人教版四年级数学下册《三角形的内角和》(1)PPT课件

合集下载

人教版《三角形的内角和》(完美版)PPT课件1(共17张PPT)

人教版《三角形的内角和》(完美版)PPT课件1(共17张PPT)
,能够应用这个知识解决有关三角 形的实际问题。
1个平角等于1800
1800
复习
小结 拓展
∠1+∠2+∠3=180°
1
1
用量角器测量出所画的三角形每个内角的度数。 能够总结求出多变形内角和公式吗?
1
算一算,三角形的内角和是多少度呢?
算一算,三角形的内角和是多少度呢?
并且能够根据三角形的内角和推算多边形的内角和。
2 3 本节课我们一起来验证三角形的内角和是180°,同学们要积极的动手操作,通过量、拼、撕等过程,验证三角形的内角和是180°。
用量角器测量出所画的三角形每个内角的度数。 练习爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,顶角多少度?
人教新课标四年级数学下册 小结 拓展 () 180°×3﹦540°
(2)大三角形比小三角形的内角和大。
平角
1
三、折一折
1
2
2
3
3
所有三角形内角和是180°
∠1+∠2+∠3=180°
判断
(1)一个三角形的三个内角度数是
:80° 、75° 、 24° 。 ( )
(2×)大三角形比小三角形的内角和
大。
()
(3)两个小三角形拼成×一个大三角 形,大三角形的内角和是360°(

×
做一做三角形∠1=140°∠3=25°求
∠2的度数。
180°-140°-25°=15° 180 °-(140° +25°)=15°
180 °-(140° +25°)=15°
练习一个直角三角形,一个锐角是50°,另一个锐角是多少度?
练习一个直角三角形,一个锐角是50°,另一个锐角是多少度?

人教版《三角形的内角和》(完美版)PPT课件3

人教版《三角形的内角和》(完美版)PPT课件3

• 通过量、折、拼,我们发现, 任意三角形的内角和大约是 180°。
90°×4÷2=180°
所有直角三角形的内角和都等于180。
A
××
B
C
180°x2-90°x2=180°
A
23
∠1+∠2=90°
∠3+∠4=90°
1
4
B
C
∠1+∠2+∠3+∠4=180°
23
23
1
4
1
4
锐角三角形的内角和等于180°。
锐角三角形的内角和等于180°。
90°×4÷2=180°
钝通角过三 量角、形折的、内拼角,和我等们于发现18,0°任。意三角3形的内角4和大约是180°。
所有直角三角形的内角和都等于180。
我发现:多边形的内角和=(边数一2)×180°
一个三角形中最多只有一个直角或一个钝角。
锐寻角找三 丢角失形的的角内(角连和线等)1于。180°。
绿盛实验学校 江华英
1寻8找0°丢x失2-的90角°(x2连=1线80)°。 求一∠个1三,角∠2形的中度最数多。只有一个直角或一个钝角。 一90个°三×角4÷形2是=1否80可°能出现两个直角或两个钝角?为什么? 求90∠°1×,4∠÷2 2的=度18数0°。 9所0有°直×角4÷三2角=1形80的°内角和都等于180。 90°×4÷2=180° 一所个有三 直角形三中角最形多的只内有角一和个都直等角于或18一0。个钝角。 9我0发°现×:4÷多2边=1形80的°内角和=(边数一2)×180° 9求0∠°1×,4∠÷2 2的=度18数0°。 1一8个0°三x角2-形90是°否x2可=1能80出°现两个直角或两个钝角?为什么? 通过量、折、拼,我们发现,任意三角形的内角和大约是180°。 90°×4÷2=180° 一所个有三 直角形三中角最形多的只内有角一和个都直等角于或18一0。个钝角。 求一∠个1三,角∠2形的是度否数可。能出现两个直角或两个钝角?为什么? 9∠01°+∠×2+4÷∠32+=∠148=01°80° 求一∠个1三,角∠2形的中度最数多。只有一个直角或一个钝角。 9通0过°量×、4÷折2、=1拼80,°我们发现,任意三角形的内角和大约是180°。 通 所过有量直、 角折 三、 角拼 形, 的我 内们 角发和现 都, 等任 于意18三0。角形的内角和大约是180°。 所18有0°直x角2-三90角°形x2的=1内80角°和都等于180。 一锐个角三角形是的否内可角能和出等现于两18个0°直。角或两个钝角?为什么? 所求有∠1直,角∠2三的角度形数的。内角和都等于180。 9108°0°×x42÷-902°=1x820=°180° ∠通1过+∠量2、+∠折3+、∠拼4=,18我0们°发现,任意三角形的内角和大约是180°。

三角形内角和 课件

 三角形内角和 课件
人教版义务教育教科书四年级下册
三角形的内角和
数学文化
法国著名的数学家帕斯卡在12岁 的某一天正在拿着粉笔在地上画各 种图形,画着画着,他突然发现了 一个惊人的秘密,从此,图形的世界 更加流光溢彩,我们的探究之旅也 由此展开……
帕斯卡的验证过程
直角三角形内角和
360°÷ 2 = 180°
直角三角形内角和

600
锐角三角形
480
720
600+480+720=1800

380
钝角三角形
260
1160
1160+260+380=1800

3
1
2
3
21
平角:180°

1
22 3 3
平角:180°
1

180° 180°
180°×2-90°-90°=180°

180° 180°
180°×2-90°-90°=180°
45°
60°
45°
30°


所有直角三角形的内角和是180°
小组合作要求
1.请把三角形的三个角涂成不同的颜色,并 标出∠1 ∠2 ∠3。
2.想办法验证手中不同的三角形的内角和是多少。
小组汇报要求
1.汇报流程:
选了什么三角形 用什么方法验证 结论是什么
2.其他小组汇报后,如果同意请送出掌声; 如果不同意请举手发言。
结论:
所有三角形的内角和都是180 °
1.算出笑脸所遮盖角的度数。
70° 80° 30°

பைடு நூலகம்65°
25°
180 °— 80 °— 30 °=70 ° 180 °— 90 °— 25 °=65 °

《三角形的内角和 》PPT课件(共24张PPT)

《三角形的内角和 》PPT课件(共24张PPT)
600 拿出准备好的三角形,小组合作,动手验证:三角形的内角和是不是180度?
我有一个钝角,比你三个角都大,所以我的内角和才是最大的。
900 算一算,三角形的内角和是多少度呢?
一个三角形的三个内角度数分别是65°,35°,80°. 三角形内角和等于1800。
540
(1) 这个三角形的内角和是多少度?
抢答游戏:
(3)把这个小三角形再分成一 大一小两个三角形,这两个三角 形的内角和分别是多少度?
抢答游戏:
(4)把两个小三角形拼成一个 大三角形,这个大三角形的内角 和是多少度?
抢答游戏:
(5) 3个小三角形拼成一个更 大的三角形,它的内角和是多少 度?
判断(用手语表示)
√ 1.一个三角形的三个内角度数分别是65°,35°,80°.( )
2.三角形的内角和与三角形的大小无关。( ) √
× 3.一个直角三角形,一个内角是37°,另一个内角是48°。( )
4、一个三角形中不可能有2个直角。 ( )

∠1=40º

∠ 2=48º
3
∠ 3=92º

猜猜∠3有多少度?
你能求出等边三角形每个角的度数吗?
等边三角形
400 1800-700 -700
520
300
800
东东把一块三角形的玻璃打碎成三 片,现在他要到玻璃店去配一块形状完 全一样的玻璃,那么最省事的办法是带 ( )去。 为什么?
帕斯卡:法国的数学家、物理 学家,为人类创造了无数的奇
迹,早在300年前这位法国著名
的科学家就已经发现了:
任何三角形的内角和 都是180°
当时才12岁
460 拿出准备好的三角形,小组合作,动手验证:三角形的内角和是不是180度?

《三角形的内角和》标准课件(人教版)1

《三角形的内角和》标准课件(人教版)1
主动建构新的认知结构,了解获取知识的途径和技巧。 二、自主探究,得出结论
四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,
通过交流、比较、评价寻找解决问题的途径和策略。
学法:合作交流法、动手实践法、自主探究法
这节课我设计了以“猜想一验证一归纳一运用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。
在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最 后达成共识。 43 ° 小学数学人教版四年级下册第五单元 直角三角形的内角和是180° 。 =40°-25° 结论不重要,重要的是让学生体会得到结论的过程,学会用转化的思想来解决生活中的问题。 3、在探索发现的过程中,培养学生大胆猜想,细心验证的数学思维。 直角三角形的内角和是180° 。 结论 三角形的内角和是180度 三角形的内角和都是180°
(一)复习引入,引发猜想 三角形的内角和都是180°
三角形的内角和都是180°
(一)复习引入,引发猜想 39°
通过复习上节课三角形按角分可
以分为哪几类,从而引入学习新课 三角形的内角和都是180°
在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最
直角三角形的内角和是180° 。
两个大小一样的直角三角形
在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最
后达成共识。
数学讲究严谨性,为了得到准确的值,学生用拼、折等多种方法得出三角形内角和是180度,验证了自己的猜想

11.2.1三角形的内角和 公开课ppt课件

11.2.1三角形的内角和 公开课ppt课件
22
我不但三边之和比你长, 你的三边之和。是比我长,
而且三个内角之和也比 但三个内角之和并不比我
你大!

你同意谁的说法呢?为什么?
23
这节课你学到了什么?
P13 练习
24
(两直线平行,内错角相等)
∠B=∠2
(两直线平行,同位角相等)
∵∠1+∠2+∠ACB=180°
A
∴∠A+∠B+∠ACB=180° (等量代换) B
E
1 2
C
D
12
证法三 内错角+同旁内角
过A作AE∥BC,
∴∠B=∠BAE
(两直线平行,内错角相等)
∠EAB+∠BAC+∠C=180°
(两直线平行,同旁内角互补)
E
A
∴∠B+∠C+∠BAC=180°
(等量代换)
B
C
13
三角形内角和定理: 三角形的内角和等于1800. 即在△ABC中, ∠A +∠B +∠C=180 °
14
பைடு நூலகம்
15
例1、 如图:在△ABC中,∠BAC=40°, ∠B=75°,AD是△ABC的角平分线。 求∠ADB的度数?
在△ABD中,
A
∠ADB=180°-∠B-∠BAD,
19
例:
已知△ABC, ∠A +∠B= 90 °,求∠C的度数。
解:∵ ∠A+∠B+ ∠C=180 ° ∴ ∠C=180 °-( ∠A +∠B) =180 °- 90 ° = 90 °
20
例3
我的一个角是多少 度?
1800÷3=60°

新人教版小学数学四年级下册第五单元《三角形的内角和》

新人教版小学数学四年级下册第五单元《三角形的内角和》

3
三角形的内角和可能都是180度。
4
想一想
量角的方法不能确定三角形的内角和都是 180度,你们还有更好的方法吗?
5
拼角方法——撕拼
3
1
2
3
平角:1800
三角形的内角和是1800。
6
拼角方法——折拼
1 2 2
1
钝角三角形
1 1
2
2
锐角三角形
直角三角形
7
1
2
2
3
3
1
3
3
3
3
原来我们的内角 和都是180度。
23 2 3
1
4
1
4
∠1+∠2= 90° ∠3+∠4= 90° ∠1+∠2 + ∠3+∠4= 180°
10
算一算角的度数是多少?
25 °
140 °
15 °
50 °
40 °
180°-(25 ° +15° )=140 ° 180°-25 °-15°=140 ° 180°-(90°+ 40 °) =50 ° 180°- 90°- 40 ° =50 °
韶山镇泰小学
王武Leabharlann 兄弟之争不对。我有一个大 钝角,所以我的内 角和才最大!
我的三角形 最大,所以 我的内角和 最大!
我的三角形小, 那我的内角和 就小喽……
1
你们知道什么叫做三角形的内角?什么又叫做三角形的内角和?
2
1
3
2
每组成员测量其中一个三角形,组长 负责分配任务,并协助组员完成测量,同 时将测量结果记录在表格中。看看你发现 了什么?
——帕斯卡

四年级数学下册课件-5.3三角形的内角和-人教版(共17张PPT) (1)

四年级数学下册课件-5.3三角形的内角和-人教版(共17张PPT) (1)

1
4
3 = 2 = 70°
1= 4
2
3 = (360°-70°×2 )÷2
= 110°
三、分层练习,巩固提升
3.你们能用分割法求出五边形、六边形的内角和吗?
A
A
F
B
E
B
E
C
D
180°×3=540°
பைடு நூலகம்
C
D
180°×4=720°
注意从同一个顶点出发,分别与和它相对的顶点连起来。
四、全课总结,强化新知
谈谈这节课你有什么收获?
实验要求: 1.各小组选择一种方法进行实验; 2.小组成员要分工合作; 3.实验时不要大声讲话; 4.填好实验报告单。
二、合作交流,探索新知
(三)交流评价,归纳结论
学生上台展示汇报实验过程及结论。
测量法 剪拼法
二、合作交流,探索新知
(四)小组合作,创新方法
思考:有没有其他更好的方法来验 证四边形的内角和是360°呢?
谢谢
三角形的内角和
一、图片导入,激发兴趣
一、图片导入,激发兴趣
形 组这 成些 的图 呢案 ?主
要 由 什 么 图
四边形的内角和
二、合作交流,探索新知
(一)复习旧知,提出猜想
三角形的内角和是多少度?
180°
二、合作交流,探索新知
(一)复习旧知,提出猜想
我们已经学习了哪些四边形? 正方形、长方形、平行四边形、梯形等
那它们的内角和各是多少度呢?
二、合作交流,探索新知
(一)复习旧知,提出猜想
正方形和长方形的内角和
90°× 4 = 360°
二、合作交流,探索新知
(一)复习旧知,提出猜想

新人教版四年级数学下册三角形的内角和PPT课件

新人教版四年级数学下册三角形的内角和PPT课件

2021
13
2、在一个三角形中,∠1=140°,∠3=25°, 求∠2的度数。
∠2=180°-∠1- ∠3 =180°- 140°- 25° = 40°- 25° = 15°
2021
14
3、猜猜三角精灵内角的度数。
60°
Байду номын сангаас
42°
50°
2021
15
4、把三角形的一个内角截去,剩下图形 的内角和是多少度?
10
锐角三角形内角和
180° 180°
180°×2 -180°=180°
2021
11
钝角三角形内角和
180°
180°
180°×2-180°=180°
2021
12
练一练
1、看图,口算未知角的度数。

80° 30°
20°
40°?
180°- 80°- 30° = 100°- 30° = 70°
180°- (40°+ 20°) = 180°- 60° = 120°
法国著名的数学 家、物理学家。12岁 时发现“任意三角形 的内角和都是180º”。
2021
7
布莱士·帕斯卡 (1623—1662)
法国著名的数学 家、物理学家。12岁 时发现“任意三角形 的内角和都是180º”。
2021
8
帕斯卡的验证过程
2021
9
直角三角形内角和
360°÷ 2 = 180°
2021
2021
4
小组合作要求:
1、选择三角形。
2、用你们喜欢的方法验证,并进行小组交流,得 出结论。
3、准备汇报。(选了什么图形 用了哪些方法 验证 结论是什么)

人教版小学数学四年级下册第五单元三角形的内角和

人教版小学数学四年级下册第五单元三角形的内角和

人教版小学数学四年级下册第五单元三角形的内角和第四课时:三角形内角和教学内容义务教育课程标准试验教科书《数学》(人教版) 四年级下册第85页。

教学目标1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。

并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3. 使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备多媒体课件、学具。

教学过程一、激趣引入(一)认识三角形内角师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?生1:三角形是由三条线段围成的图形。

生2:三角形有三个角,……师:请看屏幕(课件演示三条线段围成三角形的过程)。

师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。

[设计意图:通过学生回顾已学知识对三角形有一个更为深刻的认识,特别是让学生认识什么是内角非常有必要,是对学生概念认识的培养。

](二)设疑,激发学生探究新知的心理师:请同学们任意画一个三角形,能做到吗?生:能。

师:请听要求,画一个有两个内角是直角的三角形,开始。

(设置矛盾,使学生在矛盾中去发现问题、探究问题。

)师:有谁画出来啦?生1:不能画。

生2:只能画两个直角。

生3:只能画长方形。

师(课件演示):是不是画成这个样子了?哦,只能画两个直角。

师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?生:想。

师:那就让我们一起来研究吧!(揭示矛盾,巧妙引入新知的探究)[设计意图:借助矛盾让学生明确三角形内角和的取值范围,为下面进一步研究打下基础。

]二、动手操作,探究新知(一)研究特殊三角形的内角和师:请看屏幕。

人教版四年级下册数学《三角形的内角和》课件(共15张PPT)

人教版四年级下册数学《三角形的内角和》课件(共15张PPT)

量一量

180°

请同学们每人再画一个三角形,量一量, 看看内角和是多少度。
给大家10分钟的时间,前后桌四人 为一个小组,小组内一起讨论讨论, 想出验证方法,待会请各小组代表 进行分享。
剪一剪,拼一拼
不为三角形内角和
剪一剪,拼一拼
3
1
2
3
平角:180°
3
1
2
3
1
2
3
平角:180°
剪一剪 拼一拼
3
平角:180°
折一折,拼一拼
1
1 22
33
平角:180°
折一折 拼一拼
1
1
2
2
3
3
平角:180°
1
1
2
2
3
3
平角:180°
一、测量法 二、剪拼法 三、折拼法
结论:三角形的内角和是180°。
①和②两个三角形的内角和各是多少度?
18①是多少度?
人教版小学数学四年级下册
三角形的内角和
授课人:
说一说:你知道三角形的哪些特性?
三个顶点 三条边 三个角(内角)
三角形的内角和:三角形的三个内角之和。
说一说:关于三角形的内角和,你们知道什么?
三角形的内角和是180°
①号三角形内角和是多少呢? 三角形无论什么大小、形状,内角和都是180°


②号三角形的内角和呢?
55° 35°
180°- 35°- 90°=55°
50° 65° 65°
30°
120° 30°
180°- 50°- 65°=65° 180°- 30°- 120°=30°
课堂 小结
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绿色圃中小学教育网
75° 35°

180°-75°-35°
=180°-(75°+35°) =180°-110° =70°
巩固练习 看图,求三角形中未知角的度数。
180o-75o-65o=40o 180o-(75o+65o)=40o
180o-125o-25o=30o 180o-(125o+25o)=30o
三角形的内角和
临潭县术布中心小学
执教者:张青平
任意画不同类型的三角形。 量一量、算一算三个内角的和是多少度。
测量三角形的角
1.观察下列三角形并分类。
2 2 1 3 1 3 3 2
1

( 直角三角形) ( 锐角三角形 ) (钝角三角形 ) 量一量每个三角形中三个角的度数,完成下表。
三角形类型 直角三角形

1800-700 -700 1800-700×2 700 700
一个等腰三角形的 风筝,它的一个底角是 700,它的顶角是多少 度?
(每组卡片中,哪三个角可以组成三角形?)
游戏:帮角找朋友
600
900
450 300
540 460 520 800
考考你:你知道下面的三角形各个 角的度数吗?
我有一个 锐角是40 度 180°÷3=60° (180°-96°) ÷2=42° 90°-40°=50°
我三边都相等
我是等腰三角 形,顶角是96 度
我是小判官:(下列说法对的打“√”,错的打“×”)
1、一个三角形最多有1个钝角(或1个直角),最少有两个 锐角。( √ )
2、钝角三角形有内角和大于锐角三角形的内角和。( × ) 3、把一个等腰三角形分成两个完全一样的小三角形,每个 三角形的内角和都是900。( ) ×
三角形一个外角与内角的关系
A
2
B
1
3
4
C
∠4是三角形ABC的一个外角, 因为∠4+∠3=1800,∠1+∠2+∠3=1800, 所以∠4=∠1+∠2.
在一个三角形中,已知∠1=1400,∠3=250, 求∠2的度数? 1800-1400-250 =400-250 =150
答:∠2的度数为150。
4、直角三角形的两个锐角和是900。(
√) √

5、任何一个三角形的内角和都是1800。(
这节课你有那些收获?
2
3
3
直角三角形
锐角三角形
1
1
3
3
3
3
1
长方形的分解验证
长方形的四个内角都是900,得到长方形的内角和 是3600,用对角线把长方形分成两个完全一样的 直角三角形,由长方形的内角和是3600,得到三角 形的内角和3600÷2=1800
一块三角尺的内角和是1800,用两 任何三角形的内角和 块完全一样的三角尺拼成一个三角形, 都是180°! 这个三角形的内角和是3600吗?
∠1
∠2
∠3
内角和
锐角三角形
钝角三角形
三角形的内角和是1800。

3
三角形的内角 0 和是180
1
2
3
∠1+∠2+∠3 = 平角 =180°
三角形的内角和
3 平角:1800
平角:1800
绿色圃中小学教育网
平角:1800
1
2
2
钝角三角形
1 1
2 2 2
相关文档
最新文档