随机信号分析实验报告

合集下载

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告引言:随机信号是指信号在时间或空间上的其中一种特性是不确定的,不能准确地预测其未来行为的一类信号。

随机信号是一种具有随机性的信号,其值在一段时间内可能是不确定的,但是可以通过概率论和统计学的方法来描述和分析。

实验目的:通过实验,学习了解随机信号的基本概念和特性,学习了解和掌握常见的随机信号分析方法。

实验原理:随机信号可以分为离散随机信号和连续随机信号。

离散随机信号是信号在离散时间点上,在该时间点上具有一定的随机性;而连续随机信号是信号在连续时间上具有随机性。

常见的随机信号分析方法包括概率密度函数、功率谱密度函数等。

实验器材:计算机、MATLAB软件、随机信号产生器、示波器、电缆、电阻等。

实验步骤:1.配置实验仪器:将随机信号产生器和示波器与计算机连接。

2.生成随机信号:调节随机信号产生器的参数,产生所需的随机信号。

3.采集数据:使用示波器采集随机信号的样本数据,并将数据导入MATLAB软件。

4.绘制直方图:使用MATLAB软件绘制样本数据的直方图,并计算概率密度函数。

5.计算统计特性:计算随机信号的均值、方差等统计特性。

6.绘制功率谱密度函数:使用MATLAB软件绘制随机信号的功率谱密度函数。

实验结果和讨论:我们采集了一段长度为N的随机信号样本数据,并进行了相应的分析。

通过绘制直方图和计算概率密度函数,我们可以看出随机信号的概率分布情况。

通过计算统计特性,我们可以得到随机信号的均值、方差等重要参数。

通过绘制功率谱密度函数,我们可以分析随机信号的频谱特性。

结论:本实验通过对随机信号的分析,加深了对随机信号的理解。

通过绘制直方图、计算概率密度函数、计算统计特性和绘制功率谱密度函数等方法,我们可以对随机信号进行全面的分析和描述,从而更好地理解随机信号的特性和行为。

2.王五,赵六.随机信号分析方法.物理学报,2024,30(2):120-130.。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experiment number = 49; %学号49 I = 8; %幅值为8 u = 1/number;Ex = I*0.5 + (-I)*0.5; N = 64; C0 = 1; %计数 p(1) = exp(-u);for m = 2:N k = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/222(){()()}(2)!m k mk m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X XC m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。

随机信号分析实验报告

随机信号分析实验报告

实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。

二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。

定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。

随机信号分析实验报告

随机信号分析实验报告

一、实验名称微弱信号的检测提取及分析方法二、实验目的1.了解随机信号分析理论如何在实践中应用2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等3.掌握随机信号的检测及分析方法三、实验原理1.随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。

其中随机信号无确定的变化规律,需要用统计特新进行分析。

这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。

随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。

但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。

本实验中算法都是一种估算法,条件是N要足够大。

2.微弱随机信号的检测及提取方法因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。

噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决①降低系统的噪声,使被测信号功率大于噪声功率。

②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。

对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。

对微弱信号检测与提取有很多方法,本实验采用多重自相关法。

多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。

即令:式中,是和的叠加;是和的叠加。

对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。

信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。

多重相关法将当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experimentnumber = 49; %学号49I = 8; %幅值为8u = 1/number;Ex = I*0.5 + (-I)*0.5;N = 64;C0 = 1; %计数p(1) = exp(-u);for m = 2:Nk = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/2220(){()()}(2)!m k m k m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X X C m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告目录随机信号分析 (1)实验报告 (1)理想白噪声和带限白噪声的产生与测试 (2)一、摘要 (2)二、实验的背景与目的 (2)背景: (2)实验目的: (2)三、实验原理 (3)四、实验的设计与结果 (4)实验设计: (4)实验结果: (5)五、实验结论 (12)六、参考文献 (13)七、附件 (13)1理想白噪声和带限白噪声的产生与测试一、摘要本文通过利用MATLAB软件仿真来对理想白噪声和带限白噪声进行研究。

理想白噪声通过低通滤波器和带通滤波器分别得到低通带限白噪声和帯通带限白噪声。

在仿真的过程中我们利用MATLAB工具箱中自带的一些函数来对理想白噪声和带限白噪声的均值、均方值、方差、功率谱密度、自相关函数、频谱以及概率密度进行研究,对对它们进行比较分析并讨论其物理意义。

关键词:理想白噪声带限白噪声均值均方值方差功率谱密度自相关函数、频谱以及概率密度二、实验的背景与目的背景:在词典中噪声有两种定义:定义1:干扰人们休息、学习和工作的声音,引起人的心理和生理变化。

定义2:不同频率、不同强度无规则地组合在一起的声音。

如电噪声、机械噪声,可引伸为任何不希望有的干扰。

第一种定义是人们在日常生活中可以感知的,从感性上很容易理解。

而第二种定义则相对抽象一些,大部分应用于机械工程当中。

在这一学期的好几门课程中我们都从不同的方面接触到噪声,如何的利用噪声,把噪声的危害减到最小是一个很热门的话题。

为了加深对噪声的认识与了解,为后面的学习与工作做准备,我们对噪声进行了一些研究与测试。

实验目的:了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用MATLAB 或c/c++软件仿真和分析理想白噪声和带限白噪声的方法,掌握理想白噪声和带限白噪声的性质。

三、实验原理所谓白噪声是指它的概率统计特性服从某种分布而它的功率谱密度又是均匀的。

确切的说,白噪声只是一种理想化的模型,因为实际的噪声功率谱密度不可能具有无限宽的带宽,否则它的平均功率将是无限大,是物理上不可实现的。

北京理工大学随机信号分析实验报告

北京理工大学随机信号分析实验报告

北京理工大学随机信号分析实验报告本科实验报告实验名称:随机信号分析实验实验一随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。

2、实现随机序列的数字特征估计。

二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。

实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=Ny x n n /=序列{}nx 为产生的(0,1)均匀分布随机数。

下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯;3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。

定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。

2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

北理工随机信号分析实验报告

北理工随机信号分析实验报告

本科实验报告实验名称:随机信号分析实验实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。

2、实现随机序列的数字特征估计。

二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。

实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=N y x n n /=序列{}n x 为产生的(0,1)均匀分布随机数。

下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯; 3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。

定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。

2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列 函数:randn 用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。

随机信号实验报告

随机信号实验报告

班级:姓名:学号:指导老师:时间:一、信号基本参数1.均值及方差由上图可以看出,该语音信号的能量不是很大,因其均值在0.12左右,方差在0.02左右,故波动不是很大;当加入信噪比为5的白噪声后,其均值明显增大,在0.48左右,说明噪声的能量远大于信号的能量,其方差在0.13左右,故波动很大。

由此看出,白噪声携带能量加大,且波动加大。

2.正态概率分布函数上图为语音信号各点的幅度的概率分布,它与语音信号分布差不多,它放映的是语音信号在各点的能量大小。

当语音信号在某时刻幅值越大,则其概率越大,反之,则越小。

3.自相关上图可以看出,该语音信号的自相关不是很大,因此该语音信号前后相关性不是很大,因此,在信号处理及通信中对信号处理要求不是很高;当加入噪声后,可以看出自相关有明显减小的痕迹,所以白噪声的自相关不大。

4.互相关上图为两个不同的语音信号的互相关,可以看出在前半段完全没有相关性,而在后半段有一定的相关性;当加入白噪声后,互相关增强,且前半段也没有相关性,说明有一语音信号前半段没有信号。

由两图比较可得,高斯白噪声的互相关较大。

二、信号加噪及提取5.信号加入确定噪声后加入确定噪声sin(17500*t)后,时域图上可以看出,振幅较小的语音信号完全被噪声淹没,从回放的声音中可以听到刺耳的噪声信号,从频谱图中也可以看出,在1800Hz左右,有明显的高峰,所含的能量远大于语音信号。

因此,可以用带阻滤波器滤除该噪声信号。

6.去除确定噪声信号sin()从上面两图可以看出,去噪后的频谱中没有高峰突起,确实去掉了噪声信号,从回放的声音中,也听不到刺耳的声音,是比较清晰地声音。

从频谱图中可以明显看到有凹下去的部分,是因为不是理想滤波器,必定会滤掉临近的很小的一部分信号,但并不会语音信号造成太大的影响。

采用的是巴特沃斯带阻滤波器,fp=1700Hz,fs=100Hz,当增大fs后,可以明显看到凹下去的部分增大;而改变fp后,就不能滤掉噪声信号。

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_ 班级:_ 学号:专业:目录实验一随机序列的产生及数字特征估计2实验目的 2实验原理 2实验内容及实验结果 3实验小结 6实验二随机过程的模拟与数字特征7实验目的7实验原理7实验内容及实验结果8实验小结11实验三随机过程通过线性系统的分析12实验目的12实验原理12实验内容及实验结果13实验小结17实验四窄带随机过程的产生及其性能测试18实验目的18实验原理18实验内容及实验结果18实验小结23实验总结23实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布,U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:序列为产生的(0,1)均匀分布随机数。

定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。

四川大学随机信号分析实验报告

四川大学随机信号分析实验报告

随机信号分析基础实验报告课程随机信号分析基础实验题目随机信号通过线性系统学生姓名笔墨东韵专业电子信息科学与技术一、实验目的1.理解白噪声通过线性系统后统计特性的变化规律。

2.熟悉几种常用的时间序列。

二、实验内容1.白噪声通过线性系统后的统计特性分析。

(1)白噪声通过低通系统后的统计特性变化:对比输入输出的波形,自相关函数,功率谱密度,功率,互相关函数等;(2)白噪声通过不同带宽的低通系统后的概率密度;(3)窄带随机过程的产生与特性分析。

(调制,滤波)2.典型时间序列模型分析。

(1)模拟产生AR,ARMA模型序列,画出波形,并估计其均值,方差,自相关函数,功率谱密度;*(2)模拟产生指定功率密度的正态随机序列。

三、实验设备Matlab软件四、实验步骤以及实验结果分析1.白噪声通过线性系统后的统计特性分析。

>>l=(0:length(a2)-1)*200/length(a>>l=(0:length(a2)-1)*200/length(a2.典型时间序列的模拟分析模拟产生AR,ARMA模型序列:五、实验收获(本次实验的感受,对你的哪方面技能或知识有提高。

)本次实验我们收获很多,不仅理解了白噪声通过线性系统后统计特性的变化规律,同时也熟悉了如何使用matlab求信号的波形,自相关函数,功率谱密度,功率,互相关函数等等的统计特性。

深刻地理解到了线性系统对白噪声的影响。

除此之外,我们也深入地了解了AR 和ARMA模型序列。

最重要的是让我们加深了对课本知识的理解。

总之,本次实验我们受益匪浅。

随机信号的数字特征分析 实验报告

随机信号的数字特征分析 实验报告

大理大学实验报告课程名称生物医学信号处理实验名称随机信号的数字特征分析专业班级姓名羽卒兰cl学号实验日期实验地点2015—2016学年度第 3 学期图36 L=512,N=2的伪随机序列、心电、脑电、呼吸和颅内压信号的信号直方图图37 L=256,N=4的伪随机序列、心电、脑电、呼吸和颅内压信号的信号直方图图38 L=128,N=8的伪随机序列、心电、脑电、呼吸和颅内压信号的信号直方图图39 L=64,N=16的伪随机序列、心电、脑电、呼吸和颅内压信号的信号直方图图40 L=32,N=32的伪随机序列、心电、脑电、呼吸和颅内压信号的信号直方图图41 L=16,N=64的伪随机序列、心电、脑电、呼吸和颅内压信号的信号直方图答:图36-41是改变输入每段数据长度L分别为:512,256,128,64,32 ,16。

输入段数N分别为:2,4,8,16,32,64。

不同的L,N长度的伪随机序列、心电、脑电、呼吸和颅内压信号的信号直方图,通过查看它们的直方图可以发现,不同的L,N长度的伪随机序列信号的直方图在区间[-5 5]之间是相似的;不同的L,N长度的心电信号的直方图在区间[-1 1]之间都是相似的;不同的L,N长度的脑电信号的直方图在区间[-10 10]之间都是相似的;不同的L,N长度的呼吸信号的直方图在区间[0 10]之间都是相似的;不同的L,N长度的颅内压信号的直方图在区间[0 1000]之间是相似的。

(2)过同一数据分段估计数字特征,大致判断该数据是否可以看作广义平稳。

导入信号为4 :实际测量的呼吸信号图42 L=512,N=2的呼吸信号的数字特征图图43 L=256,N=4的呼吸信号的数字特征图图44 L=128,N=8的呼吸信号的数字特征图图45 L=64,N=16的呼吸信号的数字特征图图46 L=32,N=32的呼吸信号的数字特征图图47 L=16,N=64的呼吸信号的数字特征图答:广义平稳的概念:如果随机信号的概率特性不随时间变化而变化,就称为广义平稳随机过程。

随机信号分析实验百度

随机信号分析实验百度

《随机信号分析》试验报告班级班学号_______________姓名_________________实验一1、熟悉并练习使用下列 Matlab 的函数,给出各个函数的功能说明和内部参数 的意义,并给出至少一个使用例子和运行结果:1)randn()产生随机数数组或矩阵,其元素服从均值为 0,方差为 1 的正态分布1) Y = randn产生一个伪随机数 2) Y = randn(n) 产生 n x n 的矩阵, 的正态分布其元素服从均值为0,方差为 13)Y = randn(m,n)产生 m x n 的矩阵, 的正态分布其元素服从均值为0,方差为 14) Y= randn([m n]) 产生 m x n 的矩阵, 的正态分布其元素服从均值为0,方差为 1选择( 2)作为例子,运行结果如下: >> Y = randn(3)1.3005 0.0342 0.97920.2691 0.9913 -0.8863 -0.1551 -1.3618 -0.3562生成n 々随机矩阵,其元素在(0, 1)内 生成mxn 随机矩阵 生成m x n 随机矩阵生成mxn 和x …随机矩阵或数组 生成m x n 和x …随机矩阵或数组 生成与矩阵 A 相同大小的随机矩阵 选择( 3)作为例子,运行结果如下:>> Y = rand([3 4])Y =0.05790.0099 0.1987 0.19883)normrnd()产生服从均值为mu 标准差为sigma 的随机数, mu 和sigma 可以为向量、矩阵、或多维数组。

(2)R = normrnd (mu,sigma,v ) 产生服从均值为 mu 标准差为 sigma 的随机数,v 是一个行向量。

如果v 是一个1 X 2的向量, 则R 为一个1行2列的矩阵。

如果v 是1X n 的, 那么R 是一个n 维数组(3)R = normrnd (mu,sigma,m,n ) 产生服从均值为 mu 标准差为 sigma 的随机数,2)rand()(1)Y = rand(n) (2)Y = rand(m,n) (3)Y = rand([m n])(4) Y = rand(m,n,p,…) (5) Y = rand([m n p …]) (6) Y = rand(size(A)) 0.3529 0.81320.1389 0.2028 0.6038 0.2722 0.0153 0.7468产生服从正态分布的随机数(1)R= normrnd(mu,sigma)标量m和n是R的行数和列数。

随机信号分析报告实验:随机过程通过线性系统地分析报告

随机信号分析报告实验:随机过程通过线性系统地分析报告

实验三 随机过程通过线性系统的分析实验目的1. 理解和分析白噪声通过线性系统后输出的特性。

2. 学习和掌握随机过程通过线性系统后的特性,验证随机过程的正态化问题。

实验原理1.白噪声通过线性系统设连续线性系统的传递函数为)(ωH 或)(s H ,输入白噪声的功率谱密度为2)(0N S X =ω,那么系统输出的功率谱密度为2)()(02N H S Y ⋅=ωω (3.1) 输出自相关函数为⎰∞∞-=ωωπτωτd e H N R j Y 20)(4)( (3.2)输出相关系数为)0()()(Y Y Y R R ττγ=(3.3) 输出相关时间为⎰∞=00)(ττγτd Y (3.4)输出平均功率为[]⎰∞=202)(2)(ωωπd H N t Y E (3.5)上述式子表明,若输入端是具有均匀谱的白噪声,则输出端随机信号的功率谱主要由系统的幅频特性)(ωH 决定,不再是常数。

2.等效噪声带宽在实际中,常常用一个理想系统等效代替实际系统的)(ωH ,因此引入了等效噪声带宽的概念,他被定义为理想系统的带宽。

等效的原则是,理想系统与实际系统在同一白噪声的激励下,两个系统的输出平均功率相等,理想系统的增益等于实际系统的最大增益。

实际系统的等效噪声带宽为⎰∞=∆022max)()(1ωωωωd H H e (3.6)或⎰∞∞--=∆j j e ds s H s H H j )()()(212maxωω (3.7)3.线性系统输出端随机过程的概率分布 (1)正态随机过程通过线性系统若线性系统输入为正态过程,则该系统输出仍为正态过程。

(2)随机过程的正态化随机过程的正态化指的是,非正态随机过程通过线性系统后变换为正态过程。

任意分布的白噪声通过线性系统后输出是服从正态分布的;宽带噪声通过窄带系统,输出近似服从正态分布。

实验内容设白噪声通过图3.1所示的RC 电路,分析输出的统计特性。

图3.1 RC 电路(1)试推导系统输出的功率谱密度、相关函数、相关时间和系统的等效噪声带宽。

随机信号分析与处理实验报告

随机信号分析与处理实验报告

随机信号分析与处理实验题目:对音频信号的随机处理班级:0312412姓名:肖文洲学号:031241217指导老师:钱楷时间:2014年11月25日实验目的:1、学会利用MATLAB模拟产生各类随机序列。

2、熟悉和掌握随机信号数字特征估计的基本方法。

3、熟悉掌握MATLAB的函数及函数调用、使用方法。

4、学会在MATLAB中创建GUI文件。

实验内容:1、选用任意一个音频信号作为实验对象,进行各种操作并画出信号和波形。

2、操作类型:(1)、概率密度;(2)、希尔伯特变换;(3)、误差函数;(4)、randn;(5)、原始信号频谱;(6)、axis;(7)、原始信号;(8)、normpdf;(9)、unifpdf;(10)、unifcdf;(11)、raylpdf;(12)、raylcdf;(13)、exppdf;(14)、截取声音信号的频谱;(15)、expcdf;(16)、periodogram;(17)、weibrnd;(18)、rand;(19)、自相关函数;(20)、截取信号的均方值。

实验步骤:1、打开MATLAB软件,然后输入guide创建一个GUI文件。

2、在已经创建好的GUI文件里面穿件所需要的.fig面板(以学号姓名格式命名)。

入下图所示:图为已经创建好的.fig面板3、右击“概率密度”,查看回调,然后点击“callback”.在相应的位置输入程序。

然后点击运行,出现下图:4、依次对后续操作方式进行类似的操作。

5、当完成所有按键的“callback”后,出现的均为上图。

实验程序:function varargout = xiaowenzhou(varargin)% XIAOWENZHOU M-file for xiaowenzhou.fig% XIAOWENZHOU, by itself, creates a new XIAOWENZHOU or raises the existing% singleton*.%% H = XIAOWENZHOU returns the handle to a new XIAOWENZHOU or the handle to% the existing singleton*.%% XIAOWENZHOU('CALLBACK',hObject,eventData,handles,...) calls the local% function named CALLBACK in XIAOWENZHOU.M with the given input arguments.%% XIAOWENZHOU('Property','Value',...) creates a new XIAOWENZHOU or raises the% existing singleton*. Starting from the left, property value pairs are% applied to the GUI before xiaowenzhou_OpeningFunction gets called. An% unrecognized property name or invalid value makes property application% stop. All inputs are passed to xiaowenzhou_OpeningFcn via varargin.%% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one% instance to run (singleton)".%% See also: GUIDE, GUIDATA, GUIHANDLES% Edit the above text to modify the response to help xiaowenzhou% Last Modified by GUIDE v2.5 02-Dec-2014 23:14:41% Begin initialization code - DO NOT EDITgui_Singleton = 1;gui_State = struct('gui_Name', mfilename, ...'gui_Singleton', gui_Singleton, ...'gui_OpeningFcn', @xiaowenzhou_OpeningFcn, ...'gui_OutputFcn', @xiaowenzhou_OutputFcn, ...'gui_LayoutFcn', [] , ...'gui_Callback', []);if nargin && ischar(varargin{1})gui_State.gui_Callback = str2func(varargin{1});endif nargout[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});elsegui_mainfcn(gui_State, varargin{:});end% End initialization code - DO NOT EDIT% --- Executes just before xiaowenzhou is made visible.function xiaowenzhou_OpeningFcn(hObject, eventdata, handles, varargin)% This function has no output args, see OutputFcn.% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% varargin command line arguments to xiaowenzhou (see VARARGIN)% Choose default command line output for xiaowenzhouhandles.output = hObject;% Update handles structureguidata(hObject, handles);% UIWAIT makes xiaowenzhou wait for user response (see UIRESUME)% uiwait(handles.figure1);% --- Outputs from this function are returned to the command line. function varargout = xiaowenzhou_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT);% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Get default command line output from handles structurevarargout{1} = handles.output;% --- Executes on button press in pushbutton1.function pushbutton1_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(1:5000);N=length(y);i=1:N;[f,i]=ksdensity(y);plot(i,f);grid;xlabel('x');ylabel('f(x)');axis();title('¸ÅÂÊÃܶÈ');% hObject handle to pushbutton1 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton2.function pushbutton2_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=x(20000:40000);y=hilbert(x);y=real(y);plot(x);% hObject handle to pushbutton2 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton3.function pushbutton3_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=randn(500,1);plot(x);% hObject handle to pushbutton3 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton4.function pushbutton4_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');y=erf(x);plot(y);% hObject handle to pushbutton4 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton5.function pushbutton5_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');plot(x);axis([0 5000 -0.01 0.01]);% hObject handle to pushbutton5 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton6.x=wavread('Íõ·Æ.wav');x=x(20000:40000);plot(x);% hObject handle to pushbutton6 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton7.function pushbutton7_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=-6:0.01:7;y=normpdf(x,1,2);plot(y);% hObject handle to pushbutton7 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton8.function pushbutton8_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.1:5;y=unifpdf(x,1,30);plot(y);% hObject handle to pushbutton8 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton9.function pushbutton9_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.1:5;y=unifcdf(x,1,5);plot(y);% hObject handle to pushbutton9 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton10.x=wavread('Íõ·Æ.wav');x=0:0.1:3;y=raylpdf(x,2);plot(y);% hObject handle to pushbutton10 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton11.function pushbutton11_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.1:3;y=raylcdf(x,10);plot(y);% hObject handle to pushbutton11 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton12.function pushbutton12_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.01:5;y=exppdf(x,1);plot(y);% hObject handle to pushbutton12 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton13.function pushbutton13_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.01:5;y=expcdf(x,1);plot(y);% hObject handle to pushbutton13 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton14.[y,Fs,bits]=wavread('Íõ·Æ.wav');y1=y(1:1000);t=0:1/Fs:1;y1=periodogram(y1,[],1000,Fs);plot(y1);% hObject handle to pushbutton14 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton15.function pushbutton15_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.01:5;x=weibrnd(1,1.5,100,1);plot(x);% hObject handle to pushbutton15 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton16.function pushbutton16_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=rand(200,1);plot(x);% hObject handle to pushbutton16 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton17.function pushbutton17_Callback(hObject, eventdata, handles)[x,Fs,bits]=wavread ('Íõ·Æ.wav');x=x (:,1);X=fft (x,4096);magX=abs (X);angX=angle (X);plot (X); title ('Ô-ʼÐźÅƵÆ×');% hObject handle to pushbutton17 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton18.function pushbutton18_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(500:1000);h=[ones(1,20) zeros(1,20)];y2=conv(h,y);stem(y2,'.');grid;title('½ØÈ¡ÉùÒôÐźŵľí»ý');% hObject handle to pushbutton18 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton19.function pushbutton19_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(1:5000);R=xcorr(y);plot(R);grid;title('×ÔÏà¹Øº¯Êý');% hObject handle to pushbutton19 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton20.function pushbutton20_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(1:1000);n=length(y);x=randn(50,n);square=zeros(1,50);for i=1:50for j=1:1000square(i)=square(i)+x(i,j).^2;endsquare(i)=square(i)/1000;endRMS=sum(square)/30;plot(square);grid;title('½ØÈ¡ÉùÒôÐźŵľù·½Öµ');% hObject handle to pushbutton20 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% --- Executes during object creation, after setting all properties. function pushbutton1_CreateFcn(hObject, eventdata, handles)% hObject handle to pushbutton1 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called 实验结果:(1)概率密度(2)希尔伯特变换(3)randn(4)误差函数(5)axis(6)原始信号(7)normpdfd(8)unifpdf(9)unifcdf(10)raylpdf(11)raylcdf(12)exppdf(13)截取声音信号的卷积(14)expcdf(15)periodogram(16)weibrnd(17)rand(18)原始信号频谱(19)自相关函数(20)截取信号的均方值实验总结:随机信号分析与处理是研究随机信号的特点及其处理方法的专业基础课,是目标检测、估计、滤波等信号处理理论的基础。

随机信号分析实验报告

随机信号分析实验报告

.随机信号分析实验报告实验一 各种分布随机数的产生一、 实验目的在很多系统仿真的过程中,需要产生不同分布的随机变量。

利用计算机可以很方便地产生不同分布的随机变量,各种分布的随机变量的基础是均匀分布的随机变量。

有了均匀分布的随机变量,就可以用函数变换等方法得到其他分布的随机变量。

二、 实验内容产生均匀分布的随机数、高斯分布的随机数和其它分布的随机数。

三、 实验原理1. 均匀分布随机数的产生原理产生伪随机数的一种实用方法是同余法,它利用同余运算递推产生伪随机数序列。

最简单的方法是加同余法)(mod 1M c y y n n +=+M y x n n 11++=为了保证产生的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。

加同余法虽然简单,但产生的伪随机数效果不好。

另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布的随机数)(mod 1M ay y n n =+ M y x n n 11++=式中,a 为正整数。

用加法和乘法完成递推运算的称为混合同余法,即)(mod 1M c ay y n n +=+ M y x n n 11++=用混合同余法产生的伪随机数具有较好的特性,一些程序库中都有成熟的程序供选择。

常用的计算语言如Basic 、C 和Matlab 都有产生均匀分布随机数的函数可以调用,只是用各种编程语言对应的函数产生的均匀分布随机数的范围不同,有的函数可能还需要提供种子或初始化。

Matlab 提供的函数rand()可以产生一个在[0,1]区间分布的随机数,rand(2,4)则可以产生一个在[0,1]区间分布的随机数矩阵,矩阵为2行4列。

Matlab 提供的另一个产生随机数的函数是random('unif',a,b,N,M),unif 表示均匀分布,a 和b 是均匀分布区间的上下界,N 和M 分别是矩阵的行和列。

2. 随机变量的仿真根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。

哈尔滨工业大学(威海)随机信号分析实验一报告

哈尔滨工业大学(威海)随机信号分析实验一报告

《随机信号分析》实验报告班级: 1302502学号:姓名:《随机信号分析》实验报告实验一一、实验目的:熟悉并练习使用随机信号Matlab的函数二、实验内容:1、熟悉并练习使用下列Matlab 的函数,给出各个函数的功能说明和内部参数的意义,并给出至少一个使用例子和运行结果:1)rand() 11)unifpdf()2)randn() 12)unifcdf()3)normrnd() 13)raylpdf()4)mean() 14)raylcdf()5)var() 15)exppdf()6)xcorr() 16)expcdf()7)periodogram() 17)chol()8)fft()18)ksdensity()9)normpdf() 19)hist()10)normcdf() 20)int()用法、功能、程序如下:1)randn(m,n)功能:返回一个从标准正态分布中得到的伪随机标量。

>> r = randn(5) %由标准正态分布随机数组成的5×5 矩阵。

r =-1.0689 -0.7549 0.3192 0.6277 -1.2141-0.8095 1.3703 0.3129 1.0933 -1.1135-2.9443 -1.7115 -0.8649 1.1093 -0.00681.4384 -0.1022 -0.0301 -0.8637 1.53260.3252 -0.2414 -0.1649 0.0774 -0.76972)rand(m,n)功能:返回一个从开区间(0,1) 上的标准均匀分布得到的伪随机标量。

r = rand(5) %生成一个由介于0 和1 之间的均匀分布的随机数组成的5×5 矩阵>>r =0.5469 0.9572 0.9157 0.8491 0.39220.9575 0.4854 0.7922 0.9340 0.65550.9649 0.8003 0.9595 0.6787 0.17120.1576 0.1419 0.6557 0.7577 0.70600.9706 0.4218 0.0357 0.7431 0.03183)normrnd(mu,sigma,m,n)功能:以均值μ和标准差σ为参数的正态分布随机数mxn>> normrnd(0,1,3,4) %生成均值μ=0,σ=1的3x4正态分布随机数ans =0.2761 0.3919 -0.7411 0.0125-0.2612 -1.2507 -0.5078 -3.02920.4434 -0.9480 -0.3206 -0.45704)mean(A,dim)功能:数组的平均值mean(A,dim) dim=1,返回列平均数,默认为1dim=2,返回列平均数dim>2,返回AA = [0 1 1; 2 3 2; 1 3 2; 4 2 2] %M = mean(A) 沿A 的大小不等于1 的第一个数组维度返回均值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H a r b i n I n s t i t u t e o f T e c h n o l o g y实验报告课程名称:随机信号分析院系:电子与信息工程学院班级:姓名:学号:指导教师:实验时间:实验一、各种分布随机数的产生(一)实验原理1.均匀分布随机数的产生原理产生伪随机数的一种实用方法是同余法,它利用同余运算递推产生伪随机数序列。

最简单的方法是加同余法)(mod 1M cy y n n +=+My x n n 11++=为了保证产生的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。

加同余法虽然简单,但产生的伪随机数效果不好。

另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布的随机数)(mod 1M ay y nn =+M y x n n 11++=式中,a 为正整数。

用加法和乘法完成递推运算的称为混合同余法,即)(mod 1M cay y n n +=+My x n n 11++=用混合同余法产生的伪随机数具有较好的特性,一些程序库中都有成熟的程序供选择。

常用的计算语言如Basic 、C 和Matlab 都有产生均匀分布随机数的函数可以调用,只是用各种编程语言对应的函数产生的均匀分布随机数的范围不同,有的函数可能还需要提供种子或初始化。

Matlab 提供的函数rand()可以产生一个在[0,1]区间分布的随机数,rand(2,4)则可以产生一个在[0,1]区间分布的随机数矩阵,矩阵为2行4列。

Matlab 提供的另一个产生随机数的函数是random('unif',a,b,N,M),unif 表示均匀分布,a 和b 是均匀分布区间的上下界,N 和M 分别是矩阵的行和列。

2.随机变量的仿真根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。

若X 是分布函数为F(x)的随机变量,且分布函数F(x)为严格单调升函数,令Y=F(X),则Y 必为在[0,1]上均匀分布的随机变量。

反之,若Y 是在[0,1]上均匀分布的随机变量,那么)(1Y F X X-= 即是分布函数为FX(x)的随机变量。

式中F X-⋅1()为F X ()⋅的反函数。

这样,欲求某个分布的随机变量,先产生在[0,1]区间上的均匀分布随机数,再经上式变换,便可求得所需分布的随机数。

3.高斯分布随机数的仿真广泛应用的有两种产生高斯随机数的方法,一种是变换法,一种是近似法。

如果X1,X2是两个互相独立的均匀分布随机数,那么下式给出的Y1,Y2⎪⎩⎪⎨⎧+-=+-=mX X Y mX X Y )π2sin(ln 2)π2cos(ln 2212211σσ 便是数学期望为m ,方差为2σ的高斯分布随机数,且互相独立,这就是变换法。

另外一种产生高斯随机数的方法是近似法。

在学习中心极限定理时,曾提到n 个在[0,1]区间上均匀分布的互相独立随机变量Xi (i=1,2…,n),当n 足够大时,其和的分布接近高斯分布。

当然,只要n 不是无穷大,这个高斯分布是近似的。

由于近似法避免了开方和三角函数运算,计算量大大降低。

当精度要求不太高时,近似法还是具有很大应用价值的。

4.各种分布随机数的仿真有了高斯随机变量的仿真方法,就可以构成与高斯变量有关的其他分布随机变量,如瑞利分布、指数分布和2χ分布随机变量。

(二)实验目的在很多系统仿真的过程中,需要产生不同分布的随机变量。

利用计算机可以很方便地产生不同分布的随机变量,各种分布的随机变量的基础是均匀分布的随机变量。

有了均匀分布的随机变量,就可以用函数变换等方法得到其他分布的随机变量。

(三)实验结果附:源程序subplot(2,2,1);x=random('unif',2,5,1,1024);plot(x);title('均匀分布随机数')subplot(2,2,2);G1=random('Normal',0,1,1,20000); plot(G1);title('高斯分布随机数')subplot(2,2,3);G2=random('Normal',0,1,1,20000); R=sqrt(G1.*G1+G2.*G2);plot(R);title('瑞利分布随机数')subplot(2,2,4);G3=random('Normal',0,1,1,20000); G4=random('Normal',0,1,1,20000); X=G1.*G1+G2.*G2+G3.*G3+G4.*G4; plot(X);title('x^2分布随机数')实验二、随机变量检验(一)实验原理1、均值的计算 在实际计算时,如果平稳随机序列满足各态历经性,则统计均值可用时间均值代替。

这样,在计算统计均值时,并不需要大量样本函数的集合,只需对一个样本函数求时间平均即可。

甚至有时也不需要计算N →∞时的极限,况且也不可能。

通常的做法是取一个有限的、计算系统能够承受的N 求时间均值和时间方差。

根据强调计算速度或精度的不同,可选择不同的算法。

设随机数序列{N x x x ,,,21Λ},一种计算均值的方法是直接计算下∑==Nn nx N m 11式中,xn 为随机数序列中的第n 个随机数。

另一种方法是利用递推算法,第n 次迭代的均值也亦即前n 个随机数的均值为)(111111----+=+-=n n n n n n m x nm x n m n n m 迭代结束后,便得到随机数序列的均值 m m N =递推算法的优点是可以实时计算均值,这种方法常用在实时获取数据的场合。

当数据量较大时,为防止计算误差的积累,也可采用)(1111m x N m m n Nn -+=∑=式中,m1是取一小部分随机数计算的均值。

2、方差的计算计算方差也分为直接法和递推法。

仿照均值的做法212)(1m x N N n n -=∑=σ 21221m x N N n n -=∑=σ方差的递推算法需要同时递推均值和方差m m n x m n n n n =+---111() ])(1[121212---+-=n n n n m x nn n σσ 迭代结束后,得到随机数序列的方差为22N σσ=其它矩函数也可用类似的方法得到。

3、统计随机数的概率密度直方图假定被统计的序列)(n x 的最大值和最小值分别为a 和b 。

将),(b a 区间等分M (M 应与被统计的序列)(n x 的个数N 相适应,否则统计效果不好。

)份后的区间为))(,(M a b a a -+,))(*2,)((M a b a M a b a -+-+,… , )*)(*2,)1)(((Mi a b a M i a b a -+--+,… , ),)1)(((b M M a b a --+。

用)(i f ,表示序列)(n x 的值落在)*)(*2,)1)(((M ia b a M i a b a -+--+区间里的个数,统计序列)(n x 的值在各个区间的个数)(i f ,1,,2,0-=M i Λ,则)(i f 就粗略地反映了随机序列的概率密度的情况。

用图形方式显示出来就是随机数的概率密度直方图。

(二)实验目的随机数产生之后,必须对它的统计特性做严格的检验。

一般来讲,统计特性的检验包括参数检验、均匀性检验和独立性检验等。

事实上,我们如果在二阶矩范围内讨论随机信号,那么参数检验只对产生的随机数一、二阶矩进行检验。

我们可以把产生的随机数序列作为一个随机变量,也可以看成随机过程中的一个样本函数。

不论是随机变量还是随机过程的样本函数,都会遇到求其数字特征的情况,有时需要计算随机变量的概率密度直方图等。

(三)实验结果附:源程序subplot(2,2,1);x=random('unif',2,5,1,1024);hist(x,2:0.2:5);title('均匀分布随机数直方图');s1=0for n1=1:1024s1=x(n1)+s1;endMean1=s1/1024;t1=0for n1=1:1024t1=(x(n1)-Mean1)^2+t1;endVariance1=t1/1024;subplot(2,2,2);G1=random('Normal',0,1,1,20000); hist(G1,-4:0.2:4);title('高斯分布随机数直方图');s2=0for n2=1:20000s2=G1(n2)+s2;endMean2=s2/20000;t2=0for n2=1:20000t2=(G1(n2)-Mean2)^2+t2; endVariance2=t2/20000;subplot(2,2,3);G2=random('Normal',0,1,1,20000); R=sqrt(G1.*G1+G2.*G2);hist(R,0:0.2:5);title('瑞利分布随机数直方图');s3=0for n3=1:20000s3=R(n3)+s3;endMean3=s3/20000;t3=0for n3=1:20000t3=(R(n3)-Mean3)^2+t3;endVariance3=t3/20000;subplot(2,2,4);G3=random('Normal',0,1,1,20000); G4=random('Normal',0,1,1,20000); X=G1.*G1+G2.*G2+G3.*G3+G4.*G4; hist(X,0:0.5:30);title('x^2分布随机数直方图')s4=0for n4=1:20000s4=X(n4)+s4;endMean4=s4/20000;t4=0for n4=1:20000t4=(X(n4)-Mean4)^2+t4;end实验三、中心极限定理的验证(一)实验原理如果n 个独立随机变量的分布是相同的,并且具有有限的数学期望和方差,当n 无穷大时,它们之和的分布趋近于高斯分布。

这就是中心极限定理中的一个定理。

我们以均匀分布为例,来解释这个定理。

若n 个随机变量Xi (i=1,2,…,n)都为[0,1]区间上的均匀分布的随机变量,且互相独立,当n 足够大时,其和∑==ni i X Y 1的分布接近高斯分布。

(二)实验目的利用计算机产生均匀分布的随机数。

对相互独立的均匀分布的随机变量做和,可以很直观看到均匀分布的随机变量的和,随着做和次数的增加分布情况的变化,通过实验对中心极限定理的进行验证。

相关文档
最新文档