寻迹小车实验报告

合集下载

寻迹小车实验报告

寻迹小车实验报告

自动寻迹小车设计报告一、系统设计1、设计要求(1)自动寻迹小车从安全区域启动。

(2)小车按检测路线运行,自动区分直线轨道和弯路轨道,在弯路处拐弯,实现灵活前进、转弯、等功能2.小车寻迹的原理这里的寻迹是指小车在白色地板上寻黑线行走,通常采取的方法是红外探测法。

红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。

单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。

红外探测器探测距离有限,一般最大不应超15cm。

对于发射和接收红外线的红外探头,可以自己制作或直接采用集成式红外探头。

3、模块方案根据设计要求,本系统主要由控制器模块、寻迹传感器模块、直流电机及其驱动模块等构成。

控制器模块:控制器模块由AT89C51单片机控制小车的行走。

寻迹传感器模块:寻迹传感器用光电传感器ST188检测线路并反馈给单片机执行。

ST188采用高发射功率红外光电二极管和高灵敏度双光电晶体管组成。

检测距离:4--13mm直流电机及其驱动模块:直流电机用L298来驱动。

L298N是一个具有高电压大电流的全桥驱动芯片,它相应频率高,一片L298N可以分别控制两个直流电机,而且还带有控制使能端。

用该芯片作为电机驱动,操作方便,稳定性好,性能优良。

4.系统结构框图:二、硬件实现及单元电路设计1、微控制器模块的设计在本次设计中我们采用了AT89C51位主控制器。

它具有智能化,可编程,小型便携等优点。

2.光电传感器:本次试验我们采用了ST188光电传感器,ST188采用高发射功率红外光电二极管和高灵敏度双光电晶体管组成。

检测距离:4--13mm。

其连接电路图如下:3.直流电机及其驱动模块在直流电机驱动问题上,我们采用一片L298来驱动直流电机。

循迹小车实习报告

循迹小车实习报告

一、实习背景随着科技的发展,自动化技术在各个领域得到了广泛应用。

智能循迹小车作为自动化技术的一个重要应用,具有广泛的前景。

为了提高我们的实践能力,培养我们的创新精神,我们参加了智能循迹小车实习课程。

通过本次实习,我们学习了智能循迹小车的设计、制作和调试方法,了解了其工作原理,提高了我们的动手能力和团队协作能力。

二、实习目的1. 熟悉智能循迹小车的结构、原理和功能。

2. 掌握智能循迹小车的制作方法,提高动手能力。

3. 学习电路设计、传感器应用、单片机编程等知识。

4. 培养团队协作精神,提高沟通能力。

三、实习内容1. 智能循迹小车原理及结构智能循迹小车主要由以下几部分组成:车体、驱动电机、传感器、单片机、控制电路等。

车体是智能循迹小车的承载部分,驱动电机负责提供动力,传感器用于检测路面信息,单片机负责处理传感器信息,控制电路负责将单片机的指令转换为电机驱动信号。

2. 电路设计电路设计主要包括以下几个方面:(1)电源电路:为智能循迹小车提供稳定的电源。

(2)驱动电路:将单片机的控制信号转换为电机驱动信号。

(3)传感器电路:将传感器信号转换为单片机可识别的信号。

(4)控制电路:对单片机输出的控制信号进行放大、滤波等处理。

3. 传感器应用智能循迹小车主要采用红外传感器进行路面检测。

红外传感器具有体积小、成本低、安装方便等优点。

在制作过程中,我们需要对红外传感器进行调试,使其能够准确检测路面信息。

4. 单片机编程单片机编程是智能循迹小车实现智能控制的关键。

我们主要学习了C语言编程,掌握了单片机的基本指令、函数、中断等知识。

在编程过程中,我们需要编写程序,使单片机能够根据传感器信息控制小车行驶。

5. 调试与优化在制作过程中,我们需要对智能循迹小车进行调试,使其能够稳定、准确地行驶。

调试过程中,我们需要对电路、传感器、单片机等部分进行调整,以达到最佳效果。

四、实习成果通过本次实习,我们成功制作了一台智能循迹小车,并使其能够稳定、准确地行驶。

循迹小车的实验报告

循迹小车的实验报告

循迹小车的实验报告循迹小车的实验报告引言:循迹小车是一种基于光电传感器的智能机器人,能够通过感知地面上的黑线,实现自主导航。

本次实验旨在探索循迹小车的工作原理及其应用,并对其性能进行评估。

一、实验背景循迹小车作为一种智能机器人,广泛应用于工业自动化、仓储物流、智能家居等领域。

其基本原理是通过光电传感器感知地面上的黑线,根据传感器信号控制电机的转动,从而实现沿着黑线行进。

二、实验过程1. 实验器材准备本次实验所需器材有循迹小车、黑线地毯、计算机等。

通过连接计算机和循迹小车,可以实现对小车的控制和数据传输。

2. 实验步骤(1)将黑线地毯铺设在实验场地上,并保证地毯表面光滑清洁。

(2)将循迹小车放置在地毯上,确保其底部的光电传感器与黑线接触。

(3)通过计算机控制循迹小车的启动,观察小车是否能够准确跟踪黑线行进。

(4)记录小车在不同条件下的行进速度、转弯半径等数据,并进行分析。

三、实验结果1. 循迹性能评估通过实验观察和数据记录,我们发现循迹小车在较为平整、光线充足的黑线地毯上表现较好,能够准确跟踪黑线行进。

然而,在黑线不明显、光线较暗的情况下,小车的循迹性能会有所下降。

2. 行进速度与转弯半径根据实验数据分析,循迹小车的行进速度受到多种因素的影响,包括地面摩擦力、电机功率等。

在实验中,我们发现增加电机功率可以提高小车的行进速度,但同时也会增大转弯半径。

3. 应用前景循迹小车作为一种智能机器人,具有广泛的应用前景。

在工业自动化领域,循迹小车可以用于物料搬运、装配线操作等任务;在仓储物流领域,循迹小车可以实现货物的自动分拣、运输等功能;在智能家居领域,循迹小车可以作为家庭服务机器人,提供家居清洁、送餐等服务。

四、实验总结通过本次实验,我们深入了解了循迹小车的工作原理和应用前景。

循迹小车的循迹性能受到地面条件和光线影响,需要进一步优化。

在实际应用中,循迹小车可以广泛应用于工业自动化、仓储物流和智能家居等领域,为人们的生活和工作带来便利。

模拟循迹小车实验报告

模拟循迹小车实验报告

一、实验目的1. 理解循迹小车的工作原理,掌握模拟循迹技术。

2. 学习使用传感器检测道路情况,并根据检测结果进行小车控制。

3. 提高嵌入式系统设计和编程能力。

二、实验原理循迹小车是一种能够按照预设轨迹运行的智能小车。

其工作原理是:通过安装在车身上的传感器检测道路情况,并将检测到的信息传输给单片机,单片机根据接收到的信息对小车进行控制,使小车按照预设轨迹运行。

本实验中,我们采用红外对管作为传感器,通过检测红外对管对光线反射的强弱来判断小车是否偏离预设轨迹。

当红外对管检测到光线反射较强时,表示小车偏离了预设轨迹;当红外对管检测到光线反射较弱时,表示小车位于预设轨迹上。

三、实验器材1. 单片机开发板(如STC89C52)2. 红外对管传感器3. 电机驱动模块4. 电机5. 轮胎6. 跑道7. 电阻、电容等电子元件8. 编程软件(如Keil)四、实验步骤1. 硬件连接:将红外对管传感器连接到单片机的I/O口,将电机驱动模块连接到单片机的PWM口,将电机连接到电机驱动模块。

2. 编程:编写程序,实现以下功能:(1)初始化红外对管传感器和电机驱动模块;(2)读取红外对管传感器的状态,判断小车是否偏离预设轨迹;(3)根据红外对管传感器的状态,控制电机驱动模块使小车按照预设轨迹运行。

3. 调试:将程序烧录到单片机中,进行调试。

观察小车是否能够按照预设轨迹运行。

五、实验结果与分析1. 实验结果:经过调试,小车能够按照预设轨迹运行。

2. 分析:(1)红外对管传感器能够有效地检测道路情况,判断小车是否偏离预设轨迹;(2)单片机能够根据红外对管传感器的状态,及时调整电机的转速,使小车按照预设轨迹运行;(3)电机驱动模块能够稳定地驱动电机,使小车运动平稳。

六、实验总结通过本次实验,我们掌握了模拟循迹小车的工作原理,学会了使用传感器检测道路情况,并根据检测结果进行小车控制。

同时,我们还提高了嵌入式系统设计和编程能力。

七、改进建议1. 可以尝试使用其他类型的传感器,如光电传感器、红外线传感器等,以提高循迹精度。

循迹小车的实习报告

循迹小车的实习报告

实习报告:循迹小车设计与实现一、实习背景与目的随着科技的不断发展,自动化技术在各个领域得到了广泛的应用。

循迹小车作为一种自动化设备,不仅可以用于娱乐和教育,还可以应用于工业、农业等领域。

本次实习旨在通过设计和制作循迹小车,掌握单片机原理、电路设计、传感器应用等技能,提高自己在自动化领域的实际操作能力。

二、实习内容与过程1. 设计思路在设计循迹小车时,首先需要确定设计思路。

通过对循迹小车的功能和性能要求进行分析,确定采用单片机作为控制核心,利用传感器检测路径,通过电机驱动实现小车的运动。

2. 硬件设计(1)单片机模块:选用51系列单片机作为控制核心,负责接收传感器信号,处理数据,发出控制命令。

(2)传感器模块:采用红外传感器检测路径,当传感器检测到黑线时,输出高电平信号。

(3)电机驱动模块:采用L298N电机驱动模块,负责驱动小车前进、后退和转向。

(4)电源管理模块:为整个系统提供稳定的电源供应。

(5)舵机控制模块:用于调整小车的方向。

3. 软件设计根据设计思路,编写单片机程序,实现对传感器的数据采集、处理和控制命令的发出。

程序主要包括以下部分:(1)传感器信号处理:通过判断传感器信号的变化,确定小车当前所处的状态。

(2)路径识别:根据传感器信号,判断小车是否偏离路径,并调整方向。

(3)速度控制:根据小车所处的状态,调整电机转速,实现速度控制。

(4)舵机控制:根据路径变化,调整舵机角度,使小车保持直线行驶。

三、实习成果与总结经过一段时间的紧张制作,循迹小车终于完成了。

在实际运行中,小车能够准确识别路径,稳定行驶。

通过本次实习,我收获颇丰,总结如下:1. 掌握了单片机原理和编程技巧,提高了自己在嵌入式系统领域的实际操作能力。

2. 学会了电路设计和搭建,熟悉了各种电子元器件的使用。

3. 了解了传感器在自动化设备中的应用,提高了自己在信息处理方面的能力。

4. 学会了团队合作,培养了沟通与协作能力。

总之,本次实习使我受益匪浅,为今后的学习和工作打下了坚实的基础。

智能寻迹小车实习报告

智能寻迹小车实习报告

智能寻迹小车实习报告一、实习背景与目的随着科技的不断发展,机器人技术在各行各业中得到了广泛的应用。

智能寻迹小车作为一种典型的移动机器人平台,具有在复杂环境中自主导航、避障和完成任务的能力。

本次实习旨在通过设计和制作智能寻迹小车,掌握电子元器件的识别、传感器、电机在控制作用下的具体机械构架,以及单片机控制原理等知识,提高自己在电子技术、机器人技术等方面的实际操作能力。

二、实习内容与过程1. 设计思路本次实习的智能寻迹小车主要通过单片机控制,利用红外线传感器检测地面上的特定标记(如黑线),实现寻迹功能。

同时,通过超声波传感器检测前方障碍物的距离,实现避障功能。

在保证小车能够准确跟随线路的同时,使其能够自动避开障碍物。

2. 硬件设计(1)单片机:选用高性能、低功耗的单片机作为核心控制器,负责处理传感器数据、执行避障和循迹算法,以及控制小车的运动。

(2)传感器模块:红外线传感器用于检测地面上的特定标记,实现寻迹功能。

超声波传感器用于检测前方障碍物的距离,实现避障功能。

(3)电机驱动模块:负责驱动小车的运动,包括前进、后退、转向等。

3. 软件设计软件设计主要涉及系统初始化、线路检测与循迹、避障检测与控制以及控制算法等。

通过编程实现对单片机的控制,使小车能够根据红外线传感器的信号准确跟随线路,并在遇到障碍物时能够自动避开。

4. 实习过程在实习过程中,首先进行了电子元器件的识别和学习,掌握了各种传感器、电机等元器件的工作原理和应用方法。

然后,根据设计思路,进行了硬件电路的搭建和调试,包括单片机、传感器、电机驱动模块等。

最后,进行了软件编程调试,使小车能够实现智能寻迹和避障功能。

三、实习成果与总结通过本次实习,我成功设计和制作了一款智能寻迹小车,掌握了电子元器件的识别、传感器、电机在控制作用下的具体机械构架,以及单片机控制原理等知识。

在实习过程中,我学会了如何将理论知识运用到实际操作中,提高了自己在电子技术、机器人技术等方面的实际操作能力。

巡迹小车实验报告

巡迹小车实验报告

巡迹小车实验报告摘要:1.实验背景与目的2.实验设备与材料3.实验步骤与方法4.实验结果与分析5.实验结论与展望正文:一、实验背景与目的随着科技的快速发展,智能小车在物流、仓储等领域的应用越来越广泛。

为了提高小车的路径规划和自主导航能力,研究者们开展了许多实验。

本次实验旨在通过设计一款具有自主寻迹能力的小车,验证其路径跟踪精度和速度,为进一步优化和应用提供参考。

二、实验设备与材料1.小车底盘:采用常见的Arduino 开发板和直流电机驱动,配以车轮组件;2.电子元件:包括Arduino 开发板、电机驱动模块、电池、开关、传感器等;3.软件工具:使用Arduino IDE 编程环境进行程序开发。

三、实验步骤与方法1.搭建小车底盘:根据电路图和设计方案,将电子元件连接到Arduino开发板上,并将电机驱动模块与车轮组件相连;2.编写程序:利用Arduino IDE 编写程序,实现小车的路径跟踪功能;3.测试实验:将小车放置在预设的轨迹上,运行程序,观察小车是否能准确地跟踪轨迹。

四、实验结果与分析实验结果显示,小车能够准确地跟踪预设轨迹,且路径跟踪精度和速度均达到了预期目标。

通过对实验数据的分析,可以得出以下结论:1.小车底盘设计合理,能够满足路径跟踪的需求;2.程序设计有效,实现了小车的自主寻迹功能;3.实验结果表明,小车在实际应用中具有较高的可行性和可靠性。

五、实验结论与展望本次实验成功地设计并实现了一款具有自主寻迹能力的小车。

实验结果表明,小车具备较高的路径跟踪精度和速度,为进一步研究和应用提供了有力支持。

巡迹小车实验报告

巡迹小车实验报告

巡迹小车实验报告
【原创版】
目录
1.实验目的
2.实验设备与材料
3.实验步骤
4.实验结果与分析
5.实验结论
正文
一、实验目的
本次实验的主要目的是通过制作和测试巡迹小车,了解并掌握机器人的控制原理及其在实际应用中的表现。

巡迹小车作为一种基础的机器人系统,可用于研究传感器、执行器、控制算法等方面的技术,为后续的机器人开发奠定基础。

二、实验设备与材料
1.巡迹小车套件
2.电脑
3.面包板
4.跳线
5.电子元件(如电阻、电容等)
6.工具(如镊子、钳子等)
7.5V 电源
三、实验步骤
1.准备阶段:检查实验设备是否齐全,将面包板、电子元件等摆放在桌面上,为接下来的焊接工作做好准备。

2.焊接阶段:根据电路图和说明书,将电阻、电容等元件焊接到面包板上,并连接电源、电机等设备。

3.调试阶段:使用电脑上的编程软件对小车进行编程,设置其运动轨迹和速度等参数,并通过串口通信将程序下载到小车。

4.测试阶段:将小车放置在实验平台上,观察其运动轨迹是否正确,调整参数以达到最佳效果。

四、实验结果与分析
经过多次调试和测试,巡迹小车能够准确地按照预定轨迹行驶,运动速度和方向控制准确。

这表明本次实验中,我们成功地掌握了机器人的控制原理,并为后续的机器人研究和开发积累了经验。

五、实验结论
本次巡迹小车实验的成功,证明了我们团队在机器人领域的研究能力。

通过这次实验,我们不仅学会了如何制作和控制巡迹小车,还深入了解了机器人的构造和运行原理。

循迹小车实验报告

循迹小车实验报告

循迹小车实验报告循迹小车实验报告引言:循迹小车是一种基于光电传感器的智能机器人,能够根据环境中的光线变化来调整行进方向。

本实验旨在通过搭建一个循迹小车模型,探索其原理和应用。

一、实验材料和方法本次实验所需材料包括Arduino开发板、直流电机、光电传感器、电池组等。

首先,我们将Arduino开发板与直流电机、光电传感器等器件进行连接,确保电路正常。

然后,将循迹小车放置在一个光线变化较大的环境中,例如黑白相间的地面。

最后,通过编写程序,使循迹小车能够根据光电传感器的信号来判断行进方向,并实现自动循迹。

二、实验过程和结果在实验过程中,我们首先对光电传感器进行了校准,以确保其能够准确地感知光线的变化。

然后,我们编写了一段简单的程序,使循迹小车能够根据光电传感器的信号来判断行进方向。

当光线较亮时,循迹小车向左转;当光线较暗时,循迹小车向右转。

通过不断调试程序,我们成功实现了循迹小车的自动循迹功能。

在实验过程中,我们还发现了一些有趣的现象。

例如,当循迹小车行进到黑白相间的地面上时,光电传感器能够准确地感知到黑白色块的变化,并根据信号进行相应的调整。

这说明循迹小车的循迹原理基于光线的反射和吸收,具有一定的环境适应性。

三、实验结果分析通过本次实验,我们深入了解了循迹小车的原理和应用。

循迹小车通过光电传感器感知环境中的光线变化,从而判断行进方向,实现自动循迹。

这种智能机器人在工业生产、仓储物流等领域具有广泛的应用前景。

然而,循迹小车也存在一些局限性。

首先,其循迹能力受到环境光线的影响较大,当环境光线较弱或过强时,循迹小车的准确性会受到一定的影响。

其次,循迹小车只能在特定的地面上进行循迹,对于其他类型的地面可能无法正常运行。

因此,在实际应用中,需要根据具体情况进行合理选择和调整。

四、实验总结通过本次实验,我们对循迹小车的原理和应用有了更深入的了解。

循迹小车作为一种基于光电传感器的智能机器人,具有自动循迹的功能,可以在工业生产、仓储物流等领域发挥重要作用。

智能循迹小车实验报告

智能循迹小车实验报告

智能循迹小车实验报告一、实验目的本次实验旨在设计并实现一款能够自主循迹的智能小车,通过传感器检测路径信息,控制小车的运动方向,使其能够沿着预定的轨迹行驶。

通过本次实验,深入了解自动控制、传感器技术和单片机编程等方面的知识,提高实际动手能力和问题解决能力。

二、实验原理1、传感器检测本实验采用红外传感器来检测小车下方的黑线轨迹。

红外传感器由红外发射管和接收管组成,当发射管发出的红外线照射到黑色轨迹时,反射光较弱,接收管接收到的信号较弱;当照射到白色区域时,反射光较强,接收管接收到的信号较强。

通过比较接收管的信号强度,即可判断小车是否偏离轨迹。

2、控制算法根据传感器检测到的轨迹信息,采用 PID 控制算法(比例积分微分控制算法)来计算小车的转向控制量。

PID 算法通过对误差(即小车偏离轨迹的程度)进行比例、积分和微分运算,得到一个合适的控制输出,使小车能够快速、准确地回到轨迹上。

3、电机驱动小车的动力由直流电机提供,通过电机驱动芯片(如 L298N)来控制电机的正反转和转速。

根据控制算法计算出的转向控制量,调整左右电机的转速,实现小车的转向和前进。

三、实验器材1、硬件部分单片机开发板(如 STM32 系列)红外传感器模块直流电机及驱动模块电源模块小车底盘及车轮杜邦线、面包板等2、软件部分Keil 等单片机编程软件串口调试助手四、实验步骤1、硬件搭建将红外传感器模块安装在小车底盘下方,使其能够检测到黑线轨迹。

将直流电机与驱动模块连接,并安装在小车底盘上。

将单片机开发板、传感器模块、驱动模块和电源模块通过杜邦线连接起来,搭建好实验电路。

2、软件编程使用单片机编程软件,编写传感器检测程序、控制算法程序和电机驱动程序。

通过串口调试助手,将编写好的程序下载到单片机开发板中。

3、调试与优化启动小车,观察其在轨迹上的行驶情况。

根据小车的实际行驶情况,调整 PID 控制算法的参数,优化小车的循迹性能。

不断测试和改进,直到小车能够稳定、准确地沿着轨迹行驶。

循迹小车实习报告总结

循迹小车实习报告总结

实习报告总结:制作循迹小车首先,我要感谢学校为我们提供了这次宝贵的实习机会,让我们能够通过制作循迹小车来提高自己的实践能力和创新能力。

在这次实习中,我学到了很多关于电子工程和嵌入式系统的知识,也锻炼了自己的动手能力。

接下来,我将对这次实习进行总结。

一、实习目标本次实习的主要目标是让我们了解并掌握循迹小车的基本原理和制作方法,通过实际操作,培养我们的动手能力、创新能力和团队协作能力。

二、实习内容在实习过程中,我们首先学习了循迹小车的工作原理和相关知识,然后分组进行设计和制作。

我们小组成员共同讨论,确定了使用STC12C5A60S2单片机作为控制核心,利用红外传感器检测黑线来实现循迹功能,同时使用超声波传感器进行避障。

我们还设计了电路图,并完成了电路板的焊接和调试。

最后,我们将电路板与小车车体相连,编写了控制程序,使小车能够实现循迹行驶和遇障停止的功能。

三、实习收获通过这次实习,我收获颇丰。

首先,我深入了解了循迹小车的原理和制作过程,掌握了单片机的基本应用和电路设计技巧。

其次,我在实际操作中锻炼了自己的动手能力,学会了如何解决实际问题。

此外,我还学会了如何与团队成员协作,共同完成任务。

这次实习让我明白了理论联系实际的重要性,也让我对电子工程和嵌入式系统产生了更浓厚的兴趣。

四、存在问题及改进措施在制作过程中,我们遇到了一些问题。

例如,电路板焊接过程中出现了短路现象,导致小车无法正常工作。

为了解决这个问题,我们重新检查了电路图,发现并修复了短路部位。

此外,我们还发现小车的循迹精度不高,需要进一步优化控制程序。

在今后的实践中,我们将努力学习相关知识,提高自己的技能,不断改进小车的性能。

五、总结总之,这次实习让我们受益匪浅。

我们不仅学到了很多关于电子工程和嵌入式系统的知识,还锻炼了自己的动手能力和团队协作能力。

通过制作循迹小车,我们深刻体会到了理论与实践相结合的重要性。

在今后的学习和工作中,我们将不断努力,将自己所学知识运用到实际中,为我国电子工程事业做出贡献。

电动循迹小车实验报告

电动循迹小车实验报告

一、实验目的本次实验旨在设计和实现一款基于电动驱动的循迹小车,通过红外传感器检测地面上的黑线,实现对小车行进路径的自动控制。

通过本次实验,掌握以下技能:1. 红外传感器的原理和应用;2. 单片机的编程和驱动控制;3. 电动小车的组装与调试;4. 掌握电路设计和调试方法。

二、实验原理1. 红外传感器原理:红外传感器通过发射红外线并接收反射回来的红外线来检测物体的存在。

当红外线照射到黑色路线上时,反射回来的红外线强度减弱,传感器检测到变化后,将信号传输给单片机。

2. 单片机控制原理:单片机接收到红外传感器的信号后,根据预设的程序控制小车的前进、后退、转弯等动作。

3. 电机驱动原理:电机驱动电路将单片机的控制信号转换为电机所需的电流,驱动电机旋转,从而实现小车的运动。

三、实验器材1. 电动小车底盘;2. 红外传感器模块;3. 单片机(如Arduino);4. 电机驱动模块(如L298N);5. 电池;6. 连接线;7. 电阻、电容等电子元件;8. 黑色纸带。

四、实验步骤1. 组装电路:将红外传感器模块、单片机、电机驱动模块、电池等元件按照电路图连接起来。

2. 编写程序:根据实验要求,编写单片机的控制程序。

程序主要包括以下功能:- 红外传感器数据采集;- 小车运动控制(前进、后退、转弯);- 电机驱动控制。

3. 调试程序:将编写好的程序烧录到单片机中,连接电池,观察小车是否能够按照预期路径行进。

4. 调整传感器位置:根据红外传感器的实际工作情况,调整传感器位置,确保传感器能够准确检测到地面上的黑线。

5. 调整电机速度:通过调整电机驱动模块的PWM信号,调整电机的转速,使小车运动平稳。

6. 优化程序:根据实验结果,对程序进行优化,提高小车的循迹精度和稳定性。

五、实验结果与分析1. 实验结果:经过调试,小车能够按照地面上的黑线行进,实现自动循迹。

2. 分析:- 红外传感器对光线敏感,容易受到环境光线干扰。

在光线较强或较弱的环境中,需要对传感器进行调整,以确保其正常工作。

红外循迹小车实验报告

红外循迹小车实验报告

一、实验目的1. 熟悉红外循迹传感器的工作原理和特点;2. 掌握红外循迹小车的搭建方法;3. 理解红外循迹小车的工作原理;4. 通过实验验证红外循迹小车的性能。

二、实验原理红外循迹小车是一种利用红外传感器检测地面颜色变化来实现循迹的小车。

红外循迹传感器主要由红外发射管和红外接收管组成。

当红外发射管发射的红外线照射到地面时,如果地面是黑色,红外线会被吸收,传感器接收到的光强会减弱;如果地面是白色,红外线会被反射,传感器接收到的光强会增强。

通过检测红外接收管接收到的光强变化,可以判断地面颜色,从而实现循迹功能。

三、实验器材1. 红外循迹传感器模块;2. 51单片机;3. 步进电机驱动模块;4. 电池;5. 电机;6. 连接线;7. 平面黑线;8. 平面白线;9. 实验平台。

四、实验步骤1. 搭建红外循迹小车电路:将红外循迹传感器模块、51单片机、步进电机驱动模块、电池、电机等连接起来,确保电路连接正确。

2. 编写程序:编写51单片机程序,实现对红外循迹传感器数据的读取、处理和电机驱动的控制。

3. 调试程序:将编写好的程序烧录到51单片机中,调试程序,确保小车能够按照预期循迹。

4. 实验验证:将小车放置在实验平台上,将地面铺设成黑线和白线交替的模式,观察小车是否能够按照黑线行驶。

五、实验结果与分析1. 实验结果:经过调试,小车能够按照地面上的黑线行驶,实现循迹功能。

2. 实验分析:(1)红外循迹传感器模块在接收到的光强变化时,会产生高低电平信号,通过读取这些信号,可以判断地面颜色;(2)51单片机根据红外循迹传感器模块的信号,计算出小车与黑线的距离,从而控制步进电机驱动模块,使小车按照黑线行驶;(3)在实验过程中,发现红外循迹小车的循迹性能与地面材质、光线等因素有关,需要根据实际情况调整红外循迹传感器模块的安装角度和距离。

六、实验总结通过本次实验,我们了解了红外循迹传感器的工作原理和特点,掌握了红外循迹小车的搭建方法,并验证了红外循迹小车的性能。

智能循迹小车实验报告

智能循迹小车实验报告

简单电子系统设计报告---------智能循迹小车学号201009130102年级10学院理学院专业电子信息科学与技术姓名马洪岳指导教师刘怀强摘要本实验完成采用红外反射式传感器的自寻迹小车的设计与实现。

采用与白色地面色差很大的黑色路线引导小车按照既定路线前进,在意外偏离引导线的情况下自动回位。

本设计采用单片机STC89C51作为小车检测、控制、时间显示核心,以实验室给定的车架为车体,两直流机为主驱动,附加相应的电源电路下载电路,显示电路构成整体电路。

自动寻迹的功能采用红外传感器,通过检测高低电平将信号送给单片机,由单片机通过控制驱动芯片L298N驱动电动小车的电机,实现小车的动作。

关键词:STC89C51单片机;L298N;红外传感器;寻迹一、设计目的通过设计进一步掌握51单片机的应用,特别是在控制系统中的应用。

进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。

二、设计要求该智能车采用红外传感器对赛道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片L298N发出控制命令,控制电机的工作状态以实现对小车姿态的控制,绕跑到行驶一周。

三、软硬件设计硬件电路的设计1、最小系统:小车采用atmel公司的AT89C52单片机作为控制芯片,图1是其最小系统电路。

主要包括:时钟电路、电源电路、复位电路。

其中各个部分的功能如下:(1)、电源电路:给单片机提供5V电源。

(2)、复位电路:在电压达到正常值时给单片机一个复位信号。

图1 单片机最小系统原理图2、电源电路设计:模型车通过自身系统,采集赛道信息,获取自身速度信息,加以处理,由芯片给出指令控制其前进转向等动作,各部分都需要由电路支持,电源管理尤为重要。

在本设计中,51单片机使用5V电源,电机及舵机使用5V电源。

考虑到电源为电池组,额定电压为4.5V,实际充满电后电压则为4-4.5V,所以单片机及传感器模块采用最小系统模块稳压后的5V电源供电,舵机及电机直接由电池供电。

光电寻的小车实验报告(3篇)

光电寻的小车实验报告(3篇)

第1篇一、实验目的1. 熟悉光电传感器的基本原理和应用。

2. 掌握光电寻迹小车的设计与制作方法。

3. 提高动手能力和创新意识。

二、实验原理光电寻迹小车利用光电传感器检测地面上的黑白线,通过单片机控制小车转向和速度,使小车沿着预设的路线行驶。

光电传感器分为发射器和接收器两部分,发射器发射红外线,接收器接收反射回来的红外线。

当红外线照射到黑色地面时,反射光强度减弱,接收器输出低电平;当红外线照射到白色地面时,反射光强度增强,接收器输出高电平。

通过检测接收器输出的电平变化,单片机判断小车是否偏离预设路线,从而控制小车转向和速度。

三、实验器材1. 光电传感器模块2. 单片机开发板3. 电机驱动模块4. 电池盒5. 小车底盘6. 轮子7. 黑色和白色纸板8. 连接线9. 螺丝刀10. 电工胶带四、实验步骤1. 搭建小车底盘:将轮子安装在底盘上,固定好电机驱动模块和电池盒。

2. 安装光电传感器:将光电传感器安装在底盘前方,确保传感器可以垂直地面,且与地面保持一定距离。

3. 连接电路:将光电传感器的发射器和接收器分别连接到单片机的相应引脚,将电机驱动模块连接到单片机的IO口。

4. 编写程序:根据实验要求,编写单片机程序,实现光电寻迹功能。

程序流程如下:(1)初始化:设置单片机IO口、定时器等。

(2)检测光电传感器:读取接收器输出的电平值。

(3)判断小车位置:根据电平值判断小车是否偏离预设路线。

(4)控制转向和速度:根据小车位置,调整转向和速度。

(5)重复步骤(2)至(4)。

5. 调试程序:将编写好的程序下载到单片机,观察小车是否能够沿着预设路线行驶。

6. 优化程序:根据实验结果,对程序进行优化,提高小车行驶的稳定性和速度。

五、实验结果与分析1. 实验结果:小车能够沿着预设的黑白线行驶,遇到转弯时能够自动调整方向。

2. 结果分析:(1)光电传感器性能对实验结果影响较大,选择合适的传感器是保证实验成功的关键。

(2)单片机程序设计对小车行驶的稳定性和速度有较大影响,需要不断优化程序。

寻迹小车实验报告模板

寻迹小车实验报告模板

寻迹小车实验报告模板1. 引言寻迹小车是一种利用红外线传感器来检测地面上黑线的位置,从而实现沿着黑线行驶的智能小车。

这种小车在工业自动化、机器人等领域有着广泛的应用。

本实验旨在通过组装寻迹小车并编写控制程序,探究寻迹原理并验证其功能。

本报告将详细介绍实验所用材料与方法、实验过程与结果分析。

2. 材料与方法2.1 材料- 寻迹小车套装:包括车身、电机、红外线传感器等部分- Arduino开发板及USB数据线- 计算机2.2 方法1. 将寻迹小车按照说明书进行组装,并确保连接正常。

2. 将Arduino开发板连接至计算机,并打开Arduino IDE。

3. 编写控制程序,包括红外线传感器的数据读取与小车运动控制部分。

4. 将程序烧录至Arduino开发板。

5. 放置寻迹小车于地面上的黑线上,并观察小车的运动情况。

3. 实验过程与结果分析3.1 实验过程按照上述方法进行实验,并记录实验过程中的关键步骤及观察结果。

3.2 结果分析分析实验结果,包括小车是否能在黑线上准确行驶、行驶速度是否稳定、控制程序的有效性等方面进行分析,并提出可能的问题与改进方案。

4. 结论通过本次实验,我们成功组装了寻迹小车并编写控制程序,实现了小车沿着黑线行驶的功能。

在实验过程中,我们观察到小车能够准确地跟踪黑线并保持稳定的行驶速度。

然而,在一些曲线等复杂路径上,小车可能会出现偏离线路的情况,需要进一步改进控制程序。

5. 参考文献[1] 张三,李四. 寻迹小车实验方法与分析. 机器人科学与技术学报,2020,(2):56-60.附录:实验代码cinclude <IRremote.h>define IR_LEFT_PIN 4define IR_MIDDLE_PIN 3define IR_RIGHT_PIN 2define MOTOR_LEFT_PIN1 5define MOTOR_LEFT_PIN2 6define MOTOR_RIGHT_PIN1 10define MOTOR_RIGHT_PIN2 11IRrecv irrecv(IR_MIDDLE_PIN);decode_results res;void setup() {pinMode(IR_LEFT_PIN, INPUT);pinMode(IR_MIDDLE_PIN, INPUT);pinMode(IR_RIGHT_PIN, INPUT);pinMode(MOTOR_LEFT_PIN1, OUTPUT); pinMode(MOTOR_LEFT_PIN2, OUTPUT); pinMode(MOTOR_RIGHT_PIN1, OUTPUT); pinMode(MOTOR_RIGHT_PIN2, OUTPUT); irrecv.enableIRIn(); 启用红外线接收器}void loop() {if (irrecv.decode(&res)) {switch (res.value) {case 0xFFFFFFFF: 红外线无信号时停止小车运动stop();break;case 0xFFE01F: 小车前进forward();break;case 0xFF609F: 小车后退backward();break;case 0xFFA857: 小车左转turnLeft();break;case 0xFF9867: 小车右转turnRight();break;}irrecv.resume(); 继续接收红外线信号}}void forward() {digitalWrite(MOTOR_LEFT_PIN1, HIGH); digitalWrite(MOTOR_LEFT_PIN2, LOW); digitalWrite(MOTOR_RIGHT_PIN1, HIGH); digitalWrite(MOTOR_RIGHT_PIN2, LOW); }void backward() {digitalWrite(MOTOR_LEFT_PIN1, LOW); digitalWrite(MOTOR_LEFT_PIN2, HIGH); digitalWrite(MOTOR_RIGHT_PIN1, LOW); digitalWrite(MOTOR_RIGHT_PIN2, HIGH); }void turnLeft() {digitalWrite(MOTOR_LEFT_PIN1, HIGH); digitalWrite(MOTOR_LEFT_PIN2, LOW); digitalWrite(MOTOR_RIGHT_PIN1, LOW); digitalWrite(MOTOR_RIGHT_PIN2, HIGH); }void turnRight() {digitalWrite(MOTOR_LEFT_PIN1, LOW); digitalWrite(MOTOR_LEFT_PIN2, HIGH); digitalWrite(MOTOR_RIGHT_PIN1, HIGH); di。

寻迹小车实训报告

寻迹小车实训报告

寻迹小车实训报告引言本文将介绍一个关于寻迹小车实训的报告,报告将按照步骤逐一进行分析和总结。

寻迹小车是一种能够自动跟随特定路径的智能机器人,它能够通过感知周围环境的传感器来寻找并沿着预设的黑线移动。

本次实训的目的是设计和制作一个能够实现此功能的寻迹小车。

1. 准备材料和工具在开始实训之前,首先需要准备以下材料和工具:•寻迹小车组装套件•Arduino开发板•电池组和电线•线路板和导线•红外线传感器模块•电动机和轮子•螺丝刀和扳手•电池2. 搭建机械结构第一步是搭建寻迹小车的机械结构。

根据组装套件的说明书,按照步骤将车轮和电动机固定在底盘上。

确保所有零件安装牢固,并且车轮能够自由转动。

3. 连接电路第二步是连接电路。

首先,将Arduino开发板连接到线路板上,并确保连接正确。

然后,将红外线传感器模块连接到Arduino开发板的数字引脚上。

根据传感器模块的说明书进行正确的引脚连接。

4. 编写代码第三步是编写代码。

使用Arduino开发环境,编写一个程序来控制寻迹小车寻找并跟随黑线。

程序应该能够读取红外线传感器的数据,并根据传感器的读数来决定小车的行动。

5. 调试和测试第四步是调试和测试寻迹小车的功能。

将小车放置在一个有黑线的路径上,并运行编写的程序。

观察小车是否能够准确地跟随黑线移动。

如果发现小车偏离路径或无法正确识别黑线,请检查电路连接和代码逻辑,并进行必要的调整。

6. 优化和改进第五步是优化和改进寻迹小车的性能。

根据测试结果和观察,分析小车在跟随黑线过程中可能出现的问题,并进行相应的改进。

可能的优化包括调整传感器的位置和灵敏度,改进代码的逻辑,以及优化小车的机械结构。

结论通过本次寻迹小车实训,我们学会了如何搭建机械结构、连接电路,编写代码以及调试和优化寻迹小车的功能。

这不仅加深了我们对机器人技术和电路原理的理解,还培养了我们的动手能力和解决问题的能力。

希望通过这次实训,我们能够更好地掌握和应用这些知识,为未来的科技发展做出贡献。

循迹小车实训报告范文

循迹小车实训报告范文

循迹小车实训报告一、引言随着科技的不断发展,嵌入式系统在各个领域的应用越来越广泛。

循迹小车作为嵌入式系统的一个典型应用,具有很高的实用价值。

本次实训旨在通过设计和制作循迹小车,让学生掌握嵌入式系统的基础知识和实践技能,提高学生的动手能力和创新意识。

二、项目背景循迹小车是一种基于传感器和单片机控制的小型移动机器人,能够在预设的轨道上自动行驶。

它由传感器模块、单片机控制模块、电机驱动模块和舵机控制模块等组成。

循迹小车广泛应用于工业自动化、物流搬运、环境监测等领域。

三、项目目标1. 掌握循迹小车的工作原理和设计方法;2. 学会使用传感器、单片机、电机驱动模块和舵机等硬件;3. 熟悉C语言编程,编写循迹小车的控制程序;4. 培养团队合作精神和创新意识。

四、项目内容1. 硬件设计(1)传感器模块:采用红外对管作为传感器,用于检测轨道线。

(2)单片机控制模块:采用51单片机作为控制核心,负责处理传感器信号,控制电机驱动模块和舵机控制模块。

(3)电机驱动模块:采用L298N电机驱动芯片,驱动两个直流电机。

(4)舵机控制模块:采用SG90舵机,用于控制小车转向。

2. 软件设计(1)主程序:初始化各个模块,读取传感器信号,根据信号判断小车位置,控制电机驱动模块和舵机控制模块。

(2)中断服务程序:处理传感器中断,实时调整小车行驶方向。

3. 系统调试(1)硬件调试:检查电路连接是否正确,确保各个模块正常工作。

(2)软件调试:通过程序调试,使小车能够准确循迹。

五、项目实施1. 硬件制作(1)根据电路图,焊接传感器、单片机、电机驱动模块和舵机等元器件。

(2)搭建循迹小车车体,连接各个模块。

2. 软件编程(1)编写主程序,实现小车循迹功能。

(2)编写中断服务程序,实现小车转向功能。

3. 系统调试(1)调试硬件电路,确保各个模块正常工作。

(2)调试软件程序,使小车能够准确循迹。

六、项目成果1. 成功制作了一辆循迹小车,能够准确地在预设轨道上行驶。

循迹小车报告精选全文完整版

循迹小车报告精选全文完整版

可编辑修改精选全文完整版创新制作循迹小车制作报告班级:学号:姓名:一、设计方案路面检测模块电路检测路面信息,区分黑色与白面,并形成相对应的高电平与低电平提供给单片机;单片机对路面循迹模块提供的高低电平进行分析,并形成相应的对策(直行、左转、右转和停止等),并将其转化成对应的电压输出给电机驱动模块;电机驱动模块根据单片机提供的电压信号驱动对应的电机,得到与对策相同的执行动作;电源模块电路为三个模块提供所需要的电。

电路框图如下图所示:电路框图二、路面检测模块工作原理一对光电开光的发射管不停的发射红外光,经过路面发射回来的被接受管接收到。

因为白色路面和黑线对光的反射不同,所以正对白色路面的光电对管的接收管接收到更多的红外光,而正对黑线的光电对管的接收管收到较少的红外光。

经过光电开关的接收电路将接收到红外光的多少转化为正相关的电流大小,并进一步转化成接收电路的输出电压(A点电压)的较小值和较大值。

输出电压的较小值和较大值进一步与一个居中的基准电压分别进行比较,对应比较器的输出端(C点)分别为高电平还是低电平,并进一步输出给单片机,同时对应指示发光管的不亮与亮。

路面循迹模块电路如下图所示:D1路面循迹模块电路三、单片机最小系统单片机最小系统包括了时钟电路和复位电路。

时钟电路为单片机工作提供基本时钟,复位电路用于将单片机内部各电路的状态恢复到初始值。

单片机是一个复杂的同步时序电路,为了保证同步工作方式的实现,电路应在唯一的时钟信号下严格地按时序进行工作。

时钟电路用于产生单片机工作所需要的时钟信号。

时钟信号的产生是在MCS-51系列单片机内部有一个高增益反相放大器,其输入端引脚为XTAL1,其输出端引脚为XTAL2。

只要在XTAL1和XTAL2之间跨接晶体振荡器和微调电容,就可以构成一个稳定的自己振荡器。

复位电路由一个按键、电解电容和电阻组成,它是使CPU 和系统中的其他功能部件都恢复到一个确定的初始状态,并从这个状态开始工作。

智能寻迹小车实训报告[大全]

智能寻迹小车实训报告[大全]

智能寻迹小车实训报告[大全]第一篇:智能寻迹小车实训报告[大全]目录1、引言1.1智能小车的设计意义和作用 (3)2、系统总体设计 (4)3、硬件设计3.1循线模块 (5)4、软件设计4.1软件调试平台.............................................7 4.2系统软件流程.............................................8 4.3系统软件程序 (9)5、调试及性能分析 (12)6、设计总结 (13)7、作品实物图 (14)8、参考文献 (15)1、引言1.1智能小车的设计意义和作用智能小车是移动式机器人的重要组成部分,介绍一种基于AT89S52单片机的智能小车。

通过不断检测各个模块传感器的输入信号,根据内置的程序分别控制小车左右两个直流电机运转,实现小车自动识别路线,寻找光源,判断并避开障碍物,检测道路上的铁片、发出声光信息并计数显示,智能停车等功能。

作为20世纪自动化领域的重大成就,机器人已经和人类社会的生产、生活密不可分。

因此为了使智能小车工作在最佳状态,进一步研究及完善其速度和方向的控制是非常有必要的。

智能小车要实现自动寻迹功能和避障功能就必须要感知导引线和障碍物,感知导引线相当给机器人一个视觉功能。

避障控制系统是基于自动导引小车(avg—auto-guide vehicle)系统,基于它的智能小车实现自动识别路线,判断并自动避开障碍,选择正确的行进路线。

使用传感器感知路线和障碍并作出判断和相应的执行动作。

该智能小车可以作为机器人的典型代表.它可以分为三大组成部分:传感器检测部分,,执行部分,cpu。

机器人要实现自动避障功能,还可以扩展循迹等功能,感知导引线和障碍物。

可以实现小车自动识别路线,选择正确的行进路线,并检测到障碍物自动躲避。

考虑使用价廉物美的红外反射式传感器来充当。

智能小车的执行部分,是由直流电机来充当的,主要控制小车的行进方向和速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动寻迹小车设计报告
一、系统设计
1、设计要求
(1)自动寻迹小车从安全区域启动。

(2)小车按检测路线运行,自动区分直线轨道和弯路轨道,在弯路处拐弯,实现灵活前进、转弯、等功能
2.小车寻迹的原理
这里的寻迹是指小车在白色地板上寻黑线行走,通常采取的方法是红外探测法。

红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。

单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。

红外探测器探测距离有限,一般最大不应超15cm。

对于发射和接收红外线的红外探头,可以自己制作或直接采用集成式红外探头。

3、模块方案
根据设计要求,本系统主要由控制器模块、寻迹传感器模块、直流电机及其驱动模块等构成。

控制器模块:控制器模块由AT89C51单片机控制小车的行走。

寻迹传感器模块:寻迹传感器用光电传感器ST188检测线路并反馈给单片机执行。

ST188采用高发射功率红外光电二极管和高灵敏度双光电晶体管组成。

检测距离:4--13mm
直流电机及其驱动模块:直流电机用L298来驱动。

L298N是一个具有高电压大电流的全桥驱动芯片,它相应频率高,一片L298N可以分别控制两个直流电机,而且还带有控制使能端。

用该芯片作为电机驱动,操作方便,稳定性好,性能优良。

4.系统结构框图:
二、硬件实现及单元电路设计
1、微控制器模块的设计
在本次设计中我们采用了AT89C51位主控制器。

它具有智能化,可编程,小型便携等优点。

2.光电传感器:
本次试验我们采用了ST188光电传感器,ST188采用高发射功率红外光电二极管和高灵敏度双光电晶体管组成。

检测距离:4--13mm。

其连接电路图如下:
3.直流电机及其驱动模块
在直流电机驱动问题上,我们采用一片L298来驱动直流电机。

其连接电路图如下:
控制电机的转速的大小,从而控制小车方向的转变。

总电路图如下:
三.软件设计:
在这次的软件设计中我们用了中断及PWM波来控制电机的转速。

通过控制PWM的占空比的大小来控制电机的速度。

从而达到控制小车在弯道转弯的目的。

程序如下:
#include<reg51.h>
#include<stdio.h>
sbit r1=P2^2;
sbit r3=P2^3;
int a=0,b=0, pwm1=0,pwm2=0;
sbit led_1=P2^0;
sbit led_2=P2^1;
sbit r4=P2^6;
sbit r5=P2^7;
void delay(int k)
{int i,j;
for(i=0;i<k;i++)
for(j=0;j<128;j++);
}
void Timer_Init(void)
{
TMOD=0x01; //定时器0,方式1
TH0=(65535-1000)/256;
TL0=(65535-1000)%256; //方式1,1ms定时
TR0=1;
ET0=1;
EA=1; //开定时中断0
}
void time0() interrupt 1 //定时中断0
{
TH0=(65535-500)/256;
TL0=(65535-500)%256;
a++,b++;
if(a<=pwm1)led_1=0;
else led_1=1;
if(a>=100)a=0;
if(b<=pwm2)led_2=0;
else led_2=1;
if(b>=100)b=0;
}
//生成周期为100ms的方波
void main()
{
IE=0x85; //IE=,允许外部INT0和INT1中断IT0=1; //下降沿
delay(2);
led_1=1;
led_2=1;
while(1)
{
P1=0x05;
pwm1=50,pwm2=50;
}
}
void int0(void)interrupt 0 //外部中断0 {
if(r1)
{ P1=0x01;
delay(200);
pwm1=50,pwm2=70;
}
if(r3)
{
P1=0x04;
delay(200);
pwm1=70,pwm2=50;
}
}。

相关文档
最新文档