组合数学习题解答

合集下载

(完整word版)组合数学课后答案

(完整word版)组合数学课后答案

习题二证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。

证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。

假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。

假设至少有两人谁都不认识,则认识的人数为0的至少有两人。

任取11个整数,求证其中至少有两个数的差是10的整数倍。

证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。

现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。

证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。

证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。

由鸽巢原理知,至少有2个坐标的情况相同。

又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。

因为奇数+奇数= 偶数;偶数+偶数=偶数。

因此只需找以上2个情况相同的点。

而已证明:存在至少2个坐标的情况相同。

证明成立。

一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。

一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。

那么至少取出多少水果后能够保证已经拿出20个相同种类的水果证明:根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。

证明:在任意选取的n+2个正整数中存在两个正整数,其差或和能被2n整除。

(书上例题2.1.3)证明:对于任意一个整数,它除以2n的余数显然只有2n种情况,即:0,1,2,…,2n-2,2n-1。

组合数学 卢 习题答案

组合数学 卢 习题答案

组合数学卢习题答案组合数学是数学的一个分支,研究的是离散的对象之间的组合方式和计数方法。

它在解决实际问题中有着广泛的应用,例如密码学、图论、组织管理等领域。

本文将为读者提供一些卢习题的答案,帮助读者更好地理解和掌握组合数学的知识。

1. 卢习题一:从一个有10个字母的字母表中选取3个字母,可以有多少种不同的选择方式?解答:根据组合数学的知识,从n个不同元素中选取k个元素的组合数可以用C(n,k)表示。

在这个问题中,n=10,k=3,所以答案为C(10,3) = 10! / (3! * (10-3)!) = 120 种不同的选择方式。

2. 卢习题二:一个班级有20名学生,其中10名男生和10名女生。

如果要从这个班级中选取5名学生组成一个小组,其中至少有2名男生和2名女生,有多少种不同的选取方式?解答:这个问题可以用组合数学中的排列组合原理来解决。

首先,我们可以分两种情况来考虑:一种是选取3名男生和2名女生,另一种是选取2名男生和3名女生。

对于第一种情况,选取3名男生的方式有C(10,3) = 120种,选取2名女生的方式有C(10,2) = 45种,所以总共有120 * 45 = 5400种不同的选取方式。

对于第二种情况,选取2名男生的方式有C(10,2) = 45种,选取3名女生的方式有C(10,3) = 120种,所以总共有45 * 120 = 5400种不同的选取方式。

将两种情况的结果相加,总共有5400 + 5400 = 10800种不同的选取方式。

3. 卢习题三:有一个由0和1组成的8位二进制数,其中至少有3个1。

问这样的二进制数有多少个?解答:这个问题可以用组合数学中的排列组合原理来解决。

首先,我们可以分两种情况来考虑:一种是有3个1,另一种是有4个1、5个1、6个1、7个1和8个1。

对于第一种情况,选取3个位置放置1的方式有C(8,3) = 56种。

对于第二种情况,选取4个位置放置1的方式有C(8,4) = 70种,选取5个位置放置1的方式有C(8,5) = 56种,选取6个位置放置1的方式有C(8,6) = 28种,选取7个位置放置1的方式有C(8,7) = 8种,选取8个位置放置1的方式有C(8,8) = 1种。

组合数学参考答案及解析(卢开澄第四版)_修改版

组合数学参考答案及解析(卢开澄第四版)_修改版

1.1 题 从{1,2,……50}中找两个数{a ,b},使其满足 (1)|a-b|=5; (2)|a-b|≤5;解:(1):由|a-b|=5⇒a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。

当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。

所以这样的序列有90对。

(2):由题意知,|a-b|≤5⇒|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0; 由上题知当|a-b|=5时 有90对序列。

当|a-b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。

当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对, 当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?解:(a )可将5个女生看作一个单位,共八个单位进行全排列得到排列数为:8!×5!, (b )用x 表示男生,y 表示空缺,先将男生放置好,共有8个空缺, Y X Y X Y X Y X Y X Y X Y X Y在其中任取5个得到女生两两不相邻的排列数: C (8,5)×7!×5! (c )先取两个男生和3个女生做排列,情况如下:6. 若A ,B 之间存在0个男生, A ,B 之间共有3个人,所有的排列应为 P6=C(5,3)*3!*8!*2 1.若A ,B 之间存在1个男生, A ,B 之间共有4个人,所有的排列应为 P1= C(5,1)*C(5,3)*4!*7!*2 2.若A ,B 之间存在2个男生,A ,B 之间共有5个人,所有的排列应为 P2=C(5,2)*C(5,3)*5!*6!*2 3.若A ,B 之间存在3个男生,A ,B 之间共有6个人,所有的排列应为 P3=C(5,3)*C(5,3)*6!*5!*2 4.若A ,B 之间存在4个男生,A ,B 之间共有7个人,所有的排列应为 P4=C(5,4)*C(5,3)*7!*4!*2 5.若A ,B 之间存在5个男生,A ,B 之间共有8个人,所有的排列应为 P5=C(5,5)*C(5,3)*8!*3!*2所以总的排列数为上述6种情况之和。

组合数学第三版+卢开澄+习题答案

组合数学第三版+卢开澄+习题答案

第1章 排列与组合经过勘误和调整,已经消除了全部的文字错误,不过仍有以下几个题目暂时没有找到解答:1.8 1.9 1.161.41(答案略) 1.42(答案略)1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=0时,b =5,6,7,…,50。

满足a=b-5的点共50-4=46个点. a = b+5,a=5时,b =0,1,2,…,45。

满足a=b+5的点共45-0+1=46个点. 所以,共计92462=⨯个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。

1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。

(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。

将女生插入,有5!种方案。

故按乘法原理,有: 7!×58C ×5!=33868800(种)方案。

(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生 排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有 (7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≤n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有m n C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。

组合数学第四版答案

组合数学第四版答案

组合数学第四版答案【篇一:组合数学参考答案(卢开澄第四版)60页】>1.1 题从{1,2,……50}中找两个数{a,b},使其满足(1)|a-b|=5;(2)|a-b|?5;解:(1):由|a-b|=5?a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。

当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。

所以这样的序列有90对。

(2):由题意知,|a-b|?5?|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0;由上题知当|a-b|=5时有90对序列。

当|a-b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。

当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对,当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生a和b之间正好有3个女生的排列是多少?所以总的排列数为上述6种情况之和。

1.3题 m个男生,n个女生,排成一行,其中m,n都是正整数,若(a)男生不相邻(m?n?1); (b)n个女生形成一个整体;(c)男生a和女生b排在一起;分别讨论有多少种方案。

解:(a) 可以考虑插空的方法。

n个女生先排成一排,形成n+1个空。

因为m?n?1正好m个男生可以插在n+1个空中,形成不相邻的关系。

则男生不相邻的排列个数为ppnn?n?1m(b) n个女生形成一个整体有n!种可能,把它看作一个整体和m个男生排在一起,则排列数有(m+1)!种可能。

组合实际问题解答练习题

组合实际问题解答练习题

组合实际问题解答练习题组合实际问题是数学中的一个重要概念,它在各个领域都有广泛的应用。

本文将介绍一些实际问题,并给出解答练习题,以帮助读者更好地理解和应用组合实际问题。

问题一:某超市有5种不同的水果,小明要买3种水果,他有多少种不同的选择?解答:根据组合实际问题的定义,我们可以使用组合数来解决这个问题。

假设超市的5种水果分别为苹果、香蕉、橙子、葡萄和樱桃。

小明要买3种水果,可以将问题转化为从5种水果中选取3种的问题,即求解C(5, 3)。

根据组合数的计算公式,C(n, r) = n! / (r! * (n-r)!),我们可以计算出C(5, 3) = 5! / (3! * 2!) = 10。

所以小明有10种不同的选择。

问题二:一个班级有10个男生和8个女生,班委会要选出3名男生和2名女生组成小组,有多少种不同的选法?解答:这个问题可以用组合数来解决。

选出3名男生可以从10个男生中选取3个,选出2名女生可以从8个女生中选取2个。

因此,问题可以转化为求解C(10, 3) * C(8, 2)。

计算C(10, 3) = 10! / (3! * 7!) = 120,C(8, 2) = 8! / (2! * 6!) = 28。

所以最终的结果为120 * 28 = 3360。

所以班委会有3360种不同的选法。

问题三:一家餐厅提供4种主菜和3种甜点,小明想点一道主菜和一道甜点,他有多少种选择?解答:这个问题类似于排列组合的问题,小明需要从4种主菜中选取一种,从3种甜点中选取一种,因此他的选择数为4 * 3 = 12。

所以小明有12种不同的选择。

问题四:某公司有8个部门,需要从这些部门中选出3个部门组成一个项目小组,其中至少有一个财务部门和一个人力资源部门,有多少种不同的选法?解答:这个问题可以用组合实际问题的思路来解决。

首先,从8个部门中选取1个财务部门有8种选择,从剩下的7个部门中选取1个人力资源部门有7种选择。

组合数学课后习题答案

组合数学课后习题答案

组合数学课后习题答案问题1求解以下组合数:(a)C(5, 2)(b)C(7, 3)(c)C(10, 5)解答:(a)C(5, 2) 表示从5个不同元素中选取2个的组合数。

根据组合数的定义,我们可以使用公式 C(n, k) = n! / (k! * (n-k)!) 来计算组合数。

计算 C(5, 2): C(5, 2) = 5! / (2! * (5-2)!) = 5! / (2! * 3!) = (5 * 4 * 3!) / (2! * 3!) = (5 * 4) / 2 = 10所以 C(5, 2) = 10。

(b)C(7, 3) 表示从7个不同元素中选取3个的组合数。

计算 C(7, 3): C(7, 3) = 7! / (3! * (7-3)!) = 7! / (3! * 4!) = (7 * 6 * 5 * 4!) / (3! * 4!) = (7 * 6 * 5) / 3 = 35 * 2 = 70所以 C(7, 3) = 70。

(c)C(10, 5) 表示从10个不同元素中选取5个的组合数。

计算 C(10, 5): C(10, 5) = 10! / (5! * (10-5)!) = 10! / (5! * 5!) = (10 * 9 * 8 * 7 * 6 * 5!) / (5! * 5!) = (10 * 9 * 8 * 7 * 6) / (5 * 4 * 3 * 2 * 1) = 252所以 C(10, 5) = 252。

问题2在一个集合 {a, b, c, d, e} 中,求解以下问题:(a)有多少种不同的3个元素的子集?(b)有多少种不同的4个元素的子集?(c)有多少种不同的空集合?(a)在一个集合 {a, b, c, d, e} 中选取3个元素的子集。

子集的元素个数为3,所以我们需要从5个元素中选取3个。

利用组合数的公式 C(n, k) = n! / (k! * (n-k)!),我们可以计算组合数。

组合数学考试题目及答案

组合数学考试题目及答案

组合数学考试题目及答案**组合数学考试题目及答案**一、单项选择题(每题3分,共30分)1. 从10个不同的元素中取出3个元素的组合数为()。

A. 120B. 210C. 100D. 150答案:B2. 以下哪个不是排列数的性质?()。

A. \( P(n, n) = n! \)B. \( P(n, 0) = 1 \)C. \( P(n, k) = \frac{n!}{(n-k)!} \)D. \( P(n, k) = \frac{n!}{k!} \)答案:D3. 从5个不同的元素中取出2个元素的排列数为()。

A. 10B. 20C. 15D. 25答案:B4. 组合数 \( C(n, k) \) 和排列数 \( P(n, k) \) 之间的关系是()。

A. \( C(n, k) = \frac{P(n, k)}{k!} \)B. \( P(n, k) = \frac{C(n, k)}{k!} \)C. \( C(n, k) = k \times P(n, k) \)D. \( P(n, k) = k \times C(n, k) \)答案:A5. 以下哪个是组合数的性质?()。

A. \( C(n, k) = C(n, n-k) \)B. \( C(n, k) = C(n-1, k-1) \)C. \( C(n, k) = C(n, k+1) \)D. \( C(n, k) = C(n+1, k+1) \)答案:A6. 从8个不同的元素中取出3个元素的组合数为()。

A. 56B. 54C. 48D. 35答案:A7. 以下哪个是排列数的递推关系?()。

A. \( P(n, k) = P(n-1, k) + P(n-1, k-1) \)B. \( P(n, k) = P(n-1, k) - P(n-1, k-1) \)C. \( P(n, k) = P(n-1, k) \times P(n, 1) \)D. \( P(n, k) = P(n-1, k-1) \times P(n, 1) \)答案:D8. 从7个不同的元素中取出4个元素的排列数为()。

组合数学试题及答案

组合数学试题及答案

组合数学试题及答案一、选择题(每题3分,共30分)1. 在组合数学中,从n个不同元素中取出m个元素的组合数表示为:A. C(n, m)B. P(n, m)C. A(n, m)D. nCm答案:A2. 如果一个集合有10个元素,从中任取3个元素的组合数为:A. 120B. 210C. 1001D. 1000答案:B3. 组合数学中的排列数与组合数的关系是:A. P(n, m) = C(n, m) * m!B. C(n, m) = P(n, m) / m!C. P(n, m) = C(n, m) + m!D. P(n, m) = C(n, m) * n!答案:B4. 以下哪个公式用于计算组合数?A. C(n, m) = n! / (m! * (n-m)!)B. P(n, m) = n! / (n-m)!C. A(n, m) = n! / (m! * (n-m)!)D. B(n, m) = n! / (m! * (n-m)!)答案:A5. 如果一个集合有8个元素,从中任取2个元素的排列数为:A. 28B. 56C. 8!D. 7!答案:B6. 组合数学中,排列数P(n, m)的定义是:A. 从n个元素中取出m个元素的所有可能的排列方式的数量B. 从n个元素中取出m个元素的所有可能的组合方式的数量C. 从n个元素中取出m个元素的所有可能的排列方式的数量,不考虑顺序D. 从n个元素中取出m个元素的所有可能的组合方式的数量,考虑顺序答案:A7. 以下哪个公式用于计算排列数?A. P(n, m) = n! / (n-m)!B. C(n, m) = n! / (m! * (n-m)!)C. A(n, m) = n! / (m! * (n-m)!)D. B(n, m) = n! / (m! * (n-m)!)答案:A8. 如果一个集合有15个元素,从中任取5个元素的组合数为:A. 3003B. 3000C. 1365D. 15504答案:D9. 组合数学中的二项式系数表示为:A. C(n, m)B. P(n, m)C. A(n, m)D. B(n, m)答案:A10. 以下哪个公式用于计算二项式系数?A. C(n, m) = n! / (m! * (n-m)!)B. P(n, m) = n! / (n-m)!C. A(n, m) = n! / (m! * (n-m)!)D. B(n, m) = n! / (m! * (n-m)!)答案:A二、填空题(每题2分,共20分)1. 从5个不同元素中取出3个元素的组合数为 ________。

猿题库高中组合数练习题及讲解

猿题库高中组合数练习题及讲解

猿题库高中组合数练习题及讲解# 高中组合数练习题及讲解组合数是高中数学中的一个重要概念,它在概率论、排列组合等领域有着广泛的应用。

本文将提供一些高中组合数的练习题,并给出相应的讲解,帮助学生更好地理解和掌握这一概念。

## 练习题一:基本组合数计算题目:从10个不同的球中任选5个,求不同的选法有多少种?解答:这是一个典型的组合数问题。

组合数的计算公式为 \( C(n, k) = \frac{n!}{k!(n-k)!} \),其中 \( n \) 是总数,\( k \) 是选取的数量。

将题目中的数值代入公式,我们得到 \( C(10, 5) =\frac{10!}{5!(10-5)!} = 252 \)。

所以,不同的选法有252种。

## 练习题二:组合数在实际问题中的应用题目:一个班级有30名学生,需要选出5名学生代表班级参加比赛。

如果不考虑性别,求选出的5名学生的组合数。

解答:这个问题同样可以使用组合数公式来解决。

因为我们不考虑任何额外条件,所以直接使用 \( C(30, 5) \) 来计算。

计算结果为\( C(30, 5) = \frac{30!}{5!(30-5)!} \),计算得出的结果是142506。

因此,有142506种不同的组合方式。

## 练习题三:组合数与排列数的区别题目:从7个不同的数字中选出3个数字,分别放在三个不同的位置上,求不同的排列方式有多少种?解答:这个问题涉及到排列数的计算。

排列数的公式为 \( P(n, k)= \frac{n!}{(n-k)!} \)。

与组合数不同,排列数考虑了元素的顺序。

将题目中的数值代入公式,我们得到 \( P(7, 3) = \frac{7!}{(7-3)!} = 210 \)。

所以,不同的排列方式有210种。

## 练习题四:组合数的边界条件题目:如果从n个不同的元素中选取0个元素,求组合数。

解答:根据组合数的定义,\( C(n, 0) \) 表示从n个元素中不选取任何元素的情况。

组合数学第一章习题解答

组合数学第一章习题解答

1.16、n个完全一样的球放到r个有标志的盒中,无一空盒, 试问有多少种方案? 取r个球每盒放一个,然后n-r个放入r个不同盒中,同充许空 盒的放法。 C(r+n-r-1,n-r)=C(n-1,n-r)=C(n-1,r-1)
1.18、8个盒子排成一列,5个有标志的球放到盒子中,每盒 最多放一个球,要求空盒不相邻,问有多少种排列方案? 5!×6×5×4 1.19、n+m位由m个0,n个1组成的符号串,其中n≤m+1,试问 不存在两个1相邻的符号串的数目? (m+1)*m*...*(m-n+2)/n!=C(m+1,n) 1.20、甲单位有10个男同志,4个女同志,乙单位有15个男同 志,10个女同志,由他们产生一个7人的代表团,要求其中甲单 位占4人,面且7人中男同志5位,试问有多少种方案? 按甲单位: C(10,4)C(15,1)C(10,2)+C(10,3)C(4,1)C(15,2)C(10,1)+ C(10,2)C(4,2)C(15,3)
习题:1.15试求从1到1000000的整数中,0出现的次数。 解:先将1到999999的整数都看作6位数,例如2就看作是 000002,这样从000000到999999。0出现了多少次呢? 6×105,某一位取0,其它各位任取。 0出现在最前面的次数应该从中去掉 000000到999999中最左1位的0出现了105次, 000000到099999中左数第2位的0出现了104次, 000000到009999左数第3位的0出现了103次, 000000到000999左数第4位的0出现了102次, 000000到000099左数第5位的0出现了10次, 000000到000009左数第6位的0出现了1次。 因此不合法的0的个数为105+104+103+102+101+1=111111, 不合法的应该去掉,再加整数1000000中的6个0,这样,从1到 1000000的整数中0出现的次数为6×105-111111+6=488895。 问题:在去掉多余的零的过程中,多减去了一部分,例如: 000000这种情况在每次减的过程中都出现。

组合数学习题答案

组合数学习题答案

第1章 排列与组合1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=1,2,…,45时,b =6,7,…,50。

满足a=b-5的点共50-5=45个点. a = b+5,a=5,6,…,50时,b =0,1,2,…,45。

满足a=b+5的点共45个点. 所以,共计2×45=90个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。

1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。

(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。

将女生插入,有5!种方案。

故按乘法原理,有:7!×58C ×5!=33868800(种)方案。

(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有(7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≢n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有mn C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。

(完整word版)组合数学习题解答

(完整word版)组合数学习题解答

第一章:1。

2. 求在1000和9999之间各位数字都不相同,而且由奇数构成的整数个数。

解:由奇数构成的4位数只能是由1,3,5,7,9这5个数字构成,又要求各位数字都不相同,因此这是一组从5个不同元素中选4个的排列,所以,所求个数为:P (5,4)=120。

1.4。

10个人坐在一排看戏有多少种就坐方式?如果其中有两人不愿坐在一起,问有多少种就坐方式? 解:这显然是一组10个人的全排列问题,故共有10!种就坐方式。

如果两个人坐在一起,则可把这两个人捆绑在一起,如是问题就变成9个人的全排列,共有9!种就坐方式.而这两个人相捆绑的方式又有2种(甲在乙的左面或右面)。

故两人坐在一起的方式数共有2*9!,于是两人不坐在一 起的方式共有 10!— 2*9!.1.5. 10个人围圆桌而坐,其中两人不愿坐在一起,问有多少种就坐方式? 解:这是一组圆排列问题,10个人围圆就坐共有10!10 种方式。

两人坐在一起的方式数为9!92⨯,故两人不坐在一起的方式数为:9!—2*8!。

1。

14. 求1到10000中,有多少正数,它的数字之和等于5?又有多少数字之和小于5的整数? 解:(1)在1到9999中考虑,不是4位数的整数前面补足0, 例如235写成0235,则问题就变为求: x 1+x 2+x 3+x 4=5 的非负整数解的个数,故有F (4,5)=⎪⎪⎭⎫⎝⎛-+=515456 (2)分为求:x 1+x 2+x 3+x 4=4 的非负整数解,其个数为F (4,4)=35 x 1+x 2+x 3+x 4=3 的非负整数解,其个数为F(4,3)=20 x 1+x 2+x 3+x 4=2 的非负整数解,其个数为F (4,2)=10 x 1+x 2+x 3+x 4=1 的非负整数解,其个数为F (4,1)=4 x 1+x 2+x 3+x 4=0 的非负整数解,其个数为F (4,0)=1将它们相加即得,F (4,4)+F(4,3)+F (4,2)+F (4,1)+F (4,0)=70。

组合数学第三版@习题答案

组合数学第三版@习题答案

第1章 排列与组合经过勘误和调整,已经消除了全部的文字错误,不过仍有以下几个题目暂时没有找到解答:1.8 1.9 1.161.41(答案略) 1.42(答案略)1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=0时,b =5,6,7,…,50。

满足a=b-5的点共50-4=46个点. a = b+5,a=5时,b =0,1,2,…,45。

满足a=b+5的点共45-0+1=46个点. 所以,共计92462=⨯个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。

1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。

(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。

将女生插入,有5!种方案。

故按乘法原理,有: 7!×58C ×5!=33868800(种)方案。

(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生 排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有 (7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≢n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有m n C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。

组合数学第三版+卢开澄+习题答案

组合数学第三版+卢开澄+习题答案

第1章 排列与组合经过勘误和调整,已经消除了全部的文字错误,不过仍有以下几个题目暂时没有找到解答:1.8 1.9 1.161.41(答案略) 1.42(答案略)1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=0时,b =5,6,7,…,50。

满足a=b-5的点共50-4=46个点. a = b+5,a=5时,b =0,1,2,…,45。

满足a=b+5的点共45-0+1=46个点. 所以,共计92462=⨯个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。

1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。

(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。

将女生插入,有5!种方案。

故按乘法原理,有: 7!×58C ×5!=33868800(种)方案。

(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有 (7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≢n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有m n C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。

(完整word版)组合数学第一章答案.

(完整word版)组合数学第一章答案.

1.1 从{}5021,,,⋅⋅⋅中找两个数{}b a ,,使其满足 (1) 5||=-b a ;(2)5||≤-b a解:(1)根据5||=-b a 可得 55-=-=-b a b a 或则有种种4545 共有90种。

(2)根据5||≤-b a 得 )50,,2,1(,55{⋅⋅⋅∈+≤≤-b a b a b则:当5≤b 时,有 1=b , 61≤≤a , 则有 6种 2=b , 71≤≤a , 则有7种 3=b , 81≤≤a , 则有8种 4=b , 91≤≤a , 则有 9种5=b , 101≤≤a , 则有10种当455≤<b 时,有 6=b , 111≤≤a , 则有 11种7=b , 122≤≤a , 则有 11种. . . . . . . . .45=b , 5040≤≤a , 则有11种当5045≤<b 时,有 46=b , 5041≤≤a , 则有 10种 47=b , 5042≤≤a , 则有 9种48=b , 5043≤≤a , 则有 8种49=b , 5044≤≤a , 则有 7种50=b , 5045≤≤a , 则有 6种故:共 种520)678910(21140=+++++⨯1.2 (1)先把女生进行排列,方案为5!,然后把女生看成1个人和7个男生进行排列,总方案数为5!×8!(2)女生不相邻,则先把男生进行排列,方案为7!再把女生插入男生之间的8个空位种的任意5个,总方案数为7!×58P(3)应该是A 女生x 女生y 女生z B,或是B 女生x 女生y 女生z A 的形式,从5个女生中选出3人进行排列,方案为35P ,考虑A,B 可以换位,方案为2×35P ,然后把这个看成一个整体,和剩下的2个女生,5个男生,一共7个人进行排列,总方案数2×35P ×8!1.3 m 个男生,n 个女生,排成一行,其中m,n 都是正整数,若(a )男生不相邻(m ≤n+1); (b )n 个女生形成一个整体; (c )男生A 和女生B 排在一起; 分别讨论有多少种方案。

组合数学习题解答

组合数学习题解答

★★★第一章:★★★1、用六种方法求839647521之后的第999个排列。

提示:先把999换算成递增或递减进位制数,加到中介数上,就不用计算序号了。

解:字典序法递增进位制法递减进位制法邻位对换法839647521的中介数72642321↑67342221↑12224376↓10121372↓999的中介数121211↑121211↑1670↓1670↓839647521后999的中介数73104210↑67504110↑12230366↓10123362↓839647521后999个的排列842196537 859713426 389547216 →3←8→4→5→7→6←9←21★★★第二章★★★例5:10个数字(0到9)和4个四则运算符(+,-,×,÷) 组成的14个元素。

求由其中的n个元素的排列构成一算术表达式的个数。

因所求的n个元素的排列是算术表达式,故从左向右的最后一个符号必然是数字。

而第n-1位有两种可能,一是数字,一是运算符。

如若第n-1位是十个数字之一,则前n-1位必然构成一算术表达式。

10a n-1如若不然,即第n-1位是4个运算符之一,则前n-2位必然是算术表达式。

40a n-2,根据以上分析,令a n表示n个元素排列成算术表达式的个数。

则a2=120指的是从0到99的100个数,以及±0,±1,...,±9,利用递推关系(2-8-1),得a0=1/2特征多项式x2-10x-40 。

它的根是解方程得例7:平面上有一点P,它是n个域D1,D2,...,D n的共同交界点,见图2-8-4现取k种颜色对这n个域进行着色,要求相邻两个域着的颜色不同。

试求着色的方案数。

令a n表示这n个域的着色方案数。

无非有两种情况(1)D1和D n-1有相同的颜色;(2)D1和D n-1所着颜色不同。

第一种情形,域有k-1种颜色可用,即D1D n-1域所用颜色除外;而且从D1到D n-2的着色方案,和n-2个域的着色方案一一对应。

组合数学习题答案.

组合数学习题答案.

第一章答案 第二章答案 第三章答案 第四章答案第一章答案1.(a) 45 ( {1,6},{2,7},{3,8},…,{45,50} )(b) 45⨯5+(4+3+2+1) = 235( 1→2~6, 2→3~7, 3→4~8, …,45→46~50, 46→47~50, 47→48~50, 49→50 ) 2.(a) 5!8!(b) 7! P(8,5) (c) 2 P(5,3) 8! 3. (a) n!P(n+1, m) (b) n!(m+1)!(c) 2!((m+n-2)+1)! 4. 2 P(24,5) 20!5. 2⨯5⨯P(8,2)+3⨯4⨯P(8,2)6. (n+1)!-17. 用数学归纳法易证。

8. 41⨯319. 设 n=p 1n 1p 2n 2…p kn k , 则n 2的除数个数为 ( 2p 1+1) (2p 2+1) …(2p k+1).10.1)用数学归纳法可证n 能表示成题中表达式的形式;2)如果某n 可以表示成题中表达式的形式,则等式两端除以2取余数,可以确定a 1;再对等式两端的商除以3取余数,又可得a 2;对等式两端的商除以4取余数,又可得a 3;…;这说明表达式是唯一的。

11.易用C(m,n)=m!/(n!(m-n)!)验证等式成立。

组合意义:右:从n 个不同元素中任取r+1个出来,再从这r+1个中取一个的全体组合的个数;左:上述组合中,先从n 个不同元素中任取1个出来,每一个相同的组合要生复 C(n-1,r) 次。

12.考虑,)1(,)1(101-=-=+=+=∑∑n nk k k n nnk kknx n x kC x x C 求导数后有令x=1, 即知.210-==∑n nk kn n kC13. 设此n 个不同的数由小到大排列后为a 1, a 2, …, a n 。

当第二组最大数为a k 时,第二组共有2k-1种不同的可能,第一组有2n-k -1种不同的可能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:1.2. 求在1000和9999之间各位数字都不相同,而且由奇数构成的整数个数。

解:由奇数构成的4位数只能是由1,3,5,7,9这5个数字构成,又要求各位数字都不相同,因此这是一组从5个不同元素中选4个的排列,所以,所求个数为:P(5,4)=120。

1.4. 10个人坐在一排看戏有多少种就坐方式?如果其中有两人不愿坐在一起,问有多少种就坐方式?解:这显然是一组10个人的全排列问题,故共有10!种就坐方式。

如果两个人坐在一起,则可把这两个人捆绑在一起,如是问题就变成9个人的全排列,共有9!种就坐方式。

而这两个人相捆绑的方式又有2种(甲在乙的左面或右面)。

故两人坐在一起的方式数共有2*9!,于是两人不坐在一 起的方式共有 10!- 2*9!。

1.5. 10个人围圆桌而坐,其中两人不愿坐在一起,问有多少种就坐方式? 解:这是一组圆排列问题,10个人围圆就坐共有10!10 种方式。

两人坐在一起的方式数为9!92⨯,故两人不坐在一起的方式数为:9!-2*8!。

1.14. 求1到10000中,有多少正数,它的数字之和等于5?又有多少数字之和小于5的整数?解:(1)在1到9999中考虑,不是4位数的整数前面补足0, 例如235写成0235,则问题就变为求: x 1+x 2+x 3+x 4=5 的非负整数解的个数,故有 F (4,5)=⎪⎪⎭⎫⎝⎛-+=515456 (2)分为求:x 1+x 2+x 3+x 4=4 的非负整数解,其个数为F (4,4)=35 x 1+x 2+x 3+x 4=3 的非负整数解,其个数为F (4,3)=20 x 1+x 2+x 3+x 4=2 的非负整数解,其个数为F (4,2)=10 x 1+x 2+x 3+x 4=1 的非负整数解,其个数为F (4,1)=4 x 1+x 2+x 3+x 4=0 的非负整数解,其个数为F (4,0)=1 将它们相加即得,F (4,4)+F (4,3)+F (4,2)+F (4,1)+F (4,0)=70。

第二章:2.3. 在边长为1的正三角形任意放置5个点,则其中至少有两个点的距离≤1/2。

解:将边为1的正三角形分成边是为1/2的四个小正三角形,将5个点放入四个小正三角形中,由鸽笼原理知,至少有一个小正三角形中放有2个点,而这两点的距离≤1/2。

1/21/2 1/22.5. 在图中,每个方格着红色或蓝色,证明至少存在两列有相同的着色。

解:每列着色的方式只可能有224⨯=种,现有5列,由鸽笼原理知,至少有二列着色方式相同。

⎪2.7. 一个学生打算用37天总共60学时自学一本书,他计划每天至少自学1学时,证明:无论他怎样按排自学时间表,必然存在相继的若干天,在这些天其自学总时数恰好为13学时。

解:设1a 是第一天自学的时数,2a 是第一,二天自学的时数的和,j a 是第一,二,… ,第j 天自学时数的和,1,2,,37j =⋅⋅⋅⋅⋅⋅于是,序列1237,,,a a a ⋅⋅⋅⋅⋅⋅是严格递增序列(每天至少一学时),而且,1371,60a a ≥= 于是序列13713,,13a a +⋅⋅⋅⋅⋅⋅+也是严格递增的序列,故371373a +=因此74个数137137,,13,,1373a a a a ⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+=都在1和73两个整数之间,由鸽笼原理知,这74个数中必有两个是相等的,由于1237,,,a a a ⋅⋅⋅⋅⋅⋅中任何两数都不相等,故13713,,13a a +⋅⋅⋅⋅⋅⋅+中任何两个数也是不相等的,因此,一定存在两个数,i j 使得 1313i j i j a a a a =+→-=因此,在1,2,,j j i ++⋅⋅⋅⋅⋅⋅这些天中,这个学生自学总时数恰好为13。

⎪2.10. 证明:在任意52个整数中,必存在两个数,其和或差能被100整除。

证明:设52个整数a 1,a 2,….,a 52被100除的余数分别为r 1,r 2,….,r 52,而任意一整数被100除可能的余数为0,1,2,….,99,共100个,它可分为51个类:{0},{1,99},{2,98},…..{49,51},{50}。

因此,将51个类看做鸽子笼,则由鸽笼原理知,将r 1,r 2,….,r 52 个鸽子放入51个笼中,,至少有两个属于同一类,例如r i ,r j,于是r i =r j或r i +r j =100,这就是说a i —a j 可100整除,或a i + a j 可被100整除。

第三章3.2. 求1到1000中既非完全平方又非完全立方的整数个数。

解:设S ={1,2,…,1000};1A 表示1到1000中完全平方数的集合,则1A 表示1到1000中不是完全平方数的集合;2A 表示1到1000中完全立方数的集合,则2A 表示1到1000中不是完全立方数的集合。

故__2__1A A 表示1到1000中既非完全平方又非完全立方的整数的集合,由容斥原理((3.5)式)知:212121A A A A S A A +--= (3.5)其中||S =1000,1||31A ==,2||10A == 21A A 表示1到1000中既是完全平方又是完全立方的数的集合,故21A A ==3,将以上数值代入(3.5)式得21A A =1000-(31+10)+3=962故1到1000中既非完全平方又非完全立方的整数个数为962。

3.8. 在所有的n 位数中,包含数字3,8,9但不包含数字0,4的数有多少?解:除去0,4,则在1,2,3,5,6,7,8,9这8个数字组成的n 位数中,令S 表示由这8个数字组成的所有n 位数的集合。

则|S|=8n. P 1表示这样的性质:一个n 位数不包含3; P 2表示这样的性质:一个n 位数不包含8; P 3表示这样的性质:一个n 位数不包含9;并令A i 表示S 中具有性质P i 的元素构成的集合(i=1,2,3)。

则A A A 321 表示S 中包含3,又包含8,又包含9的所有n 位数的集合。

由容斥原理((3.5)式)得|321A A A |=||||||||32131A A A AA A S ji jii i-+-∑∑≠= (3.5)而777321,,nn n A A A ===666323121,,nnnA A A A A A ===5321nA A A =,代入(3.5)式得123837365n n n n A A A =-•+•-故所求的n 位数有n n n n 563738-⨯+⨯-个。

3.10. 求重集{}3,4,5B a b c =⋅⋅⋅的10-组合数。

解:构造集合B ′=},,{c b a ⋅∞⋅∞⋅∞。

令集合B ′的所有10-组合构成的集合为S 。

由第一章的重复组合公式(1.11)有||S =F (3,10)=⎪⎪⎭⎫⎝⎛-+101103=66。

令p 1表示S 中的元素至少含有4个a 这一性质,令p 2表示S 中的元素至少含有5个b这一性质,令p 3表示S 中的元素至少含有6个c 这一性质,并令A i (i=1,2,3)表示S 中具有性质p i (i=1,2,3)的元素所构成的集合,于是B 的10-组合数就是S 中不具有性质p 1,p 2,p 3的元素个数。

由容斥原理((3.5)式)有:|321A A A |=||||||||32131A A A AA A S ji jii i-+-∑∑≠= (3.5)由于已经求得||S =66,下面分别计算(3.9)式右端其他的项。

由于A 1中的每一个10-组合至少含有4个a ,故将每一个这样的组合去掉4个a 就得到集合B ′的一个6-组合。

反之,如果取B ′的一个6-组合并加4个a 进去,就得到了A 1的一个10-组合。

于是A 1的10-组合数就等于B ′的6-组合数。

故有||1A =F (3,6)=⎪⎪⎭⎫⎝⎛-+6163=28同样的分析可得||2A =F (3,5)=⎪⎪⎭⎫⎝⎛-+5153=21||3A =F (3,4)=⎪⎪⎭⎫⎝⎛-+4143=15用类似的分析方法可分别求得||21A A =F (3,1)=⎪⎪⎭⎫⎝⎛-+1113=3||31A A =F (3,0)=⎪⎪⎭⎫⎝⎛-+0103=1||32A A =0(因为5+6=11>10)||321A A A =0 (同上)将以上数值代人(3.9)式得到:|321A A A |=66-(28+21+15)+(3+1+0)-0=6故所求的10-组合数为6。

3.14. 求由数字1,2,⋅⋅⋅8所组成的全排列中,恰有4个数字在其自然位置上的全排列个数。

解:4个数在其自然位置共有⎪⎪⎭⎫⎝⎛48种方式,对某一种方式,均有4个数字不在其自然位置,这正好是一个错排,其方式数为4D (见定理3.2),由乘法规则有,恰有4个数字在其自然位置上的全排列数为484D ⎛⎫⎪⎝⎭=630。

第四章4.6 求重集}7,5,3,{d c b a B ⋅⋅⋅⋅∞=的10-组合数。

解:设重集B 的n-组合数为n a ,则序列{n a }的普通母函数为2232345()(1)(1)(1)f x x x x x x x x x x x =+++++++++++234567(1)x x x x x x x ⨯+++++++=xx x x x x x --⋅--⋅--⋅-11111111864=(1-x 4-x 6-x 8+x 10+x 12+x 14-x 18)∑∞=⎪⎪⎭⎫ ⎝⎛+033k k x k 所以a 10=⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛+3033233433633103=286-84-35-10+1=158 故重集B 的10-组合数为158。

4.9. 设重集{}123456,,,,,B b b b b b b =∞∞∞∞∞∞,并设r a 是B 满足以下条件的r-组合数,求序列()01,,,,r a a a 的普通母函数。

a. 每个I b 出现3的倍数次。

()1,2,3,4,5,6I =b. 1b ,2b 至多出现1次,34,b b 至少出现2次,56,b b 最多出现4次。

c. 1b 出现偶数次,6b 出现奇数次,3b 出现3的倍数次,4b 出现5的倍数次。

d. 每个I b ()1,2,3,4,5,6I =至多出现8次。

解:a.3696()(1)f x x x x =++++30(6,)()k k F k x ∞==∑b. 223422342()(1)()(1)f x x x x x x x x x =++++++++c. 2435369510()(1)()(1)(1)f x x x x x x x x x x x =+++++++++++++(1x x x ⨯232++++) d. 2386()(1)f x x x x =++++4.10 有两颗骰子,每个骰子六个面上刻有1,2,3,4,5,6个点。

相关文档
最新文档