位置及间 距等。
《大学物理》第十二章 光学
h
结束 返回
解:
=a
acos2
+
2
=
2asin2
=
2
asin =h
sin =4h
a 2
h
结束 返回
12-5 一平面单色光波垂直照射在厚度 均匀的薄油膜上,油 膜 覆盖在玻璃板上, 所用 单色光的波长可以连续变化,观察到 500nm与700nm这两个波长的光在反射 中消失,油的折射率为 1.30,玻璃的折射 率为1.50。试求油膜的厚度 。
第二级明纹的宽度为
Δx
´=
Δx 2
=2.73 (mm)
结束 返回
12-15 一单色平行光束垂直照射在宽 为 1.0mm 的单缝上,在缝后放一焦距为 20m的会其透镜,已知位于透镜焦面处的 屏幕上的中央明条纹宽度为2.5mm。求入 射光波长。
结束 返回
解:
=
aΔx 2D
=
1.0×2.5 2×2.0×103
sinj
=
k (a+b)
sin =0.1786k-0.5000
在 -900 < j < 900 间,
对应的光强极大的角位置列表如下:
k
sinj j
k
sinj j
0
-0.500 -300
1
2
-0.3232 -0.1464
-18051’ -8025’
3
4
0.0304 0.2072
1045’ 11057’
结束 返回
12-22 一光栅,宽为2.0cm,共有
6000条缝。如用钠光(589.3nm)垂直入射,
中央明纹的位置? 共有几级?如钠光与光
第12章(1) 光的干涉答案
图中数字为各处的折射率图16-23一、选择题【C 】1.(基础训练2)如图16-15所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且 n 1 < n 2 > n 3,则两束反射光在相遇点的相位差为(A ) 2πn 2e /(n 1λ1) (B )[4πn 1e / ( n 2λ1)] + π(C ) [4πn 2e / ( n 1λ1)] + π (D )4πn 2e /( n 1λ1) 解答:[C]根据折射率的大小关系n 1 < n 2 > n 3,判断,存在半波损失,因此光程 差2/2λδ+=e n 2,相位差πλπδλπϕ∆+==en 422。
其中λ为光在真空中的波长,换算成介质1n 中的波长即为11λλn =,所以答案选【C 】。
【B 】2.(基础训练6)一束波长为 λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜的最小厚度为(A ) λ/4 (B ) λ/(4n) (C ) λ/2 (D ) λ/(2n) 解答:[B]干涉加强对应于明纹,又因存在半波损失,所以光程差()()()2/221/4()/4nd k d k n Min d n λλλλ∆=+=⇒=-⇒=【B 】3.(基础训练8)用单色光垂直照射在观察牛顿环的装置上。
当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A ) 向右平移 (B ) 向中心收缩(C ) 向外扩张 (D ) 静止不动 (E ) 向左平移 解答:[B]中央条纹级次最低,随着平凸镜缓慢上移,中央条纹的级次增大即条纹向中心收缩。
【A 】4.(基础训练9)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射。
若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的()。
(A )间隔变小,并向棱边方向平移; (B )间隔变大,并向远离棱边方向平移; (C )间隔不变,向棱边方向平移; (D )间隔变小,并向远离棱边方向平移。
光的干涉 知识点总结
鉴于 0,L0是决定光场纵向相干性的特征量,人们称 0为相干时间(coherent time) L0为相干长度(coherentlength) 光场中这类相干性称为时间相干性 (temporal coherence)
光场的空间相干性
光场的空间相干性是指在光源照明空间中横向任意两点位置处的光场U~1 和U~2 之间的相干
I 0(1
sin v v
cos k0L)
其中
v
k 2
L
则
(L) sin v
sin
k 2
L
k
第一次出现 此时 求得
0时的光程差称为最大光 程差LM k L / 2
LM =2 / k 2 /
准单色光持续发光时间有限,因而发射的波列长度是有限的,相邻波列之间相位关系是随机
的。
L0 c 0
(5)干涉条纹间距公式
由 I(x ,y )
I 0(1
cos(k
d D
x )),k
d D
x
2
d D
x
2j
得 x j
j
D d
条纹间距:
e
(j
1)
D d
j
D d
D d
(6) 干涉条纹的物理意义: 光程差
r2 r1 m
时
亮条纹;
r2
r1
(m
1 2
)
时
暗条纹;
物理意义:
1、干涉条纹代表着光程差的等值线。
分波前干涉(将波前先分割再叠加,叠加广场来自同波源具有相同初始位相) 分振幅干涉(将光的能量分为几部分,参与叠加的光波来自同一波列,保证相位差 稳定) 杨氏双孔干涉实验:两个球面波的干涉 (1) 杨氏双孔干涉实验装置及其历史意义
物理知识点光的干涉
物理知识点光的干涉光的干涉是光学中的重要概念之一,它揭示了光波的波动性质及其产生的干涉现象。
本文将依据物理知识点,对光的干涉进行详细论述。
一、干涉现象的基本原理光的干涉是指两个或多个光波相互叠加所形成的干涉图案。
干涉现象的产生需要满足两个基本条件:光源是相干光源,波长相同。
当光波经过不同路径传播后再次相遇时,它们会相互干涉,产生增强或减弱的干涉效应。
二、双缝干涉1. 双缝干涉的实验装置双缝干涉实验一般采用光源、狭缝、透镜和屏幕等组成。
光源发出的光经狭缝后,形成一个光源光斑,通过透镜聚焦后照射到屏幕上。
2. 双缝干涉的光程差当光波通过两个缝隙后再次相遇时,其传播路径的长度差称为光程差。
光的干涉现象取决于光程差的大小。
3. 双缝干涉的干涉图案双缝干涉的干涉图案呈现出一系列明暗相间的条纹,称为干涉条纹。
该条纹呈现出一定的规律性,可通过干涉公式和级差条件进行分析和计算。
三、杨氏双缝干涉实验1. 杨氏双缝干涉实验的装置杨氏双缝干涉实验是一种经典的干涉实验方法。
实验装置由一束狭缝光源、双缝、透镜和幕板等组成。
2. 杨氏双缝干涉的干涉条纹杨氏干涉条纹呈现出一系列黑白相间的圆环或直线条纹。
根据实验条件和光波的干涉效应,可以通过杨氏双缝干涉公式进行计算。
四、单缝干涉1. 单缝干涉的实验装置单缝干涉实验通常采用单缝光源、单缝和屏幕等组成。
单缝光源发出的光波通过单缝后形成一个光斑,映射到屏幕上形成单缝干涉图样。
2. 单缝干涉的干涉条纹单缝干涉的干涉条纹呈现出明暗相间且中央最亮的中央极大和两侧较暗的暗条纹分布。
单缝干涉的干涉效应可由单缝干涉公式和级差条件加以说明。
五、干涉现象的应用光的干涉在科学研究和实际应用中有着重要的意义。
1. 干涉仪干涉仪是一种基于光的干涉原理设计的精密仪器,常用于光学测量、干涉剖析和光学检测等领域。
2. 光纤通信光纤通信是一种基于光的传输技术。
光波经光纤传输时,可能会产生干涉现象,影响信号传输质量,因此需要进行干涉相关的优化和控制。
大学物理第12章复习提纲
第12章 波动光学(1) 掌握双缝干涉的形成机理及k 级明、暗条纹对应的位置公式、以及相邻明、暗纹间距公式。
掌握光程的概念。
(2) 掌握等倾干涉(即薄膜干涉)形成的机理及明、暗条纹对应的光程差公式。
掌握增透膜和增反膜的厚度计算。
(3) 掌握等厚干涉(即劈尖干涉)形成的的机理及明、暗条纹对应的光程差公式。
(4) 掌握利用劈尖条纹特点进行的的一系列计算(如直径计算,工件凹,凸程度计算),牛顿环明、暗条纹对应的半径计算。
(5) 掌握单缝衍射半波带分析方法和明暗纹计算公式(6) 掌握光栅方程,会利用光栅方程计算条纹的位置,最大级次。
(7) 掌握利用偏振片进行光的起偏、捡偏、以及马吕斯定理,会用马吕斯定理计算光强。
(8) 掌握反射光和折射光的偏振方法,布儒斯特定律。
2.在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π ,则此路径AB 的光程为4.(本题3分)如图所示为杨氏双缝干涉实验光路图。
当1r 和2r 质中时,中央明条纹位于O 点位置,当在1r 光路中放置一块折射率为1.5,厚度为1mm 的玻璃片时,则中央明纹位置:(A) 在o 点不变;(B) 向ox 正方向移动; (C) 向ox 负正方向移动;(D) 无法确定. []6.如图,在双缝干涉实验中,若把一厚度为e 、折射率为n 的薄云母片覆盖在S 1缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O 处的光程差为__________________.8. 在空气中有一劈形透明膜,其劈尖角θ=1.0×10-4rad ,在波长λ=700 nm 的单色光垂直照射下,测得两相邻干涉明条纹间距l =0.25 cm ,由此可知此透明材 料的折射率n =______________________.(1 nm=10-9m)10. 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分12.波长为 600 nm 的单色平行光,垂直入射到缝宽为a =0.60 mm 的单缝上,缝后有一焦距cm f 60'=的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为__________,两个第三级暗纹之间的距离为____________.(1 nm =10﹣9m)14.一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 (A) λ / 2.(B) λ.(C) 3λ / 2 . (D) 2λ .[ ]16. 一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9m),试求: (1) 光栅常数a +b (2) 波长λ218.将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45°和90°角. (1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态. (2) 如果将第二个偏振片抽走,情况又如何?20. 一束自然光入射到两种媒质交界平面上产生反射光和折射光.如果反射光是线偏振光光;则折射光是________光;这时的入射角b i 称为____________角.22. 有一双缝相距0.3mm ,要使波长为600nm 的红光通过并在光屏上呈现干涉条纹,每条明纹或暗纹的宽度为1mm ,问光屏应放在距双缝多远的地方? 24. 在杨氏双缝实验中,双缝相距0.3mm ,以波长为600nm 的红光照射狭缝,求在离双缝50cm 远的屏幕上,从中央向一侧数第二条与第五条暗纹之间的距离。
大学物理第12章光的干涉测试题(附答案及知识点总结)
第12章 习题精选试题中相关常数:m 10μm 16-=,m 10nm 19-=,可见光范围(400nm~760nm )1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为π3,则此路径AB 的光程为:(A )λ5.1. (B )n /5.1λ. (C )λn 5.1. (D )λ3.[ ]2、在相同的时间内,一束波长为λ的单色光在空气中与在玻璃中:(A )传播路程相等,走过光程相等. (B )传播路程相等,走过光程不相等. (C )传播路程不相等,走过光程相等.(D )传播路程不相等,走过光程不相等.[ ]3、如图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n <<.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是:(A )e n 22. (B )2/22λ+e n . (C )λ+e n 22. (D ))2/(222n e n λ-.[ ]4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是: (A )使屏靠近双缝. (B )使两缝的间距变小. (C )把两个缝的宽度稍微调窄. (D )改用波长较小的单色光源.[ ]5、在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大λ5.2,则屏上原来的明纹处:(A )仍为明条纹. (B )变为暗条纹.(C )既非明纹也非暗纹. (D )无法确定是明纹,还是暗纹.[ ]36、如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹:(A )向右平移. (B )向中心收缩. (C )向外扩张. (D )向左平移.[ ]7、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃板在中心恰好接触,它们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径k r 的表达式为:(A )R k r λ=k . (B )n R k r /k λ=. (C )R kn r λ=k . (D ))/(k nR k r λ=.[ ]8、用波长为λ的单色光垂直照射置于空气中的厚度为e 折射率为的透明薄膜,两束反射光的光程差=δ_______________.9、单色平行光垂直入射到双缝上.观察屏上P 点到两缝的距离分别为1r 和2r .设双缝和屏之间充满折射率为n 的介质,则P 点处光线的光程差为___________.10、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________. (2)________________________________________.11、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距_________;若使单色光波长减小,则干涉条纹间距_____________.12、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝的距离为D ,则屏上相邻明纹的间距为_______________.S S 113、用波长为λ的单色光垂直照射如图所示的牛顿环装置,观察从空气膜上下表面反射的光形成的牛顿环.若使平凸透镜慢慢地垂直向上移动,从透镜顶点与平面玻璃接触至移动到两者距离为d 的过程中,移过视场中某固定观察点的条纹数目等于_______________.14、图a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波长为λ的单色光垂直照射.看到反射光干涉条纹(实线为暗条纹)如图b 所示.则干涉条纹上A 点处所对应的空气薄膜厚度为=e _________________.15、用波长为λ的单色光垂直照射如图示的劈形膜(321n n n >>),观察反射光干涉.从劈形膜尖顶开始算起,第2条明条纹中心所对应的膜厚度=e _______________________.16、波长为λ的平行单色光垂直照射到劈形膜上,若劈尖角为θ以弧度计),劈形膜的折射率为n ,则反射光形成的干涉条纹中,相邻明条纹的间距为__________________.17、波长为λ的平行单色光垂直照射到折射率为n 的劈形膜上,相邻的两明纹所对应的薄膜厚度之差是____________________.18、在双缝干涉实验中,双缝与屏间的距离m 2.1=D ,双缝间距mm 45.0=d ,若测得屏上干涉条纹相邻明条纹间距为,求光源发出的单色光的波长λ.19、在杨氏双缝干涉实验中,用波长nm 1.546=λ的单色光照射,双缝与屏的距离mm 300=D .测得中央明条纹两侧的两个第5级明条纹的间距为,求双缝间的距离.20、在双缝干涉实验中,波长nm 550=λ的单色平行光垂直入射到缝间距m 1024-⨯=a 的双缝上,屏到双缝的距离m 2=D .求:图b图an 1n 2 n 3(1)中央明纹两侧的两条第10级明纹中心的间距;(2)用一厚度为m 106.65-⨯=e 、折射率为58.1=n 的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处21、用白光垂直照射置于空气中的厚度为μm 50.0的玻璃片.玻璃片的折射率为50.1=n .在可见光范围内哪些波长的反射光有最大限度的增强22、波长nm 650=λ的红光垂直照射到劈形液膜上,膜的折射率33.1=n ,液面两侧是同一种介质.观察反射光的干涉条纹.(1)离开劈形膜棱边的第一条明条纹中心所对应的膜厚度是多少(2)若相邻的明条纹间距mm 6=l ,上述第1条明纹中心到劈形膜棱边距离x 是多少23、用波长为nm 600=λ的光垂直照射由两块平玻璃板构成的空气劈形膜,劈尖角rad 1024-⨯=θ.改变劈尖角,相邻两明条纹间距缩小了mm 0.1=∆l ,求劈尖角的改变量θ∆.24、曲率半径为R 的平凸透镜和平板玻璃之间形成空气薄层,如图所示.波长为λ的平行单色光垂直入射,观察反射光形成的牛顿环.设平凸透镜与平板玻璃在中心O 点恰好接触.求:(1)从中心向外数第k 个明环所对应的空气薄膜的厚度k e .(2)第k 个明环的半径用k r (用R 、波长λ和正整数k 表示,R 远大于上一问的k e .)25、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是cm 400=R .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是.ROλO 1(1)求入射光的波长.(2)设图中cm 00.1=OA ,求半径为OA 范围内可观察到的明环数目.26、用波长nm 500=λ的单色光作牛顿环实验,测得第k 个暗环半径mm 4k =r ,第10+k 个暗环半径mm 610k =+r ,求平凸透镜的凸面的曲率半径R .总体要求:理解产生相干光的三个条件和获得相干光的两种方法.了解分波阵面法和分振幅法干涉的典型实验;掌握光程的概念以及光程差和相位差的关系;掌握杨氏双缝干涉条纹及薄膜干涉条纹(尤其是劈尖和牛顿环)的分布规律,利用相关公式计算条纹分布.第12章 参考答案1、A2、C3、A4、B5、B6、B7、B8、23λ+e 或23λ-e 9、)(12r r n - 10、(1)使两缝间距变小;(2)使屏与双缝之间的距离变大. 11、变小;变小 12、N D / 13、λ/2d 14、λ23 15、22n λ16、θλn 2 17、n2λ 18、解:nm 5.562/=∆=D x d λ. 19、解:mm 268.0/=∆==x D d λλ. 20、解:(1)m 11.0/20==∆a D x λ (2)零级明纹移到原第7级明纹处.21、解:nm 600=λ和nm 6.428=λ. 22、解:(1)λλk ne k =+2/2(明纹中心)现1=k ,1e e k =,则膜厚度mm 1022.1)4/(41-⨯==n e λ. (2)mm 32/==l x23、解:rad 100.442-⨯=-=∆θθθ.24、解:(1)第k 个明环,λλk e k =+212 4/)12(λ-=k e k .(2)λλk R r k =+21)2/(22,2/)12(λR k r k -= ,...2,1=k .25、解:(1)()cm 10512252×Rk r -=-=λ (或500 nm ). (2)λR r k 2212=-,对于cm 00.1=r ,5.505.02=+=λR r k .故在OA 范围内可观察到的明环数目为50个.26、解:()()m 410/2210=-=+λk k r r R .第12章 光的干涉一、基本内容1.单色光单色光是指具有单一频率的光波,单色光不是单种颜色的光.可见光的波长是(380~760)nm .虽然绝对单一频率的单色光不易得到,但可以通过各种方法获取谱线宽度很小的单色光.例如激光就可看作谱线宽度很小的单色光.2.相干光只有两列光波的振动频率相同、振动相位差恒定、振动方向相同时才会发生干涉加强或减弱的现象,满足上述三个条件的两束光称为相干光,相应的光源称为相干光源.3.半波损失光由光疏介质(即折射率相对小的介质)射到光密介质发生反射时,反射光的相位较入射光的相位发生π的突变,这一变化导致了反射光的光程在反射过程中增加了半个波长,通常称为“半波损失”.4.光程和光程差 (1)光程光波的频率v 是单色光的本质属性,与在何种介质中传播没有关系,而传播速度则与介质有关.在折射率为n 的介质中光速是真空中光速的n /1,由光速v u n n λ=可知,在折射率为n 的介质中,光波的波长n λ也是真空中波长的n /1.这样光在不同介质中经历同样的波数,但经历的几何路程却不同.所以有必要把光在折射率n 的介质中通过的几何路程折算到真空中所能传播的长度,只有这样才便于比较两束经过不同介质的光相位的变化.所以把光在折射率为n 的介质中通过的几何的路程r 乘以折射率n 折算成真空中所能传播的长度nr ,称nr 为光程.(2)光程差当采用了光程概念以后就可以把由相位差决定的干涉加强、减弱等情况用光程差来表示,为计算带来方便.即相位差π2λδϕ=∆(λ为真空中波长,δ为光程差),亦即λδϕπ2=∆. 二、基本规律光程差(含半波损失)是半波长偶数倍时干涉加强,干涉相长,明条纹中心;是半波长奇数倍时,干涉相消,暗条纹中心.1.杨氏双缝干涉结果(分波阵面干涉),只讨论同一介质中传播:等间隔明暗相间条纹. 光程差:Dxd =δ dD kx λ±=k ),2,1,0( =k 明条纹位置(k x —k 级干涉条纹位置,D —屏距,d —缝距) 2)12(k λd D k x -±= ),2,1( =k 暗条纹位置 条纹中心间距:λdD x =∆ 2.薄膜干涉结果(分振幅干涉)薄膜干涉基础公式相同,考虑从1n 入射到2n (21n n <),i 为入射角,d —薄膜厚度,此时要考虑“半波损失”,故反射加强(上表面亮纹位置)为λλδk i n n d =+-=2sin 222122 ),2,1( =k反射减弱(上表面暗纹位置)为(注意此处k 可以取0,厚度为0处是暗纹)2)12(2sin 222122λλδ+=+-=k i n n d ),2,1,0( =k注意,一定要先分析反射光是否存在“半波损失”的情况,不能死搬硬套,一般介质折射率中间大两边小或中间小两边大都有半波损失,而三种介质折射率大小顺序排列无半波损失.薄膜干涉光程差是入射角和厚度的函数.等倾干涉:对于上两式,如果薄膜厚度不变,而光线倾角(入射角i )变化,入射角i 相同的位置光线光程差相同,条纹花样相同,叫做等倾干涉.等厚干涉:对于上两式,所有光线以同一入射角i 入射,而薄膜厚度变化,则厚度相同的位置光线光程差相同,条纹干涉花样相同,叫做等厚干涉.对空气劈尖(上玻璃板下表面和下玻璃板上表面两束光反射)两侧介质相同,由于存在“半波损失”,所以上两式适用于在空气劈尖的上表面干涉.一般取垂直入射,0=i ,则在劈尖上表面干涉,光程差满足λλδk nd =+=22 ),2,1( =k 明条纹 2)12(22λλδ+=+=k nd ),2,1,0( =k 暗条纹n 代表劈尖内介质折射率.劈尖端点处是暗纹,相邻明纹(或暗纹)厚度差nd 2λ=∆,条纹线间距:θλn l 2=∆. 如果两侧介质不同,且满足折射率递增或递减顺序,则无半波损失,光程差满足λδk nd ==2 ),2,1,0( =k 明条纹2)12(2λδ-==k nd ),2,1( =k 暗条纹劈尖劈尖端点处是暗纹,相邻明纹(或暗纹)厚度差和条纹线间距与有半波损失时相同. 利用劈尖原理检测零件平整度,上表面放标准板,顶角在左侧,下板凹陷条纹向左弯,凸起向右弯.牛顿环的上表面干涉也是空气劈尖干涉,两侧介质相同,有半波损失,只不过牛顿环的空气厚度测量常转换成距透镜中心距离r 与透镜的曲率半径R 来表示牛顿环的明暗纹.2)12(k λR k r -=),2,1( =k (明环) λkR r =k ),2,1,0( =k (暗环)。
《大学物理学》(网工)光的干涉练习题(解答)(1)
k
,
k
取 2,有 d2
3 4
450
nm ,k 取
5,有 d5
9 4
1350
nm ,则 d
900
nm 】
拓展题:用 600 nm 的单色光垂直照射牛顿环装置时,第 4 级暗纹对应的空气膜厚度为
m。
【提示:首先要考虑半波损失,由于只考虑第 4 级暗纹对应的空气膜厚度,所以此装置是否是牛顿环并不重要,直
(A)中央明条纹向下移动,且条纹间距不变;
(B)中央明条纹向上移动,且条纹间距增大; (C)中央明条纹向下移动,且条纹间距增大; (D)中央明条纹向上移动,且条纹间距不变。
S1 S
S
S2
【提示:画出光路,找出 S ' 到光屏的光路相等位置】
(D)
O
拓展题:双缝干涉实验中,若双缝所在的平板稍微向上平移,其他条件不变,则屏上的干涉条纹( B )
S2
【提示:两光在玻璃内的光程差应为 5λ,即(n2-1)d-(n1-1)d=5λ,可得玻璃片厚度 d】
P O
拓展题:用白光光源进行双缝试验,如果用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光
片遮盖另一条缝,则:
(D)
(A)干涉条纹的宽度将发生改变; (B)产生红光和蓝光两套彩色干涉条纹; (C)干涉条纹的亮度将发生改变; (D)不产生干涉条纹。
光的干涉(解答)-4
合肥学院《大学物理 B》自主学习材料(解答)
6.波长=600 nm 的单色光垂直照射到牛顿环装置上,第二个明环与第五个明环所对应的空气膜
厚度之差为
nm。
【提示:首先要考虑半波损失,由于只考虑第 k 级明纹对应的空气膜厚度,所以此装置是否是牛顿环并不重要,直
第12章光的干涉
反射光光程 nr 2
λ
2
?
思考: 与杨氏双缝实验比 干涉条纹有哪些相 同、不同之处?
δ
双镜
M1
s
P
L
s1 θ
d
s2
C
M2
d'
12.3
光的时空相干性
λ ν
一、光的非单色性
1、理想的单色光 2、实际光束: 准单色光
波列长L=τ c
Io
Io 2 0
I
λ
λo
Δλ
光强降到一半时曲线的 宽度—— 谱线宽度 Δλ
Δx14 = x4 − x1 =
d Δx14 λ= D ( k 4 − k1 )
d
( k 4 − k1 ) λ
0 .2 × 7 .5 λ= = 500 nm 1000 × 3
(2)当λ =600nm 时,相邻两明纹间的距离为
1000 D −4 Δx = λ = × 6 × 10 = 3.0mm 0.2 d
E = Eo cos ωt ( ) z E = E0 cos[ω (t − ) ] u π
波强(平均能流密度)
光矢量
2
r E
1 ∫ cos ωtdt = 2 π 0
1
1 2 I = E0 2
2.光程
光程差
波程
L1 = n1 r1 光程
L2 = n 2 r2 光程
经多种介质时 若介质不均匀
• P
r1
1、普通光源:自发辐射
· ·
独立(不同原子发的光) 独立(同一原子先后发的光)
结论: 普通光源发光具有独立性、随机性、间歇性
(1)一个分子(或原子)在一段时间内发出一列光波, 发光时间持续约10-8~10-10s. (间歇性) (2)同一分子在不同时刻所发光的频率、振动方 向不一定相同。(随机性、独立性) (3)各分子在同一时刻所发光的频率、振动方 向、相位也不一定相同.(独立性、随机性)
13.3 光的干涉 优秀教案优秀教学设计高中物理选修3-4新课 (3)
13.3光的干涉1、教学目标 一.知识与技能(1)会观察与描述光的双缝干涉现象,认识单色光双缝干涉条纹的特征。
(2)知道单色光双缝干涉亮、暗条纹形成的原理。
(3)知道产生光的干涉现象的条件。
二.过程与方法(1)通过对实验观察分析,认识干涉条纹的特征,获得探究活动的体验。
(2)尝试运用波动理论解释光的干涉现象。
(3)体验观察到光的双缝干涉以支持光的波动说的假说上升为理论的方法。
(4)通过机械波的干涉向光的干涉迁移,经历知识同化、抽象建模的物理思维过程。
三.情感态度与价值观(1)体验探究自然规律的艰辛与喜悦。
(2)欣赏光现象的奇妙和谐。
(3)了解光干涉现象的发现对推动光学发展的意义。
2、教学重点1.观察与描述光的双缝干涉现象。
2.双缝干涉中波的叠加形成的明暗条纹的条件及判断方法。
教学难点用波动理论解释明暗相间的干涉条纹。
教学过程: 1)课堂导入在光的折射一课中,从实验中得出的折射定律1212sin sin n θθ=与从惠更斯原理得出的结论形式一致,是否可以推测光可能是一种波?学生思考与交流后得到:如果光是一种波,则要有波的特征现象作实验支持.干涉是波特有的现象,一切波都能发生干涉,因此可以用光是否具有干涉现象来判断光是不是一种波。
右图是两列水波某时刻干涉的示意图,S 1、S 2是振动情况总是相同的波源,实线代表波峰,虚线代表波谷,直线OO '是S 1S 2的中垂线,在此时刻介质中a 点为两波谷叠加,b 点、、、为波峰与波谷叠加,c点为两波峰叠加,d点是处于某种中间状态的叠加。
问:a b c d 中哪些是出现振动加强的地方,哪些是出现振动减弱d 地方,哪些是出现振动加强和减弱的中间过渡状态?设问:b点位于什么位置呢?既然S1S2到d点的路程差为零,根据波动理论,两波源在d点处激起的振动总是一致的,虽然该时刻是中间状态的叠加,但两列波在d点处的叠加,激起d点的振动的振幅(教师强调是振幅最大,而非位移最大,即使是振动加强的点,也有位移为零的时候)仍为最大,故d点还是振动加强的地方。
光的干涉-PPT
光的干涉
薄膜干涉
让一束光经薄膜的两个表面反射后,形成的两束 反射光产生的干涉现象叫薄膜干涉.
点 击 画 面 观 看 动 画
光的干涉
薄膜干涉
1、在薄膜干涉中,前、后表面反射光的路程差由膜 的厚度决定,所以薄膜干涉中同一明条纹(暗条纹)应 出现在膜的厚度相等的地方.由于光波波长极短,所以 微薄膜干涉时,介质膜应足够薄,才能观察到干涉条 纹.2、用手紧压两块玻璃板看到彩色条纹,阳光下的肥 皂泡和水面飘浮油膜出现彩色等都是薄膜干涉.
第1节 光的干涉
光到底是什么?……………
17世纪明确形成 了两大对立学说
由于波动说没有 数学基础以及牛 顿的威望使得微 粒说一直占上风
牛顿
19世纪初证明了 波动说的正确性
惠更斯
微粒说
19世纪末光电效应现象使得 爱因斯坦在20世纪初提出了 光子说:光具有粒子性
波动说
这里的光子完全不同于牛顿所说的“微粒”
光的干涉
干涉现象是波动独有的特征,如果光真的 是一种波,就必然会观察到光的干涉现象.
光的干涉 光的干涉
1801年,英国物理学家托马斯·杨(1773~1829) 在实验室里成功的观察到了光的干涉.
双缝干涉
激
双
光
缝
束
屏上看到明暗相间的条纹 屏
光的干涉
S1 S2 d
双缝干涉
P2
P1
P
P
P1 P2
S1、S2
相干波源
P1S2-P1S1= d
光程差
P2S2-P2S1> d 距离屏幕的中心越远路程差越大
光的干涉
双缝干涉
1、两个独立的光源发出的光不是相干光,双缝干 涉的装置使一束光通过双缝后变为两束相干光,在光屏 上形成稳定的干涉条纹.
第12章光的干涉
C
C
ab
n1 B
n2 e
n3
n2 ( AC CB) n1 AD 2n2 AC n1 AD
2
三、半波损失
射向 光疏介质
射向
光密介质
光疏介质
反射光有半波损失 反射光没有半波损失
例题:求反射光 线a 、b 的光程差。
(1) n1 > n2 > n3 2n2e
ab λ
(2) n1 > n2 < n3
波动三大现象
几何光学 波动光学 量子光学
干涉
衍射
偏振
第12章 光的干涉
12.1 光的相干性
一、光的电磁理论 1. 光的颜色 光谱 光是电磁波,把电磁波按波长或频率的次序排列成谱,称为 电磁波谱。可见光是一种波长很短的电磁波。
λ :400 nm ~ 760 nm ν :7.51014 Hz ~ 3.9 1014 Hz 1m = 106 μm = 109 nm = 1010 Å
a1
P
aD
ii
a2
A i B
n1
n2 e
C n1 > n2 n1
2n2e cos
2
2e
n2 2
n12
sin2
i
2
3. 明纹和暗纹条件
2e
n2 2
n12 sin2
i
2
k k 1, 2, (明 环 ) (2k 1) k 0, 1, (暗 环)
2
注意:对明环 k 0 ,否则 e < 0 。
x
D
d
1 410-7 4 10-4
110 3 m
1.0mm
(3)上述两种波长的光同时照射时,求两种波长的明条纹第1次重合
最新大学物理第12章光的干涉测试题(附答案及知识点总结)
大学物理第12章光的干涉测试题(附答案及知识点总结)第12章 习题精选试题中相关常数:m 10μm 16-=,m 10nm 19-=,可见光范围(400nm~760nm ) 1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为π3,则此路径AB 的光程为:(A )λ5.1. (B )n /5.1λ. (C )λn 5.1. (D )λ3.[ ]2、在相同的时间内,一束波长为λ的单色光在空气中与在玻璃中: (A )传播路程相等,走过光程相等. (B )传播路程相等,走过光程不相等.(C )传播路程不相等,走过光程相等.(D )传播路程不相等,走过光程不相等.[ ]3、如图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n <<.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是:(A )e n 22. (B )2/22λ+e n .(C )λ+e n 22. (D ))2/(222n e n λ-.[ ]4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是:(A )使屏靠近双缝. (B )使两缝的间距变小.(C )把两个缝的宽度稍微调窄. (D )改用波长较小的单色光源.[ ]35、在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大λ5.2,则屏上原来的明纹处:(A )仍为明条纹. (B )变为暗条纹.(C )既非明纹也非暗纹. (D )无法确定是明纹,还是暗纹.[ ]6、如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹:(A )向右平移. (B )向中心收缩. (C )向外扩张. (D )向左平移.[ ]7、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃板在中心恰好接触,它们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径k r 的表达式为:(A )R k r λ=k . (B )n R k r /k λ=. (C )R kn r λ=k . (D ))/(k nR k r λ=.[ ]8、用波长为λ的单色光垂直照射置于空气中的厚度为e折射率为1.5的透明薄膜,两束反射光的光程差=δ_______________.9、单色平行光垂直入射到双缝上.观察屏上P 点到两缝的距离分别为1r 和2r .设双缝和屏之间充满折射率为n 的介质,则P 点处光线的光程差为___________.S S 110、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________. (2)________________________________________.11、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距_________;若使单色光波长减小,则干涉条纹间距_____________.12、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝的距离为D ,则屏上相邻明纹的间距为_______________.13、用波长为λ的单色光垂直照射如图所示的牛顿环装置,观察从空气膜上下表面反射的光形成的牛顿环.若使平凸透镜慢慢地垂直向上移动,从透镜顶点与平面玻璃接触至移动到两者距离为d 的过程中,移过视场中某固定观察点的条纹数目等于_______________.14、图a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波长为λ的单色光垂直照射.看到反射光干涉条纹(实线为暗条纹)如图b 所示.则干涉条纹上A 点处所对应的空气薄膜厚度为=e _________________.15、用波长为λ的单色光垂直照射如图示的劈形膜(321n n n >>),观察反射光干涉.从劈形膜尖顶开始算起,第2条明条纹中心所对应的膜厚度=e _______________________.图b图an 1n 2 n 316、波长为λ的平行单色光垂直照射到劈形膜上,若劈尖角为θ以弧度计),劈形膜的折射率为n ,则反射光形成的干涉条纹中,相邻明条纹的间距为__________________.17、波长为λ的平行单色光垂直照射到折射率为n 的劈形膜上,相邻的两明纹所对应的薄膜厚度之差是____________________.18、在双缝干涉实验中,双缝与屏间的距离m 2.1=D ,双缝间距m m 45.0=d ,若测得屏上干涉条纹相邻明条纹间距为1.5mm ,求光源发出的单色光的波长λ.19、在杨氏双缝干涉实验中,用波长nm 1.546=λ的单色光照射,双缝与屏的距离m m 300=D .测得中央明条纹两侧的两个第5级明条纹的间距为12.2mm ,求双缝间的距离.20、在双缝干涉实验中,波长nm 550=λ的单色平行光垂直入射到缝间距m 1024-⨯=a 的双缝上,屏到双缝的距离m 2=D .求:(1)中央明纹两侧的两条第10级明纹中心的间距;(2)用一厚度为m 106.65-⨯=e 、折射率为58.1=n 的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?21、用白光垂直照射置于空气中的厚度为μm 50.0的玻璃片.玻璃片的折射率为50.1=n .在可见光范围内哪些波长的反射光有最大限度的增强?22、波长nm 650=λ的红光垂直照射到劈形液膜上,膜的折射率33.1=n ,液面两侧是同一种介质.观察反射光的干涉条纹.(1)离开劈形膜棱边的第一条明条纹中心所对应的膜厚度是多少? (2)若相邻的明条纹间距m m 6=l ,上述第1条明纹中心到劈形膜棱边距离x 是多少?23、用波长为nm 600=λ的光垂直照射由两块平玻璃板构成的空气劈形膜,劈尖角rad 1024-⨯=θ.改变劈尖角,相邻两明条纹间距缩小了mm 0.1=∆l ,求劈尖角的改变量θ∆.24、曲率半径为R 的平凸透镜和平板玻璃之间形成空气薄层,如图所示.波长为λ的平行单色光垂直入射,观察反射光形成的牛顿环.设平凸透镜与平板玻璃在中心O 点恰好接触.求:(1)从中心向外数第k 个明环所对应的空气薄膜的厚度k e .(2)第k 个明环的半径用k r (用R 、波长λ和正整数k 表示,R 远大于上一问的k e .)25、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的R OλO 1曲率半径是cm 400=R .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30cm .(1)求入射光的波长.(2)设图中cm 00.1=OA ,求半径为OA 范围内可观察到的明环数目.26、用波长nm 500=λ的单色光作牛顿环实验,测得第k 个暗环半径m m4k =r ,第10+k 个暗环半径m m 610k =+r ,求平凸透镜的凸面的曲率半径R .总体要求:理解产生相干光的三个条件和获得相干光的两种方法.了解分波阵面法和分振幅法干涉的典型实验;掌握光程的概念以及光程差和相位差的关系;掌握杨氏双缝干涉条纹及薄膜干涉条纹(尤其是劈尖和牛顿环)的分布规律,利用相关公式计算条纹分布.第12章 参考答案1、A2、C3、A4、B5、B6、B7、B8、23λ+e 或23λ-e 9、)(12r r n -10、(1)使两缝间距变小;(2)使屏与双缝之间的距离变大. 11、变小;变小 12、N D / 13、λ/2d 14、λ23 15、22n λ 16、θλn 2 17、n2λ18、解:nm 5.562/=∆=D x d λ. 19、解:m m 268.0/=∆==x D d λλ. 20、解:(1)m 11.0/20==∆a D x λ (2)零级明纹移到原第7级明纹处.21、解:nm 600=λ和nm 6.428=λ. 22、解:(1)λλk ne k =+2/2(明纹中心)现1=k ,1e e k=,则膜厚度m m1022.1)4/(41-⨯==n e λ.(2)m m 32/==l x23、解:rad 100.442-⨯=-=∆θθθ.24、解:(1)第k 个明环,λλk e k =+212 4/)12(λ-=k e k .(2)λλk R r k =+21)2/(22,2/)12(λR k r k -= ,...2,1=k .25、解:(1)()cm 10512252×Rk r -=-=λ (或500 nm ).(2)λR r k 2212=-,对于cm 00.1=r ,5.505.02=+=λR r k .故在OA 范围内可观察到的明环数目为50个.26、解:()()m 410/2210=-=+λk k r r R .第12章 光的干涉一、基本内容1.单色光单色光是指具有单一频率的光波,单色光不是单种颜色的光.可见光的波长是(380~760)nm .虽然绝对单一频率的单色光不易得到,但可以通过各种方法获取谱线宽度很小的单色光.例如激光就可看作谱线宽度很小的单色光.2.相干光只有两列光波的振动频率相同、振动相位差恒定、振动方向相同时才会发生干涉加强或减弱的现象,满足上述三个条件的两束光称为相干光,相应的光源称为相干光源.3.半波损失光由光疏介质(即折射率相对小的介质)射到光密介质发生反射时,反射光的相位较入射光的相位发生π的突变,这一变化导致了反射光的光程在反射过程中增加了半个波长,通常称为“半波损失”.4.光程和光程差 (1)光程光波的频率v 是单色光的本质属性,与在何种介质中传播没有关系,而传播速度则与介质有关.在折射率为n 的介质中光速是真空中光速的n /1,由光速v u n n λ=可知,在折射率为n 的介质中,光波的波长n λ也是真空中波长的n /1.这样光在不同介质中经历同样的波数,但经历的几何路程却不同.所以有必要把光在折射率n 的介质中通过的几何路程折算到真空中所能传播的长度,只有这样才便于比较两束经过不同介质的光相位的变化.所以把光在折射率为n 的介质中通过的几何的路程r 乘以折射率n 折算成真空中所能传播的长度nr ,称nr 为光程.(2)光程差当采用了光程概念以后就可以把由相位差决定的干涉加强、减弱等情况用光程差来表示,为计算带来方便.即相位差π2λδϕ=∆(λ为真空中波长,δ为光程差),亦即λδϕπ2=∆.二、基本规律光程差(含半波损失)是半波长偶数倍时干涉加强,干涉相长,明条纹中心;是半波长奇数倍时,干涉相消,暗条纹中心.1.杨氏双缝干涉结果(分波阵面干涉),只讨论同一介质中传播:等间隔明暗相间条纹.光程差:Dx d=δ dD kx λ±=k ),2,1,0( =k 明条纹位置(k x —k 级干涉条纹位置,D —屏距,d —缝距)2)12(k λd D k x -±= ),2,1( =k 暗条纹位置 条纹中心间距:λdD x =∆ 2.薄膜干涉结果(分振幅干涉)薄膜干涉基础公式相同,考虑从1n 入射到2n (21n n <),i 为入射角,d —薄膜厚度,此时要考虑“半波损失”,故反射加强(上表面亮纹位置)为λλδk i n n d =+-=2sin 222122 ),2,1( =k反射减弱(上表面暗纹位置)为(注意此处k 可以取0,厚度为0处是暗纹)2)12(2sin 222122λλδ+=+-=k i n n d ),2,1,0( =k注意,一定要先分析反射光是否存在“半波损失”的情况,不能死搬硬套,一般介质折射率中间大两边小或中间小两边大都有半波损失,而三种介质折射率大小顺序排列无半波损失.薄膜干涉光程差是入射角和厚度的函数.等倾干涉:对于上两式,如果薄膜厚度不变,而光线倾角(入射角i )变化,入射角i 相同的位置光线光程差相同,条纹花样相同,叫做等倾干涉.如有侵权请联系网站删除,仅供学习交流仅供学习交流 等厚干涉:对于上两式,所有光线以同一入射角i 入射,而薄膜厚度变化,则厚度相同的位置光线光程差相同,条纹干涉花样相同,叫做等厚干涉.对空气劈尖(上玻璃板下表面和下玻璃板上表面两束光反射)两侧介质相同,由于存在“半波损失”,所以上两式适用于在空气劈尖的上表面干涉.一般取垂直入射,0=i ,则在劈尖上表面干涉,光程差满足λλδk nd =+=22 ),2,1( =k 明条纹2)12(22λλδ+=+=k nd ),2,1,0( =k 暗条纹n 代表劈尖内介质折射率.劈尖端点处是暗纹,相邻明纹(或暗纹)厚度差n d 2λ=∆,条纹线间距:θλn l 2=∆. 如果两侧介质不同,且满足折射率递增或递减顺序,则无半波损失,光程差满足λδk nd ==2 ),2,1,0( =k 明条纹2)12(2λδ-==k nd ),2,1( =k 暗条纹劈尖劈尖端点处是暗纹,相邻明纹(或暗纹)厚度差和条纹线间距与有半波损失时相同.利用劈尖原理检测零件平整度,上表面放标准板,顶角在左侧,下板凹陷条纹向左弯,凸起向右弯.牛顿环的上表面干涉也是空气劈尖干涉,两侧介质相同,有半波损失,只不过牛顿环的空气厚度测量常转换成距透镜中心距离r 与透镜的曲率半径R 来表示牛顿环的明暗纹.2)12(k λR k r -= ),2,1( =k (明环) λkR r =k ),2,1,0( =k (暗环)。
大学物理12光的干涉
S1
Sd
S2
杨氏双缝实验
§12-1 光源 光的特性
2.分振幅法:利用光在两种介质分界面 上的反射光和透射光作为相干光
iD
n1
e
A
C n2 n1
B
n1
薄膜干涉
第十二章 光的干涉
§12-1 光源 光的特性
§12-2 双缝干涉
一、杨氏双缝实验 1.装置原理
S1
Sd
S2
第十二章 光的干涉
第十二章 光的干涉
§12-3 光程与光程差
三、反射光的相位突变和附加光程差
1、n1 n2 n3 或 n1 n2 n3 无附加光程差
12
i
n1
e
n2
n3
2、n1 n2 n3 或 n1 n2 n3 1’ 2’
有附加光程差 2
3、对于折射光,无任何相位突变
第十二章 光的干涉
§12-3 光程与光程差
§12-2 双缝干涉
2.干涉明暗条纹的位置
r1
S1
S d
r2
波程差
S2
r2 r1
D
P
x
0
r2
r1
d sin
d
tan
d
x D
第十二章 光的干涉
§12-2 双缝干涉
d
x D
k 极大
(2k 1) 极小
2
干涉明暗条纹的位置
d x
D
x
k
D
d
2k 1
D
2d
明纹 暗纹
其中 k 0, 1, 2, 3
实际中,i 0
2n2e '
明纹和暗纹条件
2n2e
《光的干涉》课件
特定的干涉条纹。
实验步骤
1. 制备不同厚度的薄膜样品。
2. 将光源对准薄膜,使光波入射到薄 膜表面。
3. 观察薄膜表面的干涉条纹,分析干 涉现象与薄膜厚度的关系。
迈克尔逊干涉仪
实验目的:利用迈克尔逊干涉仪观察不同波长的光的干 涉现象。 实验步骤
2. 将不同波长的光源依次对准迈克尔逊干涉仪。
实验原理:迈克尔逊干涉仪通过分束器将一束光分为两 束,分别经过反射镜后回到分束器,形成干涉。
1. 调整迈克尔逊干涉仪,确保光路正确。
3. 观察不同波长光的干涉条纹,分析干涉现象与波长 的关系。
04
光的干涉的应用
光学干涉测量技术
干涉仪的基本原理
干涉仪利用光的干涉现象来测量长度、角度、折射率等物理量。干涉仪的精度极高,可以达到纳米级 别。
光的波动性是指光以波的形式传播, 具有振幅、频率和相位等波动特征。
光的干涉是光波动性的具体表现之一 ,当两束或多束相干光波相遇时,它 们会相互叠加产生加强或减弱的现象 。
波的叠加原理
波的叠加原理是物理学中的基本原理之一,当两列波相遇时,它们会相互叠加, 形成新的波形。
在光的干涉中,当两束相干光波相遇时,它们的光程差决定了干涉加强或减弱的 位置。
多功能性
光学干涉技术将向多功能化发展,实现同时进行 多种参数的测量和多维度的信息获取。
光学干涉技术的挑战与机遇
挑战
光学干涉技术面临着测量精度、 稳定性、实时性等方面的挑战, 需要不断改进和完善技术方法。
机遇
随着科技的不断进步和应用需求 的增加,光学干涉技术在科学研 究、工业生产、医疗等领域的应 用前景将更加广阔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h 0 即 l2 l1
M1
2hn Lc
迈克尔逊干涉仪的应用: 测量薄膜的光学厚度 测量光波长。
例题
把折射率n=1.40的薄膜放入迈 克尔迅干涉仪的一臂,如果由 此产生了7条条纹的移动,求膜 厚d.设入射光的波长为589nm.
M2
l
解:
光程差的改变量为
(2l 2d ) 2nd 2l 2nd 2d
牛顿环
将凸透镜放在平板玻璃上,形成空气间隙.透镜与 玻璃之间形成厚度不均的空气层,空气层的厚度
自切点向四周逐渐增加,等厚点的轨迹是以切点
为中心的圆,因此等厚干涉条纹是一系列以切点 为圆心的圆环,称牛顿环.
测凸透镜的曲率半径
明 k 2hn2 2k 1 暗 2 2 2 R2 ( R hk )2 rk2 rk R 2 2 2 2 Rhk hk rk rk 2hk
12.5
迈克尔逊干涉仪 一、构造及光路图:
l2
M2
S L
L--透镜 G1--半涂银片 G2--补偿板 M1(可调) 反射镜 M2(固定) E-眼或接收器
G1
l1
G2
M1
均倾斜450
E
二、干涉条纹的特点
M1 M 2
实现等倾干涉 膜厚度为 l2 l1
M1 // M 2
M2
l2
S
M’1
G1
G2
且这些彩色随着肥皂泡的增大而改变.解释此现 象.当肥皂泡将要破裂时,将呈现什么颜色?
三、用白光光源进行双缝实验,若用一纯红色滤光片盖 住一条缝,用一个纯蓝色滤光片盖住另一缝,则( D ) A. 干涉条纹宽度发生变化 C. 干涉条纹亮度将变化 B. 产生红色和蓝色两 套干涉条纹 D. 不产生干涉条纹 不是相干光
左半侧:光程差满足δ=2hn2,中央为零级明纹 右半侧:满足δ=2hn2+λ/2,中央零级为暗纹
牛顿环在光学冷加工中的应用
压
工件
压
环外扩:要打磨中央部分 向外扩展说明中央部分接触面 增大,原来的第k级条纹相应要 向外扩展.需打磨中央部分
环内缩:要打磨边缘部分 向内收缩说明边缘部分接触面 增大,原来的第k级条纹相应要 向内收缩.需打磨边缘部分
牛顿环考察的是玻璃之间的空气隙,由于存在半 波损失,故中心(h=0)为暗斑 牛顿环条纹间距不是等宽的
透射光牛顿环与反射光牛顿环是互补的
白光入射将出现由紫到红的彩色条纹
例题: 牛顿环装置由不同材料组成,分析反射光干涉图样. n2=1.62 分析: n1=1.52 n2=1.62 n3=1.75 n1=1.52
θ
L
无论L如何变,两柱处的膜的厚度不变,故光 程差不变,所以干涉级不变,因此条纹数目 不变。根据Δl=Δh/sinθ,因为θ变小所以 条纹间距变宽
2hn2 2
k
k
2
明
暗
7、用波长为的单色光垂直照射牛顿环装置,若 使透镜慢慢上移到与原接触点间距离为 d ,视场 中固定点可观察到移过的条纹数目为多少根?
3.测量微小厚度变化: 玻璃板向上平移
4.检查光学平面缺陷
标准平面 待检光学面
温度升高
相邻两条纹中 h 心对应高度差 2 条纹整体移N H N 根,高度变化 2 条纹偏向膜(空气)厚部, 表示平面上有凸起。
平面上有凹坑。
5、测凸透镜的曲率半径
n1 >n2 <n3
n2 =1
R
明 k 2hn2 2k 1 暗 2 2 中心 h 0 2 顶点处为一暗斑
l
2nd 2d N
从而引起N=7条条纹的移动
M1
N 6 d 5.154 10 m 2(n 1)
光的干涉练习
一、为什么窗玻璃在日光照射下我们观察不到干
涉条纹?将两片玻璃叠在一起就可看到干涉条纹?
二、为什么刚吹起的肥皂泡(很小时)看不到有
什么颜色,当吹大到一定程度时,会看到有彩色,
l Nh N
λ=539.1nm
2
l 0.620nm
N 23
6、两个直径有微小差别彼此平行的滚柱间的距离为L,夹在 两平玻璃(足够长)中间,形成空气劈尖。当单色光垂直照 射时,产生等厚干涉条纹。若两柱间距离L变大,则在L范围 内(1)干涉条纹的数目如何变化?(2)间距如何变化? 数目不变,间距变大
I max
I0 I 0 2 I1 I 2 2 1.5I 0 2 I 0 2.9 I 0
中心处为第5级明纹,边缘处为第一级明纹,视场中将 出(现包括中央及边缘在内)5条明纹.
平玻璃
空气
2
柱面面平凹透镜
若球面平凹透镜换为柱面平 凹透镜,如图分析条纹的形 状、可观察到几条暗纹?
(1)等厚干涉条纹是与柱面 凹透镜轴线平行的直条纹; 边缘和中心均为暗条纹,条纹明暗相间 .中间疏,两侧密,与轴线呈对称分布
1
2
O
遮挡后两束光到达O点的光程差由原来的0 变为λ/2,O点成为1级暗纹,暗纹光强
I0 I 02 I m I1 I 2 2 I1 I 2 I 0 2 0.086 I 0 2 2
遮挡使整个观察屏上明暗条纹 的位置发生变化,暗纹光强不 再为零,明纹光强也不再是4I0 ,此时明纹光强为多少?
分析:
d
2hn
2
移前 接触点处:
移后
光程差改变
2d k
N=k= 2d/
2
2d
2
光程差改变 ,条纹移过 1 根;
移过条纹数
8、例题:球面平凹透镜和平玻 璃板间构成空气膜.波长λ的单 色光垂直照射,观察空气薄膜上 下表面反射光形成的干涉条纹。 分析中央和边缘处的明暗情况, 条纹形状及可观察到几条暗纹?
平玻璃
空气
2
球面平凹透镜 球面
分析: 边缘处膜厚为零,光程差: 中心处光程差: 2h
2
暗纹
9 2 2 暗纹 2 2 2
以透镜轴线为心的环 满足光程差为下列数值的暗纹可观察到: 暗纹条件:
δ=(2k+1)λ/2
δ=λ/2,3λ/2,5λ/2,7λ/2, 9λ/2 包括中央暗纹共5条
第 k 级暗环对应 半径
Rh
R
r
h
nrk2 R k
第 k 级暗环半径
k 膜厚 hk 2n
rk
rk
第 k 级亮环对应膜厚
kR n2
1 h (k ) 2n 2
第 k 级亮环半径
(2k 1)R 2n2
牛顿环的特点
k 明 r 2 Rh kR 2hn2 k k 2 2k 1 暗 2
(2)可观察到几条暗纹? (2)可观察到9条暗纹 观察到几条亮纹?
9. 扬氏实验,用厚为l,折射率为n,光强吸收率为50%的透明薄 片遮住缝S1, 此时屏上O点的为一级暗纹,求O的点光强(设 光单独通过无遮挡的S1或S2时O点的光强为I0) x
未遮挡时,O点为零级明纹中心,光 解: 强为4I0.
S1 d S2 D
平玻璃 空气
2
球面
球面平凹透镜
将玻璃平板向上平移,条纹如何 变化?若将玻璃板移动λ/4, 此时能看到几条明纹?
玻璃板上移,空气膜增厚,原条纹所在位置对应膜的厚度随 之外移,干涉条纹将向外移动中心处明暗也将变化 移动λ/4时 边缘处光程差:
2h
2
2
4
2
中心处光程差:
9 2h 2 5 2 4 2
M1
L
l1
E
M1M2 不垂直时,干涉为等 厚干涉,条纹是平行直线
明 k 2hn 2 k个明(或暗)条纹,膜的厚度变化为λ/2 M1移过Δh时共有N条条纹移过
h N 2
劈尖(n)插入干涉仪的一臂,条纹移N根,劈尖厚度? 条纹消失!
四、用一定波长的单色光进行双缝干涉实验,欲使屏上干 涉条纹变宽,可采用的方法是:(1)——;(2)——。
D x xk 1 xk nd
(1)使两缝间距变小; (2)使缝与屏之间距离变大
五、若将迈克耳逊干涉仪的可动反射镜移
动0.620um的过程中,观察到干涉条纹移动
了23条,则所用波长是多少?