圆柱和圆锥的体积测试题.docx
圆柱圆锥练习题和答案
圆柱圆锥练习题和答案一、选择题1. 圆柱的体积公式是()A. V = πr²hB. V = πr² + hC. V = πr² - hD. V = πrh2. 圆锥的体积公式是()A. V = 1/3πr²hB. V = 3πr²hC. V = πr²h/3D. V = πr²h3. 圆柱的表面积公式是()A. S = 2πrh + 2πr²B. S = πrh + πr²C. S = 2πrhD. S = πr²4. 圆锥的侧面展开图是()A. 圆形B. 长方形C. 扇形D. 三角形5. 圆柱和圆锥的底面都是()A. 圆形B. 长方形C. 扇形D. 三角形二、填空题6. 一个圆柱的底面半径为3厘米,高为5厘米,其体积是_________立方厘米。
7. 一个圆锥的底面半径为4厘米,高为9厘米,其体积是_________立方厘米。
8. 一个圆柱的底面周长为12.56厘米,高为4厘米,其表面积是_________平方厘米。
9. 一个圆锥的底面半径为2厘米,高为6厘米,其表面积是_________平方厘米。
三、计算题10. 一个圆柱形容器的底面直径为20厘米,高为30厘米,求其容积。
11. 一个圆锥形沙堆,底面半径为5米,高为3米,如果将沙堆铺在长10米,宽6米的长方形地面上,求铺成的沙堆高度。
四、解答题12. 一个圆柱形油桶,底面半径为0.8米,高为1.5米,求油桶的表面积和体积。
13. 一个圆锥形漏斗,底面半径为0.6米,高为0.9米,求漏斗的体积。
答案:1. A2. A3. A4. C5. A6. 141.37. 75.368. 150.729. 37.6810. 圆柱形容器的容积为3.14 × (20/2)² × 30 = 3000π 立方厘米。
11. 圆锥形沙堆的体积为1/3 × 3.14 × 5² × 3 = 78.5π 立方米。
人教版六年级数学下册第三单元《圆柱与圆锥》测试卷(含答案)
人教版六年级数学下册 第三单元《圆柱与圆锥》测试卷(全卷共6页,满分100分,80分钟完成)题号 一 二 三 四 五 总分 分数一、认真填一填。
(每空2分,共28分)1.一个圆柱的底面半径为5厘米,侧面展开后正好是一个正方形,圆柱的体积是( )立方厘米。
2.把一个高为5厘米的圆柱沿着底面直径往下切,表面积增加40平方厘米,这个圆柱的表面积是( )平方厘米。
3.如右图所示,将底面直径是8cm 的圆柱若干等分,拼成一个近似的长方体,表面积增加了80cm 2,拼成的长方体的体积是( ) cm 3。
4.一根圆柱形木料底面直径20厘米,长1.8米。
把它截成3段,使每一段都是圆柱形,截开后表面积增加了( )平方厘米。
5.爷爷有一只玻璃茶杯(如图),为了防止烫手,妈妈制作了这个杯子的布套,布套的高是茶杯的12,做这个布套至少要用布( )平方厘米。
(结果保留整数)6.一个长方体水池,长15米,宽8米,深1.57米,池底有根内径为2分米的出水管.放水时,水流速度平均每秒2米.放完池中的水需要( )分钟。
7.把长2.4米的圆柱形钢材按1∶2∶3截成三段,表面积比原来增加56平方厘米,这三 段圆钢材中最长的一段比最短的一段体积多( )立方厘米。
8.一个圆柱形状的容器装满水(如右图)。
将一个底面半径为0.5dm,高为2.4dm的圆柱形状的石柱竖直放入容器中(石柱的底面与容器完全接触),容器中的水溢出()dm3。
9.一个药瓶,它的瓶身呈圆柱形(不包括瓶颈),如右图所示,瓶内药水的体积为25.2cm3。
瓶子正放时,瓶内药水液面高7cm,瓶子倒放时,空余部分高2cm。
这个瓶子的容积是()cm3。
10.一个等腰直角三角形的直角边为6cm,以一条直角边为轴旋转一周,得到一个圆锥,则这个圆锥的高、底面直径和体积分别是()cm、()cm、()立方厘米。
11.一个圆柱体木块,削去38立方分米后,正好削成一个最大的圆锥,这个木块原来的体积是()。
《圆锥的体积》练习题
圆锥的体积练习题姓名:学号:1.填一填。
(1)准备等底等高的圆柱形容器和圆锥形容器各一个,将圆锥形容器装满沙子,再倒入圆柱形容器,()次能倒满。
或将圆柱形容器装满水,再倒入圆锥形容器,能将圆锥形容器倒满()次。
因为圆柱的体积=()×(),所以圆锥的体积=(),用字母表示圆锥的体积计算公式是()。
(2)一个圆柱和一个圆锥等底等高,如果圆锥的体积是9dm3,那么圆柱的体积是();如果圆柱的体积是9dm3,那么圆锥的体积是()。
(3)下图中,圆锥()的体积与圆柱的体积相等。
(4)一个圆锥的底面直径和高都是6cm,那么这个圆锥的体积是()cm3。
(5)一个圆锥的体积是15.7m3,底面积是3.14m2,那么它的高是()m。
(6)将24个圆锥形铁块熔化后,可以重新铸成和原来圆锥形铁块等底等高的圆柱形铁块()个。
(损耗忽略不计)(7)圆柱底面半径是圆锥底面半径的3倍,它们的高相等,那么圆柱体积是圆锥体积的()倍。
(8)一个圆锥形沙堆,底面积是12m2,高是1.5m,用这堆沙铺在长8m、宽5m的长方体跳远坑中,厚()m。
(9)一个圆锥的底面半径是3cm,高是6cm,它的体积是()cm³;与这个圆锥等底等高的圆柱的体积是()cm³。
(10)一个圆锥的底面周长是18.84dm,高是5dm,它的体积是()dm³。
(11)把一个体积为94.2cm³的圆柱木料削成个最大的圆锥,这个圆锥的体积是()cm³,削去部分的体积是()cm³。
(12)一个圆柱与一个圆锥的底面积相等,体积也相等。
若圆锥的高是1.8dm,则圆柱的高是()dm;若圆柱的高是1.8dm,则圆锥的高是()dm。
2.有一堆圆锥形的沙子,底面直径是12m,高是5m。
(1)这堆沙子有多少立方米?(2)如果把这堆沙子以3cm的厚度铺在宽10m的路上,能铺多长的路?3.计算下面圆锥的体积。
4.一个圆锥形路障警示标志如下图,这个路障标志的体积约是多少立方厘米?5.把一个体积是282.6cm³的铁块熔铸成一个底面半径为6cm的圆锥形机器零件,圆锥形零件的高是多少厘米?6.如图,先将甲容器注满水,再将甲容器中的水倒入空的乙容器中,这时乙容器中的水面有多高?7.把一个横截面是正方形的长方体木块削成个最大的圆锥。
第五周 圆柱和圆锥的体积(含试题和答案)
【同步教育信息】一、本周主要内容圆柱和圆锥的体积二、本周学习目标1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式正确计算圆柱体积或圆柱形容器的容积以及解决简单的实际问题。
2、通过转化的思想,在实验的基础上使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积以及解决简单的实际问题。
3、通过圆柱、圆锥体积计算公式的推导、运用的过程,培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力,并体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
三、考点分析1、圆柱所占空间的大小是圆柱的体积,圆柱的体积(容积) = 底面积 × 高,用含有字母的式子表示是:V = sh 或者V = лr ²h 。
2、圆锥所占空间的大小是圆锥的体积,圆锥的体积是与它等底等高的圆柱体积的三分之一。
即V = 31sh 或者V = 31лr ²h 。
【典型例题】例1、(计算圆柱的体积)一个圆柱,底面周长9.42分米,高20厘米。
求它的体积?分析与解:求圆柱的体积,一般根据V = sh 或者 V = лr ²h ,题中没有给出底面积,又没有给出底面半径,所以要先求出底面半径,同时题目中单位名称不统一,要注意化单位,可以统一为分米,也可以统一为厘米。
20厘米 = 2分米底面半径:9.42 ÷ 3.14 ÷ 2 = 1.5(分米)体积: 3.14 × 1.5²× 2 = 14.13(立方分米)答:它的体积是14.13立方分米。
点评:会使用圆柱体积计算公式是一个基本的要求。
但知道圆柱体积计算公式的推导过程也非常重要。
体积计算公式的推导过程和之前的圆柱的侧面积计算公式推导过程一样,都用了转化的数学思想。
例2、(计算圆柱的容积)一个圆柱形的粮囤,从里面量得底面周长是9.42米,高是2米,每立方米稻谷约重545千克,这个粮囤约装稻谷多少千克?(得数保留整千克数)。
圆柱和圆锥的体积练习题
二、解决问题。 1.一个圆柱的底面直径是 6 厘米,高是
米, 10 厘米,体积是多少?
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
人教版六年级数学下册圆柱与圆锥体积专项练习题精选
人教版六年级数学下册圆柱与圆锥体积专项练习题精选1.把圆柱的侧面沿着高剪开,得到一个矩形,这个矩形的长等于圆柱底面的周长,宽等于圆柱的高,所以圆柱的侧面积等于底面周长乘以高。
2.单位换算:1升=1000毫升=1立方分米=1000立方厘米1平方米=平方分米,1公顷=平方米415平方厘米=41.5平方分米,4.5立方米=4500立方分米2.4立方分米=2400毫升,4070立方分米=4.07立方米3立方分米40立方厘米=3040立方厘米325立方米=立方分米,5380毫升=5.38升380毫升3.基础练:1.将4个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是20平方分米,体积是4立方分米。
2.一个圆柱底面半径2分米,侧面积是113.04平方分米,这个圆柱体的高是9分米。
4.把一根圆柱形木料截成3段,表面积增加了45.12平方厘米,这根木料的底面积是15.04平方厘米。
5.一个圆柱体的底面半径为r,侧面展开图形是一个正方形。
圆柱的高是r根2.6.一个圆柱的底面周长是12.56厘米,高是6厘米,那么底面半径是2厘米,底面积是4平方厘米,侧面积是75.36平方厘米,体积是50.24立方厘米。
7.一个圆柱和一个圆锥的底面积相等,高也相等,那么圆柱的体积是圆锥的3倍,圆柱的体积的2/3就等于圆锥的体积。
8.一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是4厘米。
9.等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是32立方米,圆锥的体积是16立方米。
10.一个体积为60立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的体积是40立方厘米。
11.圆柱的底面半径是3厘米,体积是6.28立方厘米,这个圆柱的高是2厘米。
12.一个圆柱体高4分米,体积是40立方分米,比与它等底的圆锥体的体积多10立方分米。
这个圆锥体的高是6分米。
13.把一段圆钢切削成一个最大的圆锥体,切削掉的部分重8千克,这段圆钢重16千克。
(完整版)圆柱和圆锥单元练习题
《圆柱和圆锥单元测试》班级:姓名:一、填空。
1. 一个圆柱底面半径是1厘米,高是2.5厘米,它的侧面积是( )平方厘米。
2. 一个圆柱和一个圆锥的底面积和高分别相等,已知圆柱的体积是6立方厘米,那么圆锥的体积是()立方厘米.3. 一个圆柱的体积是60立方米,比与它等底等高的圆锥的体积多()立方米。
4。
一个圆柱底面周长是6。
28分米,高是1。
5分米,它的侧面积是()平方分米,体积是( )立方分米.5. 一根长2米的圆木,截成两段后,表面积增加0。
048平方米,这根圆木原来的体积是()立方米。
6。
一个体积为60立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的体积是()立方厘米。
7。
有一个高为6.28分米的圆柱体的机件,它的侧面积展开正好是一个正方形,这个机件的体积是().8。
把一个棱长6分米的正方体木块,削成一个最大的圆柱体,这个圆柱的体积是( )立方分米。
9. 两个等高的圆柱,底面直径的比是1:2,则它们的体积比是( )。
10。
圆柱的底面半径扩大2倍,高扩大3倍,它的侧面积扩大()倍,体积扩大( )倍。
11。
一个圆柱的侧面展开正好是个正方形,底面直径8厘米。
这个圆柱的高是()厘米,侧面积是()平方厘米,体积是()立方厘米。
二、判断题。
1。
把一张长62。
8厘米、宽31。
4厘米的长方形硬纸片,卷成一个圆柱形纸筒(粘贴处宽度不计),它的底面半径可能是10厘米,也可能是5厘米.()2。
把一个圆柱的侧面沿着高剪开,得到一个正方形,那么圆柱的底面周长和高一定相等。
()3。
一个圆锥体高不变,底面半径扩大到原来的6倍,这个圆锥的体积也扩大到原来的6倍。
()4. 一个正方体和一个圆锥体的底面积和高都相等,这个正方体的体积是圆锥体积的3倍。
()三、解决问题。
1.一个圆柱形的仓库,直径10米。
如果把距离地面1米的部分全部刷上防水涂料,要粉刷的面积是多少?2.两个底面积相等的圆柱,一个圆柱的高是12分米,体积为81立方分米,另一个圆柱的高为4分米,体积是多少?3。
六年级数学下册圆柱圆锥的体积测试题
六年级数学下册圆柱圆锥的体积测试题(苏教版)第二单元圆柱、圆锥的体积以及它们之间的关系A:基础题一、填空题1、一根长20厘米的圆钢,分成一样长的两段,表面积增加20平方厘米,原钢的体积是()立方厘米。
2、圆柱的底面半径扩大2倍,高扩大3倍,侧面积扩大()倍,体积扩大()倍。
3、甲圆柱底面周长是乙圆柱的2倍,乙圆柱的高是甲圆柱的1/3,乙圆柱的体积是甲圆柱的()。
4、把一个底面是正方形的长方体削成一个最大的圆柱,圆柱的体积是长方体的()%。
5、一个圆锥的体积是16立方分米,如果搞不变,底面半径缩小到原来的1/3,这是圆锥的体积是()立方分米。
二、解决问题1、有一个圆锥形的小麦堆,底面周长是18.84米,高1.5米,把这些小麦全部装入一个底面直径是3米的圆柱粮囤,结果最上面的小麦离囤口还有0.5米。
求这个粮囤的高。
2、一个圆锥体钢坯,体积是18.84立方厘米,高是4.5厘米,把2个这样的钢坯改铸成一个圆柱形钢坯。
如果底面积不变,改铸后的圆柱形钢坯的高应是多少厘米。
3、有一块立方体木料棱长总和是72厘米,把这块木料削成一个最大的圆锥。
求:削去部分的体积占原木料体积的百分之几。
B:巩固题1、如图所示,一个三角形ABC,线段AB长15厘米,线段CD是这个三角形的高,CD 长4厘米,如果以AB为轴,旋转一周得到一个立体图形。
求:这个立体图形的体积。
2、如下图,是一个棱长是4分米的正方体零件,它的上、下、左、右面上各有一个半径为2厘米的圆孔,孔深为1分米。
这个零件的表面积是多少?体积是多少?3、如图,下面的圆锥容器装有3升水,水面的高度正好是圆锥高度的一半,则这个容器还能装水多少升?C:冲刺题1、一个酒瓶里面深30厘米,底面直径是8厘米,瓶里有酒深12厘米,把酒瓶塞紧后倒置,这时酒深20厘米。
你能算出酒瓶的容积是多少毫升吗?2、两个相同的圆锥容器中各装一些水,使水深都是圆锥高的1/3,那么甲乙两个容器中哪一个水多,多多少倍。
2015年小学六年级数学寒假作业:圆柱和圆锥的体积试题及答案
2015年小学六年级数学寒假作业:圆柱和圆锥的体积试题及答案一、圆柱体积1、求下面各圆柱的体积。
(1)底面积0.6平方米,高0.5米 0.6 × 0.5 = 0.3(立方米)(2)底面半径是3厘米,高是5厘米。
3.14 ×3 ²× 5 = 141.3(立方厘米)(3)底面直径是8米,高是10米。
3.14 ×(8÷2)²×10 = 502.4(立方米)(4)底面周长是25.12分米,高是2分米。
3.14 ×(25.12÷3.14÷2)²× 2 = 100.48(立方分米)2、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7。
第一个圆柱的体积是24立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米?底面积相等的两个圆柱,第一个圆柱的高是第二个圆柱的4/7,第一个圆柱的体积也就是是第二个圆柱的4/7。
24 ÷ 4/7 – 24 = 18(立方厘米)答:第二个圆柱的的体积比第一个圆柱多18立方厘米。
3、在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?3.14 ×(0.8÷2)²× 2 × 60 = 60.288(立方米)答:那么1分钟流过的水有60.288立方米。
4、牙膏出口处直径为5毫米,小红每次刷牙都挤出1厘米长的牙膏。
这支牙膏可用36次。
该品牌牙膏推出的新包装只是将出口处直径改为6毫米,小红还是按习惯每次挤出1厘米长的牙膏。
这样,这一支牙膏只能用多少次?牙膏体积:1厘米 = 10毫米3.14 ×(5÷2)²× 10 × 36 = 7065(立方毫米)7065 ÷ [3.14 ×(6÷2)²× 10] = 25(次)答:这样,这一支牙膏只能用25次。
圆锥与圆柱体积复习
【典型例题】【例1】 如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?分析与解:本题的关键是要找出容器上半部分的体积与下半部分的关系。
设圆锥容器的底面积半径为r ,则水面半径为2r 。
容器的容积为213r h π,容器中水的体积为2211()()32224r h r h ππ=。
解:22118324r h r h ππ÷= 这表明容器可以装8份5升水,已经装了1份,还能装水5×(8-1)=35(升)。
【例2】 比较甲、乙两只容器中,哪一只容器盛的水多,多的是少的几倍?(单位:厘米)(1)容器如图1所示;(2)甲、乙两容器相同(如图2),甲容器中水的高度是锥高的13,乙容器中水的高度是圆锥高的23。
分析与解(1)要想知道甲、乙两只容器哪一只盛的水多,我们只需依据条件分别计算一下甲、乙两只容器的容积各是多少,即可做出比较。
通过计算可知,乙容器装的水多,乙容器是甲容器容积的(4000π÷2000π=) 2倍。
(2)我们先分别将两容器内水的体积进行计算。
设圆锥的底面半径为r,高为h,则甲容器及乙容器中的水面半径均为23r,甲容器中无水部分椎体高位23h,而乙容器中有水部分椎体的高为23h,分别用V 甲、V乙表示两容器中水的体积,则有:222112219=-=333381V r h r h r hπππ甲()221228==33381V r h r hππ乙()22198==8181V V r h r hππ甲乙19:():()8由此可知,甲容器中的水多,甲容器中的水是乙容器中的水的198倍。
【例3】将一个棱长是20厘米的正方体,旋成一个圆柱体,并且使圆柱体的体积最大,求此时旋去的那部分体积。
分析与解要想知道旋去的那部分体积,我们应首先认识清楚,怎样才能使旋成的圆柱体体积最大?通过分析可以发现,当我们所旋成的圆柱体的底面直径和高均为20厘米时,圆柱的体积最大.即如图3去旋.此时,我们只需计算出正方体的体积及所得到的圆柱体的体积,其差就是所旋去部分的体积。
(必考题)小学数学六年级下册第三单元圆柱与圆锥测试题(有答案解析)(1)
(必考题)小学数学六年级下册第三单元圆柱与圆锥测试题(有答案解析)(1)一、选择题1.一个长方体木块,长8分米,宽6分米,高7分米,把它削成一个最大的圆柱,求这个圆柱体积的算式是()。
A. 3.14×()2×7B. 3.14×()2×8C. 3.14×()2×7D. 3.14×()2×62.把一个圆柱的底面半径扩大2倍,高也扩大2倍,这时()A. 体积扩大2倍B. 体积扩大4倍C. 体积扩大6倍D. 体积扩大8倍3.一个底面积是20cm2的圆柱,斜着截去了一段后,剩下的图形如图.截后剩下的图形的体积是()cm3.A. 140B. 180C. 220D. 3604.如图是一个直角三角形,两条直角边分别是6cm和2cm,以较长边为轴,旋转一周所形成的立体图形的体积是()立方厘米.A. 25.12B. 12.56C. 75.365.下面图形以虚线为轴快速旋转一周,可以形成圆柱体的是()。
A. B. C. D.6.两个圆柱的底面积相等,高之比是2:3 ,则体积之比是()A. 2:3B. 4:9C. 8:27D. 4:6 7.把一个棱长是4分米的正方体木块削成一个最大的圆柱,体积是()立方分米。
A. 50.24B. 100.48C. 648.一根圆柱形木料长 1.5m,把它截成3个大小完全一样的小圆柱,表面积增加了37.68dm2,这根木料的横截面积是()dm2。
A. 12.56B. 9.42C. 6.289.用一根小棒粘住长方形一条边,旋转一周,这个长方形转动后产生的图形是()A. 三角形B. 圆形C. 圆柱10.将圆柱的侧面展开成一个平行四边形与展开成一个长方形比()。
A. 面积小一些,周长大一些B. 面积相等,周长大一些C. 面积相等,周长小一些11.圆柱形通风管的底面周长是31.4厘米,高2分米,制作这样一节通风管需()铁皮。
《圆柱与圆锥》质量检测(含答案)
《圆柱与圆锥》质量检测(含答案)一、填空题。
1.下图是一块长方形铁皮(每个小方格的边长是1dm),剪下图中的阴影部分可以围成一个圆柱。
围成的这个圆柱的表面积是()dm²,体积是()dm³。
2.一个圆柱,它的底面直径是4cm,高是6cm,这个圆柱的体积是()cm³,与它等底等高的圆锥的体积是()cm³。
3.一个圆锥的底面直径与高相等,它的底面周长是9.42dm。
这个圆锥的体积是()dm³。
4.两个底面积相等的圆柱,一个高是4.5cm,体积是81cm³;另一个高是3cm,体积是()cm³。
5.把一个底面半径是2cm,高是1.5cm的圆柱形钢铁,铸成与它底面积相等的圆锥形钢锭。
这个圆锥形钢锭的体积是()cm³,高是()cm。
6.一根长4m、底面直径为20dm的圆柱形木料,平均截成5段,表面积增加了()dm²,每段木料的体积是()dm³。
7.如图,把直角三角形以一条直角边为轴快速旋转一周,得到的圆锥体积最大是()cm³。
8.已知图中的圆柱形和圆锥形容器的底面积和高都相等(如图),张老师把2L 水倒入这两个容器里,刚好都倒满。
圆柱形容器的容积是()L。
9.一根自来水水管的内直径是2cm,水管内水的流速是每秒8cm。
一位同学去洗手,走时忘记关掉水龙头,5分会浪费()L的水。
10.我们在研究圆柱的体积公式时,是将一个圆柱转化成长方体得出的。
如果将转化得到的长方体翻转一下摆放(如图)。
观察上图,我们发现翻转后长方体的底面积等于圆柱的(),长方体的高等于圆柱的();如果这个圆柱的侧面积是18.84dm²,底面直径是6dm,它的体积是()dm³。
二、判断题1.两个圆柱的侧面积相等,它们的表面积也一定相等。
()2.圆柱有无数条高,而圆锥只有一条高。
()3.一个圆柱的侧面展开图是一个正方形,它的高定是底面直径的π倍。
圆柱、圆锥表面积与体积练习题
圆柱、圆锥的表面积与的体积练习题2、计算下面图形的表面积和体积。
(单位:厘米)803、一个圆柱形奶粉盒的谋面半径是5厘米,高是20厘米,它的容积是多少立方厘米?4、把一块棱长12分米的正方体木料加工成一个体积最大的圆柱体,这个圆柱体的体积是多少?5、计算下面各圆柱体的体积。
A 、底面积是1.25平方米,高3米。
B 、底面直径和高都是8分米。
6、一个圆柱形的油桶,从里面量底面半径直径是4分米,高3分米,做这个油桶至少要用多少平方分米的铁皮?如果1升柴油重0.82千克,这个油桶能装多少千克的柴油?(得数保留两位小数)7、一个圆柱形水池的容积是43.96立方米,池底直径4米,池深多少米?8、一口周长是6.28米的圆柱形水井,它的深是10米,平时蓄水深度是井深的0.8倍,这口井平时的水量是多少立方米?9、一个长8分米,宽6分米,高4分米的长方体与一个圆柱体的体积相等,高相等,这个圆柱的底面积是多少?10、一段圆柱形钢材,长50厘米,横截面半径是4厘米,如果每立方厘米钢是7.9克,这段钢材的重量是多少千克?(得数保留一位小数)11、求下面图形的表面积和体积(单位:分米)12、有一段底面是环形的钢管,外圆直径是40厘米,内圆直径是20厘米,这根钢圆柱的体积练习二1、一个圆柱的底面半径是6厘米,高是2分米,求这个圆柱的体积。
2、小刚有一个圆柱形的水杯,水杯的底面半径是5厘米,高是10厘米,有资料显示:每人每天的正常饮水量大约是1升,小刚一天要喝几杯水?3、一个圆柱形水桶,底面直径和高都是40厘米,用这个水桶容积的85%装水,每升水重1千克,桶中的水大约有多少千克?4、一个底面半径是10米的圆柱形蓄水池,能蓄水2512立方米,若再挖深2米,可蓄水多少立方米?5、一个圆柱形油桶,内底面直径是40厘米,高是50厘米,它的容积是多少升?如果1升柴油重0.85千克,这具油桶可装柴油多少千克?(得数保留整千克)6、一个圆柱形玻璃杯底面半径是10厘米,里面装不水,水的高度是12厘米,把一小块铁块放进杯中,水上升到15厘米,这块铁块重多少克?(每立方厘米铁重7.8克)7、下图是一个长15厘米,宽6厘米、高15个底面半径为5厘米的圆柱形空洞,求这个零件的体积。
圆柱圆锥单元测试3套试卷
圆柱圆锥单元测试3套试卷圆柱和圆锥1、一个底面半径为3厘米,高为2厘米的圆柱,底面周长是6π厘米,底面积是9π平方厘米,侧面积是12π平方厘米,表面积是15π平方厘米,体积是18π立方厘米。
与它等底等高的圆锥的体积是6π立方厘米。
2、一个侧面展开为长方形的圆柱,长方形的长为9.42厘米,宽为3厘米,侧面积是28.26平方厘米,表面积是84.78平方厘米,体积是28.26π立方厘米。
将它削成一个最大的圆锥体,应削去7.07π立方厘米。
3、一个圆柱和一个圆锥等底等高,圆锥的体积比圆柱的体积少0.8立方分米,圆锥的体积是1.2立方分米,圆柱的体积是2立方分米。
4、一个圆柱和圆锥等底等高,它们的体积一共60立方厘米,圆柱的体积是40立方厘米,圆锥的体积是20立方厘米。
5、将一根长5米的圆柱形木料锯成4段,表面积增加60平方分米,这根木料的体积是V立方米。
6、一个圆柱体和一个圆锥体的底面积和体积都相等,圆柱的高8厘米,圆锥的高是16厘米。
7、一个圆柱和圆锥等底等高,圆柱体积比圆锥体积多30立方厘米。
圆柱的体积是45立方厘米,圆锥的体积是15立方厘米。
8、现将棱长为6分米的正方体木块,削成一个最大的锥体,这个圆锥的体积是12π/5立方分米,一共削去72π/5立方分米的木料。
9、将一张长12.56厘米,宽9.42厘米的长方形纸卷成一个圆柱体,圆柱体的体积是112.56π/4立方厘米。
10、把一根圆柱形木料截成3段,表面积增加了25.12平方厘米,这根木料的底面积是31.4平方厘米。
11、一个圆锥体的底面半径是6厘米,高是1米,体积是18π立方厘米。
12、等底等高的圆柱的体积比圆锥的体积多100%,圆锥的体积比圆柱的体积少50%。
13、把一个圆柱体钢坯削成一个最大的圆锥体,要削去1.8立方厘米,未削前圆柱的体积是6π立方厘米。
14、一个圆柱体的侧面展开后,正好得到一个边长25.12厘米的正方形,圆柱体的高是10厘米。
圆柱与圆锥体积经典练习题
1.一个圆柱和一个圆锥等底等高,如果圆柱比圆锥的体积多42dm3,则圆柱的体积是______,圆锥的体积是______.
2.一个圆柱和一个圆锥等底等高,它们体积的和是44dm3,圆柱的体积是______dm3,圆锥的体积是______dm3。
3.一个圆柱与一个圆锥的体积和高都相等.已知圆锥和圆柱的底面之比是______.
4.一个圆锥和一个圆柱等高等体积,已知圆柱的底面积是12平方米,圆锥的底面积是______平方米.
5.一个圆柱与一个圆锥的体积相等,它们的底面积都是12.56平方分米.已知圆柱的高是4分米,圆锥的高是______分米.
6.把一个底面半径是3厘米、高18厘米的圆锥形橡皮泥捏成一个底面与圆锥底面相等的圆柱.圆柱的高是______厘米.
7.有一个下面是圆柱体、上面是圆锥体的容器,圆柱的高是10厘米,圆锥的高是6厘米,容器内水深7厘米,将这个容器倒过来放时,从圆锥的尖到液面的高是多少?
8.把一个底面积是3.14平方分米,高9分米的圆柱体铁块熔铸成一个底面积是18.84平方分米的圆锥体,圆锥的高是多少分米?
9.一个圆柱体容器的底面直径是16厘米,容器中盛有10厘米深的水,现在把一个圆锥形铁块浸没到水中,水面上升了3厘米,圆锥形铁块的体积是多少立方厘米?
10.一个圆柱与圆锥体的体积相等,圆柱的底面积是圆锥体的底面积的3倍,圆锥体的高与圆柱的高的比为______.。
(完整版)圆柱表面积与圆柱圆锥体积实际应用题精选及答案
5、一个圆柱形蓄水池,从里面量底面直径是20米,深为5米,(1)要在这个蓄水池的四周和底面抹上水泥,抹水泥部分的面积是多少平方米?(2)这个蓄水池最多可以蓄水多少吨?(每立方米水重1吨)7、一根长4米,底面直径4厘米的圆柱形钢材,把它锯成同样长的3段,表面积比原来增加了多少平方厘米?10、有两个等底的圆柱,第一个圆柱的高是第二个圆柱高的4/5,第一个圆柱的体积是3.2立方厘米,第二个圆柱比第一个圆柱多多少立方厘米?11、一个零件,底面直径5厘米,高10厘米,沿着它的一条底面直径往下切,切成相同大小的两份,(1)总面积比原来增加了多少平方厘米?(2)每半个零件的表面积是多少?体积是多少?13、把一个高为5厘米的圆柱从直径处沿高剖成两上半圆柱,这两个半圆柱的表面积比原来增加80平方厘米,求原来圆柱的表面积。
16、把一个圆柱底面平均分成若干个扇形,沿高切开拼成一个近似长方体,这个长方体的底周长是41.4厘米,高是5厘米,求它的体积。
20、一个长方体木块,长10厘米宽8厘米高4厘米,把它削成一个圆柱,求削成圆柱体积最大是多少?21、把一个长2米的圆柱木料戴成4段,表面积增加了56.52平方厘米,求原来木料的体积22、一个圆柱高为15厘米,把它的高增加2厘米后表面积增加25.12平方厘米,求原来圆柱的体积。
23、一个圆柱高20厘米,如果把高减少3厘米,它的表面积就减少31.68平方厘米,求原来圆柱的体积。
26、甲乙两个圆柱,底半径比是3:2,相等,它们的体积比是多少?五、综合练习:1、在一只底面半径为10厘米的圆柱形玻璃容器中,水深8厘米,要在容器中放入长和宽都是8厘米,高15厘米的一块铁块。
(1)如果把铁块横放在水中水面上升多少厘米?(2)如果把铁块竖放在水中,水面上升多少厘米?2、一个圆柱体的高和底面周长相等。
如果高缩短2厘米,表面积就减少12.56平方厘米,求这个圆柱的表面积。
3、一个长方形的长是5厘米,宽是2厘米,以其中的一条边为轴旋转一周,可以得到一个圆柱,圆柱体积最大是多少立方厘米?4、一根圆柱形木材长2米,把它截成相等的4段后,表面积增加了18.84平方厘米。
圆柱圆锥的体积练习题
圆柱圆锥的体积练习题圆柱和圆锥是几何学中常见的几何体形状,计算其体积是应用数学中的基本问题之一。
本文将提供几个圆柱和圆锥的体积计算练习题,以帮助读者进一步熟悉并掌握这一概念。
练习题一:计算圆柱的体积一个圆柱的底面半径为4cm,高为10cm。
请计算该圆柱的体积。
解答:圆柱的体积公式为V = πr²h,其中V表示体积,π是一个常数(取近似值3.14),r表示底面半径,h表示高度。
代入给定的数值,我们可以得到V = 3.14 × 4² × 10 = 502.4cm³。
练习题二:计算圆锥的体积一个圆锥的底面半径为6cm,高为12cm。
请计算该圆锥的体积。
解答:圆锥的体积公式也为V = 1/3πr²h,代入给定的数值,可得V = 1/3 × 3.14 × 6² × 12 = 452.16cm³。
练习题三:圆柱与圆锥相等体积已知一个圆柱的底面半径为8cm,高为20cm。
我们想要找到一个圆锥,使其与该圆柱具有相等的体积。
请计算这个等体积圆锥的底面半径和高。
解答:设圆锥的底面半径为r,高为h。
根据题意,圆柱和圆锥的体积相等,即πr²h = 3.14 × 8² × 20。
化简上述等式,得到r²h = 8² × 20,r²h = 1280。
我们还需要另一个方程来解决未知数r和h。
观察圆锥体积公式,我们可以发现圆锥的体积与底面半径的平方和高的乘积有关,即V = 1/3πr²h。
这可以被改写为h = 3V / (πr²)。
代入已知的体积V = 3.14 × 8² × 20,我们可以计算出h = 3 × (3.14 ×8² × 20) / (πr²)。
六年级下册数学圆柱圆锥体积试题精选
有一个圆柱体,它的底面积与侧面积正好相等,如果这个圆柱 的底面积不变,高增加3厘米,它的表面积就增加1130.4平方厘米, 求原来圆柱体的表面积。
小强为了测一个圆锥形铁块的体积,他将这个铁块浸没在一个 底面直径是16厘米,水深10厘米的圆柱形容器中,发现水面上升 了,此时水深13厘米。你知道这个铁块的体积吗?
解题的关键在于求出底周长,如图:高缩短2厘米, 表面积就减少12.56平方厘米,用右图表示,从图中不难 看出阴影部分就是圆柱体表面积减少部分。
如图,将三角形以斜边为轴旋转一 周,计算所得立体图形的体积。 (单位:厘米)
一只装有水的长方体玻璃杯,底面积是60平方厘米, 水深8厘米。现将一个底面积是12平方厘米的圆柱体铁块竖 放在水中后,仍有一部分铁块露在水面上,现在水深多少 厘米? 如图,一块长方形铁皮,利用图中的阴影部分刚好能做一 个圆柱形油桶(接头处不计),求这个油桶的容积? 一个圆柱的表面积是150.72平方 厘米,底面半径是2厘米,求它 的体积。 一个圆柱的侧面积是942平方厘米, 体积是2355立方厘米,它的底面积 是多少平方厘米?
一个圆柱体水桶,底面半径为20厘米,里面盛有 80厘米深的水,现将一个底面周长为62.8厘米的圆 锥体铁块完全沉入水桶里,水比原来上升了1/16。 问圆锥体铁块的高是多少厘米? 一个圆柱体,已知高度每增加1厘米,它的侧面积 就增加31.4平方厘米,如果高是16厘米,则它的体 积是多少立方厘米? 一个圆柱形水池,直径是20米,深2米. ①这个水池占地面积是多少? ②挖成这个水池,共需挖土多少立方米? ③在池内四周和池底抹一层水泥,水泥面的面积是多 少平方米?
解:圆柱的底面半径为:62.8÷3.14÷2=10(m) 3.14×10² ×2+3.14×10² ×1.2÷3=628+125.6=753.6(m³ )
六年级数学圆柱和圆锥试题答案及解析
六年级数学圆柱和圆锥试题答案及解析1.一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【答案】62.172立方厘米,合0.062172升【解析】由题意,液体的体积是不变的,瓶内空余部分的体积也是不变的,因此可知液体体积是空余部分体积的倍.所以酒精的体积为立方厘米,而立方厘米毫升升.2.一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是多少立方厘米?【答案】60【解析】由已知条件知,第二个图上部空白部分的高为,从而水与空着的部分的比为,由图1知水的体积为,所以总的容积为立方厘米.3.如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为厘米,则薄膜展开后的面积是多少平方米?【答案】65.94【解析】缠绕在一起时塑料薄膜的体积为:(立方厘米),薄膜展开后为一个长方体,体积保持不变,而厚度为厘米,所以薄膜展开后的面积为平方厘米平方米.另解:也可以先求出展开后薄膜的长度,再求其面积.由于展开前后薄膜的侧面的面积不变,展开前为(平方厘米),展开后为一个长方形,宽为厘米,所以长为厘米,所以展开后薄膜的面积为平方厘米平方米.4.如图,用高都是米,底面半径分别为米、米和米的个圆柱组成一个物体.问这个物体的表面积是多少平方米?(取)【答案】32.97【解析】从上面看到图形是右上图,所以上下底面积和为(立方米),侧面积为(立方米),所以该物体的表面积是(立方米).5.如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?()【答案】2056【解析】做成的圆柱体的侧面是由中间的长方形卷成的,可见这个长方形的长与旁边的圆的周长相等,则剪下的长方形的长,即圆柱体底面圆的周长为:(厘米),原来的长方形的面积为:(平方厘米).6.把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少平方厘米.原来的圆柱体的体积是多少立方厘米?【答案】25.12【解析】沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少的部分为减掉的2厘米圆柱体的侧面积,所以原来圆柱体的底面周长为厘米,底面半径为厘米,所以原来的圆柱体的体积是(立方厘米).7.已知圆柱体的高是厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了平方厘米,求圆柱体的体积.()【答案】30【解析】圆柱切开后表面积增加的是两个长方形的纵切面,长方形的长等于圆柱体的高为10厘米,宽为圆柱底面的直径,设为,则,(厘米).圆柱体积为:(立方厘米).8.一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.【答案】3:4【解析】因为18分钟水面升高:(厘米).所以圆柱中没有铁块的情形下水面升高20厘米需要的时间是:(分钟),实际上只用了3分钟,说明容器底面没被长方体底面盖住的部分只占容器底面积的,所以长方体底面面积与容器底面面积之比为.9.一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是厘米,水深8厘米.现将一个底面积是16平方厘米,高为厘米的长方体铁块竖放在水中后.现在水深多少厘米?【答案】10【解析】根据等积变化原理:用水的体积除以水的底面积就是水的高度.(法1):(厘米);(法2):设水面上升了厘米.根据上升部分的体积=浸入水中铁块的体积列方程为:,解得:,(厘米).10.一个圆锥形容器高24厘米,其中装满水,如果把这些水倒入和圆锥底面直径相等的圆柱形容器中,水面高多少厘米?【答案】8【解析】设圆锥形容器底面积为,圆柱体内水面的高为,根据题意有:,可得厘米.11.(1分)(2006•建邺区)圆锥的体积比圆柱体积少..(判断对错)【答案】×【解析】圆锥的体积是与它等底等高的圆柱的体积的,可见圆锥的体积比与它等底等高的圆柱的体积的少,题目中没有说等底等高,由此可以进行判断.解:根据圆锥的体积是与它等底等高的圆柱的体积的,可推出圆锥的体积比与它等底等高的圆柱的体积的少,但是题目中没有说等底等高,所以题目中的说法是错误的;故答案为:×.点评:此题考查了圆锥与圆柱体积之间的关系.12.(3分)(2013•福田区校级模拟)一个圆柱体粮囤,底面直径为2米,高2.5米,装满稻谷后,又在囤上最大限度地堆成一个0.6米高的圆锥.每立方米稻谷重640千克,这囤稻谷一共有多少千克?【答案】答:这囤稻谷一共有4408.32千克【解析】圆柱的底面直径和高已知,圆锥的底面直径和圆柱的底面直径相等,高已知,于是即可分别利用圆锥的体积V=Sh和圆柱的体积V=Sh,求出这囤稻谷的总的体积,再乘每立方米稻谷的重量,就是这囤稻谷的总重量.解:[×3.14×()2×0.6+3.14×()2×2]×640,=(3.14×0.2+6.28)×640,=(0.628+6.28)×640,=6.888×640,=4408.32(千克);答:这囤稻谷一共有4408.32千克.点评:此题主要考查组合体的体积的计算方法,要求能熟练掌握圆柱与圆锥的体积的计算方法.13.(4分)(2014•江油市校级模拟)如图:把一个圆柱体沿高切成底面是若干相等的底面是扇形的几何体,再拼成一个近似长方体.若拼成的长方体前面与右侧面的面积和是207平方厘米,且原来圆柱高是5厘米,则原来圆柱的体积是多少立方厘米?【答案】答:原来圆柱的体积是1570立方厘米【解析】设圆柱底面半径为r厘米,因为拼成的长方体前面与右侧面的面积之和就是圆柱侧面积的一半和圆柱的高与半径的积的和,由此可得方程:2×3.14×r×5÷2+5r=207,解方程求出r,进而根据:圆柱的体积=πr2h,由此解答即可.解:设圆柱底面半径为r厘米,则:2×3.14×r×5÷2+5r=20715.7r+5r=20720.7r=207r=10原来圆柱的体积为:3.14×102×5=1570(平方厘米)答:原来圆柱的体积是1570立方厘米.点评:明确拼成的长方体前面与右侧面的面积之和就是圆柱侧面积的一半和圆柱的高与半径的积的和,是解答此题的关键.14.(1分)(2010•海珠区校级自主招生)如果一个圆锥的高不变,底面半径增加,则体积增加()A.B.C.D.【答案】C【解析】根据圆锥形的体积公式,V=Sh,即V=πr2h,再根据底面半径增加,说明后来圆锥形的半径是原来的(1+),由此即可算出答案.解:原圆锥的体积是:×π×r2h,后来圆锥形的体积是:πr2h,=πr2h,所以,把原来的体积看做单位”1“,(﹣1)÷1=,故选:C.点评:解答此题的关键是,根据题意,找出数量间的关系,再根据体积公式,即可做出答案.15.如图,以长方形的长为轴,旋转一周,得到的立体图形是,那么,得到的这个立体图形的高是厘米,底面周长是厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱和圆锥的体积测试题
一、填空
1、一个圆锥的体积是527.52cm ³,底面积是113.04cm ²,圆锥的高是( )cm 。
2、一个圆柱的底面半径是4分米,高是3米,它的底面积是( )平方米。
3、一个圆柱的侧面积是18.84平方米,高是3米,它的底面积是( )平方米。
4、一个圆柱与一个圆锥等底等高,圆锥的体积是19.2立方厘米,该圆柱的体积比圆锥多( )立方厘米。
5、等底等高的圆锥和圆柱,已知它们的体积之差是24立方分米,则圆柱的体积是( )立方分米。
6、一个圆柱和一个圆锥的底面积相等,体积也相等。
圆柱的高是6分米,圆锥的高是( )分米。
7、把一个圆柱形的木块削成一个和它等底等高的圆锥形的木块,削去体积是这个圆柱体积的( )。
8、把一个棱长为6厘米的正方形削成尽可能大的圆柱,则这个圆柱的体积为( )立方厘米。
二、判断
1、v=sh 只能求圆柱的体积。
( )
2、圆锥的体积比圆柱的体积小。
( )
3、两个圆柱的侧面积相等,它们的体积也相等。
( )
4、如果一个圆柱和圆锥的体积相等,底面积也相等,那么他们的高一定相等。
( )
5、把一个底面积是4平方分米,高是4分米的大圆柱截成4个相等的小圆柱,其表面积增加了24平方分米。
( )
三、选择
1、压路机的前轮转动一周能压多少路面就是求压路机前轮的( )。
A 、侧面积
B 、表面积
C 、体积
2、一个圆锥的高不变,底面半径扩大到原来的2倍,它的体积就扩大到原来的( )。
A 、2
B 、4
C 、6
3、一个圆锥的体积是3立方米,底面积是3平方米,它的高是( )米。
A 、3
B 、1
C 、3
1 4、在棱长是8厘米的正方体的上面正中央处向下挖一个底面直径是2厘米,高是2厘米的圆柱,则正方体的表面积增加的部分是所挖圆柱的( )。
A 、侧面积
B 、侧面积+一个底面积
C 、表面积
5、一个圆柱和一个圆锥的底面积相等,圆柱的高是圆锥的高的2倍,圆锥的体积是圆柱体积的( )
A 、21
B 、31
C 、6
1 四、解答题
1、一种圆柱形的通风管的底面直径是8分米,长是60分米,用铁皮制作12节这样的通风管至少需要多少平方米铁皮?
2、一个圆锥形沙堆,它的底面周长是12.56米,高是1.8米。
用这堆沙子在8米宽的公路上铺上3厘米厚的路面,能铺多少米?
3、把一根底面周长是24厘米,长是18厘米的圆柱形钢材加工成与它等底等体积的圆锥形钢材,圆锥的高是多少?
4、把一根长40厘米的圆柱形钢筋截去4厘米,其表面积减少25.12平方厘米,求钢筋的体积。
5、一个圆锥体积是5.024立方米,底面周长是12.56米,这个圆锥的高是多少?
6、有两个底面积相等的圆柱,一个高6分米,体积是48立方米,另一个圆柱的高为8分米,体积是多少?
7、将一块底面积为5平方分米,高6分米的长方体铁块熔铸成底面积为8平方分米的圆锥,圆锥的高是多少?。