10.5直线与圆的方程应用举例
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
48(海里).
32 42
由48 50 ,故渔船在不改变航向的情况下,它会受到台风 的影响.
10.5直线与圆的方程应用举例
1.若直线3x 4y m 0 与圆x2 y2 6x 5 0相切,求 m 的值. 2.著名的圆拱桥赵州桥跨度是 米.圆拱高约为 米,求这座 圆拱桥的圆拱所在圆的方程.
10.5直线与圆的方程应用举例
解得 b 8 1 , r2 147 1 .
8
64
所以,圆的方程是 x2 ( y 8 1)2 147 1
8Hale Waihona Puke Baidu
64
把点B的横坐标 x 4代入圆的方程,得
42 ( y 8 1)2 147 1
8
64
解得 y 3.32(米).B 的纵坐标y 0
由 3.32 3 ,所以船能从这座圆拱桥下通过.
3.已知圆C:x2 y2 16 ,点 P(1, 2) 在圆内,过点 P 的直线 l与
圆 C 相交于 A、B 两点,且弦 AB是所有过点 P的弦中长度最
短的,求直线 l的方程.
为 轴x ,南北方向为 轴y 建立平面直角坐标系.
于是渔船A和港口B的坐标分别为(80, 0)、(0, 60)
直线 AB的斜率为 k 60 0 3
0 (80) 4
求得直线 AB的方程为3x 4y 240 0 .
10.5直线与圆的方程应用举例
240
台风中心点O 到直线 AB 的距离为 d
10.5直线与圆的方程应用举例
例2 一艘渔船正沿直线返回港口的途中,接到气象台的 台风预报,台风中心位于渔船的正东方80海里处,受到影响的 范围是半径为50海里的圆形区域.已知港口位于台风中心正北 方60海里处,假设台风中心不移动,试问:渔船在不改变航向 的情况下,它是否会受到台风的影响.
解:如图以台风中心为坐标原点,东西方向
解:建立如图所示直角坐标系,使圆心
在 y 轴上.设圆心的坐标是 ,圆的半径是r
,那么圆的方程是 x2 ( y b)2 r2 因为点A、P都在圆上,所以它们的坐标(9,0),
(0,4)都满足方程 x2 ( y b)2 r2 .于是,得到方程组
92 (0 b)2 r2 , 02 (4 b)2 r2.
第十章 直线与圆的方程
10.5直线与圆的方程应用举 例
10.5直线与圆的方程应用举例
直线与圆的方程在生产、生活实践及数学中有 广泛的应用,本节内容将通过几个例子来介绍一下 有关直线与圆的方程在实际生活中的应用.
10.5直线与圆的方程应用举例
例1 有一圆拱形桥的水面跨度为18米,拱高4米,现 在一艘船宽8米,水面以上高度为3米,问这艘船能否从这座 圆拱桥下通过?