教育统计学第七章 假设检验 ppt课件

合集下载

第七章 假设检验

第七章 假设检验
5 2 1 c 0 .0 5 3
5 c 0 .9 7 5 3
5 3
c 1 .9 6

所以
c 1 . 176

总目录
上一页
下一页
返回
退出
§7.2 参数假设检验 本节我们介绍母体ξ的分布是正态分布的几种显著性
{ ( x1 , x 2 , , x n ) : u ( x1 , x 2 , , x n ) u0 }
总目录 上一页 下一页 返回 退出
构造检验统计量
设 则
U
1 , 2 , , 25
是取自母体ξ的一组子样,
x1 , x 2 , , x 25
是子样观测值
1500
51.5 53.5 5 3
总目录
上一页
下一页
返回
退出
t-检验例题7.3(3-2)
假设母体服从正态分布,
检验假设
H 0 : 0 65
H 1 : 0 65
由子样算得
Sn
*
x 4 5 .0 6
n
n 1
1
( xi x )
2
5 .8 1 8
i 1
给定显著水平α=0.05,查自由度为99的t分布表得
xiaobugs
第七章 假设检验
第七章目录 §7.1 假设检验的基本思想和概念 §7.2 参数假设检验 §7.3 正态母体参数的置信区间 §7.4 非参数假设检验 (简介) *§7.5 奈曼-皮尔逊基本引理 和一致最优势检验 (略)
总目录
上一页
下一页
返回
退出
§7.1 假设检验的基本思想和概念 名词解释:

《假设检验》PPT课件

《假设检验》PPT课件
2008-2009
样本统计量 临界值
抽样分布
2008-2009
1 -
置信水平 拒绝H0
0
样本统计量
临界值
✓决策规则
1. 给定显著性水平,查表得出相应的临 界值z或z/2, t或t/2
2. 将检验统计量的值与 水平的临界值进 行比较
3. 作出决策
双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0
H1 : <某一数值,或 某一数值
例如, H1 : < 10cm,或 10cm
2008-2009
➢提出假设
【例】一种零件的生产标准是直径应为10cm,为对生产过
程进行控制,质量监测人员定期对一台加工机床检查, 确定这台机床生产的零件是否符合标准要求。如果零件 的平均直径大于或小于10cm,则表明生产过程不正常, 必须进行调整。试陈述用来检验生产过程是否正常的原 假设和备择假设
2008-2009
❖利用P值进行决策
➢什么是P 值(P-value)
1. 在原假设为真的条件下,检验统计量的观察值 大于或等于其计算值的概率 双侧检验为分布中两侧面积的总和
2. 反映实际观测到的数据与原假设H0之间不一致 的程度
3. 被称为观察到的(或实测的)显著性水平 4. 决策规则:若p值<, 拒绝 H0
2008-2009
第6章 假设检验
统计研究目的
统计设计


客观



现象



数量


表现


描 述

教育研究方法 【第7章】 教育统计与测量 教学PPT课件

教育研究方法 【第7章】  教育统计与测量 教学PPT课件

第1节
抽样与测量

2. 外部效度 外部效度指实验结果能普遍推论到样本的总体和其他同类现象中去的程度,即结论的普遍代表 性和适用性。 为了提高外部效度,让研究结果具有更大的应用价值、适用性和可推广性,就要考虑研究情境 的普遍性。比如,让研究场景更接近现实生活,尽可能在多样化群体中随机抽取有代表性的样本, 增大样本覆盖面和样本量,等等。 外部效度与内部效度是相互影响的。
JIAOYUYANJIU FANGFA
目录
CONTENTS
PART 01
抽样与测量
PART 02
描述统计
PART 03
推断统计
第7章 教育统计与测量
第1节 抽样与测量 第2节 描述统计 第3节 推断统计
第1节
通过本章的学习,你将能够
● 掌握抽样的策略和技巧; ● 理解信度、效度、描述性统计、推断性统计等术语; ● 理解并掌握测量及相关统计的分析技巧; ● 学会对量的研究数据进行描述性统计和推断性统计分析; ● 理解统计分析中常见的问题以及解决途径。
第1节
抽样与测量
案例7-1 抽样的表述方法
采用三阶段随机整群抽样的方法对中国中部省会城市的所有初中一、二年级(7年级和8年 级)的儿童进行抽样。第一阶段以该市17个区的经济、教育发展水平以及人口数量为指标,采 用聚类分析得到四个类别,从每个类别中随机抽取一个区。第二阶段是对入样区的所有学校抽 样。根据学校所在的位置、学校性质、学校类型及经费等级四个方面进行分类并随机抽样。第 三阶段是对入样学校的班级进行抽样。入样班级的儿童、儿童的家长、班级对应的教师、学校 对应的校长都填写了相应的问卷。
效度是指研究中所获得的研究结果的正确度以及可推广程度。 研究结论的正确程度反映的是研究的内在效度,是指研究结果与研究目标的吻合度和达成度。 研究的外在效度就是指研究结果的可推广程度。

《假设检验检验》课件

《假设检验检验》课件
《假设检验检验》PPT课 件
数据分析中的假设检验
什么是假设检验
假设检验是一种统计方法,用于通过样本数据来推断总体参数的性质。它可以帮助我们判断一个观察结 果是由偶然因素引起的,还是真实存在的差异。
假设检验的步骤
1
2. 选择检验统计量
2
选择适合问题的检验统计量,如t值、
z值等。
3
4. 计算统计量
4
利用样本数据计算检验统计量的值。
5
6. 得出结论
6
根据决策,得出关于总体参数的结论。
1. 建立假设
确定原始假设和备择假设,描述总体 参数的状态。
3. 设定显著性水平
选择显著性水平,决定拒绝原始假设 的界限。
5. 做出决策
根据检验统计量的值和显著性水平, 决定是否拒绝原始假设。
常用的假设检验方法
单样本t检验
结论的解释
根据结果的解释,得出关于总体参数的结论,并提供相应的推论。
实例演示及应用场景
通过具体的实例演示,展示假设检验在各个领域的应用,如医学、市场研究、环境保护等。
总结与展望
假设检验是数据分析中重要的工具之一,它可以帮助我们做出科学的决策, 并推动各个领域的发展。未来,我们可以进一步研究和改进假设检验方法, 提高其效能和适用性。
用于比较一个样本的平均值 与已知值或者另一个样本的 平均值。
独立样本t检验
用于比较两个独立样本的平 均值是否存在显著差异。
相关样本t检验
用于比较两个相关样本的平 均值是否存在显著差异。
如何解读假设检验结果
拒绝原始假设

接受原始假设
如果检验结果的p值大于等于显著性水平,我们接受原始假设。

第七章假设检验

第七章假设检验

u
u,
















H

0
➢3型问题(右侧检验)
由 关 系 式 ( 7.2.1) 和 标 准 正 态 分 布 上 侧 分 位
数 定 义 , 对 于 给 定 的 , 存 在 u, 使 得
P
X
/
n
u
如 果 H 0成 立 , 即

0


U
X
0
/n
X / n
X
0
/n
u
u
2
P
0
/n
u
2
0
/ n
P
0
/n
u
2
0
/n
1 u 2
/
0
n
u 2
/
0
n
1 u
2
/
0
n
1 u
2
/
0
n
2u2
/ n0u2
/ n0
这表明该检验误 的大 两小 类 与 错 0密切相关
➢2型问题(左侧检验)
由关系式(7.2.1)和标准正态分布下侧分位X /n Nhomakorabeau
P U
u
P
X
/
n
u
所 以 , 如 果 检 验 统 计 量 U X 0 地 实 现 u满 足 / n
u u, 小 概 率 事 件 在 一 次 试 验 中 发 生 , 否 定 H 0;
u
u,





第七章假设检验

第七章假设检验

或者对立假设,用表示 H1

第二,希望通过已经获得的一个样本实现
x1 , x2 ,, xn ,
对 H 0 做出成立还是不成立的判断(或者决策)。
© 概率统计教研室
2012
概率论与数理统计 The Probability Theory and Mathematical Statistics
上述各例的零假设与备择假设
这类问题称作假设检验问题 .
假设检验

参数假设检验 非参数假设检验
总体分布已 知,统计假设 仅涉及未知参 数
对总体分布类型做的统计假设
© 概率统计教研室
2012
概率论与数理统计 The Probability Theory and Mathematical Statistics
统计假设
例7.1 某车间生产的滚球直径X服从正态分布 N (15.1,(0.05)2 ) 。 现从某天生产的滚球中随机抽取6个,测得直径(单位:mm)为 14.6, 15.1, 14.9, 14.8, 15.2, 15.1,
所谓小概率原理是指“概率很小的事件在一次试验中 几乎不可能发生”。通常认为概率为0.05或0.01的事件为小 概率事件,有时也把概率为0.10的事件当作小概率事件。小 概率的标准在假设检验中又称之为显著水平,记为

小概率事件在一次试验中并非绝对不能发生,只不过是发 生的概率很小,以至于我们在实际统计推断中认为小概率事件 在一次抽样(试验)中不会发生。所以建立在小概率原理基础 上的带有概率性质的反证法所得结论是有一定风险的,即有可 能犯错误。
由于样本的随机性,可能发生两种类型的错误。 客观上零假设H 是正确的,而由于样本的随机性, 0 做出了拒绝零假设的决策,因而犯了错误,在统计学上 称为第一类错误,也称为“弃真”错误。显然,犯第一

假设检验课件

假设检验课件

z
0
0.916
25
0
• 3 . 拟定p值,作出推断结论 • 当z=0.916时相应旳单侧P=0.1788,P>0.05,按
α=0.05 • 水准,不拒绝H0,能够以为2023年该市无菌化脓17发
二、两独立样本资料旳z检验
当总体均数λ≥20时, Possion分布近似正态分布。
H0 λ1=λ2 H1 λ1≠λ2 α=0.05
2
1 n1
1 n2
样本估计值为 :
S X1X2
Sc2
1 n1
1 n2
S
2 c
n1 n1
n2 n2
S
2 c
X
2 1
(X 1 )2
/
n1
X
2 2
n1 n2 2
(X 2 )2
/ n2
6
已知S1和S2时:
Sc2
(n1
1)S12
(n2
1)
S
2 2
n1 n2 2
若n1=n2时:
S X1X 2
降低II型错误旳主要措施:提升检验效能。 提升检验效能旳最有效措施:增长样本量。 怎样选择合适旳样本量:试验设计。
33
假设检验应该注意旳问题
34

正态性检验 和两样本方差比较旳F检验
35
➢ t 检验旳应用条件是正态总体且方差齐性;配对 t 检验则要求每对数据差值旳总体为正态总体。
➢ 进行两小样本t检验时,一般应对资料进行方差
15
Possion分布资料旳z检验
•当总体均数λ≥20时, Possion分布近似正态分布。
x
z
0
0
•一、单样本资料旳z检验

假设检验完整版PPT课件

假设检验完整版PPT课件
H0 : 335ml H1 : 335ml
消费者协会接到消费者投诉,指控品牌纸包装 饮料存在容量不足,有欺骗消费者之嫌。包装 上标明的容量为250毫升。消费者协会从市场上 随机抽取50盒该品牌纸包装饮品进行假设检验。 试陈述此假设检验中的原假设和备择假设。
解:消费者协会的意图是倾向于证实饮料厂包装 饮料小于250ml 。建立的原假设和备择假设为
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0

0 观察到的样本统计量
样本统计量 临界值
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0

0
样本统计量
临界值
第一节 假设检验概述
1、假设检验的基本思想 2、假设检验的步骤 3、两类错误和假设检验的规则
三、两类错误和假设检验的规则
(单侧检验 )
抽样分布
置信水平
拒绝H0

1-
拒绝域 临界值
0 接受域
样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0

1-
临界值
0
样本统计量
观察到的样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0

1-
临界值
0
观察到的样本统计量
样本统计量
•【例2】一种罐装饮料采用自动生产线生产,每罐的容量 是255ml,标准差为5ml,服从正态分布。换了一批工人后, 质检人员在某天生产的饮料中随机抽取了16罐进行检验,
一个总体的检验
一个总体

07第七章 假设检验

07第七章 假设检验
23
{Z z0.01}是
一小概率事件
拒绝域 W Z : Z z0.01 2.33 .
X 给定显著水平 =0.01,若使得 P k =, n X 21 则有 P k , ( 2) n 由式()得:k z . 1
20
四、求解参数假设检验问题的步骤
1、根据实际问题的要求,提出原假设 H 0 及备选 假设 H1 . 选择 H 0 , H1 使得两类错误中导致后果严重的 错误成为第一类错误. 2、给出显著水平 拒绝域.
,选择合适的统计量,确定
3、根据样本值,求出检验统计量的值,作出决策.
21
提出 假设
根据统计调查的目的, 提出 原假设H0 和备选假设H1 作出 决策
因此,衡量 x 0 的大小,可归结为衡量 x 0 的大小.
8

n
选择适当的正数k,使样本的观察值 x满足 x 0 U k n 时,就接受原假设H 0 . 否则,即当 U k时,就拒绝原假设H 0 .
应该用什么原则来确定这个量的合理界限?即怎样求k?
注意到,
不等式 x 0
2
拒绝 域
2
假设检验的步骤
Step1 提出假设. Step2 构造拒绝域,依据假设和常用的统计量. Step3 进行检验.
注意:不否定H0并不是肯定H0一定对,而只是说差 异还不够显著,还没有达到足以否定H0的程度.
所以假设检验又叫 “显著性检验” 如果显著性水平α取得很小,则拒绝域也会比较小, 其产生的后果是: H 0难于被拒绝. 如果在α很小的情况下, H0仍被拒绝了, 则说明实 际情况很可能与之有显著差异.
可用x与0的差距 x 0 来判断原假设H 0是否成立.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
例1 某地区的教育卫生部门多年积累的资料表 明,15岁儿童的平均身高为165 cm,标准差为10 cm, 今随机抽取120名15岁儿童测得平均身高为168 cm。 试问该地区全体15岁儿童的平均身高是否发生了变 化?
假设检验原理示意图
教育统计学第七章 假设检验
5
二、假设检验中的两类错误
统计学中将H0真实而拒绝H0时所犯的错误称做
教育统计学第七章 假设检验
10
第二节 平均数的显著性检验
平均数的显著性检验是指对样本平均数与总 体平均数的差异产生的显著性检验
一、总体正态分布、总体方差已知
总体服从正态分布,标准差已知,那么无论样 本容量为多少,样本平均数与总体平均数离差统计 量都服从正态分布
检验统计量:
Z
X
n
教育统计学第七章 假设检验
11
检验的步骤:
(1)提出假设 (2)确定检验统计量并计算其值 (3)确定检验形式 (4)统计决断
Байду номын сангаас
例1 某校初三语文毕业考试成绩历年来都是服从
正态分布,总平均数一直维持在60分的水平上,总
体标准差也一直为15。现在从今年该校初三语文毕业
考试成绩中随机抽取120个考试成绩,算得平均分为
63分,问该校今年的初三语文毕业考试成绩的平均
第七章 显著性检验
教育统计学第七章 假设检验
1
在处理调查或实验数据时,经常要讨论统计 值之间差异的问题。对于这些差异的讨论一般分 为两种情况: • (1) 样本统计量与相应总体参数的差异; • (2) 两个样本统计量之间的差异。
假设检验:从样本统计值推论总体参数
第一节 假设检验的基本思想
一、假设与假设检验
总体服从正态分布,标准差未知,那么无 论样本容量为多少,样本平均数与总体平均数 离差统计量都服从t分布
检验统计量:
t
X
X
X X
n 1
教育统计学第七章 假设检验
15
(1)小样本的情况
例3 某市初三英语毕业考试平均为65分,现 从该市某校抽取20份初三英语毕业考试试卷,算 得平均分69.8,标准差为9.234。问该校初三英 语平均分数与全区是否一样?
判断 拒绝H0
Ⅰ型错误,概率=
正确判断,概率= 1
教育统计学第七章 假设检验
7
单侧检验与双侧检验
教育统计学第七章 假设检验
8
双侧检验的统计假设为:
H0:
X
0
H1:
X
0
单侧检验的统计假设为:
H0:
X
0

H0:
H1:
X
0
H1:
教育统计学第七章 假设检验
X
0
X
0
9
单侧与双侧检验的概率不同
备择假设是与零假设相互排斥的假设。它是关 于当前样本所属的总体相反的假设,是研究者根 据样本信息期待证实的假设,是根据样本信息否 定了零假设时,应当采取的假设。备择假设一般 用H1表示。
假设检验的基本思想是先建立一个假设H0, 然后在此假设成立的条件下,看看会产生什么样 的后果
教育统计学第七章 假设检验
分还是60分吗?
教育统计学第七章 假设检验
12
双侧Z检验统计决断规则
z 与临界值比较 P值范围
检验结果
显著性
z 1.96 P>0.05 保留H0,拒绝H1 不显著
1.96 z 2.58P0.≤001.<05
在0.05的显著性水平 上拒绝H0接受H1
显著 (*)
z 2.58
P≤0.01
在0.01的显著性水平 极其显著
上拒绝H0接受H1
(**)
教育统计学第七章 假设检验
13
例2 某市小学五年级语文统考历年来平均分为85,标 准差为10,从今年小学五年级语文统考成绩中随机抽取80 个考分,算得平均分为87,请在=0.05水平上检验一下今 年该市小学五年级语文统考成绩是否高于往年。
Z 与临界值比较 P值范围
检验结果
教育统计学第七章 假设检验
16
t检验决断规则
t 与临界值的比较
P值范围
检验结果
显著性
t t(df )0.05 P>0.05 保留H0,拒绝H1 不显著
t(df)0.05t
t(df)0.01
0.01< P≤0.05
t t(df )0.01
P≤0.01
在0.05显著水平上 拒绝H0,接受H1
在0.01显著性水平 上拒绝H0,接受H1
Ⅰ型错误(弃真错误),由于这类错误的概率为
故称为 型错误
统计学中将H0假而接受H0时所犯的错误称做 Ⅱ开型错误(取伪错误),这类错误的概率以 表示,因而又叫做 型错误。
教育统计学第七章 假设检验
6
假设检验中的两类错误
真实
做出的
情况
接受H0
H0为 真
正确判断,概率= 1
H0为 假
Ⅱ型错误,概率=
显著性
Z 1.65
P0.05 保留H0,拒绝H1
1.65 Z 2.330.0 1P0.05在上0.0拒5的绝显H0著接性受水H1平
Z 2.33
在0.01的显著性水平
P0.01 上拒绝H0接受H1
不显著
显著 (*) 极其显 著 (**)
单侧教育Z统检计验学第统七章计假决设检断验 规则
14
二、总体正态分布、总体方差未知
教育统计学第七章 假设检验
2
在进行某项研究时,有时需要根据已有的理论 和经验事先对研究结果作出一种预想的希望证实假 设
这种假设叫科学假设,用统计术语表示时叫 研究假设
假设检验是通过样本对总体的某些特征进行判 断
假设检验一般有两个相互对立的假设:即零 假设和备择假设
教育统计学第七章 假设检验
3
零假设就是关于当前样本所属的总体期待拒绝的 假设。零假设一般用H0表示
显著 (*)
极其显 著 (**)
教育统计学第七章 假设检验
17
相关文档
最新文档