实验4 信号频率与相位分析

合集下载

示波器测信号的周期和频率实验报告

示波器测信号的周期和频率实验报告

示波器的使用1、理解通用双通道示波器的构造和工作原理,熟悉各个旋钮的作用和使用方法。

2、掌握用示波器观察波形、测量电压和频率的方法;理解用示波器测量相位差的方法。

3、掌握观察李萨如图形的方法,并能用李萨如图形测量未知正弦信号的频率;能用示波器观察“拍〞现象。

1、通用双通道示波器的构造,面板旋钮的作用和使用方法;2、通用双通道示波器的工作原理,李萨如图形测量未知正弦信号频率的原理,观察“拍〞现象的原理。

一、前言示波器是利用电子束的电偏转来观察电压波形的一种常用电子仪器,主要用于观察电信号随时间变化的波形,定量测量波形的幅度、周期、频率、相位等参数。

一般的电学量〔如电流、电功率、阻抗等〕和可转化为电学量的非电学量〔如温度、位移、速度、压力、光强、磁场、频率〕以及它们随时间变化的规律都可以用示波器来观测。

由于电子的惯性很小,电子射线示波器一般可在很高的频率范围内工作。

采用高增益放大器的示波器可以观察微弱的信号;具有多通道的示波器,那么可以同时观察几个信号,并比较它们之间的相应关系〔如时间差或相位差〕,是目前科学实验、科研消费常用的电子仪器。

二、实验仪器通用双通道示波器,函数信号发生器、同轴电缆等。

三、实验原理1、仪器工作原理〔1〕通用双通道示波器的介绍主要构造:示波管、电子放大系统、扫描触发系统、电源工作原理: 〔a 〕示波管示波管是呈喇叭形的玻璃泡,被抽成高真空,内部装有电子枪和两对互相垂直的偏转板,喇叭口的球面内壁上涂有荧光物质,构成荧光屏。

以下图是示波管的构造图。

电子枪由灯丝F 、阴极K 、栅极G 以及一组阳极A 所组成。

灯丝通电后炽热,使阴极发热而发射电子。

由于阳极电位高于阴极,所以电子被阳极电压加速。

当高速电子撞击在荧光屏上会使荧光物质发光,在屏上就能看到一个亮点。

改变阳极组电位分布,可以使不同发射方向的电子恰好会聚在荧光屏某一点上,这种调节称为聚焦。

栅极G 电位较阴极K 为低,改变G 电位的上下,可以控制电子枪发射电子流的密度,甚至完全不使电子通过,这称为辉度调节,实际上就是调节荧光屏上亮点的亮暗。

实验四 信号的分解与合成

实验四 信号的分解与合成

实验四信号的分解与合成实验目的:1.了解信号的分解与合成原理;2.掌握连续时间信号的傅里叶级数分解公式及其应用;3.掌握离散时间信号的傅里叶变换公式及其应用。

实验原理:1.信号的分解任何信号都可以分解成若干谐波的叠加。

这是因为任何周期信号都可以表示为若干谐波的叠加。

傅里叶级数分解公式:$$x(t)=\sum_{n=-\infty}^{+\infty} C_ne^{jn\omega_0t}$$其中,$C_n$为信号的各级谐波系数,$\omega_0$为信号的基波频率。

当信号为实信号时,其傅里叶级数中只有实系数,且对称性可利用,因此实际计算中可以只计算正频率系数,即$$x(t)=\sum_{n=0}^{+\infty} A_n\cos(n\omega_0t+\phi_n)$$其中,$A_n$为信号各级谐波幅度,$\phi_n$为各级谐波相位。

若信号不是周期信号,则可以采用傅里叶变换进行分解。

2.信号的合成对于任意信号$y(t)$,都可以表示为其傅里叶系数与基波频率$\omega_0$的乘积的叠加,即$$y(t)=\sum_{n=-\infty}^{+\infty}C_ne^{jn\omega_0t}$$若$y(t)$为实信号,则其傅里叶系数中只有正频率系数,即$$y(t)=\sum_{n=0}^{+\infty}A_n\cos(n\omega_0t+\phi_n)$$实验步骤:一、连续时间信号的傅里叶级数分解1.打开Matlab软件,使用line或scatter等函数绘制出函数$f(x)=x(0<x<2\pi)$的图像。

2.使用Matlab的fft函数对f(x)进行逆傅里叶变换得到其傅里叶级数分解。

3.将得到的傅里叶级数分解与原函数的图像进行比较,分析级数中谐波幅度的变化规律。

二、离散时间信号的傅里叶变换1.使用Matlab生成一个为$sin(\pi k/4),0\le k\le 15$的离散时间信号。

频率特性实验报告

频率特性实验报告

一、实验目的1. 理解频率特性的基本概念和测量方法。

2. 掌握使用Bode图和尼奎斯特图分析系统频率特性的方法。

3. 了解频率特性在系统设计和稳定性分析中的应用。

二、实验原理频率特性描述了系统对正弦输入信号的响应,通常用幅频特性和相频特性来表示。

幅频特性表示输出信号幅度与输入信号幅度之间的关系,相频特性表示输出信号相位与输入信号相位之间的关系。

频率特性的测量通常通过以下步骤进行:1. 使用正弦信号发生器产生不同频率的正弦信号。

2. 将信号输入被测系统,并测量输出信号的幅度和相位。

3. 根据测量数据绘制幅频特性和相频特性曲线。

三、实验设备1. 正弦信号发生器2. 示波器3. 信号分析仪4. 被测系统(如电路、控制系统等)四、实验步骤1. 准备实验设备,确保各设备连接正确。

2. 设置正弦信号发生器,产生一系列不同频率的正弦信号。

3. 将正弦信号输入被测系统,并使用示波器或信号分析仪测量输出信号的幅度和相位。

4. 记录不同频率下的幅度和相位数据。

5. 使用绘图软件绘制幅频特性和相频特性曲线。

五、实验结果与分析1. 幅频特性分析通过绘制幅频特性曲线,可以观察到系统对不同频率信号的衰减程度。

一般来说,低频信号的衰减较小,高频信号的衰减较大。

根据幅频特性,可以判断系统的带宽和稳定性。

2. 相频特性分析通过绘制相频特性曲线,可以观察到系统对不同频率信号的相位延迟。

相频特性曲线通常呈现出滞后或超前特性。

根据相频特性,可以判断系统的相位裕度和增益裕度。

3. 系统稳定性分析根据幅频特性和相频特性,可以判断系统的稳定性。

如果系统的相位裕度和增益裕度都大于零,则系统是稳定的。

否则,系统可能是不稳定的。

六、实验结论通过本次实验,我们成功地测量了被测系统的频率特性,并分析了其幅频特性和相频特性。

实验结果表明,被测系统在低频段表现出较小的衰减,而在高频段表现出较大的衰减。

相频特性曲线显示出系统在低频段滞后,在高频段超前。

根据频率特性分析,可以得出被测系统是稳定的。

系统频率测试实验报告(3篇)

系统频率测试实验报告(3篇)

第1篇一、实验目的1. 了解系统频率特性的基本概念和测试方法。

2. 掌握使用示波器、频谱分析仪等设备进行系统频率测试的操作技巧。

3. 分析测试结果,确定系统的主要频率成分和频率响应特性。

二、实验原理系统频率特性是指系统对正弦输入信号的响应,通常用幅频特性(A(f))和相频特性(φ(f))来描述。

幅频特性表示系统输出信号幅度与输入信号幅度之比,相频特性表示系统输出信号相位与输入信号相位之差。

频率测试实验通常包括以下步骤:1. 使用正弦信号发生器产生正弦输入信号;2. 将输入信号输入被测系统,并测量输出信号;3. 使用示波器或频谱分析仪观察和分析输出信号的频率特性。

三、实验设备1. 正弦信号发生器2. 示波器3. 频谱分析仪4. 被测系统(如放大器、滤波器等)5. 连接线四、实验步骤1. 准备实验设备,将正弦信号发生器输出端与被测系统输入端相连;2. 打开正弦信号发生器,设置合适的频率和幅度;3. 使用示波器观察输入信号和输出信号的波形,确保信号正常传输;4. 使用频谱分析仪分析输出信号的频率特性,记录幅频特性和相频特性;5. 改变输入信号的频率,重复步骤4,得到一系列频率特性曲线;6. 分析频率特性曲线,确定系统的主要频率成分和频率响应特性。

五、实验结果与分析1. 幅频特性曲线:观察幅频特性曲线,可以发现系统存在一定频率范围内的增益峰值和谷值。

这些峰值和谷值可能对应系统中的谐振频率或截止频率。

通过分析峰值和谷值的位置,可以了解系统的带宽和选择性。

2. 相频特性曲线:观察相频特性曲线,可以发现系统在不同频率下存在相位滞后或超前。

相位滞后表示系统对输入信号的相位延迟,相位超前表示系统对输入信号的相位提前。

通过分析相位特性,可以了解系统的相位稳定性。

六、实验总结1. 通过本次实验,我们掌握了系统频率特性的基本概念和测试方法。

2. 使用示波器和频谱分析仪等设备,我们成功地分析了被测系统的频率特性。

3. 通过分析频率特性曲线,我们了解了系统的主要频率成分和频率响应特性。

相位鉴频器实验报告

相位鉴频器实验报告

相位鉴频器实验报告相位鉴频器实验报告引言:在电子通信领域,相位鉴频器是一种常用的电路元件,用于检测和测量信号的相位和频率。

本实验旨在通过搭建一个相位鉴频器电路并进行测试,验证其在信号处理中的应用。

实验目的:1. 了解相位鉴频器的基本原理和工作方式;2. 掌握相位鉴频器电路的搭建和调试方法;3. 进行实际信号的相位和频率测量。

实验器材和材料:1. 相位鉴频器芯片;2. 信号发生器;3. 示波器;4. 电源供应器;5. 电阻、电容等元件。

实验步骤:1. 搭建相位鉴频器电路:根据相位鉴频器芯片的引脚连接图,将芯片与其他元件连接起来,注意接地和电源的连接;2. 连接信号源和示波器:将信号源的输出端与相位鉴频器的输入端相连,将示波器的探头连接到相位鉴频器的输出端;3. 调试电路:通过调整电路中的电阻、电容等元件的数值,使得相位鉴频器的输出信号能够正确地反映输入信号的相位和频率;4. 测试信号的相位和频率:使用示波器观察相位鉴频器输出的波形,并通过示波器的测量功能获取信号的相位和频率数据。

实验结果与分析:经过调试和测试,我们成功搭建了相位鉴频器电路,并获取了信号的相位和频率数据。

在实验过程中,我们发现相位鉴频器对于输入信号的频率变化非常敏感,能够精确地测量出信号的频率。

而对于相位的测量,相位鉴频器也能够给出较为准确的结果,但在高频信号的情况下,可能会受到噪声和干扰的影响。

结论:通过本次实验,我们深入了解了相位鉴频器的原理和工作方式,并通过实际搭建和测试,验证了其在信号处理中的应用。

相位鉴频器作为一种重要的电路元件,在无线通信、雷达系统等领域具有广泛的应用前景。

掌握相位鉴频器的原理和调试方法,对于电子工程师来说是非常重要的技能。

展望:相位鉴频器作为一种基础的电路元件,随着通信技术的发展和应用需求的不断增加,其功能和性能也在不断提升。

未来,相位鉴频器可能会更加精确地测量信号的相位和频率,同时具备抗干扰和抗噪声的能力。

模拟通信实验报告

模拟通信实验报告

一、实验目的1. 理解模拟通信系统的基本组成和原理;2. 掌握模拟调制和解调的基本方法;3. 学习模拟信号在信道中的传输特性;4. 通过实验加深对通信理论知识的理解。

二、实验器材1. 模拟通信实验箱;2. 双踪示波器;3. 频率计;4. 调制器和解调器;5. 信号发生器;6. 计算器。

三、实验原理模拟通信系统是指将信息源产生的模拟信号,通过调制器转换为适合在信道中传输的信号,再通过解调器恢复出原始信号的过程。

实验主要涉及以下几种调制方式:1. 振幅调制(AM):通过改变载波的振幅来传输信息;2. 频率调制(FM):通过改变载波的频率来传输信息;3. 相位调制(PM):通过改变载波的相位来传输信息。

实验中,我们将通过调制器和解调器对模拟信号进行调制和解调,观察调制信号和解调信号的波形,并分析调制和解调过程中的特性。

四、实验步骤1. 振幅调制(AM)实验:(1)将信号发生器产生的正弦波作为调制信号,接入调制器;(2)调整调制器的参数,使载波频率和调制信号频率一致;(3)观察调制器输出的AM信号波形,分析调制信号的幅度、频率和相位变化;(4)将AM信号接入解调器,观察解调器输出的信号波形,分析解调信号的恢复效果。

2. 频率调制(FM)实验:(1)将信号发生器产生的正弦波作为调制信号,接入调制器;(2)调整调制器的参数,使载波频率和调制信号频率一致;(3)观察调制器输出的FM信号波形,分析调制信号的幅度、频率和相位变化;(4)将FM信号接入解调器,观察解调器输出的信号波形,分析解调信号的恢复效果。

3. 相位调制(PM)实验:(1)将信号发生器产生的正弦波作为调制信号,接入调制器;(2)调整调制器的参数,使载波频率和调制信号频率一致;(3)观察调制器输出的PM信号波形,分析调制信号的幅度、频率和相位变化;(4)将PM信号接入解调器,观察解调器输出的信号波形,分析解调信号的恢复效果。

五、实验结果与分析1. 振幅调制(AM)实验结果:调制信号和载波信号频率一致,调制器输出AM信号,解调器输出信号波形与调制信号基本一致,恢复效果较好。

电子电路实验四 实验报告

电子电路实验四 实验报告

实验四波形发生电路实验报告一、理论计算1.正弦振荡电路实验电路如图1所示,电源电压为±12V。

分析图1电路的工作原理,根据图中的元件参数,计算符合振荡条件的Rw值以及振荡频率f0。

该正弦振荡电路采用RC串并联选频网络,选频网络的示意图如下:当输入信号的频率足够低时,,超前,且当频率趋近于零时,相位超前趋近于+90°;当输入信号的频率足够高时,,滞后,且当频率趋近于无穷大时,相位滞后趋近于-90°。

因此,当信号频率从零逐渐变化到无穷大时,的相位将从+90°逐渐变化到-90°,故必定存在一个频率f0,当f= f0时,与同相。

RC串并联选频网络的反馈系数整理可得令,则代入上式,得出当f=f0时,,由正弦振荡电路的起振条件知,。

对于图1的正弦振荡电路,有将R3、R4代入上式,令之大于3,得Rw>10kΩ。

将R1=R2=16kΩ、C1=C2=0.01μF代入f0式,得f0=994.7Hz。

2.多谐振荡电路实验电路如图2所示。

深入分析图2所示电路的工作原理,画出Vo1、Vo2的波形,推导Vo1、Vo2波形的周期(频率)和幅度的计算公式。

再按图2中给出的元件参数计算Vo1、Vo2波形的周期(频率)、幅度,以备与实验实测值进行比较。

该电路为三角波发生电路,原理图如下:虚线左边为滞回电路,故Vo1为方波。

根据叠加原理,集成运放A1同相输入端的电位令,则阈值电压对于虚线右边的积分电路,其输入电压不是+U Z,就是-U Z,故积分电路的输出电压的波形为三角波。

设输出电压的初始值为-U T,终了值为+U T,则可解得T为矩形波、三角波共同的周期。

矩形波的幅度的理论值即为UZ,等于6V;将实验电路图中的各个参数代入各式,得UT=0.5*6=3V,故三角波的幅度理论值为3V,矩形波、三角波的周期 。

3.锯齿波发生电路锯齿波发生电路的原理图见仿真实验电路图。

设二极管导通时的等效电阻可忽略不计,当u o1=+U Z时,D3导通,D4截止,输出电压的表达式为uo随时间线性下降。

声光调制实验报告

声光调制实验报告

一、实验目的1. 理解声光调制的基本原理和过程;2. 掌握声光调制器的构造和工作原理;3. 熟悉声光调制实验的操作方法和注意事项;4. 通过实验,验证声光调制在实际应用中的效果。

二、实验原理声光调制是一种利用声波对光波进行调制的方法。

当声波在介质中传播时,会引起介质的弹性应变,导致介质的折射率发生周期性变化,从而在光波传播过程中产生衍射现象。

声光调制器正是利用这一原理,通过调节声波的频率、幅度和相位,实现对光波的调制。

三、实验仪器与设备1. 声光调制器;2. 光源;3. 光功率计;4. 信号发生器;5. 电脑及实验软件;6. 电缆线。

四、实验步骤1. 连接声光调制器、光源、光功率计、信号发生器和电脑等设备;2. 打开电脑,运行实验软件;3. 调整光源输出功率,使其达到预设值;4. 调节信号发生器的频率、幅度和相位,分别进行以下实验:(1)频率调制:观察光功率计的读数变化,分析频率调制效果;(2)幅度调制:观察光功率计的读数变化,分析幅度调制效果;(3)相位调制:观察光功率计的读数变化,分析相位调制效果;5. 记录实验数据,分析实验结果。

五、实验结果与分析1. 频率调制实验:当信号发生器的频率与声光调制器的共振频率相匹配时,光功率计的读数发生明显变化,说明频率调制效果较好。

2. 幅度调制实验:当信号发生器的幅度变化时,光功率计的读数也随之变化,说明幅度调制效果较好。

3. 相位调制实验:当信号发生器的相位变化时,光功率计的读数也随之变化,说明相位调制效果较好。

六、实验总结1. 通过本次实验,我们了解了声光调制的基本原理和过程;2. 掌握了声光调制器的构造和工作原理;3. 熟悉了声光调制实验的操作方法和注意事项;4. 验证了声光调制在实际应用中的效果。

本次实验表明,声光调制技术具有调制效果好、频率范围宽、非线性失真小等优点,在光通信、光纤传感等领域具有广泛的应用前景。

在实验过程中,我们要注意以下几点:1. 实验前要熟悉实验原理和仪器设备;2. 实验过程中要严格按照实验步骤进行操作;3. 注意安全,防止意外事故发生;4. 实验结束后,认真整理实验器材,清理实验场地。

实验四 信号的分解与合成

实验四 信号的分解与合成

实验四信号的分解与合成实验目的:1.了解正弦波的频率、周期、幅值的概念,学习如何扫描振荡器的操作方法;3.学会分解信号为基波和谐波的叠加形式,并学习信号的合成原理。

实验仪器:1.示波器2.扫描振荡器3.电容电阻箱或电位器4.函数发生器5.电源实验原理:1.正弦波的频率、周期、幅值正弦波是指时间、电压或电流都随着正弦函数变化的周期性波形,常表示为y=A*sin(ωt+φ),其中A为振幅,ω为角频率,φ为初相位,t为时间。

正弦波的频率指的是单位时间内波形变化的次数,即ω/2π,单位为赫兹(Hz)。

频率越高,波形在单位时间内变化的次数越多,波形的周期越短。

正弦波的周期指波形从一个极值到另一个极值所需的时间,即T=1/f。

正弦波的幅值指波形振动的最大距离,通常用峰值(Vp)或峰峰值(Vpp)来表示。

峰值是指波形振动的最大值或最小值,峰峰值是指波形振动的最大值与最小值之差。

扫描振荡器是一种信号源,它能够产生可调频率、可调幅度的正弦波信号。

其操作方法如下:(1)将扫描振荡器电源插座插入电源插座;(3)按下扫描振荡器的POWER开关,激活电源;(4)调节FREQUENCY旋钮和AMPLITUDE旋钮,调节正弦波的频率和幅度;(5)根据需要选择SINE、SQUARE、TRIANGLE等波形。

3.调节示波器的基本参数(1)调节触发电平。

触发电平是示波器用于捕捉波形起点的电平参考值,需要根据所测量的信号进行调节。

在示波器的“Trigger”面板上,可以通过“LEVEL”旋钮进行设置。

(2)调节时间/电压比。

示波器有自动触发和正常触发两种模式。

在自动触发模式下,示波器会自动捕捉信号并显示波形;在正常触发模式下,示波器需要先捕捉到信号才能进行显示。

在示波器的“Trigger”面板上,可以通过“MODE”选择触发模式。

(4)选择或调节显示模式。

示波器有AC、DC、GND三种显示模式,分别表示显示交流信号、直流信号和零参考信号。

频率特性的测试实验报告

频率特性的测试实验报告

频率特性的测试实验报告频率特性的测试实验报告摘要:频率特性是描述系统对不同频率信号的响应能力的重要参数。

本实验旨在通过测试不同频率下的信号输入和输出,分析系统的频率特性。

实验结果表明,系统在不同频率下的响应存在一定的差异,频率特性测试可以有效评估系统的性能。

引言:频率特性是衡量系统对不同频率信号的响应能力的重要指标,对于各种电子设备和通信系统的设计和性能评估具有重要意义。

频率特性测试可以帮助我们了解系统在不同频率下的工作情况,为系统优化和故障排除提供依据。

实验方法:1. 实验器材准备:使用函数发生器作为信号源,连接到待测试系统的输入端;使用示波器连接到待测试系统的输出端,用于观测信号响应。

2. 实验参数设置:选择一系列不同频率的信号作为输入信号,设置函数发生器的频率范围和幅度。

3. 实验过程:逐一调节函数发生器的频率,观察示波器上输出信号的变化,并记录下输入信号和输出信号的幅度、相位差等参数。

4. 实验数据处理:根据记录的数据,绘制频率特性曲线,分析系统在不同频率下的响应情况。

实验结果:通过实验测试,我们得到了系统在不同频率下的响应数据,并绘制了频率特性曲线。

以下是实验结果的总结:1. 幅频特性:我们观察到系统在低频时具有较高的增益,随着频率的增加,增益逐渐下降。

在高频范围内,增益趋于平缓或下降较快,这可能是由于系统的带宽限制所致。

2. 相频特性:我们发现系统在不同频率下的相位差存在一定的变化。

在低频时,相位差较小,随着频率的增加,相位差逐渐增大。

这可能是由于系统的传递函数导致的相位延迟效应。

3. 频率响应范围:通过绘制频率特性曲线,我们可以确定系统的频率响应范围。

在曲线上观察到的3dB降低点可以作为系统的截止频率,超过该频率的信号将受到较大的衰减。

讨论与分析:频率特性测试结果对于系统的性能评估和优化具有重要意义。

通过分析实验结果,我们可以得出以下结论和建议:1. 频率特性的变化可能是由于系统中的电容、电感等元件的频率响应特性导致的。

旋转条件GPS接收信号频率和相位变化分析

旋转条件GPS接收信号频率和相位变化分析

旋转条件GPS接收信号频率和相位变化分析
申强;王猛;李东光
【期刊名称】《北京理工大学学报》
【年(卷),期】2009(29)1
【摘要】针对高旋转弹丸GPS接收机无法正常工作的问题,通过计算和分析高旋转条件GPS接收信号的频率和相位变化,为设计高旋转条件GPS接收机基带算法提供依据.根据弹丸旋转运动特点和GPS信号的传播特性建立数学模型,对由于旋转引起的GPS接收信号的多普勒频率和相位变化进行计算.结果表明,在转速为200 r/s 时,产生的载波最大多普勒频移为300 Hz,相位变化为0.6π,这对载波环路跟踪会产生很大影响.而码多普勒频移和相位变化不大.计算结果对高旋转条件GPS信号捕获和跟踪算法设计具有重要参考价值.
【总页数】3页(P35-37)
【关键词】全球定位系统(GPS);高速旋转;天线;捕获;跟踪
【作者】申强;王猛;李东光
【作者单位】北京理工大学宇航科学技术学院
【正文语种】中文
【中图分类】TJ410.37
【相关文献】
1.旋转法检测GPS接收机天线相位中心偏差 [J], 姜晨光;李新玲;袁春桥
2.基于载波频率辅助相位的GPS信号跟踪算法 [J], 沈锋;李伟东
3.信号与系统中用旋转矢量描述负频率和相位角 [J], 郭仁春;赵立杰;白海军;王国刚;王倚天;汪滢
4.利用完全旋转法检测GPS接收机天线相位中心三维偏差 [J], 王婷婷;朱瀚;陈义
5.测量与识别电力系统幅值、频率、相位轻微变化的小波域正交信号分析方法 [J], 陈祥训
因版权原因,仅展示原文概要,查看原文内容请购买。

频率测量实验方法与注意事项

频率测量实验方法与注意事项

频率测量实验方法与注意事项引言在科学研究和工程实践中,频率测量是一项十分重要的实验任务。

无论是在电子工程、通信技术还是物理学等领域,频率测量都扮演着关键的角色。

本文旨在探讨频率测量的实验方法和一些注意事项,以帮助读者更好地进行频率测量实验。

一、频率测量的基本原理频率测量是指测量信号周期性变化的频率,通常以赫兹(Hz)为单位。

频率测量的基本原理是通过对信号的周期性特征进行测量来计算频率。

下面介绍一些常用的频率测量方法。

二、波形测量法波形测量法是最常见的频率测量方法之一。

它基于信号的周期性特征,通过测量信号的周期或周期的倒数来计算频率。

可以使用示波器等仪器来捕捉信号的波形,并使用触发功能来获得稳定的波形。

然后,通过计算所测得的周期来确定频率。

三、计数测量法计数测量法是一种高精度的频率测量方法。

它基于计数器进行周期性脉冲的计数,然后根据计数结果计算频率。

在计数测量中,要注意选择适当的计数时间,以确保测量结果的精度。

此外,还需要注意计数器的稳定性和分辨率,以确保测量的准确性。

四、相位比较法相位比较法是一种精确测量高频率的方法。

它通过将被测频率信号与参考频率信号进行比较,然后测量它们之间的相位差来计算频率。

相位比较法的实现通常需要使用锁相环等特殊的电路,因此在进行实验时需要注意选择适当的设备和方法。

五、注意事项在进行频率测量实验时,需要注意以下几点:1. 测试环境的稳定性:频率测量对实验环境的稳定性要求较高,尽量避免在有干扰或变动的环境中进行实验,以保证测量结果的准确性。

2. 选择合适的测量方法:不同的频率范围和精度要求需要选择适当的测量方法。

根据实际需求选择合适的仪器和技术,以获得准确的测量结果。

3. 测试信号的条件设置:在进行频率测量实验时,需要注意测试信号的条件设置。

例如,选择适当的波形、频率范围和幅度等,以确保信号能够被准确捕捉和测量。

4. 仪器的校准和调试:在进行频率测量实验之前,需要对仪器进行校准和调试。

电路基础原理中的相位差与频率关系

电路基础原理中的相位差与频率关系

电路基础原理中的相位差与频率关系在电路基础原理中,相位差与频率是密切相关的。

相位差指的是两个信号之间的时间延迟,而频率则是指信号的周期性重复次数。

相位差与频率之间的关系是电路分析中的重要基础知识,它们的相互作用对于电路的性能和稳定性有着决定性的影响。

在交流电路中,相位差是指两个正弦波信号之间的时间差。

正弦波信号被广泛应用于各种电子设备中,因为它具有周期性和可重复性。

正弦波信号可以通过振幅、频率和相位来完全描述。

振幅决定信号的幅度大小,频率决定信号的周期性,而相位则决定信号的相对位置。

当两个正弦波信号的频率相同时,它们的相位差会直接影响信号的合成结果。

如果两个正弦波信号的相位差为0度或360度,它们将完全同相,即两个信号完全重合,并产生最大的合成振幅。

如果相位差为180度,即两个信号完全反相,它们将发生完全抵消,合成振幅为零。

而在0度和180度之间的相位差将会产生不同大小的合成振幅。

然而,当两个正弦波信号的频率不同时,它们之间的相位差也会受到频率的影响。

在频率不同时,两个信号的周期性不一致,相对的位置也会发生变化。

这意味着当两个信号的频率不同但相位差不变时,它们的重合部分将不会完全相同,无法产生最大的合成振幅。

因此,我们可以得出结论,相位差与频率之间存在着一种固定的关系。

这种关系可以通过数学公式来表达,即相位差等于频率乘以时间。

根据这个公式,我们可以推导出相位差随着频率的变化而线性增加或减小。

换句话说,当频率变大时,相位差也会随之增大;当频率变小时,相位差会减小。

这种相位差与频率的关系在电路设计和分析中具有重要意义。

例如,在滤波器设计中,我们需要考虑信号的相位差对滤波效果的影响。

如果相位差与频率之间的关系不符合设计要求,滤波器的性能可能会受到影响。

此外,在通信系统中,相位差与频率的关系也是非常重要的。

通信系统中的信号传输往往需要考虑信号的相干性,即信号的相位差保持稳定。

如果相位差与频率之间存在不一致性,信号的传输可能会发生失真或丢失。

【实验报告】频率响应测试

【实验报告】频率响应测试

实验名称:频率响应测试课程名称:自动控制原理实验目录(一)实验目的3(二)实验内容3(三)实验设备3(四)实验原理4(五)K=2频率特性试验结果4(六)K=2频率特性试验数据记录及分析7(七)K=5频率特性试验结果9(八)K=5频率特性试验数据记录及分析12(九)实验总结及感想错误!未定义书签。

图片目录图片1 系统结构图3图片2 系统模拟电路3图片3 K=2仿真对数幅相特性曲线4图片4 K=5仿真对数幅相特性曲线4图片5 f=0.7时输出波形及李沙育图形5图片6 f=1.4时输出波形及李沙育图形5图片7 f=2.1时输出波形及李沙育图形5图片8 f=2.8时输出波形及李沙育图形5图片9 f=3.5时输出波形及李沙育图形6图片10 f=4.2时输出波形及李沙育图形6图片11 f=4.9时输出波形及李沙育图形6图片12 f=5.6时输出波形及李沙育图形6图片13 f=6.3时输出波形及李沙育图形7图片14 f=7.0时输出波形及李沙育图形7图片15 k=2拟合频率特性曲线9图片16 f=0.9波形及李沙育图形9图片17 f=1.8波形及李沙育图形10图片18 f=2.7波形及李沙育图形10图片19 f=3.6波形及李沙育图形10图片20 f=4.5波形及李沙育图形10图片21 f=5.4波形及李沙育图形11图片22 f=6.3波形及李沙育图形11图片23 f=7.2形及李沙育图形11图片24 f=8.1波形及李沙育图形11图片25 f=9.0波形及李沙育图形12图片26 k=2拟合相频特性曲线14图表目录表格1 K=2电路元件参数7表格2 K=2实测电路数据处理7表格3 K=5电路元件参数12表格4 K=5实测电路数据处理12频率响应测试(一) 实验目的1. 掌握频率特性的测试原理及方法。

2. 学习根据所测定出的系统的频率特性,确定系统传递函数的方法。

(二) 实验内容测定给定环节的的频率特性,系统模拟电路、结构图分别如下所示:图片1系统结构图由图可知,系统的传递函数为:2100()10100k G s s s k =++,其中1Rk R =,实验中R 的取值分别为200k Ω,500k Ω,且1R 始终为100k Ω。

频率响应实验报告

频率响应实验报告

频率响应实验报告频率响应实验报告引言:频率响应是指系统对不同频率输入信号的输出响应程度。

在电子工程和音频领域,频率响应是评估设备或系统性能的重要指标之一。

本文将介绍一次频率响应实验的过程、结果和分析。

实验目的:本次实验的目的是通过测量和分析电子系统的频率响应,评估系统对不同频率信号的传输和处理能力。

通过实验数据的收集和分析,我们可以了解系统在不同频率下的增益和相位特性,并对系统的性能进行评估。

实验装置:本次实验使用了一个信号发生器、一个频谱分析仪和一个待测系统。

信号发生器用于产生不同频率的输入信号,频谱分析仪用于测量系统的输出信号频谱,待测系统是我们需要评估频率响应的对象。

实验步骤:1. 连接实验装置:将信号发生器的输出端与待测系统的输入端相连,将待测系统的输出端与频谱分析仪的输入端相连。

2. 设置信号发生器:选择适当的频率范围和信号波形,并设置合适的输出幅度。

3. 设置频谱分析仪:选择适当的分析带宽和分辨率,并确保频谱分析仪与信号发生器的输出频率范围匹配。

4. 开始实验:逐步改变信号发生器的频率,记录频谱分析仪的输出结果。

5. 收集数据:记录每个频率下频谱分析仪的输出幅度和相位数据。

6. 数据分析:根据收集到的数据,绘制频率响应曲线,并进行进一步的分析和评估。

实验结果:根据实验数据的分析,我们得到了待测系统的频率响应曲线。

该曲线显示了系统在不同频率下的增益和相位特性。

我们可以观察到系统在某些频率下具有较高的增益,而在其他频率下增益较低。

此外,相位特性也可能随频率变化而变化。

实验分析:通过对频率响应曲线的分析,我们可以评估系统对不同频率信号的处理能力。

较高的增益表示系统对该频率信号具有较好的放大能力,而较低的增益可能表示信号在系统中传输过程中的损耗。

相位特性的变化可以影响信号的时间延迟和相位差,从而影响系统对信号的处理结果。

结论:本次实验通过测量和分析电子系统的频率响应,评估了系统对不同频率信号的传输和处理能力。

电子测量实验4 信号频率与相位分析 实验报告

电子测量实验4 信号频率与相位分析  实验报告

实验四 信号频率与相位分析一、实验目的1 理解李沙育图形显示的原理;2 掌握用李沙育图形测量信号频率的方法;3 掌握用李沙育图形测量信号相位差的方法;4 用示波器研究放大电路的相频特性。

二、实验原理和内容1 李沙育图形扫描速度旋钮置”X-Y ”位置时,Y1通道变成x 通道,在示波器的y 通道(Y2)和x 通道(Y1,与Y2通道对称)分别加上频率为f y 和f x 的正弦信号,则在荧光屏上显示的图形称为李沙育(或李萨如)图形。

李沙育图形的形状主要取决于f y 、f x 的频率比和相位差。

例如,当f y /f x =1,且相位差为0时,屏幕上显示一条对角线;当f y /f x =2,且相位差为0时,屏幕上显示“∞”;当f y /f x =1,但相位差不为0时,屏幕上显示一个椭圆。

图4-1所示为f y /f x =2且相位差为0时的李沙育图形。

2 李沙育图形法测量未知信号的频率扫描速度旋钮置”X-Y ”位置,被测信号加到Y2通道,用信号发生器输出一个正弦信号加到X 通道(Y1),Y1、Y2的偏转灵敏度置相同位置,由小到大逐渐增加信号发生器输出信号频率,当屏幕上显示一个稳定的椭圆时,信号发生器指示的频率即为被测未知信号的频率。

3 李沙育图形法测量信号相位差 设u x = U xm sin (ωt+θ),u y = U ym sin ωt ,分别加到x 通道(Y1通道)和Y2通道,扫描速度旋钮置”X-Y ”位置,荧光屏上显示的李沙育(或李萨如)图形如图5-2所示。

则mx x 01sin-=θ (4-1) 4 放大电路的相频特性研究放大电路的相频特性是指输出信号与输入信号的相位差与信号频率的关系。

采用李沙育图形法可以测量相位差。

保持输入信号幅度不变,改变输入信号频率,逐点测量各频率对应的相位差,采用描点法作出相频特性曲线。

三、实验器材1、信号发生器 1台2、示波器 1台3、实验箱 1台图4-1 f y /f x =2且相位差为0时的李沙育图形 U x t tU y图4-2李沙育图形法测相位差 x 0x m4、单管、多级、负反馈电路实验板 1块四、实验步骤1 观察李沙育图形(1)f x与f y同频同相时的李沙育图形用信号发生器输出一个1kHz、10mV p-p的正弦波,加到一个射极输出器,同时加到示波器的Y1通道。

实验一信号频谱分析实验

实验一信号频谱分析实验

实验一信号频谱分析实验1.引言信号频谱分析是一种通过将信号在频域上进行分解和分析的方法,用于研究信号的频率特性和频谱分布。

频谱分析可以帮助我们了解信号的频率成分、噪声干扰以及信号与系统之间的传递特性。

本实验旨在通过使用快速傅里叶变换(FFT)算法进行信号频谱分析,加深对频谱分析原理和方法的理解。

2.实验目的(1)理解信号频谱分析的基本原理和方法。

(2)熟悉使用FFT算法进行信号频谱分析的流程和步骤。

(3)学会使用示波器和信号发生器进行实验测量和信号生成。

3.实验仪器和设备示波器、信号发生器、计算机等。

4.实验原理信号频谱是描述信号在频域上的分布情况,表示了信号中各个频率成分的强度和相位信息。

频谱分析通过对信号进行傅里叶变换,将信号从时域转换为频域,得到信号的频谱信息。

在本实验中,我们使用快速傅里叶变换(FFT)算法对信号进行频谱分析。

FFT算法是一种高效的离散傅里叶变换(DFT)算法,通过将DFT变换的计算量从O(N^2)降低到O(NlogN),使得频谱分析更加实用。

FFT算法将信号划分为若干个子序列,并对每个子序列进行DFT变换,然后利用蝶形运算将子序列的变换结果合并,最终得到整个信号的频谱信息。

5.实验步骤(1)使用信号发生器产生一个频率为f1的正弦信号,并将其接入示波器。

(2)通过示波器观察和记录信号的波形。

(3)将示波器设置为频谱分析模式,选择FFT算法进行频谱分析。

(4)根据示波器显示的频谱图,记录信号在频域上的频率分布情况。

(5)改变信号发生器的频率,重复步骤(1)-(4),分析和比较不同频率下信号的频谱特性。

(6)将示波器设置为傅里叶合成模式,通过合成不同频率和幅度的正弦波,观察合成信号的波形和频谱分布情况。

(7)利用计算机进行信号频谱分析,使用MATLAB等软件绘制信号的频谱图,并进行进一步分析和比较。

6.实验注意事项(1)实验中使用的信号发生器和示波器需要进行校准,确保测量和生成的信号准确可靠。

东南大学 实验四 系统频率特性的测试实验报告

东南大学 实验四 系统频率特性的测试实验报告

东南大学自动控制实验室实验报告课程名称:自动控制原理实验实验名称:实验四系统频率特性的测试院(系):自动化专业:自动化姓名:学号:实验室:417 实验组别:同组人员:实验时间:2016年12月02日评定成绩:审阅教师:目录一.实验目的 (3)二.实验原理 (3)三. 实验设备 (3)四.实验线路图 (4)五、实验步骤 (4)六、实验数据 (5)七、报告要求 (6)八、预习与回答 (10)九、实验小结 (10)一、实验目的(1)明确测量幅频和相频特性曲线的意义(2)掌握幅频曲线和相频特性曲线的测量方法(3)利用幅频曲线求出系统的传递函数二、实验原理在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的前提和难点。

建模一般有机理建模和辨识建模两种方法。

机理建模就是根据系统的物理关系式,推导出系统的数学模型。

辨识建模主要是人工或计算机通过实验来建立系统数学模型。

两种方法在实际的控制系统设计中,常常是互补运用的。

辨识建模又有多种方法。

本实验采用开环频率特性测试方法,确定系统传递函数,俗称频域法。

还有时域法等。

准确的系统建模是很困难的,要用反复多次,模型还不一定建准。

模型只取主要部分,而不是全部参数。

另外,利用系统的频率特性可用来分析和设计控制系统,用Bode图设计控制系统就是其中一种。

(ω),测幅频特性幅频特性就是输出幅度随频率的变化与输入幅度之比,即A(ω)=U oU i时,改变正弦信号源的频率测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值。

测相频有两种方法:(1)双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,×360°。

这种方法直观,容易理解。

测出波形的周期T和相位差Δt,则相位差∅=∆tT就模拟示波器而言,这种方法用于高频信号测量比较合适。

(2)李沙育图形法:将系统输入端的正弦信号接示波器的X轴输入,将系统输出端的正弦信号接示波器的Y轴输入,两个正弦波将合成一个椭圆。

第四章-频率和相位的测量

第四章-频率和相位的测量
本章要点
• 本章主要介绍测量频率的方法,以及电子 数字频率计的结构与原理。用电子数字频 率计测量频率,是今后测量频率的主要手 段,也是频率计的发展方向。
• 相位计和整步表是电力系统运行中常用仪 表,本章对其作一般性介绍,以供相关专 业使用。
第一节 频率的测量方法
一、工频的测量
1、用电动系频率表测量工频
李沙育图形或混频后的频率求得被测频率。
差拍法 混频法
李沙育图形测频 率
2.无源测量法
• 无源测量法是指测量电路不需要另加电源,直接 用被测信号进行测量如文氏电桥测频率 和谐振回 路测频率。
( R1

1
jX
C1
)
R4

( 1/
R2
1
jX
C2
)
R3
1 f X 2πRC
文氏电桥测频率
fX

1 2π LC
k1IUC0 cos (
L 1/ C0 R2 (L 1/ C0 ) 1
^
M 2 k2II2 cos(90 ) cos(II2 )

k2 IU
R0 R0 R2
I2
sin
1
R2 (L 1/ C)
• 由于两个力矩方向相反,当平衡时两者相等。联
立可得:
3.量化误差:
• 计数闸门开启时间不刚好是被测信号周期的整数 倍,而且脉冲到达时刻不刚好是闸门开启时刻, 因此在相同的开启时间内,可能会有正负一个数 的误差。
量化误差示意图
计数闸门开启时 间不刚好是被测信号 周期的整数倍造成的 量化误差。
在时间 T 内脉冲个 数为7.5,测出数可能为 6。
计数开始不刚好是第 一个脉冲到达时刻,造 成的量化误差。

第四实验__用相位法测声速

第四实验__用相位法测声速

实验四用相位法测声速一、实验目的1.、学习用相位法测量空气中的声速。

2.、了解空气中的声速与温度的关系。

3、提高声学、电磁学等不同类型仪器的综合使用能力。

4、了解换能器的原理及工作方式。

二、实验仪器综合声速测定仪、综合声速测定仪信号源、双综示波器。

三、实验原理测量声速一般的方法是在给定声音信号的频率f 情况下,测量声信号的波长λ,由公式v fλ=,计算出声速v。

相位法测量声速的原理。

由信号源产生的一正弦波信号,一方面由“示波器”端钮将信号送入示波器的“CH1(X轴)”,另一方面由“换能器”端钮将信号送入综合测定仪的“S1”,再传送到“S2”,然后送入示波器的“CH2(Y轴)”。

在示波器上将显示出两个频率相等、振动方向相互垂直、位相差恒定的利萨如图形。

由于两信号到达时间不同(或存在有波程差)而产生相位差。

2Lϕπλ=相位差不同,利萨如图形也不同。

如1sin()X A tωϕ=+2sin()Y A tωϕ=+两者相位相同或相位差为2π的整数倍,合成为一条直线。

如果两者相位差为2π的奇数倍,即1sin()2X A t πωϕ=++2sin()Y A tωϕ=+合成后的利萨如图形为椭圆。

可见利萨如图形随相位差的变化而改变。

当连续移S2,以增大S1与S2之间的距离时L,利萨如图从直线到椭圆再到直线变化,如图2所示。

当L改变一个波长时,两信号的相位差改变2π,图形就重复变化。

这样就可以测量出波长的长度。

四、实验步骤1、按图1接线,将换能器间距离调整到约50mm。

信号源输出频率为0f,大约为36000ZH。

2、打开示波器电源,预热5分钟,待出现一条绿色的水平线。

将开关置于“CH1”,显示X方向的正弦波形,然后将开关置于”CH2”,显示Y方向的波形。

应使两者的幅度大致相等。

幅度不应过大。

3、将示波器的旋钮旋到X Y↔位置,示波器出现“椭圆”图形。

将图形调至中间。

旋转声速测定仪上的手轮,看图形的变化规律,看是否是从左到右再从右到左变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四 信号频率与相位分析
一、实验目的
1 理解李沙育图形显示的原理;
2 掌握用李沙育图形测量信号频率的方法;
3 掌握用李沙育图形测量信号相位差的方法;
4 用示波器研究放大电路的相频特性。

二、实验原理和内容
1 李沙育图形
扫描速度旋钮置”X-Y ”位置时,Y1通道变成x 通道,在示波器的y 通道(Y2)和x 通道(Y1,与Y2通道对称)
分别加上频率为f y 和f x 的正弦信号,则在荧光屏上显示的图形称为李沙育(或李萨如)图形。

李沙育图形的形状主要取决于f y 、f x 的频率比和相位差。

例如,当f y /f x =1,且相位差为0时,
屏幕上显示一条对角线;当f y /f x =2,且相位差为0时,屏幕上显示“∞”;当f y /f x =1,但相位差不为0时,屏幕上显示一个椭圆。

图4-1所示为f y /f x =2且相位差为0时的李沙育图形。

2 李沙育图形法测量未知信号的频率
扫描速度旋钮置”X-Y ”位置,被
测信号加到Y2通道,用信号发生器输出一个正弦信号加到X 通道(Y1),Y1、Y2的偏转灵敏度置相同位置,由小到大逐渐增加信号发生器输出信号频率,当屏幕上显示一个稳定的椭圆时,信号发生器指示的频率即为被测未知信号的频率。

3 李沙育图形法测量信号相位差 设u x = U xm sin (ωt+θ),u y = U ym sin ωt ,分别加到x 通道(Y1通道)和Y2通道,扫描速度旋钮置”X-Y ”位置,荧光屏上显示的李沙育(或李萨如)图形如图5-2所示。


m
x x 01sin
-=θ (4-1) 4 放大电路的相频特性研究
放大电路的相频特性是指输出信号与输入信号的相位差与信号频率的关系。

采用李沙育图形法可以测量相位
差。

保持输入信号幅度不变,改变输入信号频率,逐点测量各频率对应的相位差,采用描点法作出相频特性曲线。

三、实验器材
1、信号发生器 1台
2、示波器 1台
3、实验箱 1台
图4-1 f y /f x =2且相位差为0时的李沙育图形 U x t t
U y
图4-2李沙育图形法测相位差 x 0
x m
4、单管、多级、负反馈电路实验板 1块
四、实验步骤
1 观察李沙育图形
(1)f x与f y同频同相时的李沙育图形
用信号发生器输出一个1kHz、10mV p-p的正弦波,加到一个射极输出器,同时加到示波器的Y1通道。

射极输出器的输出信号加到Y2通道。

正确调节有关旋钮,屏幕上应看到一条斜线,其斜率即为射极输出器的电压放大倍数。

分析:观察上述图形,垂直和水平方向的读数均为4格,通过计算可得其斜率为1。

即电压放大倍数为1。

与理论上射极输出器的电压放大倍数相符。

(2)f x与f y同频不同相时的李沙育图形
用信号发生器输出一个1kHz、1V p-p的正弦波,加到一个RC低通滤波器,同时加到示波器的Y1通道。

RC低通滤波器的输出信号加到Y2通道。

正确调节有关旋钮,屏幕上应看到一个椭圆。

用信号发生器输出一个1kHz、1V p-p的正弦波,加到一个RC高通滤波器,同时加到示波器的Y1通道。

RC低通滤波器的输出信号加到Y2通道。

正确调节有关旋钮,屏幕上应看到一个椭圆。

2 李沙育图形法测量信号频率
用信号发生器A通道输出一个1V p-p任意频率的正弦波,利用示波器观察波形。

(1)采用“周期法”测量RC 正弦波振荡器输出信号的频率。

(2)采用“李沙育图形法”测量RC 正弦波振荡器输出信号的频率。

示波器有关旋钮置“X-Y ”图示仪位置。

将信号发生器A 通道输出的任意频率的正弦波加到Y2通道,用一个标准信号发生器输出一个幅度适当的正弦信号加到X (Y1)通道。

由小到大改变标准信号发生器的输出频率,当屏幕上出现一个稳定的椭圆时,标准信号发生器的输出频率即为信号发生器A 通道输出正弦波的频率。

(3)比较两种方法各有何特点。

答:1.周期法。

通过YT 方式观察图形。

根据两个同频率的正弦信号,比较相位差。

0360⨯∆=
T
T
θ哪个超前或哪个滞后,要自己判断。

根据上述公式即可得相位差。

2.李沙育图形法。

m
x x 0
1
sin
-=θ
李沙育图形法不能确定两个信号相位的超前与滞后关系。

3 李沙育图形法观测RC低通和高通滤波电路输出信号与输入信号的相位差
用信号发生器输出一个1kHz、1V p-p的正弦波,加到一个RC低(高)通滤波器,同时加到示波器的Y1通道。

RC低(高)通滤波器的输出信号加到Y2通道。

正确调节有关旋钮,屏幕上应看到一个椭圆。

根据图4-2读数,并根据式4-1计算相位差,填表4-1。

RC低通电路图如下: RC高通电路图如下:
表4-1 李沙育图形法测相位差
电路R(Ω)C(μF)x0x mφ(实测)φ(计算)RC低通100 10 1 8 51.63
RC高通 1.5K 10 2.5 12 12.00
4 射极输出器相频特性测量
用信号发生器输出一个1V p-p的正弦波,加到一个射极输出器,同时加到示波器的Y1通道。

射极输出器的输出信号加到Y2通道。

正确调节有关旋钮,使屏幕上看到一个椭圆。

根据图4-2读数,并根据式4-1计算相位差,填表4-2。

射极输出电路图如下图:
根据上述图形连接电路,并接好输入输出通道。

表4-2射极输出器相频特性测量
频率(Hz) 5 10 20 50 100 300 1k 30k 80k 100
k
120
k
150
k
4M 7M
x0 3 3 2 1 0.5 0 0 0 0 0.1 0.1 0.2 1 1.5 x m 4 5 6 6 7 0 0 0 0 6.8 6.5 7.0 7 5
φ(实测) 85 123 φ(计算)
相频特性曲线:
五.预习与思考题
1 李沙育图形的显示原理?
答:根据两通道输入的频率和相位特性的不同使得偏转电压打在荧光屏上的位置不同,从而所显示的图形也会不同。

李沙育图形的形状主要取决于f y 、f x 的频率比和相位差。

2 如何用李沙育图形法测量频率和相位?
答:由于李沙育图形的形状主要取决于f y 、f x 的频率比和相位差,当f y /f x =1,且相位差为0时,屏幕上显示一条对角线;当f y /f x =2,且相位差为0时,屏幕上显示“∞”;当f y /f x =1,但相位差不为0时,屏幕上显示一个椭圆。

则可以通过观察李沙育图形的形状来测量频率。

步骤如下:分别在示波器的通信中接入两路信号。

如若出现一条对角线,则说明是同频同相的信号,由已知信号即可得未知信号。

如若出现椭图,则说明是同频率不同相位的两路信号。

如若出现∞,则说明f y /f x =2,且相位差为0。

3 如何用“逐点法”研究电路的相频特性?
答:将两路信号设置为同频不同相,从而在示波器上可以观察到一个椭图。

通过改变频率,计算椭图图水平方向的位移。

利用公式m
x x 0
1
sin
-=θ ,即可以算出各个频率下的相位值。

根据所得的各个频率点的相位就可以画出电路的相频特性图。

六、注意事项
1 操作旋钮要轻慢,避免对仪器产生损伤。

2 实验中途不要关闭仪器电源。

七、实验心得:
1、用李沙育图形测量频率特性的精度从分析处理上也可以看出是比较高的,但是在实验结果和理论的结果之间还是存在一定的差距,分析可知这些误差来自于李沙育图形上读取数据时存在的误差,也可能是计算机精度方面的误差。

2、示波器调节:要想调出比较理想的波形,则需要至少需要调节以下几个地方: 采样方式、水平刻度系数、垂直刻度系数、探头衰减、触发耦合方式、
3、当李沙育图形出现在椭图不在正中间时,可以在YT 方式下调节两个输入信号的水平刻
度线,使之均为0刻度时,再转换到XY方式下即可。

4、可以先在YT方式下将两路示波器的波形调整到比较清晣时,再转换到XY方式下观察李沙育图形。

如下图:。

相关文档
最新文档