人教版五年级数学上册六单元整理和复习课件
人教版五年级数学上册第六单元《平行四边形的面积》ppt课件
5.用木条做成一个长方形框,长18 cm,宽15 cm,它的周长和面积各是 多少?如果把它拉成一个平行四边形,周长和面积有变化吗?
周长:(18+15)×2=66(cm) 面积:18×15=270(cm2) 答:它的周长是66 cm,面积是270 cm2。如果把它拉成一个平 行四边形,周长不变,面积变小。
探究点 3 应用平行四边形的面积解决问题 平行四边形花坛的底是6 m,高是4 m,它的面积是多少?
1.自己解决。 2.同桌之间互相批改。 3.说一说解题时应注意什么?
6m
4m
S=ah =6×4 =24(m2) 答:平行四边形花坛的面积是24 m2。
1.运用平行四边形的面积计算公式解决实际问题,应找准底和对应的高。 2.注意底和高的单位的一致,最后结果带上单位名称。 3.运用公式解决问题时,通常先把用到的字母公式写出来,然后代入数据进 行计算。
(3)底是0.6 m,底是高的2倍。 0.6×(0.6÷2)=0.18(m2)
5.在一块底是8 m,高是6 m的平行四边形地里种萝卜。如果每 平方米收萝卜7.5 kg,这块地可收萝卜多少千克?
6×8=48(m2) 7.5×48=360(kg) 答:这块地可收萝卜360千克。
课堂小结
平行四边形的面积: 通过割补的方法,我们可清楚地看到,任何一个平
行四边形都可以转化为长方形,而且长方形的长和宽恰 好等于平行四边形的底和高。
所以,平行四边形的面积=底×高 S=a × h
还可以写成:S=a·h 或 S=ah
8 厘米 15 厘米
12 厘米
方法一
S=ah =15×8 =120(平方厘米)
方法二
S=ah =10×12 =120(平方厘米)
答:平行四边形的面积是120平方厘米。
人教版五年级数学上册第六单元《梯形的面积》授课课件
提升点2 找公共量求梯形的面积
5.(易错题)如下图,阴影部分的面积是32 dm2,求 梯形的面积。
32×2÷8=8(dm) (8+12)×8÷2=80(dm2) 答:梯形的面积是80 dm2。
6.两个完全相同的梯形的一部分重叠在一起,如 下图,求阴影部分的面积。
(20-3+20)×6÷2=111(cm2) 答:阴影部分的面积是111 cm2。
B.扩大到原来的6倍 C.扩大到原来的9倍
2.北京冬奥会期间,市中心广场前面摆放着一个 大型的梯形花卉盆景(如图),这个花卉盆景的占 地面积是336 m2。这个梯形的上底是多少米? 解:设这个梯形的上底是x m。 (x+24)×16÷2=336 x= 18 答:这个梯形的上底是18 m。
3.一块“珍爱生命,远离毒品”禁毒教育宣传牌 的形状是梯形,上底是1.4 m,下底是1.6 m,高 是3.2 m。如果要给这块宣传牌的两面涂上油漆, 每平方米用油漆0.8 kg,共需要多少千克油漆? (1.4+1.6)×3.2÷2=4.8(m2) 4.8×0.8×2=7.68(kg) 答:共需要7.68 kg油漆。
平行四边形的底
拼成的平行四边形的底等与于梯梯形形的的底上有底什与么下关底系的?和。
拼成的平行四边形的高等与于梯梯形形的的高高有。什么关系?
每个梯形的面积等与于拼拼成成的的平平行行四四边边形形的的面面积积有的什一么半关。系?
高
下底 + 上底
高
下底 + 上底
平行四边形的底
平行四边形的面积 =
平行四边形的底
= 2220(cm2 )
71 cm
65 cm
S = (a + b ) h÷2
= (45 + 65 ) ×40÷2
新人教版小学五年级数学上册多边形面积的整理和复习课件
知识回顾
(教材P103 T1)
1.回忆下面图形面积计算公式的推导过程,写出
计算公式。
S=ah÷2
b a
S=ab
h a
S=ah
h aa
h S=(b a+b)h÷2
我们运用割补法,把平行四边形转化成了长 方形,推导出了平行四边形的面积计算公式;运 用拼摆法,把三角形和梯形转化成了平行四边形, 推导出了它们的面积计算公式。
A 变大
面积 ( ) 周长 ( )
B 不变
C变小
(2)
A 变大
面积 ( ) 周长 ( )
B 不变
C变小
第三关:判断
巩固运用
1.判断题。
(1)平行四边形的面积一定比梯形的面积大
(× )
(2)梯形的面积等于梯形的上底加下底的和乘高。(× )
(3)梯形的上底、下底越长,面积越大。
(× )
(4)任何一个梯形都可以分成两个等高的三角形。(√)
4、用S1和S2分别表示下图左、右两个
平行四边形的面积,那么( C)
A. S1>S2
B. S1 <S2 C. S1 = S2
S1
S2
D. 不能确定
5、一个三角形,高不变,底扩 大3倍,面积就扩大(A)倍。
原来的面积 1×2÷2=1
3倍
现在的面积 3×2÷2=3
22
1
3
A. 3 B 6 C 9
考考你
8分4个图形的面积有什么关系? 你是怎样想的?
第一关:填一填
1、一个平行四边形面积是40平方厘米,与它 等底等高的三角形面积是( )平方厘米。
2、一个平行四边形的面积是16平方米,从这 个平行四边形中剪出一个最大的三角形, 这 个三角形的面积是( )平方厘米。
人教版五年级数学上册小数除法整理和复习(课件)(共23张PPT)
88.888887÷9=9.876543
找规律写得数。 6×9=54 6.6×6.9=45.54 6.66×66.9=445.554
前一个数小数点后多加一个6, 乘积小数点前多加一个4。 后一个数小数点前多加一个6, 乘积小数点后多加一个5。
6.666×666.9= 4445.5554
6.6666×6666.9= 44445.55554
6.66666×66666.9= 444445.555554
用计算器计算下面各题。(得数保留两位小数。)
1.3÷0.03 ≈43.33 6.509÷0.27 ≈24.12 0.68÷0.95 ≈0.72
解决问题
解决问题的策略:
在解决实际问题时,要根据实 际情况采用“进一法”或者 “去尾法”取商的近似值。
人教版五年级上册
小数除法
整理和复习
本单元我们主要学习了什么知识?
小数除法
除数是整数的小数除法 一个数除以小数 商的近似数 循环小数 用计算器探索规律 解决问题
小数除法的计算
①先去掉除数的小数点; ②看除数有几位小数,被除数的小数
点就向右移动几位,再按照除数是 整数的计算法则计算,商的小数点 与被除数的小数点对齐; ③被除数的位数不够,少几位就在被 除数末尾补几个“0”;不够商 “1”时,要写“0”占位。
以买几个? 答:用100元人民币可以买5个。
中国银行外汇牌价(单位:元)
2012 年8月28日
1美元兑换人民币
6.34
1港元兑换人民币
0.82
1日元兑换人民币
0.08
1欧元兑换人民币
7.96
(4)你还能提出其他数学问题并解答吗?
我有900元人民币,要买158美元/只的电子手表钱够吗?
第六单元第4课时 三角形的面积(2)(课件)五年级数学上册 最新人教版
1. 已知一个三角形的面积和底(如下图),求高。
176m²
h = S×2÷a
= 176×2÷22
22m
= 16(m)
根据S=ah÷2,可以得到h = S×2÷a。
易错点:不要忘记三角形的面积先乘2,再除以底才能求高。
教材第92页第7题
1. 已知一个三角形的面积和底(如下图),求高。
等,已知三角形的底是 16 cm,平行四边形的
底是(
)cm。
8
(4)一个三角形与一个平行四边形的底相等,面积
也相等,已知三角形的高是18cm,则平行四边
形的高是(
9
)cm。
(5)一个平行四边形的面积是15 cm2,在这个平行
四边形内画一个最大的三角形,则三角形的面
积是( 7.5 cm2)。
(6)一个三角形与一个平行四边形的等底等高,已
?
72
三角形面积与平行四边形面积的关系
4.(易错题)一个三角形和一个平行四边形的
面积相等,底也相等。已知三角形的高是12,
那么平行四边形的高是( A )。
A.6
B.9
C.12
D.24
三角形与平行四边形面积相等,底(高)相等,
则三角形的高(底)是平行四边形高(底)的2倍。
三角形面积与平行四边形面积的关系
知它们的面积和是30平方厘米,这个三角形是
( 10 )平方厘米。
(7)一个三角形与一个平行四边形的等底等高,平
行四边形面积比三角形面积多25平方厘米,这
个三角形是( 25
)平方厘米
计算下列三角形的面积,你发现了什么?
5 cm
3 cm
5×3÷2=7.5(cm2)
《教学课件》部编人教版数学五年级上册《多边形的面积 整理与复习》PPT精品课件
巩固练习
3. 有一台收割机,作业宽度是1.8m。每小时行5km ,
大约多少小时可以收割完下边这块地?
5 km=5000 m 1.8×5000=9000(m2) (200+330)×100÷2=26500(m2) 26500÷9000 ≈ 2.94(小时) 答:大约2.94小时可以收割完这块地。
解:设经过x小时两艘军舰相遇。
(38+41)×x=948 x=12
答:经过12小时两艘军舰相遇。
巩固练习 6. 下面是一枚火箭模型的平面图,计算它的面积。
S=ah÷2 =8×10÷2 =40(cm²)
70×8=560(cm²) S=(a+b)×h÷2
=(8+16)×8÷2 =96(cm²) 40+560+96=696(cm²) 答:这个平面图的面积是696平方厘米。
巩固练习 7. 图中小方格的边长是1m,请你估计涂色部分的面 积。
整块数量+不完整块数÷2 26+38÷2=45(m2)
巩固练习 8. 右图是用手工纸剪的一颗小树,它的面积是多少? (单位:cm)
三角形面积=(0.6×2+1×2)×3÷2 =4.8(cm²)
上面梯形的面积=[1×2+(1+2.3)×2]×3÷2 =12.9(cm²)
下面梯形的面积=[2.3×2+(3+1)×2]×3÷2 =18.9(cm²)
长方形的面积=6×2=12(cm2) 总面积:4.8+12.9+18.9+12=48.6(cm2) 答:它的面积是48.6平方厘米。
五年级上册数学课件单元复习小数除法 人教版
小数点的移动
课堂讲解
甲数的小数点向左移动一位正好等于乙数,甲、乙两数的和是24.75,甲数是 ,乙数是
五年级上册数学课件-单元复习小数除 法 人教版
五年级上册数学课件-单元复习小数除 法 人教版 五年级上册数学课件-单元复习小数除 法 人教版
归总问题
课堂讲解
服装厂购买一批布,原来做一件婴儿衣服需要0.8米,可以做720件。后来改进 技术每件节约用布0.2米,这批布现在可以做多少件?
五年级上册数学课件-单元复习小数除 法 人教版
归总问题
课堂讲解
一种瓶装速溶咖啡粉净重600g,每冲一杯需要9g咖啡粉和2.5g方糖。这瓶咖啡 粉最多可以充多少杯咖啡?需要多少克方糖?
五年级上册数学课件-单元复习小数除 法 人教版
五年级上册数学课件-单元复习小数除 法 折成一个长13.2cm,宽9.6cm的长方形,如果把这根铁丝拉直 ,再折成一个等边三角形,这个等边三角形的边长是多少厘米?
五年级上册数学课件-单元复习小数除 法 人教版
五年级上册数学课件-单元复习小数除 法 人教版
1.8的2.7倍加上10.92除以8.4的商,和是( )
A. 1.3
B. 0.8
C. 6.16
D. 2.5
课堂讲解
列式计算
9.5乘5.4除54的商,得到的积加上5.2,和是( )
A. 14.7 B. 6.15
C. 100.2
D. 10.2
课堂讲解
商和余数
小马虎在计算3.6除以一个数时,把3.6写成了6.3,结果比正确的商 多出了0.3,这道题正确的商应是( )
A、0.0345 B、 34.5 C、345
商与除数的关系
课堂讲解
估一估,下面算式中结果大于1 的是( )。 A. 0.88÷12 B. 0.88÷1 C. 1÷0.88 D. 0.88×1
人教版数学小学五年级上册第六单元中位数(例4、例5)ppt
(2)有5个数,它们分别是:14,8,22,15,
28。小明说:“因为22排在这五个数的中间,所
以22是这组数的中位数。”你认为小明说得对吗?
为什么?(
不对,因为没先排)序
(3)某小组六名学生的身高分别为160厘米, 140厘米,145厘米,150厘米,142厘米,157厘 米,这组数据的中位数是( 147.5 )。
1200是这组数据的中位数。
中位数的优点: 是不受偏大或偏小数据的影响, 因此,有时用它来代表全体 数据的一般水平更合适。
怎样计算中间的数呢?
某超市工作人员月工资如下表。
单位:元
经 理 副经理 员工B 员工C 员工D 员工E 员工F 员工G 员工H
月
工 8000 5 0 0 0 1500 1200 9 0 0 1000 1300 9 0 0 9 0 0
可以求出平均数来反映同学们的水平。
(36.8+34.7+25.8+24.7+24.6+24.1+23.2) ÷7 =193.9÷7 =27.7(m)
姓名 李明 陈东 刘云 马刚 王朋 张炎 赵丽
成绩/m 36.8 34.7 25.8 24.7 24.6 24.1 23.2
姓名
成绩 /m
李明 36.8
五年级同学举行投篮比赛
五(4)班第一小组一分钟进球个数如下: 单位:个
姓名 小明 小华 小刚 小伟 小军 小敏 小丽
个数 21 18 19 2 20 17 22
五(4)班第二小组一分钟进球个数如下: 单位:个
姓名 小海 小玲 小红 小莹 小雨 小静
个数 30 20 16 24 21 3
(1)求出这组数据的平均数和中位数。 (2)为什么中位数比平均数大?
人教版五年级数学上册第六单元课件
=
×
=
长方形的面积
=长 × 宽
宽高
结论:
通过割补的方法,我们可清楚地看到,任
何一个
平行四都边可形以转化
为 长方形 ,而且长方形的 长和 宽恰好
等 S=a × h
还可以写成:S=a·h 或 S=ah
平行四边形花坛的底是 6m,高 是 4m,它的面积是多少?
S =ah =6 × 4 = 24(m2)
答:它的面积是 24 m2。
4m 6m
S =ah
=5×2.5 = 12.5(m2) 答:它的面积是
12.5 m2。
算出下列平行四边形面积?
做一做 厘米 厘米
厘米 厘米
方法一 方法二
S=ah
=10×12 =120(平方厘米)
S=ah
=15×8 =120(平方厘米) 答:平行四边形的面积
CLICK TO ADD TITLE
平行四边形的面积
单/击/此/处/添/加/副/标/题 汇报人姓名
想一想:
在我们周围有哪些东西的形状是平行四边形?
用数方格的方法试一试!
复习:1、这是什么图形? 什么叫平行四边形?它有 1
什么特征?
2
高
底
3
6
4 24
6
4 24
你发现了 什么?
宽高
底 长
平行四边形的面积
320米 。
()
×
(3)一个平行四边形的底是5分米,高是0.5厘米,
它的面积是2.5平方厘米。 ( )
×
(4) 平行四边形的底和高分别与长方形的长和宽相
等,它们的面积一定相等。( )
√
李大爷说的对,因为平行四边形的面 积等于底与高的乘积
人教版小学五年级数学上册第六单元《多边形的面积》练习二十二课件
练习题
7.有一块地近似平行四边形,底是43 m,高 是20.1 m。这块地的面积约是多少平方米? (得数保留整数。)
43×20.1≈864(m2) 答 : 这 块 地 的 面 积 约 是 864m2 。
练习题
8.图中每个小方格的面积为1cm2,计算阴 影部分面积。
三角形 + 梯形
5×4÷2 + (5+2)×4÷2 = 24(cm2)
方法一:
30+30=60(cm) S=S长方形一S三角形
=80×60-60×20÷2
=4800-600 =4200(cm²)
你能想出几种算法?
答:一面中国少年先锋队中队旗的面积是4200m²。
练习题
方法二: S=S梯形×2
方法三: S=S正方形+S三角形×2
练习题
3.下面是一块正方形空心地砖,它实际占地 面积是多少?
人教版小学五年级数学上册
第六单元 多边形的面积
练习二十二
练习题
1.新丰小学有一块菜地,形状如下图。这块 菜地的面积是多少平方米? S平行四边形+S三角形 =50×33+35×12÷2 =1650+210 =1860(m²) 答:这块菜地的面积是1860m²。
练习题
2.一面中国少年先锋队中队旗的面积是多少?
练习题
11*.学校校园里有一块长方形的地,想种上红 花、黄花和绿草。 请你也设计一种方案,用上我们学过的图 形,并求一求每种植物的种植面积。
(答案略)
练习题
5.小欣用一张红色不干胶 纸剪了一个大写英文字母 “A”。它的面积是多少?
(2+10)×12÷2-3×4÷2-(4+6)×4÷2
=46(cm2)
(2023秋)人教版五年级数学上册《练习二十三》PPT课件
答:这块麦田的面积是1000 m2。
变式训练
7. 求右图中涂色部分的面积。 涂色部分的面积为长方 形面积减去梯形面积。
54×27=1458(mm2) (20+30)×10÷2=250(mm2)
1458-250=1208(mm2) 答:涂色部分的面积是1208 mm2。
= 2.2×3.1÷2 = 3.41( m2)
直角三角形是特殊情况,它的两条直 角边就是三角形的底和高。
S = ab = 2.5×1.8 = 4.5 ( h÷2
= ( 14+ 36) ×21÷2
= 50×21÷2 = 525 ( m2)
利用公式进行计算,先要找准相应的数值, 再代入公式计算,最后还要加上单位。
这棵小树可分成一个三角形、 两个梯形和一个长方形。
9 右图是用手工纸剪的一棵小树,它的面积是 多少?(单位:cm)
三角形:(0.6×2+ 1×2) ×3÷2 = 4.8 ( cm2) 上面梯形:[1×2+ (1+2.3)×2] ×3÷2 = 12.9 ( cm2) 下面梯形:[2.3×2+ (3+1)×2] × 3÷2 = 18.9 ( cm2) 长方形:6 ×2 = 12 ( cm2) 小树:4.8 + 12.9 + 18.9 + 12 = 48.6 ( cm2)
利用上底和下底的 倍比关系解答
课堂小结 这节课有什么收获呢?
h
a
S = ah
a
h
a
S = ah÷2
h
b
S =(a+b)h÷2
五年级上册数学教案-6.5 整理和复习(1)-人教版
五年级上册数学教案-6.5 整理和复习(1)-人教版课时:1课时教学目标:1. 通过整理和复习,使学生进一步理解和掌握本单元所学的知识点,提高数学思维能力。
2. 培养学生运用所学知识解决实际问题的能力,增强学生对数学学科的兴趣和自信心。
3. 培养学生良好的学习习惯和合作精神,提高学生的表达和交流能力。
教学重点:1. 理解和掌握本单元所学的知识点,包括:分数的乘除法、小数的乘除法、百分数的应用等。
2. 能够运用所学知识解决实际问题,提高解决问题的能力。
教学难点:1. 理解和掌握分数、小数、百分数之间的关系,能够灵活运用。
2. 能够将所学知识应用到实际生活中,解决实际问题。
教学过程:一、导入1. 老师出示一些与本单元相关的实际问题,引导学生回顾所学知识,激发学生的学习兴趣。
2. 学生分享自己在学习本单元过程中的收获和体会,为新课的学习做好铺垫。
二、新课1. 老师引导学生回顾本单元所学的知识点,包括:分数的乘除法、小数的乘除法、百分数的应用等。
2. 学生通过小组讨论、交流,总结本单元的知识点,形成知识体系。
3. 老师针对学生总结的知识点进行讲解,强调重点和难点,帮助学生理解和掌握。
三、巩固练习1. 老师出示一些与本单元相关的练习题,学生独立完成。
2. 老师针对学生的完成情况进行讲解,指导学生如何运用所学知识解决问题。
四、课堂小结1. 学生分享本节课的收获和体会,总结本节课的学习内容。
2. 老师对本节课的学习情况进行总结,强调重点和难点,布置课后作业。
教学反思:本节课通过整理和复习,使学生进一步理解和掌握了本单元所学的知识点,提高了数学思维能力。
在教学中,我注重激发学生的学习兴趣,引导学生主动参与学习过程,培养学生的合作精神和交流能力。
同时,我注重将所学知识应用到实际生活中,提高学生解决问题的能力。
但在教学过程中,我发现部分学生对分数、小数、百分数之间的关系理解不够深入,需要在今后的教学中加强引导和讲解。
人教数学五年级上册第六单元PPT课件
=(上底+下底)×高÷2
下底
如果用S表示梯形的面积,用a、b和h分别表示梯形的上 底和高,那么梯形的面积公式是:
a
S=(a+b)h÷2 h
b
三、探究新知
3 我国三峡水电站大坝的横截面的一部分是梯形(如下图),
求它的面积。
解法探究 题目中给出了梯形的上底、下底和高,可以根据梯形
的面积计算公式直接列式计算。
(100+48)×250 =148×250
=37000(mm2) 答:机翼的面积是37000mm2
五年级数学上册(RJ) 教学课件
第 6 单元 多边形的面积
第 8 课时 不规则图形的面积
一、复习导入
计算下面图形的面积。
3m 4m
5m
5×3+5×4=35(m2)
3m 4m
10m
10m
公顷约收小麦0.14吨。
三、巩固练习 1.如图,求出平行四边形在底边12dm上的高。
15×11÷12=13.75(dm)
11dm
12dm
15dm
2.如图,求出平行四边形在高是12m上的底边长。
18×15÷12=22.5(dm)
18dm
15dm
五年级数学上册(RJ) 教学课件
第 6 单元 多边形的面积
五、课堂小结
小结:1.已知梯形的上底、下底和高,可以直接利用 公式求出梯形的面积。
2.计算梯形面积时不要忘了除以2。
五年级数学上册(RJ) 教学课件
第 6 单元 多边形的面积
第 6 课时 练 习 课
一、复习回顾
1.回顾梯形的面积公式。 2.课本练习二十一第5题 寻找合适的条件,求出下图中涂色梯形的面积。(单位:cm)
人教版五年级数学上册第六单元第2课时《三角形的面积》教学课件
的面积相等(画法不唯一)。
提升点2
求直角三角形的斜边长
7.乐乐用一根铁丝正好围成一个直角三角形,这根铁
丝长多少分米?
6×8÷4.8=10(dm)
6+8+10=24(dm)
答:这根铁丝长24 dm。
8.下图中阴影部分的面积是15 dm2,平行四边形的面
积是多少平方分米?
15×3×2=90(dm2)
12.5×7.8÷2= 48.75(dm2)
48.75
dm2
= 0.4875
m2
总价钱:68×0.4875 = 33.15(元)
可简写成:
7.8 dm
12.5 dm
12.5×7.8÷2÷100×68 = 33.15 (元)
答:买这块玻璃要用 33.15 元。
下面平行四边形的面积是12 cm2,求涂色的三角形
字母表示是( S=ah÷2 )。
(2)如果上面的平行四边形的面积是7.2 dm2,则其中
一个三角形的面积是( 3.6 )dm2。
(3)如果上面其中一个三角形的底是3 dm,高是
2.4 dm,则三角形的面积是( 3.6 )dm2。
知识点 2
运用三角形的面积公式计算
2.计算下面图形的面积。
3×4÷2=6(dm2)
是多少平方厘米?
100 cm
S = ah÷2
= 100×33÷2
= 1650 (cm2)
答:它的面积是 1650 cm2。
33cm
一块三角形铁片,长是8 cm,高是4 cm,面积
是多少?
S = ah÷2
= 8×4÷2
= 16 (cm2)
答:面积是 16 cm2 。
一块玻璃的形状是一个三角形,它的底是 12.5 dm,
人教版数学五年级上册第6单元《多边形的面积 整理和复习》教案
人教版数学五年级上册第6单元《多边形的面积整理和复习》教案一. 教材分析《多边形的面积整理和复习》是人教版数学五年级上册第6单元的内容。
本节课主要目的是让学生巩固已学过的多边形面积计算公式,提高学生解决实际问题的能力。
教材内容主要包括多边形面积的计算方法,多边形面积公式的推导过程以及如何运用多边形面积公式解决实际问题。
二. 学情分析五年级的学生已经掌握了四边形和三角形的面积计算方法,对多边形面积有一定的认识。
但在实际应用中,部分学生可能会对多边形面积公式的灵活运用存在困难。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生运用已学知识解决实际问题,提高学生的数学应用能力。
三. 教学目标1.知识与技能:掌握多边形面积的计算方法,能够灵活运用多边形面积公式解决实际问题。
2.过程与方法:通过复习和整理,提高学生对多边形面积公式的理解和运用能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和问题解决能力。
四. 教学重难点1.重点:掌握多边形面积的计算方法,能够灵活运用多边形面积公式解决实际问题。
2.难点:如何引导学生理解和掌握多边形面积公式的推导过程,以及如何运用多边形面积公式解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生通过自主学习、合作探讨的方式,理解和掌握多边形面积的计算方法。
2.利用多媒体课件,展示多边形面积公式的推导过程,增强学生的直观感受。
3.通过实例分析,让学生学会将多边形面积公式应用于解决实际问题。
六. 教学准备1.多媒体课件:制作多媒体课件,包括多边形面积公式的推导过程、实例分析等。
2.练习题:准备一些有关多边形面积计算的练习题,用于巩固所学知识。
3.教学道具:准备一些几何图形模型,如正方形、三角形、梯形等,用于引导学生直观理解多边形面积的计算方法。
七. 教学过程1.导入(5分钟)利用多媒体课件展示一些实际问题,如花园里的花坛、学校操场等,引导学生思考这些图形的面积如何计算。
人教版数学五年级上册第六单元《多边形的面积4组合图形的面积》课件PPT
12m
35m
33m
50m
S 平= ah
= 50×33=1650(m2)
S 三= a h ÷2
= 35×12÷2= 420÷2=210( m2 )
S组:
1650+210
=1860( m2)
新丰小学有一块菜地,形状如右图。这块菜地的面积是多少平方米?
学以致用
20
10
16
求下列图形的面积。(单位:cm)
12
(10+16) ×12÷2
20×(16-10) ÷2
+
=156+60
=216(cm2)
学以致用
计算组合图形的面积。
10-5=5(cm)10x5+(10+20)x5÷2=50+75=125(c㎡)
学以致用
(4+8)x4÷2=12x4÷2=48÷2=24(c㎡)答:阴影部分面积是24c㎡。
计算下面图形中阴影部分的面积。
学以致用
课堂小结
组合图形是由几个简单图形组合而成的。
1.把组合图形分割成已学过的简单图形,再算这些简单图形的面积的和,就是组合图形的面积。
2.估算不规则图形的面积可以先通过数方格确定面积的范围,再数一数满格的格数和不满格的格数;也可以转化为学过的图形来估算。
谢谢
探索新知
右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?
我的算法是:
5×5+5×2÷2
=25+5
=30(㎡)
(5+2+5)×(5÷2)÷2×2
我的算法是:
=12×2.5÷2×2
=30(㎡)
可以把它看成一个正方形和一个三角形的组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合运用
1.计算下面图形的面积。
S = ah
18×15 = 270(cm2)
2.计算下面图形的面积。
S = ah÷2
36×8÷2 =288÷2 = 144(cm2)
3.计算出右图的面积,看谁的方法最多。
方法一:挖的方法 长方形减去梯形 长方形面积=12×10=120(cm2) 梯形的面积=(6+12)×(10-5)÷2
=18×5÷2 =45(cm2) 组合图形的面积=120 - 45=75(cm2)
方法二:分的方法(1)
三角形加上梯形 三角形的面积=10×(12-6)÷2
=10×6÷2 =30(cm2) 梯形的面积=(6+12)×5÷2 =18×5÷2 =45(cm2) 组合图形的面积=30+45=75(cm2)
平行四边形(旧)
推导
图形的面积计算公式
b
a
S = ah÷2
h b
S =(a+b)h÷2
观察下面两个梯形的变化,看看你 又能发现点什么。
a
a
h
h
b
b
当梯形的上底与下底相等时,它就变成了平行
四边形;当梯形的上底为0时,它就变成了三角形。
回忆一下我们解决组合图形的面积都 有哪几种方法。
h
a
S = ah
h
a
S = ah÷2
a
h b
S =(a+b)h÷2
课后作业
1.从教材课后习题中选取; 2.从课时练中选取。
多边形的面积
整理和复习
整体回顾
这学期我们都学习了哪些平面图形的面 积计算公式?
a
h
h
h
a
a
b
你还记得这些这些图形的面积计算 公式是怎样推导出来的吗?
割补
h
b
h
a
拼摆 a
a
a
h
b
知识梳理 图形的面积计算公式推导方法
转化(割补)
平行四边形(新) 联系
长方形(旧)
推导
转化(拼摆)
三角形、梯形(新)
联系