2019-2020学年江苏省无锡市江阴市九年级(上)期末数学试卷

合集下载

江阴市九年级上册期末数学试题(含答案)

江阴市九年级上册期末数学试题(含答案)

江阴市九年级上册期末数学试题(含答案)一、选择题1.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离 B .相切 C .相交 D .无法判断 2.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π3.如图,已知正五边形ABCDE 内接于O ,连结,BD CE 相交于点F ,则BFC ∠的度数是( )A .60︒B .70︒C .72︒D .90︒4.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =5.抛物线2(1)2y x =-+的顶点坐标是( ) A .(﹣1,2) B .(﹣1,﹣2) C .(1,﹣2) D .(1,2) 6.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定 7.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-38.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个根是x =1D .不存在实数根9.关于二次函数y =x 2+2x +3的图象有以下说法:其中正确的个数是( )①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y 轴的直线;③它与x 轴没有公共点;④它与y 轴的交点坐标为(3,0). A .1B .2C .3D .410.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A.点B.点C.点D.点11.如图,在正方形 ABCD 中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:①∠BAE=30°;②射线FE是∠AFC的角平分线;③CF=13 CD;④AF=AB+CF.其中正确结论的个数为()A.1 个B.2 个C.3 个D.4 个12.若二次函数y=x2+4x+n的图象与x轴只有一个公共点,则实数n的值是()A.1 B.3 C.4 D.613.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-14.如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:215.已知函数2y x bx c =-++的部分图像如图所示,若0y >,则的取值范围是( )A .41x -<<B .21x -<<C .31x -<<D .31x x <->或二、填空题16.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____.17.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0)、B (0,4),则点B 2020的横坐标为_____.18.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)19.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.20.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.21.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.22.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.23.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.24.在平面直角坐标系中,抛物线2yx 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.25.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.26.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.27.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.28.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.29.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.30.如图,AE 、BE 是△ABC 的两个内角的平分线,过点A 作AD ⊥AE .交BE 的延长线于点D .若AD =AB ,BE :ED =1:2,则cos ∠ABC =_____.三、解答题31.某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y (件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 与x 之间的函数关系式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少? (3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.32.如图,已知二次函数y =ax 2+4ax +c (a ≠0)的图象交x 轴于A 、B 两点(A 在B 的左侧),交y 轴于点C .一次函数y =﹣12x +b 的图象经过点A ,与y 轴交于点D (0,﹣3),与这个二次函数的图象的另一个交点为E ,且AD :DE =3:2. (1)求这个二次函数的表达式; (2)若点M 为x 轴上一点,求MD 5MA 的最小值.33.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.34.2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?35.如图,直线y=x﹣1与抛物线y=﹣x2+6x﹣5相交于A、D两点.抛物线的顶点为C,连结AC.(1)求A,D两点的坐标;(2)点P为该抛物线上一动点(与点A、D不重合),连接PA、PD.①当点P的横坐标为2时,求△PAD的面积;②当∠PDA=∠CAD时,直接写出点P的坐标.四、压轴题36.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形,,都是点A,B,C的外延矩形,矩形是点A,B,C的最佳外延矩形.(1)如图1,已知A(-2,0),B(4,3),C(0,).①若,则点A,B,C的最佳外延矩形的面积为;②若点A,B,C的最佳外延矩形的面积为24,则的值为;(2)如图2,已知点M(6,0),N(0,8).P(,)是抛物线上一点,求点M,N,P的最佳外延矩形面积的最小值,以及此时点P的横坐标的取值范围;(3)如图3,已知点D(1,1).E(,)是函数的图象上一点,矩形OFEG是点O,D,E的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.37.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.38.如图,在Rt △AOB 中,∠AOB =90°,tan B =34,OB =8. (1)求OA 、AB 的长;(2)点Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度秒的速度匀速运动,设运动时间为t 秒(0<t ≤5)以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为C 、D ,连结CD ,QC .①当t 为何值时,点Q 与点D 重合?②若⊙P 与线段QC 只有一个公共点,求t 的取值范围.39.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.40.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ; (1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断. 【详解】解:∵圆心O 到直线l 的距离d=6,⊙O 的半径R=4, ∴d>R , ∴直线和圆相离. 故选:A . 【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..2.B解析:B 【解析】 【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案. 【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=. 故选:B. 【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.3.C解析:C 【解析】 【分析】连接OA 、OB 、OC 、OD 、OE ,如图,则由正多边形的性质易求得∠COD 和∠BOE 的度数,然后根据圆周角定理可得∠DBC 和∠BCF 的度数,再根据三角形的内角和定理求解即可. 【详解】解:连接OA 、OB 、OC 、OD 、OE ,如图,则∠COD =∠AOB =∠AOE =360725︒=︒, ∴∠BOE =144°, ∴1362DBC COD ∠=∠=︒,1722BCE BOE ∠=∠=︒, ∴18072BFC DBC BCF ∠=︒-∠-∠=︒. 故选:C.【点睛】本题考查了正多边形和圆、圆周角定理和三角形的内角和定理,属于基本题型,熟练掌握基本知识是解题关键.4.D解析:D【解析】【分析】先将方程左边提公因式x ,解方程即可得答案.【详解】x 2﹣3x =0,x (x ﹣3)=0,x 1=0,x 2=3,故选:D .【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.5.D解析:D【解析】【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).故选D .6.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】∵⊙O 的半径为5,圆心O 到直线的距离为3,∴直线l 与⊙O 的位置关系是相交. 故选A .【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.7.D解析:D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x 2=-3x ,x 2+3x=0,x (x+3)=0,解得:x 1=0,x 2=-3.故选:D .【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.8.A解析:A【解析】【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根,1+8﹣c =0,解得c =9,∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.9.B解析:B【解析】【分析】直接利用二次函数的性质分析判断即可.【详解】①y=x2+2x+3,a=1>0,函数的图象的开口向上,故①错误;②y=x2+2x+3的对称轴是直线x=221-⨯=﹣1,即函数的对称轴是过点(﹣1,3)且平行于y轴的直线,故②正确;③y=x2+2x+3,△=22﹣4×1×3=﹣8<0,即函数的图象与x轴没有交点,故③正确;④y=x2+2x+3,当x=0时,y=3,即函数的图象与y轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B.【点睛】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.10.C解析:C【解析】【分析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.11.B解析:B【解析】【分析】根据点E 为BC 中点和正方形的性质,得出∠BAE 的正切值,从而判断①,再证明△ABE ∽△ECF ,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE ∽△AEF ,可判断②③,过点E 作AF 的垂线于点G ,再证明△ABE ≌△AGE ,△ECF ≌△EGF ,即可证明④.【详解】解:∵E 是BC 的中点,∴tan ∠BAE=1=2BE AB , ∴∠BAE ≠30°,故①错误;∵四边形ABCD 是正方形,∴∠B=∠C=90°,AB=BC=CD ,∵AE ⊥EF ,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF ,在△BAE 和△CEF 中,==B C BAE CEF ∠∠⎧⎨∠∠⎩, ∴△BAE ∽△CEF , ∴==2AB BE EC CF, ∴BE=CE=2CF ,∵BE=CF=12BC=12CD , 即2CF=12CD , ∴CF=14CD , 故③错误;设CF=a ,则BE=CE=2a ,AB=CD=AD=4a ,DF=3a ,∴AE=,,AF=5a ,∴AE AF BE EF , ∴=AE BE AF EF, 又∵∠B=∠AEF ,∴△ABE ∽△AEF ,∴∠AEB=∠AFE,∠BAE=∠EAG,又∵∠AEB=∠EFC,∴∠AFE=∠EFC,∴射线FE是∠AFC的角平分线,故②正确;过点E作AF的垂线于点G,在△ABE和△AGE中,===BAE GAEB AGEAE AE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABE≌△AGE(AAS),∴AG=AB,GE=BE=CE,在Rt△EFG和Rt△EFC中,==GE CEEF EF⎧⎨⎩,Rt△EFG≌Rt△EFC(HL),∴GF=CF,∴AB+CF=AG+GF=AF,故④正确.故选B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.12.C解析:C【解析】【分析】二次函数y=x2+4x+n的图象与x轴只有一个公共点,则240b ac=-=⊿,据此即可求得.【详解】∵1a=,4b=,c n=,根据题意得:2244410b ac n=-=⨯⨯=⊿﹣,解得:n=4,故选:C.【点睛】 本题考查了抛物线与x 轴的交点,二次函数2y ax bx c =++(a ,b ,c 是常数,a ≠0)的交点与一元二次方程20ax bx c ++=根之间的关系.24b ac =-⊿决定抛物线与x 轴的交点个数.⊿>0时,抛物线与x 轴有2个交点;0=⊿时,抛物线与x 轴有1个交点;⊿<0时,抛物线与x 轴没有交点.13.C解析:C【解析】【分析】连接OD ,根据勾股定理求出CD ,根据直角三角形的性质求出∠AOD ,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD ,在Rt △OCD 中,OC =12OD =2, ∴∠ODC =30°,CD =2223OD OC +=∴∠COD =60°,∴阴影部分的面积=260418223=2336023π⨯-⨯⨯π- , 故选:C .【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.14.D解析:D【解析】【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EF BC FC,利用点E 是边AD 的中点得出答案即可.【详解】解:∵▱ABCD ,故AD ∥BC ,∴△DEF ∽△BCF ,∴=DE EF BC FC, ∵点E 是边AD 的中点,∴AE=DE=12AD , ∴12EF FC . 故选D .15.C解析:C【解析】【分析】根据抛物线的对称性确定抛物线与x 轴的另一个交点为(−3,0),然后观察函数图象,找出抛物线在x 轴上方的部分所对应的自变量的范围即可.【详解】∵y =ax 2+bx +c 的对称轴为直线x =−1,与x 轴的一个交点为(1,0),∴抛物线与x 轴的另一个交点为(−3,0),∴当−3<x <1时,y >0.故选:C .【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x 轴的交点.二、填空题16.3【解析】【分析】把m 代入方程2x2﹣3x =1,得到2m2-3m=1,再把6m2-9m 变形为3(2m2-3m ),然后利用整体代入的方法计算.【详解】解:∵m 是方程2x2﹣3x =1的一个根,解析:3【解析】【分析】把m 代入方程2x 2﹣3x =1,得到2m 2-3m=1,再把6m 2-9m 变形为3(2m 2-3m ),然后利用整体代入的方法计算.【详解】解:∵m 是方程2x 2﹣3x =1的一个根,∴2m2﹣3m=1,∴6m2﹣9m=3(2m2﹣3m)=3×1=3.故答案为3.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB133===,∴OA+AB1+B1C2=53+133+4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:2020102⨯=10100.故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.18.或【解析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有解析:5 或1555【解析】【分析】计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有×10=5, 当AC<BC 时,则有×10=5-,∴AC=AB-BC=10-(5 )=15-,∴AC 长为5 cm 或1555 cm. 故答案为:55 或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.19.【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.20.【解析】【分析】如图所示,由网格的特点易得△CEF ≌△DBF ,从而可得BF 的长,易证△BOF ∽△AOD ,从而可得AO 与AB 的关系,然后根据勾股定理可求出AB 的长,进而可得答案.【详解】解:【解析】【分析】如图所示,由网格的特点易得△CEF ≌△DBF ,从而可得BF 的长,易证△BOF ∽△AOD ,从而可得AO 与AB 的关系,然后根据勾股定理可求出AB 的长,进而可得答案.【详解】解:如图所示,∵∠CEB =∠DBF =90°,∠CFE =∠DFB ,CE=DB =1,∴△CEF ≌△DBF ,∴BF =EF =12BE =12, ∵BF ∥AD ,∴△BOF ∽△AOD , ∴11248BO BF AO AD ===, ∴89AO AB =,∵AB =∴AO =故答案为:817 9【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.21.4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=(1)2n n+,∵当n=63时,前63行共有63642⨯=2016个数字,2020﹣2016=4,∴2020在第64行左起第4个数,故答案为:64,4.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.22.16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠C解析:16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA==,,DE AB220解得OA=16.故答案为16.23.54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1解析:54【解析】【分析】连接AD ,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD ,∵AF 是⊙O 的直径,∴∠ADF=90°,∵五边形ABCDE 是⊙O 的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.24.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【解析】【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-. 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.25.140°.【解析】【分析】根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB 的度数,进而可求出∠B OC 的度数.【详解】∵点O 是△ABC解析:140°.【解析】【分析】根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC的内切圆的圆心,∴OB、OC为∠ABC和∠ACB的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=40°,∴∠BOC=180°-40°=140°.故答案为:140°【点睛】本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.26.2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.27.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.28.7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n的值.【详解】解:∵,∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵2430x x +-=,∴243x x +=,∴2447x x ++=,∴2(2)7x +=,∴7n =;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤. 29.8【解析】【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.【详解】解:∵y =x2﹣2x ﹣3,设y =0,∴0=x2﹣2x ﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.【详解】解:∵y =x 2﹣2x ﹣3,设y =0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.30.【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可解析:3【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可求得结论.【详解】取DE的中点F,连接AF,∴EF=DF,∵BE:ED=1:2,∴BE=EF=DF,∴BF=DE,∵AB=AD,∴∠ABD=∠D,∵AD⊥AE,EF=DF,∴AF=EF,在△BAF 和△DAE 中AB AD ABF D BF DE =⎧⎪∠=∠⎨⎪=⎩∴△BAF ≌△DAE (SAS ),∴AE =AF ,∴△AEF 是等边三角形,∴∠AED =60°,∴∠D =30°,∵∠ABC =2∠ABD ,∠ABD =∠D ,∴∠ABC =60°,∴cos ∠ABC =cos60°故答案为:2. 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题31.(1)10700y x =-+;(2)销售单价为50元时,每天获取的利润最大,最大利润是4000元;(3)44≤x ≤56【解析】【分析】(1)直接利用待定系数法求出一次函数解析式即可;(2)利用w=销量乘以每件利润进而得出关系式求出答案;(3)利用w=3640,进而解方程,再利用二次函数增减性得出答案.【详解】解:(1)y 与x 之间的函数关系式为:y kx b =+把(35,350),(55,150)代入得:由题意得:3503515055k b k b =+⎧⎨=+⎩解得:10700k b =-⎧⎨=⎩∴y 与x 之间的函数关系式为:10700y x =-+.(2)设销售利润为W 元则W=(x ﹣30)•y =(x ﹣30)(﹣10x +700),W =﹣10x 2+1000x ﹣21000W =﹣10(x ﹣50)2+4000∴当销售单价为50元时,每天获取的利润最大,最大利润是4000元.(3)令W =3640∴﹣10(x ﹣50)2+4000=3640∴x 1=44,x 2=56如图所示,由图象得:当44≤x ≤56时,每天利润不低于3640元.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确掌握二次函数的性质是解题关键.32.(1)25552443y x x =--+;(2)1255. 【解析】【分析】(1)先把D 点坐标代入y =﹣12x +b 中求得b ,则一次函数解析式为y =﹣12x ﹣3,于是可确定A (﹣6,0),作EF ⊥x 轴于F ,如图,利用平行线分线段成比例求出OF =4,接着利用一次函数解析式确定E 点坐标为(4,﹣5),然后利用待定系数法求抛物线解析式; (2)作MH ⊥AD 于H ,作D 点关于x 轴的对称点D ′,如图,则D ′(0,3),利用勾股定理得到AD =5Rt △AMH ∽Rt △ADO ,利用相似比得到MH 5AM ,加上MD =MD ′,MD 5MA =MD ′+MH ,利用两点之间线段最短得到当点M 、H 、D ′共线时,MD 5的值最小,然后证明Rt △DHD ′∽Rt △DOA ,利用相似比求出D ′H 即可. 【详解】解:(1)把D (0,﹣3)代入y =﹣12x +b 得b =﹣3, ∴一次函数解析式为y =﹣12x ﹣3, 当y =0时,﹣12x ﹣3=0,解得x =﹣6,则A (﹣6,0), 作EF ⊥x 轴于F ,如图,。

无锡市滨湖区2019~2020初三上学期数学期末试卷含答案

无锡市滨湖区2019~2020初三上学期数学期末试卷含答案

初三数学试题 第 1 页 (共 12 页)2019年秋学期无锡市滨湖区期末调研考试试题 2020.1初三数学本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分. 注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号...........涂.黑.) 1.下列方程中,是一元二次方程的是 ( ▲ )A .2x +y =1B .x 2+3xy =6C .x +1x=4 D .x 2=3x -22.下列方程中,有两个不相等实数根的是 ( ▲ )A .x 2-x -1=0B .x 2+x +1=0C .x 2+1=0D .x 2+2x +1=03.若两个相似多边形的面积之比为4∶9,则这两个多边形的周长之比为 ( ▲ )A .2∶ 3B .2∶3C .4∶9D .16∶814.9名同学参加朗诵比赛,他们预赛成绩各不相同,现取前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还要知道这9名同学成绩的 ( ▲ ) A .平均数 B .极差 C .中位数 D .众数5.二次函数y =x 2-6x 图像的顶点坐标为 ( ▲ ) A .(3,0) B .(-3,-9) C .(3,-9) D .(0,-6) 6.如图,若四边形ABCD 内接于⊙O ,且∠A =40°,则∠C 的度数是 ( ▲ )初三数学试题 第 2 页 (共 12 页)A .110°B .120°C .135°D .140°7. 如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB 的宽为8cm ,水面最深的地方高度为2cm ,则该输水管的半径为 ( ▲ ) A .3cm B .5cm C .6cm D .8cm8.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为 ( ▲ )A .30°B .45°C .30°或150°D .45°或135° 9. 如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF 2,则BD 的长是 ( ▲ )A .2B .3C .218D .24710.已知二次函数y =-(x -1) 2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m +n 的值为 ( ▲ ) A .12B .32C .2D . 52二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........) 11.一元二次方程x 2-4=0的解为 ▲ .12.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球 ▲ 只.13.某一时刻,一棵树高15m ,影长为18m .此时,高为50 m 的旗杆的影长为 ▲ m . 14.一个圆锥的底面半径为6cm ,圆锥的高8cm ,则该圆锥的侧面积是 ▲ cm 2. 15.在□ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35, 则EFBF的值为 ▲ .(第15题)FE DCB A(第6题)ABAEDB CF (第9题)(第7题)16.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=-1,那么方程a(x+m+2)2+b=0的解▲.17.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为▲.18.如图,在边长为4的菱形ABCD中,∠A=60°,若M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则A′C的最小值为▲.三、解答题(本大题共10小题,共84分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)解方程:(1)x2-2x-1=0;(2)(2x-1)2=4(2x-1).20.(本题满分8分)已知关于x的方程x2-(m-1)x+2m=0,若方程的一个根为-4,求方程的另一个根及m 的值.21.(本题满分6分)在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC的顶点及点O都在格点上(每个小方格的顶点叫做格点).(1)以点O为位似中心,在网格区域内画出△A′B′C′,使△A′B′C′与△ABC位似(A′、B′、C′分别为A、B、C的对称点),且位似比为2﹕1;(2)△A′B′C′的面积为▲个平方单位;(3)若网格中有一格点D′(异与点C′),且△A′B′D′的面积等于△A′B′C′的面积,请在图中标出所有..符合条件的点D′.(如果这样的点D′不止一个,请用D1′、D2′、…、D n′标出)A B CDMNA′(第18题)(第17题)初三数学试题第3 页(共12 页)初三数学试题 第 4 页 (共 12 页)22.(本题满分8分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:(1)根据上述信息可知:甲的成绩的众数是 ▲ 环,乙的成绩的中位数是 ▲ 环; (2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会 ▲ .(填“变大”、“变小”或“不变”)23.(本题满分8分)“2020比佛利”无锡马拉松赛将于3月22日鸣枪开跑,本次比赛设三个项目:A .全程马拉松;B .半程马拉松;C .迷你马拉松.小明和小红都报名参与该赛事的志愿者服务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组. (1)小明被分配到“迷你马拉松”项目组的概率为 ▲ ; (2)请利用树状图或列表法求两人被分配到同一个项目组的概率.24.(本题满分8分)如图,已知直线l 切⊙O 于点A ,B 为⊙O 上一点,过点B 作BC ⊥l ,垂足为点C ,连接AB 、OB .(1)求证:∠ABC =∠ABO ;(2)若AB =10,AC =1,求⊙O 的半径.l初三数学试题 第 5 页 (共 12 页)G FDEBA25.(本题满分8分)如图,在□ABCD 中,点E 是边AD 上一点,延长CE 到点F ,使∠FBC =∠DCE ,且FB 与AD 相交于点G . (1)求证:∠D =∠F ;(2)用直尺和圆规在边AD 上作出一点P ,使△BPC ∽△CDP ,并加以证明.(作图要求:保留痕迹,不写作法.)26.(本题满分10分)某商店购进一批成本为每件30元的商品.经调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足一次函数关系,其图像如图所示. (1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,试利用函数图像确定销售单价最多为多少元?初三数学试题 第 6 页 (共 12 页)27.(本题满分10分)如图,已知二次函数y =ax 2+4ax +c (a ≠0)的图像交x 轴于A 、B 两点(A 在B 的左侧),交y 轴于点C .一次函数y =-12x +b 的图像经过点A ,与y 轴交于点D (0,-3),与这个二次函数的图像的另一个交点为E ,且AD ∶DE =3∶2(1)求这个二次函数的表达式; (2)若点M 为x 轴上一点,求MD +55MA 的最小值.28.(本题满分10分)如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作⊙O 交AC 于点F ,连接DF 、PF .(1)求证:△DPF 为等腰直角三角形; (2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将△EFP 沿PF 翻折,得到△QFP ,当点Q 恰好落在BC 上时,求t 的值.(备用图1)D B C A(备用图2)D BCA初三数学试题 第 7 页2019年初三数学期末考试 数学试题参考答案及评分说明一、选择题(每小题3分,共30分)1.D 2.A 3.B 4.C 5.C 6.D 7.B 8.D 9.C 10.A 二、填空题(每小题2分,共16分)11.±2 12.10 13.60 14.60π 15.38 16.x 1=0,x 2=-3 17.63+π 18.27-2三、解答题(本大题共10小题,共84分) 19.解:(1)x 2-2x -1=0∵a =1,b =-2,c =-1,∴△=(-2)2-4×1×(-1) =8.……………(2分)∴x =2±222,∴x 1=1+2,x 2=1-2. ……………………………………(4分)(本题也可用配方法求解)解:(2)(2x -1)2=4(2x -1).(2x -1) (2x -1-4)=0 ………………………………………………………………(2分)∴x 1=12,x 2=52. ………………………………………………………………(4分)20.解:把x =-4代入方程x 2-(m -1)x +2m =0中,得:m =-2,…………………………(3分)把m =-2代入方程x 2-(m -1)x +2m =0中,得:x 2+3x -4=0……………………(4分)∴ (x +4) (x -1)=0 ;∴x 1=-4,x 2=1; …………………………………………(7分)答:m 的值为-2,方程的另一个根为1. ……………………………………………(8分)5D 3D 2′初三数学试题 第 8 页 (共 12 页)21.(1)如右图; ………………(2分) (2)10; ………………(4分) (3)如右图. ………………(6分)22.解:(1)8,9;…………(2分) (2)甲:7,8,8,8,9;乙:6,6,9,9,10.甲成绩的平均数为8;乙成绩的平均数为8. …………………………………………(3分)S 2甲=15[(7-8)2+(8-8)2+(8-8)2+(8-8)2+(9-8)2] =0.4 ………………………(4分)S 2乙=15[(6-8)2+(6-8)2+(9-8)2+(9-8)2+(10-8)2] =2.8 ………………………(5分)∵S 2甲<S 2乙 ;∴甲的成绩较为稳定. ………………………………………………………(6分)(3)变小. …………………………………………………(8分)23.解:(1)13.………………………………………………………………………………………(2分)(2) 开始小明: AB C小红: A B C A B C A B C …………………(6分)由树状图可知,共有9种等可能的结果,其中符合题意的结果共有3种.………………(7分)初三数学试题 第 9 页 (共 12 页)∴P (两人分配到同一项目组)=39=13. ……………………………………………………(8分)24.证:(1)连接OA ,∵直线l 切⊙O 于点A ,∴OA ⊥l . ……………………………………(1分)∵BC ⊥l ,∴ OA ∥BC ,∴∠OAB =∠ABC . ………………………………………………(2分)又∵OA =OB ,∴∠OAB =∠OBA . ………………………………………………………(3分)∴∠OBA =∠ABC . ………………………………………………………………………(4分)(2)过点O 作OH ⊥BC ,垂足为H ,设⊙O 的半径为r .∵AB =10,AC =1,∠ACB =90°,∴BC =3. ………………………………(5分)∵∠OAC =∠ACB =∠OHC =90°,∴四边形OACH 是矩形.∴CH =OA =r ,OH =AC =1. ……………………………………………………………(6分)在Rt △OHB 中,由勾股定理得:12+(3-r )2=r 2. ………………………………………(7分)∴r =53. ………………………………………………………………………………………(8分)25.解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠FGE =∠FBC .……………(1分)∵∠FBC =∠DCE ,∴∠FGE =∠DCE . …………………………………………………(2分)∵∠FEG =∠DEC ,∴∠D =∠F . …………………………………………………(3分)(2)作△FBC 的外接⊙OO ,交边AD 于点P .………………………………………………(5分)∵∠F =∠BPC ,∠D =∠F ,∴∠D =∠BPC ……………………………………………(6分)又∵AD ∥BC ,∴∠DPC =∠PCB . ……………………………………………(7分)∴△BPC ∽△CDP . ……………………………………………(8初三数学试题 第 10 页 (共 12 页)分)26.解:(1)把x =30,y =100;x =45,y =70分别代入y =kx +b 中, ……………………(1分)解得k =-2,b =160,∴y =-2x +160.答:商品每天的销售量y 与销售单价x 之间的函数关系式:y =-2x +160. ……………(3分)(2)w =(x -30) (-2x +160)=-2(x -55) 2+1250.∵30≤x ≤50,∴x =50时,w 最大值=1200.答:当销售单价定为50元时,该商品每天获得的最大利润为1200. …………………(7分)(3)w =(x -30) (-2x +160)=800,∴x 1=40,x 2=70. …………………………………(8分)由图像可知,当40≤x ≤70时,w ≥800.答:每天的销售单价最多为70元/件时,该商品每天获得的利润不低于800元.………(10分)27.解:(1)点D (0,-3)代入一次函数y =-12x +b 中,得b =-3.∴y =-12x -3,∴A (-6,0). ……………………(1分)过点E 作EH ⊥AB ,垂足为H ,∵AD ∶DE =3∶2,∴AO ∶O H =3∶2.∵AO =6,∴OH =4,∴E 点的横坐标为4. ……………………………………………(2分)将x =4代入y =-12x -3中,y =-5.∴E (4,-5). ……………………………………………………………………………(3分)把x =-6,y =0;x =4,y =-5分别代入y =ax 2+4ax +c .解得a =-14,c =3. …………………………………………………………………………(4分)初三数学试题 第 11 页 (共 12 页) ∴这个二次函数的表达式为y =-14x 2-x +3. ……………………………………………(5分)(2)过点M 作MN ⊥AE ,垂足为N .∵∠MNA =∠DOA =90°,∠MAN =∠DAO ,∴△ADO ∽△AMN . ……………………(6分)∴OD ∶AD =MN ∶AM ,∵OD ∶AD =3∶35=1∶5,∴MN ∶AM =1∶5.∴MN =55MA . ………………………………………………………………………………(7分)∵C (0,3)、D (0,-3),∴MD =MC . ………………………………………………(8分)∴MD +55MA =MC +MN ,当C 、M 、N 在一条直线时,MC +MN =CN ,当CN ⊥AE 时,CN 最短.又∵△CDN ∽△ADO ,∴CN =6×255=1255. ∴MD +55MA 的最小值为1255. …………………………………………(10分)28.解:(1)∵AC 为正方形ABCD 的对角线,∴∠BAC =∠DAC =45°,∴FD =FP . ……(1分)∵DP 为直径,∴∠DFP =90°. ……………………………………………………………(2分)∴△DPF 为等腰直角三角形. ………………………………………………………………(3分)(2)①∵四边形ABCD 是正方形,∴AB ∥CD ,AP ∥CD .∴△APE ∽△CDE ,∴ AP CD =AE EC . ……………………………………………………………(4分)若点E 为靠近A 的一个三等分点,则 AE EC =12,∴AP CD =12,∴2t 4=12,∴t =1s .…………(5分)∵动点P 从点A 出发,到达点B 停止,∴点E 不可能为靠近C 的一个三等分点.答:当t =1秒时,点E 恰好为AC 的一个三等分点. ……………………………………(6初三数学试题 第 12 页 (共 12 页)Q 分)②由①知,△APE ∽△CDE ,∴AP CD =PE DE ,即 2t 4=PE DE ,∴PE DE =t 2,∴PE DP =t t +2.……(7分)∵△EFP 沿PF 翻折,∴PE =PQ ,∴PQ DP =t t +2. ………………………………………(8分)如图,∵∠EPF =∠DAC =45°,∴∠QPF =∠EPF =45°,∴∠DPQ =90°. ∴∠DP A +∠QPB =90°,∵∠DP A +∠PDA =90°,∴∠PDA =∠QPB .∵∠DAP =∠PBQ =90°,∴△DAP ∽△PBQ ,∴PQ DP =PB DA. ………………………(9分)∴4-2t 4=t t +2,∴t 2+2t -4=0,∴t 1=-1+5,t 2=-1-5(不合题意,舍去). ∴当t =5-1时,点Q 恰好落在BC 上.…………………………………………………(10分)。

江阴市江阴二中2020年数学九年级上册期末试题及答案

江阴市江阴二中2020年数学九年级上册期末试题及答案

江阴市江阴二中2020年数学九年级上册期末试题及答案一、选择题1.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2) 2.有一组数据5,3,5,6,7,这组数据的众数为( )A .3B .6C .5D .73.已知34a b=(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b =C .43b a = D .43a b =4.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限5.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个 6.方程 x 2=4的解是( ) A .x 1=x 2=2 B .x 1=x 2=-2C .x 1=2,x 2=-2D .x 1=4,x 2=-47.如图,已知正五边形ABCDE 内接于O ,连结,BD CE 相交于点F ,则BFC ∠的度数是( )A .60︒B .70︒C .72︒D .90︒8.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是( )A .小于12B .等于12C .大于12D .无法确定9.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是( ) A .14B .34C .15D .3510.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( ) A .45B .35C .43D .3411.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( ) A .13B .14C .15D .1612.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( ) A .86B .87C .88D .8913.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>14.cos60︒的值等于( )A .12B .2C .2D .315.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似D .所有矩形都相似二、填空题16.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)17.已知∠A =60°,则tan A =_____.18.正方形ABCD 的边长为4,圆C 半径为1,E 为圆C 上一点,连接DE ,将DE 绕D 顺时针旋转90°到DE’,F 在CD 上,且CF=3,连接FE’,当点E 在圆C 上运动,FE’长的最大值为____.19.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.20.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,当y <3时,x 的取值范围是____.21.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是__________.22.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.23.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm . 24.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.25.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.26.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.27.已知点P (x 1,y 1)和Q (2,y 2)在二次函数y =(x +k )(x ﹣k ﹣2)的图象上,其中k ≠0,若y 1>y 2,则x 1的取值范围为_____.28.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.29.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .30.如图,在△ABC 中,P 是AB 边上的点,请补充一个条件,使△ACP ∽△ABC ,这个条件可以是:___(写出一个即可),三、解答题31.现代城市绿化带在不断扩大,绿化用水的节约是一个非常重要的问题.如图1、图2所示,某喷灌设备由一根高度为0.64 m 的水管和一个旋转喷头组成,水管竖直安装在绿化带地面上,旋转喷头安装在水管顶部(水管顶部和旋转喷头口之间的长度、水管在喷灌区域上的占地面积均忽略不计),旋转喷头可以向周围喷出多种抛物线形水柱,从而在绿化带上喷灌出一块圆形区域.现测得喷的最远的水柱在距离水管的水平距离3 m 处达到最高,高度为1 m . (1)求喷灌出的圆形区域的半径;(2)在边长为16 m 的正方形绿化带上固定安装三个该设备,喷灌区域可以完全覆盖该绿化带吗?如果可以,请说明理由;如果不可以,假设水管可以上下调整高度,求水管高度为多少时,喷灌区域恰好可以完全覆盖该绿化带.(以上需要画出示意图,并有必要的计算、推理过程)32.如图1,在平面直角坐标系中,已知抛物线25y ax bx =++与x 轴交于()10A -,,()B 5,0两点,与y 轴交于点C .(1)求抛物线的函数表达式;(2)若点P 是位于直线BC 上方抛物线上的一个动点,求△BPC 面积的最大值; (3)若点D 是y 轴上的一点,且以B,C,D 为顶点的三角形与ABC 相似,求点D 的坐标;(4)若点E 为抛物线的顶点,点F (3,a )是该抛物线上的一点,在x 轴、y 轴上分别找点M 、N ,使四边形EFMN 的周长最小,求出点M 、N 的坐标.33.如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,点C 在OP 上,满足∠CBP =∠ADB . (1)求证:BC 是⊙O 的切线;(2)若OA =2,AB =1,求线段BP 的长.34.如图,AB 为O 的直径,PD 切O 于点C ,交AB 的延长线于点D ,且2D A ∠=∠.(1)求D ∠的度数. (2)若O 的半径为2,求BD 的长.35.如图,点C 是线段AB 上的任意一点(C 点不与A B 、点重合),分别以AC BC 、为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N .(1)求证: DB AE =; (2)求证: //MN AB ;(3)若AB 的长为12cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由. 四、压轴题36.如图①,A (﹣5,0),OA =OC ,点B 、C 关于原点对称,点B (a ,a +1)(a >0). (1)求B 、C 坐标; (2)求证:BA ⊥AC ;(3)如图②,将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,连接DC ,问:∠BDC 的角平分线DE ,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.37.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 38.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.39.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。

2020年江阴市九年级数学上期末第一次模拟试卷含答案

2020年江阴市九年级数学上期末第一次模拟试卷含答案

2020年江阴市九年级数学上期末第一次模拟试卷含答案一、选择题1.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒ 2.已知m 、n 是方程2210x x --=的两根,且22(714)(367)8m m a n n -+--=,则a 的值等于A .5-B .5C .9-D .9 3.抛物线2y x 2=-+的对称轴为A .x 2=B .x 0=C .y 2=D .y 0= 4.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )A .15B .25C .35D .455.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A .x(x -1)=2070B .x(x +1)=2070C .2x(x +1)=2070D .(1)2x x -=2070 6.用配方法解方程x 2+2x ﹣5=0时,原方程应变形为( ) A .(x ﹣1)2=6 B .(x+1)2=6 C .(x+2)2=9D .(x ﹣2)2=9 7.如图,某中学计划靠墙围建一个面积为280m 的矩形花圃(墙长为12m ),围栏总长度为28m ,则与墙垂直的边x 为( )A .4m 或10mB .4mC .10mD .8m 8.方程x 2=4x 的解是( )A .x =0B .x 1=4,x 2=0C .x =4D .x =2 9.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根 10.二次函数y=3(x –2)2–5与y 轴交点坐标为( ) A .(0,2)B .(0,–5)C .(0,7)D .(0,3) 11.若关于x 的方程x 2﹣2x +m =0的一个根为﹣1,则另一个根为( ) A .﹣3B .﹣1C .1D .3 12.设,a b 是方程2320170x x +-=的两个实数根,则22a a b +-的值为( )A .2017B .2018C .2019D .2020 二、填空题13.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.14.抛物线21(2)43y x =++关于x 轴对称的抛物线的解析式为_______ 15.如图,Rt △ABC 中,∠C =90°,AC =30cm ,BC =40cm ,现利用该三角形裁剪一个最大的圆,则该圆半径是_____cm .16.一元二次方程22x 20-=的解是______.17.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为_____.18.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是23602s t t =-,则飞机着陆后滑行的最长时间为 秒. 19.已知在同一坐标系中,抛物线y 1=ax 2的开口向上,且它的开口比抛物线y 2=3x 2+2的开口小,请你写出一个满足条件的a 值:_____.20.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是s =60t ﹣1.5t 2,飞机着陆后滑行_____米才能停下来.三、解答题21.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m 的住房墙,另外三边用27m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m 2?22.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;23.如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).24.如图,某足球运动员站在点O处练习射门.将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,己知足球飞行0.8s时,离地面的高度为3.5m.(1)a=,c=;(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?(3)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?25.已知关于x的一元二次方程x2+(m+3)x+m+2=0.(1)求证:无论m取何值,原方程总有两个实数根;(2)若x1,x2是原方程的两根,且x12+x22=2,求m的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数.【详解】∵35C ∠=︒∴35BAD C =∠=︒∠∵AB 是圆O 的直径∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠故答案为:A .【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.2.C解析:C【解析】试题解析:∵m ,n 是方程x 2﹣2x ﹣1=0的两根∴m 2﹣2m=1,n 2﹣2n=1∴7m 2﹣14m=7(m 2﹣2m )=7,3n 2﹣6n=3(n 2﹣2n )=3∵(7m 2﹣14m+a )(3n 2﹣6n ﹣7)=8∴(7+a )×(﹣4)=8∴a=﹣9.故选C .3.B解析:B【解析】【分析】根据顶点式的坐标特点,直接写出对称轴即可.【详解】解∵:抛物线y=-x 2+2是顶点式,∴对称轴是直线x=0,即为y 轴.故选:B .【点睛】此题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为直线x=h.4.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.5.A解析:A【解析】【分析】【详解】解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=2070,故选A.【点睛】本题考查由实际问题抽象出一元二次方程.6.B解析:B【解析】x2+2x﹣5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故选B.7.C解析:C【解析】【分析】设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,根据题意列出方程x(28-2x)=80,解得x1=4,x2=10因为8≤x<14∴与墙垂直的边x为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x值.8.B解析:B【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2=4x,x2﹣4x=0,x(x﹣4)=0,x﹣4=0,x=0,x1=4,x2=0,故选B.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.9.A解析:A【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根,故选A.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.11.D解析:D【解析】【分析】设方程另一个根为x 1,根据一元二次方程根与系数的关系得到x 1+(-1)=2,解此方程即可.【详解】解:设方程另一个根为x 1,∴x 1+(﹣1)=2,解得x 1=3.故选:D .【点睛】本题考查一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x 1,x 2,则x 1+x 2=-b a ,x 1•x 2=c a. 12.D解析:D【解析】【分析】首先根据根与系数的关系,求出a+b=-3;然后根据a 是方程2320170x x +-=的实数根,可得2320170a a +-=,据此求出232017a a +=,利用根与系数关系得:+a b =-3,22a a b +- 变形为(2a 3a +)-(+a b ),代入即可得到答案.【详解】解:∵a 、b 是方程2320170x x +-=的两个实数根,∴+a b =-3;又∵2320170a a +-=,∴232017a a +=,∴22a a b +-=(2a 3a +)-(+a b )=2017-(-3)=2020即22a a b +-的值为2020.故选:D .【点睛】本题考查了根与系数的关系与一元二次方程的解,把22a a b +-化成(2a 3a +)-(+a b )是解题的关键.二、填空题13.8【解析】【分析】首先求出AB 的坐标然后根据坐标求出ABCD 的长再根据三角形面积公式计算即可【详解】解:∵y=x2﹣2x ﹣3设y =0∴0=x2﹣2x ﹣3解得:x1=3x2=﹣1即A 点的坐标是(﹣10解析:8【解析】【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.【详解】解:∵y =x 2﹣2x ﹣3,设y =0,∴0=x 2﹣2x ﹣3,解得:x 1=3,x 2=﹣1,即A 点的坐标是(﹣1,0),B 点的坐标是(3,0),∵y =x 2﹣2x ﹣3,=(x ﹣1)2﹣4,∴顶点C 的坐标是(1,﹣4),∴△ABC 的面积=12×4×4=8, 故答案为8.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中. 14.【解析】【分析】由关于x 轴对称点的特点是:横坐标不变纵坐标变为相反数可求出抛物线关于x 轴对称的抛物线解析式【详解】∵∴关于x 轴对称的抛物线解析式为-即故答案为:【点睛】此题考查了二次函数的图象与几何 解析:()21243y x =-+- 【解析】【分析】由关于x 轴对称点的特点是:横坐标不变,纵坐标变为相反数,可求出抛物线21(2)43y x =++关于x 轴对称的抛物线解析式. 【详解】∵21(2)43y x =++, ∴关于x 轴对称的抛物线解析式为-21(2)43y x =++,即()21243y x =-+-, 故答案为:()21243y x =-+-. 【点睛】 此题考查了二次函数的图象与几何变换,解题的关键是抓住关于x 轴、y 轴对称点的特点.15.【解析】【分析】根据勾股定理求出的斜边AB 再由等面积法即可求得内切圆的半径【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC 的内切圆设AC 边上的切点为D 连接OAOBOCOD∵∠ACB=90°AC解析:【解析】【分析】根据勾股定理求出的斜边AB ,再由等面积法,即可求得内切圆的半径.【详解】由题意得:该三角形裁剪的最大的圆是Rt △ABC 的内切圆,设AC 边上的切点为D ,连接OA 、OB 、OC ,OD ,∵∠ACB =90°,AC =30cm ,BC =40cm ,∴AB 223040+50cm ,设半径OD =rcm ,∴S △ACB =12AC BC ⋅=111AC r BC r AB r 222⋅+⋅+⋅, ∴30×40=30r +40r +50r ,∴r =10,则该圆半径是 10cm .故答案为:10.【点睛】本题考查内切圆、勾股定理和等面积法的问题,属中档题.16.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x 1=1,x 2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x 2=1,开方得:x =±1,解得:x 1=1,x 2=﹣1.故答案为x 1=1,x 2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.17.﹣3【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0再解关于k 的方程然后根据一元二次方程的定义确定k 的值即可【详解】把x=2代入kx2+(k2﹣2)x解析:﹣3【解析】【分析】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k 的值即可.【详解】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,整理得k 2+3k=0,解得k 1=0,k 2=﹣3,因为k≠0,所以k 的值为﹣3.故答案为:﹣3.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s 取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值解析:【解析】【分析】把解析式化为顶点式,再根据二次函数的性质得出答案即可。

2019-2020江苏江阴九年级上数学期末试卷答案

2019-2020江苏江阴九年级上数学期末试卷答案

江阴市2019—2020学年第一学期九年级期末调研考试数学试卷参考答案及评分标准2020.1一、选择题(本大题共10小题,每小题3分,共30分)1.C 2.B 3.D 4.B 5.D 6.A 7.A 8.B 9.D 10.C二、填空题(本大题共8小题,每小题2分,共16分)11.5812.-113.114.8100(1+x )2=1250015.10π16.-1<x <317.3∶1∶818.30或60(答对一半不得分)三、解答题(本大题共10小题,共84分.解答时应写出文字说明、证明过程或演算步骤)19.解:(1)原式=2×32-3×1+3……………………………………………………(3分)=3.…………………………………………………………………(4分)(2)(x -2)2=5……………………………………………………………………(2分)∴x 1=2+5,x 2=2-5.…………………………………………………(4分)(方法不唯一,若用求根公式,求出根的判别式给2分)20.解:(1)400,扇形统计图25%、20%,条形统计图120.………………………(4分)(2)B ……………………………………………………………………………(6分)(3)660人.……………………………………………………………………(8分)21.解:(1)13……………………………………………………………………………(2分)(2)树状图或列表(略)…………………………………………………………(6分)共有6种等可能的情况,符合条件的情况有4种(缺掉一半,1分全扣)(7分)∴P(至少一张红色卡片)=23.……………………………………………(8分)22.解:(1)图略…………………………………………………………………………(2分)(2,1)………………………………………………………………………(4分)(2)图略…………………………………………………………………………(6分)(-2m +3,2n +3)…………………………………………………………(8分)23.解:(1)在△ACD 和△CED 中,∵∠ADC =∠CDE ,∠ACD =∠CED =90°,∴△ACD ∽△CED .………………………………………………………(2分)∴CD DE =AD CD ,∴CD 2=DE ·DA .…………………………………………(3分)(2)∵D 是BC 中点,∴BD =CD ,∴BD DE =AD BD.……………………………(4分)∵∠BDE =∠ADB ,∴△BED ∽△ABD .…………………………………(6分)∴∠BED =∠ABC .…………………………………………………………(7分)∵∠BED =47°,∴∠ABC =47°.………………………………………(8分)24.解:∵∠BPM =90°,∠PBM =30°,∠PAM =60°,∴∠PMB =60°,∠PMA =30°.∴∠BMA =30°.∴∠BMA =∠ABM .∴AM=AB=5.………………………………………………………………………(3分)∴在Rt△APM中,AP=AM·sin∠AMP=5×sin30°=5 2,…………………………(4分)∴PM=53 2,…………………………………………………………………………(5分)∵在Rt△APN中,∠NAP=45°,∴PN=AP=5 2.………………………………(6分)∴MN=PM-PN=532-52.…………………………………………………………(7分)答:广告牌MN的长为(532-52)m.……………………………………………………(8分)(此题方法不唯一,酌情给分.)25.解:(1)连接OC,∵点C为⌒BF的中点,∴⌒BC=⌒CF.∴∠CAF=∠BAC.∵AF⊥CD,∴∠E=90°.∵OA=OC,∴∠OCA=∠OAC.∴∠CAF=∠OCA.∴OC∥AE.………………………………………………………………(2分)∴∠DCO=∠E=90°.∴OC⊥DE.……………………………………(3分)∴DE是⊙O的切线.……………………………………………………(4分)(2)在Rt△DCO中,sin D=OCOD=35,设OC=3x,OD=5x,则5x=3x+2,解之得:x=1.…………………………………………(5分)∴OC=3,OD=5,AD=8.……………………………………………(6分)∵在Rt△DEA中,sin D=AEAD=AE8=35,∴AE=245.…………………(8分)26.解:(1)设该商品的售价是每个x元,根据题意,得:(x-30)[600-10(x-40)]=10000………………………(2分)解之得:x1=50,x2=80.………………………………………………(3分)答:为了尽快售出,这种商品的售价应定为每个50元.………………(4分)(2)该商品的利润y=(x-30)[600-10(x-40)]=-x2+130x-3000=-10(x-65)2+12250…………………………………………………(6分)∴当x=65时,利润y最大,最大利润是12250元.答:最大利润是12250元,此时售价是每个65元.……………………(8分)27.解:(1)设对称轴与x轴交于点E,与直线AC交于点D.∵y轴∥ED,∴AC∶CD=AO∶OE.∴AO=OE=1.∴A(-1,0).………………………………………(2分)∴将点A (-1,0)代入函数表达式得:1+2+m =0,∴m =-3.…(3分)(2)设Q (n ,n 2-2n -3),①点Q 在x 轴上方时,n <0,此时n ²-2n -33-n=3,解得:n =-4,n =3(舍),∴Q (-4,21)…………………………(5分)②点Q 在x 轴下方时,点Q 与点C 关于直线x =1对称,∴Q (2,-3).……………………………………………………………(7分)(3)①当点Q 为(-4,21)时,可以求得此时P (-23,-119),∵BP ∶BQ ≠OA ∶OC ,∴P 不存在.…………………………………(8分)②当点Q 为(2,-3)时,可以求得此时P (-43,139),∵BP ∶BQ ≠OA ∶OC ,∴P 不存在.…………………………………(9分)综上所述,不存在满足条件的点P ,使得△QBP ∽△COA .…………(10分)(第(3)问也可以利用K 型相似,不需要求出P 点坐标,但要有具体的过程说明.如果第(3)问没有任何解答过程只有“不存在”,则只给1分.)28.(1)过B'作B'H ⊥BC 于H ,延长HB'交AD 于点Q ,设B'H =m ,由△ACB ∽△B'CH ,可得CH =2m ,∴EH =43-2m .…………………………………………………………………(2分)在Rt △EB'H 中,EH ²+BH ²=EB'²,∴(43-2m)2+m ²=49,∴m =25或23(舍).∴B'H =25,EH =815.……………………………………………………………(4分)∴B'Q =1-25=35,设AF =n ,则FQ =65-n .在Rt △FB'Q 中:n ²+1=(65-n )2+925.………………………………………(6分)解得:n =13.∴AF =13.………………………………………………………(7分)(2)5-12<m ≤1.………………………………………………………………(10分)。

苏科新版初中数学九年级上册期末测试题(2019-2020学年江苏省无锡市江阴市

苏科新版初中数学九年级上册期末测试题(2019-2020学年江苏省无锡市江阴市

2019-2020学年江苏省无锡市江阴市澄西片九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列图形中对称轴最多的是()A.线段B.等边三角形C.圆D.正方形2.(3分)下列方程是一元二次方程的是()A.x+y2=1B.ax2+bx+c=0C.D.x2+1=03.(3分)关于x的方程x2+2x+c=0有两个相等的实数根,则c的值是()A.1B.﹣1C.2D.﹣24.(3分)如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm5.(3分)如图,在△ABC外任取一点O,连接AO,BO,CO,并取它们的中点D,E,F,连接DE,EF,DF,得△DEF,则下列说法错误的是()A.△ABC与△DEF是位似图形B.△ABC与△DEF是相似图形C.△ABC与△DEF的周长比为1:2D.△ABC与△DEF的面积比为4:16.(3分)如图,点A1,A2,A3,A4在射线OA上,点B1,B2,B3在射线OB上,且A1B1∥A2B2∥A3B3,A2B1∥A3B2∥A4B3.若△A2B1B2,△A3B2B3的面积分别为2,8,则图中三个阴影三角形面积之和为()A.23B.19C.21D.127.(3分)如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,﹣2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)8.(3分)太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是()A.B.15C.10D.9.(3分)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm 10.(3分)如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD 按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC 上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()A.CD+DF=4B.CD﹣DF=2﹣3C.BC+AB=2+4D.BC﹣AB=2二、填空题(共8小题,每小题2分,满分16分)11.(2分)在比例尺为1:500000的某省地图上,量得A地到B地的距离约为20厘米,则A地到B地的实际距离约为千米.12.(2分)已知,则=.13.(2分)方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.14.(2分)若关于x的方程x2+kx﹣12=0的两根均是整数,则k的值可以是.(只要求写出两个).15.(2分)在平行四边形ABCD中,E为靠近点D的AD的三等分点,连结BE,交AC于点F,AC=12,则AF为.16.(2分)如图,在直角三角尺ABC中,∠C=90°,把直角三角尺ABC放置在圆上,AB 经过圆心O,AC与⊙O相交于D,E两点,点C,D,E的刻度分别是0cm,2cm,5cm,BC与⊙O相切于F点,那么⊙O的半径是cm.17.(2分)有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是cm2.(结果保留π)18.(2分)如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ长度的最小值是.三、解答题(共10小题,满分84分)19.(9分)(1)(x﹣1)2=4;(2)(2x+3)2﹣2x﹣3=0(3)x2+4x﹣7=020.(8分)已知关于x的方程x2﹣5x﹣m2﹣2m﹣7=0.(1)若此方程的一个根为﹣1,求m的值;(2)求证:无论m取何实数,此方程都有两个不相等的实数根.21.(8分)如图,在矩形ABCD中,AB=2,BC=3,M是BC的中点,DE⊥AM于点E.(1)求证:△ADE∽△MAB;(2)求DE的长.22.(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.23.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.24.(8分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.25.(7分)(1)如图1,Rt△ABC中,∠B=90°,AB=2BC,现以C为圆心、CB长为半(这径画弧交边AC于D,再以A为圆心、AD为半径画弧交边AB于E.求证:=.个比值叫做AE与AB的黄金比.)(2)如果一等腰三角形的底边与腰的比等于黄金比,那么这个等腰三角形就叫做黄金三角形.请你以图2中的线段AB为腰,用直尺和圆规,作一个黄金三角形ABC.(注:直尺没有刻度!作图不要求写作法,但要求保留作图痕迹,并对作图中涉及到的点用字母进行标注)26.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?27.(10分)在△ABC中,∠A=90°,AB=8cm,AC=6cm,点M,点N同时从点A出发,点M沿边AB以4cm/s的速度向点B运动,点N从点A出发,沿边AC以3cm/s的速度向点C运动,(点M不与A,B重合,点N不与A,C重合),设运动时间为xs.(1)求证:△AMN∽△ABC;(2)当x为何值时,以MN为直径的⊙O与直线BC相切?(3)把△AMN沿直线MN折叠得到△MNP,若△MNP与梯形BCNM重叠部分的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?28.(10分)阅读理解:小明热爱数学,在课外书上看到了一个有趣的定理﹣﹣“中线长定理”:三角形两边的平方和等于第三边的一半与第三边上的中线的平方和的两倍.如图1,在△ABC中,点D为BC的中点,根据“中线长定理”,可得:AB2+AC2=2AD2+2BD2.小明尝试对它进行证明,部分过程如下:解:过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,同理可得:AC2=AE2+CE2,AD2=AE2+DE2,为证明的方便,不妨设BD=CD=x,DE=y,∴AB2+AC2=AE2+BE2+AE2+CE2=…(1)请你完成小明剩余的证明过程;理解运用:(2)①在△ABC中,点D为BC的中点,AB=6,AC=4,BC=8,则AD=;②如图3,⊙O的半径为6,点A在圆内,且OA=2,点B和点C在⊙O上,且∠BAC=90°,点E、F分别为AO、BC的中点,则EF的长为;拓展延伸:(3)小明解决上述问题后,联想到《能力训练》上的题目:如图4,已知⊙O的半径为5,以A(﹣3,4)为直角顶点的△ABC的另两个顶点B,C都在⊙O上,D为BC的中点,求AD长的最大值.请你利用上面的方法和结论,求出AD长的最大值.2019-2020学年江苏省无锡市江阴市澄西片九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列图形中对称轴最多的是()A.线段B.等边三角形C.圆D.正方形【分析】根据轴对称图形的定义即可判断.【解答】解:线段有2条对称轴;等边三角形有3条对称轴;圆有无数条对称轴;正方形有4个对称轴.对称轴最多的是圆.故选:C.【点评】本题考查轴对称图形,解题的关键是理解轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.2.(3分)下列方程是一元二次方程的是()A.x+y2=1B.ax2+bx+c=0C.D.x2+1=0【分析】根据一元二次方程的定义对各选项进行逐一判断即可.【解答】解:A、∵方程x+y2=1中含有两个未知数,未知数的最高次数是2,故是二元二次方程,故本选项错误;B、∵方程ax2+bx+c=0中a、b、c是否是常数不确定,故此方程不能确定是几次,故本选项错误;C、∵方程中含有分式,是分式方程,故本选项错误;D、∵方程x2+1=0中含有一个未知数,并且未知数的最高次数是2,故此方程是一元二次方程.故选:D.【点评】本题考查的是一元二次方程的定义,即只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3.(3分)关于x的方程x2+2x+c=0有两个相等的实数根,则c的值是()A.1B.﹣1C.2D.﹣2【分析】根据判别式的意义得到22﹣4c=0,然后解方程即可.【解答】解:根据题意得△=22﹣4c=0,解得c=1.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.(3分)如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm【分析】根据平行线分线段成比例定理得出=,代入求出即可.【解答】解:∵DE∥BC,∴=,∵,AE=2cm,∴=,∴AC=6(cm),故选:C.【点评】本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截的线段对应成比例.5.(3分)如图,在△ABC外任取一点O,连接AO,BO,CO,并取它们的中点D,E,F,连接DE,EF,DF,得△DEF,则下列说法错误的是()A.△ABC与△DEF是位似图形B.△ABC与△DEF是相似图形C.△ABC与△DEF的周长比为1:2D.△ABC与△DEF的面积比为4:1【分析】根据位似的定义,以及相似的性质:周长的比等于相似比,面积的比等于相似比的平方,即可作出判断.【解答】解:根据位似的定义可得:△ABC与△DEF是位似图形,也是相似图形,位似比是2:1,则周长的比是2:1,因而面积的比是4:1,故A、B、D正确,C错误.故选:C.【点评】本题主要考查了位似的定义,位似是特殊的相似,以及相似三角形的性质.6.(3分)如图,点A1,A2,A3,A4在射线OA上,点B1,B2,B3在射线OB上,且A1B1∥A2B2∥A3B3,A2B1∥A3B2∥A4B3.若△A2B1B2,△A3B2B3的面积分别为2,8,则图中三个阴影三角形面积之和为()A.23B.19C.21D.12【分析】已知△A2B1B2,△A3B2B3的面积分别为2,8,且两三角形相似,因此可得出A2B2:A3B3=1:2,由于△A2B2A3与△B2A3B3是等高不等底的三角形,所以面积之比即为底之边比,因此这两个三角形的面积比为1:2,根据△A3B2B3的面积为8,可求出△A2B2A3的面积,同理可求出△A3B3A4和△A1B1A2的面积.即可求出阴影部分的面积.【解答】解:△A2B1B2,△A3B2B3的面积分别为2,8,又∵A2B2∥A3B3,A2B1∥A3B2,∴∠OB2A2=∠OB3A3,∠A2B1B2=∠A3B2B3,∴△B1B2A2∽△B2B3A3,∴=,∴,∵,△A3B2B3的面积是8,∴△A2B2A3的面积为=,同理可得:△A3B3A4的面积=2×S△A3B2B3=2×8=16;△A1B1A2的面积=S△A2B1B2==1∴三个阴影面积之和=4+16+1=21.故选:C.【点评】本题考查了平行线的性质、相似三角形的判定与性质、三角形的面积.解题的关键是利用平行线证明三角形相似,再根据已给的面积,求出相似比,从而求阴影部分的面积.7.(3分)如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,﹣2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)【分析】由已知点的坐标得出△ABC为直角三角形,∠BAC=90°,得出△ABC的外接圆的圆心是斜边BC的中点,即可得出结果.【解答】解:如图所示:∵点A,B,C的坐标为(1,4),(5,4),(1,﹣2),∴△ABC为直角三角形,∠BAC=90°,∴△ABC的外接圆的圆心是斜边BC的中点,∴△ABC外接圆的圆心坐标是(,),即(3,1).故选:D.【点评】本题考查了三角形的外接圆与外心、坐标与图形性质、直角三角形的外心特征;熟记直角三角形的外心特征,根据题意得出三角形是直角三角形是解决问题的关键.8.(3分)太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是()A.B.15C.10D.【分析】根据题意建立直角三角形DCE,然后根据∠CED=60°,DE=10可求出答案.【解答】解:由题意得:DC=2R,DE=10,∠CED=60°,∴可得:DC=DE sin60°=15.故选:B.【点评】本题考查平行投影的知识,属于基础题,解答本题的关键是建立直角三角形,然后利用三角函数值进行解答.9.(3分)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答】解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4(cm),OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3(cm),∴CM=OC+OM=5+3=8(cm),∴AC===4(cm);当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC===2(cm).故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.(3分)如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD 按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC 上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()A.CD+DF=4B.CD﹣DF=2﹣3C.BC+AB=2+4D.BC﹣AB=2【分析】设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,证明△OMG≌△GCD,得到OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2.设AB=a,BC=b,AC =c,⊙O的半径为r,⊙O是Rt△ABC的内切圆可得r=(a+b﹣c),所以c=a+b﹣2.在Rt△ABC中,利用勾股定理求得(舍去),从而求出a,b的值,所以BC+AB=2+4.再设DF=x,在Rt△ONF中,FN=,OF=x,ON=,由勾股定理可得,解得x=4,从而得到CD﹣DF=,CD+DF=.即可解答.【解答】解:如图,设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,∵将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,∴OG=DG,∵OG⊥DG,∴∠MGO+∠DGC=90°,∵∠MOG+∠MGO=90°,∴∠MOG=∠DGC,在△OMG和△GCD中,∴△OMG≌△GCD,∴OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2.∵AB=CD,∴BC﹣AB=2.设AB=a,BC=b,AC=c,⊙O的半径为r,⊙O是Rt△ABC的内切圆可得r=(a+b﹣c),∴c=a+b﹣2.在Rt△ABC中,由勾股定理可得a2+b2=(a+b﹣2)2,整理得2ab﹣4a﹣4b+4=0,又∵BC﹣AB=2即b=2+a,代入可得2a(2+a)﹣4a﹣4(2+a)+4=0,解得(舍去),∴,∴BC+AB=2+4.再设DF=x,在Rt△ONF中,FN=,OF=x,ON=,由勾股定理可得,解得x=4,∴CD﹣DF=,CD+DF=.综上只有选项A错误,故选:A.【点评】本题考查了三角形的内切圆和内心,切线的性质,勾股定理,矩形的性质等知识点的综合应用,解决本题的关键是三角形内切圆的性质.二、填空题(共8小题,每小题2分,满分16分)11.(2分)在比例尺为1:500000的某省地图上,量得A地到B地的距离约为20厘米,则A地到B地的实际距离约为100千米.【分析】解答此题应根据图上距离、比例尺和实际距离三者的关系,进行分析解答即可得出结论.【解答】解:20÷=10000000厘米=100千米;故答案为100.【点评】此题考查比例线段,关键是根据图上距离、比例尺和实际距离三者的关系,进行分析解答即可得出结论.12.(2分)已知,则=﹣.【分析】根据合分比定理[如果a:b=c:d那么(a+b):(a﹣b)=(c+d):(c﹣d))(b、d、a﹣b、c﹣d≠0)]来解答即可.【解答】解:由已知,得,即=﹣.【点评】本题主要考查的是合分比定理:一个比例里,第一个前后项之和与它们的差的比,等于第二个比的前后项的和与它们的差的比.这叫做比例中的合分比定理.13.(2分)方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+mx+2=0是解决问题的关键,是一道基础题.14.(2分)若关于x的方程x2+kx﹣12=0的两根均是整数,则k的值可以是4或﹣4,答案不唯一.(只要求写出两个).【分析】可以把12分解成几个因数的积的形式,然后利用根与系数的关系就可以确定k 的值【解答】解:∵﹣12=2×(﹣6)=6×(﹣2)=﹣3×4=﹣4×3等等,∴k=2+(﹣6)=﹣4,或6+(﹣2)=4,或k=±1,故填空答案:4或﹣4.答案不唯一.【点评】本题用到的知识点为:x2+(p+q)x+pq=(x+p)(x+q).15.(2分)在平行四边形ABCD中,E为靠近点D的AD的三等分点,连结BE,交AC于点F,AC=12,则AF为.【分析】根据平行四边形的对边相等可得AD=BC,然后求出AE=AD=BC,再根据平行线分线段成比例定理求出AF、FC的比,然后求解即可.【解答】解:在▱ABCD中,AD=BC,AD∥BC,∵E为AD的三等分点,∴AE=AD=BC,∵AD∥BC,∴,∵AC=12,∴AF=×12=.故答案为:.【点评】本题考查了平行线分线段成比例定理,平行四边形的对边平行且相等的性质,熟记定理并求出AF、FC的比是解题的关键.16.(2分)如图,在直角三角尺ABC中,∠C=90°,把直角三角尺ABC放置在圆上,AB 经过圆心O,AC与⊙O相交于D,E两点,点C,D,E的刻度分别是0cm,2cm,5cm,BC与⊙O相切于F点,那么⊙O的半径是 3.5cm.【分析】如图连接OF,作OM⊥DE于M.,由∠C=∠CFO=∠CMO=90°,推出四边形CFOM是矩形,推出OF=CM,求出CM即可解决问题.【解答】解:如图连接OF,作OM⊥DE于M.∵∠C=∠CFO=∠CMO=90°,∴四边形CFOM是矩形,∴OF=CM,由题意可知CD=2,DE=3,∵OM⊥DE,∴DM=ME=1.5,∴OF=CM=CD+DM=3.5,故答案为3.5【点评】本题考查切线的性质、垂径定理、矩形的判定和性质等知识,解题的关键是重合添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.17.(2分)有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是60πcm2.(结果保留π)【分析】先根据圆锥的底面半径和高求出母线长,圆锥的侧面积是展开后扇形的面积,计算可得.【解答】解:圆锥的母线==10cm,圆锥的底面周长2πr=12πcm,圆锥的侧面积=lR=×12π×10=60πcm2.故答案为:60π.【点评】本题考查了圆锥的计算,圆锥的高和圆锥的底面半径圆锥的母线组成直角三角形,扇形的面积公式为lR.18.(2分)如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ长度的最小值是 4.8.【分析】设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD ⊥AB;由勾股定理的逆定理知,△ABC是直角三角形FC+FD=PQ,由三角形的三边关系知,CF+FD>CD;只有当点F在CD上时,FC+FD=PQ有最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高上CD时,PQ=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【解答】解:如图,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠ACB=90°,∴PQ是⊙F的直径,设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则FD⊥AB.∴FC+FD=PQ,∴CF+FD>CD,∵当点F在直角三角形ABC的斜边AB的高上CD时,PQ=CD有最小值∴CD=BC•AC÷AB=4.8.故答案为4.8.【点评】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.三、解答题(共10小题,满分84分)19.(9分)(1)(x﹣1)2=4;(2)(2x+3)2﹣2x﹣3=0(3)x2+4x﹣7=0【分析】(1)根据直接开方法即可求出答案;(2)根据因式分解法即可求出答案;(3)根据配方法即可求出答案.【解答】解:(1)∵(x﹣1)2=4,∴x﹣1=±2,∴x=3或x=﹣1;(2)∵(2x+3)2﹣2x﹣3=0,∴(2x+3)(2x+3﹣1)=0,∴2x+3=0或2x+2=0,∴x=或x=﹣1;(3)∵x2+4x﹣7=0,∴x2+4x+4=11,∴(x+2)2=11,∴x=﹣2±;【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.20.(8分)已知关于x的方程x2﹣5x﹣m2﹣2m﹣7=0.(1)若此方程的一个根为﹣1,求m的值;(2)求证:无论m取何实数,此方程都有两个不相等的实数根.【分析】(1)把x=﹣1代入原方程得到关于m的一元二次方程,然后解关于m的一元二次方程即可;(2)进行判别式的值,利用完全平方公式变形得到△=4(m+1)2+49,然后利用非负数的性质可判断△>0,从而根据判别式的意义可判断方程根的情况.【解答】(1)解:把x=﹣1代入x2﹣5x﹣m2﹣2m﹣7=0得1+5﹣m2﹣2m﹣7=0,解得m1=m2=﹣1,即m的值为1;(2)证明:△=(﹣5)2﹣4(﹣m2﹣2m﹣7)=4(m+1)2+49,∵4(m+1)2≥0∴△>0,∴方程都有两个不相等的实数根.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.21.(8分)如图,在矩形ABCD中,AB=2,BC=3,M是BC的中点,DE⊥AM于点E.(1)求证:△ADE∽△MAB;(2)求DE的长.【分析】(1)要证△ADE∽△MAB,只要找出两个三角形相似的条件即可,根据题意和矩形的性质可以证明△ADE∽△MAB;(2)根据题意和(1)中△ADE∽△MAB,利用对应边的相似比相等和勾股定理可以解答本题.【解答】证明:(1)∵在矩形ABCD中,DE⊥AM于点E,∴∠B=90°,∠BAD=90°,∠DEA=90°,∴∠BAM+∠EAD=90°,∠EDA+∠EAD=90°,∴∠BAM=∠EDA,在△ADE和△MAB中,∵∠AED=∠B,∠EDA=∠BAM,∴△ADE∽△MAB;(2)∵在矩形ABCD中,AB=2,BC=3,M是BC的中点,∴BM=,∴AM==,由(1)知,△ADE∽△MAB,∴=,∴=,解得,DE=.【点评】本题考查相似三角形的判定与性质、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形的相似和数形结合的思想解答.22.(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.【分析】先根据同一时刻物高与影长成正比求出QD的影长,再根据此影长列出比例式即可.【解答】解:过N点作ND⊥PQ于D,∴=,又∵AB=2m,BC=1.6m,PM=1.8m,NM=1.1m,∴QD==2.25,∴PQ=QD+DP=QD+NM=2.25+1.1=3.35(m).答:木竿PQ的长度为3.35米.【点评】本题考查了相似三角形的应用;在运用相似三角形的知识解决实际问题时,要能够从实际问题中抽象出简单的数学模型是解决问题的关键.23.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.【分析】(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分线的性质可以证明∠DAC=∠OCA,接着利用平行线的判定即可得到OC∥AD,然后就得到OC ⊥CD,由此即可证明直线CD与⊙O相切于C点;(2)连接BC,根据圆周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性质即可解决问题.【解答】(1)证明:连接OC∵OA=OC∴∠OAC=∠OCA∵AC平分∠DAB∴∠DAC=∠OAC∴∠DAC=∠OCA∴OC∥AD∵AD⊥CD∴OC⊥CD∴直线CD与⊙O相切于点C;(2)解:连接BC,则∠ACB=90°.∵∠DAC=∠OAC,∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD•AB,∵⊙O的半径为3,AD=4,∴AB=6,∴AC=2.【点评】此题主要考查了切线的性质与判定,解题时首先利用切线的判定证明切线,然后利用切线的想这已知条件证明三角形相似即可解决问题.24.(8分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.【分析】(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可;(2)求出OP、DP长,分别求出扇形DOB和三角形ODP面积,即可求出答案.【解答】(1)证明:连接OD,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°,∴∠DOP=180°﹣120°=60°,∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°,∴OD⊥DP,∵OD为半径,∴DP是⊙O切线;(2)解:∵∠P=30°,∠ODP=90°,OD=3cm,∴OP=6cm,由勾股定理得:DP=3cm,∴图中阴影部分的面积S=S△ODP﹣S扇形DOB=×3×3﹣=(﹣π)cm2【点评】本题考查了扇形面积,三角形面积,切线的判定,圆周角定理等知识点的应用,主要考查学生的推理和计算能力.25.(7分)(1)如图1,Rt△ABC中,∠B=90°,AB=2BC,现以C为圆心、CB长为半(这径画弧交边AC于D,再以A为圆心、AD为半径画弧交边AB于E.求证:=.个比值叫做AE与AB的黄金比.)(2)如果一等腰三角形的底边与腰的比等于黄金比,那么这个等腰三角形就叫做黄金三角形.请你以图2中的线段AB为腰,用直尺和圆规,作一个黄金三角形ABC.(注:直尺没有刻度!作图不要求写作法,但要求保留作图痕迹,并对作图中涉及到的点用字母进行标注)【分析】(1)利用未知数表示出AB,AC,BC的长,进而得出AE的长,进而得出答案;(2)根据底与腰之比均为黄金比的等腰三角形,画图即可.【解答】(1)证明:∵Rt△ABC中,∠B=90°,AB=2BC,∴设AB=2x,BC=x,则AC=x,∴AD=AE=(﹣1)x,∴==.(2)解:底与腰之比均为黄金比的等腰三角形,如图:①过点B作EB⊥AB,作AB的垂直平分线交AB于点D,使BE=BD,②连接AE,以E为圆心,BE长为半径画弧,使EF=BE,③以B为圆心AF长为半径画弧,以A为圆心,AB长为半径画弧,交点为C,则△ABC即为所求..【点评】此题主要考查了黄金三角形的作法以及黄金三角形的性质,根据已知得出底边作法是解题关键.26.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书(300﹣10x)本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【分析】(1)由每本涨价1元则每天就会少售出10本,即可得出涨价x元时,每天售出书的本数;(2)设每本书上涨了x元(x≤10),根据每本书的利润×销售本数=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为:(300﹣10x).(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.【点评】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)依照销售本数与涨价间的关系列出代数式;(2)找准等量关系,正确列出一元二次方程.27.(10分)在△ABC中,∠A=90°,AB=8cm,AC=6cm,点M,点N同时从点A出发,点M沿边AB以4cm/s的速度向点B运动,点N从点A出发,沿边AC以3cm/s的速度向点C运动,(点M不与A,B重合,点N不与A,C重合),设运动时间为xs.(1)求证:△AMN∽△ABC;(2)当x为何值时,以MN为直径的⊙O与直线BC相切?(3)把△AMN沿直线MN折叠得到△MNP,若△MNP与梯形BCNM重叠部分的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?【分析】(1)欲证△AMN∽△ABC,可以通过应用两组对应边的比相等且相应的夹角相等的两个三角形相似,(AM:AN=AB:AC=4:3,∠A=∠A)得出;(2)MN为直径的⊙O与直线BC相切,则圆心O到直线BC的距离等于半径,列出函数关系式,求出x的值;(3)因为∠A=90°,△MNP与梯形BCNM重叠部分的面积分为两种情况:等于S△PMN,或等于S△MNP﹣S△PEF,列出y关于x的函数表达式,求出当时,y值最大,最大值是8.【解答】(1)证明:∵,∠A=∠A,∴△AMN∽△ABC.(4分)(2)解:在Rt△ABC中,BC==10.由(1)知△AMN∽△ABC.∴∴MN=5x,∴⊙O的半径r=可求得圆心O到直线BC的距离d=∵⊙O与直线BC相切∴=.解得x=当x=时,⊙O与直线BC相切.(8分)(3)解:当P点落在直线BC上时,则点M为AB的中点.(9分)故以下分两种情况讨论:①当0<x≤1时,y=S△PMN=6x2,∴当x=1时,y最大=6×12=6.(11分)②当1<x<2时,设MP交BC于E,NP交BC于FMB=8﹣4x,MP=MA=4x∴PE=4x﹣(8﹣4x)=8x﹣8y=S△MNP﹣S△PEF==(13分)∴当时,y最大=8.综上所述,当时,y值最大,最大值是8.(14分)【点评】考查了相似三角形的判断,结合切线的性质,及三角形的性质考查二次函数的综合应用.28.(10分)阅读理解:小明热爱数学,在课外书上看到了一个有趣的定理﹣﹣“中线长定理”:三角形两边的平方和等于第三边的一半与第三边上的中线的平方和的两倍.如图1,在△ABC中,点D为BC的中点,根据“中线长定理”,可得:AB2+AC2=2AD2+2BD2.小明尝试对它进行证明,部分过程如下:解:过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,同理可得:AC2=AE2+CE2,AD2=AE2+DE2,为证明的方便,不妨设BD=CD=x,DE=y,∴AB2+AC2=AE2+BE2+AE2+CE2=…(1)请你完成小明剩余的证明过程;理解运用:(2)①在△ABC中,点D为BC的中点,AB=6,AC=4,BC=8,则AD=;②如图3,⊙O的半径为6,点A在圆内,且OA=2,点B和点C在⊙O上,且∠BAC =90°,点E、F分别为AO、BC的中点,则EF的长为4;拓展延伸:(3)小明解决上述问题后,联想到《能力训练》上的题目:如图4,已知⊙O的半径为5,以A(﹣3,4)为直角顶点的△ABC的另两个顶点B,C都在⊙O上,D为BC的中点,求AD长的最大值.请你利用上面的方法和结论,求出AD长的最大值.【分析】(1)过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,同理可得:AC2=AE2+CE2,AD2=AE2+DE2,为证明的方便,不妨设BD=CD=x,DE=y,根据勾股定理即可证明;(2)①利用中线定理计算即可;②利用中线定理即可解决;(3)如图4中,连接OA,取OA的中点E,连接DE.利用中线定理求出DE,再利用三边关系即可解决问题;【解答】解:(1)过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,同理可得:AC2=AE2+CE2,AD2=AE2+DE2,为证明的方便,不妨设BD=CD=x,DE =y,。

江阴市初三数学上学期期末试卷及答案.doc

江阴市初三数学上学期期末试卷及答案.doc

江阴初三年级数学上学期期末试卷温馨提示:亲爱的同学,本试卷共5页,满分分值130分,考试时间120分钟.请仔细审题,细心答题,相信你一定会有出色的表现,祝你考出好成绩! 一、选择题:(每小题3分,计30分) 1. x 取什么值时,451+x 有意义( )A .x >﹣45 B. x >﹣54 C. x ≥54- D. x ≤54- 2.下列图形中,既是轴对称图形,又是中心对称图形的是( )A B C D3.关于x 的方程(a -5)2x -4x -1=0有实数根,则a 满足( ) A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠54.在100张奖卷中,有4张中奖,小红从中任抽一张,她中奖的概率是( ) A.41 B.201 C.251 D.1001 5.已知扇形的半径是12cm ,圆心角的度数是60°,则扇形的弧长是( ) A.2πcm, B.4πcm, C.12πcm, D.14πcm6. ⊙O 的直径为10,圆心O 到直线l 的距离为6,则直线l 与⊙O 的位置关系是( )A . 相交B . 相切C . 相离D . 无法确定7. 若△ABC∽△DEF, △ABC与△DEF的相似比为1∶2,则△ABC与△DEF的周长比为………………………………………………………………()A.1∶2 B.1∶4 C.2∶1 D8. 在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是……………( )A.y=2(x + 2)2-2 B.y=2(x-2)2 + 2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 29. 2010年因干旱影响,凉山州政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是( )A.中位数是6吨B.平均数是5.8吨C.众数是6吨D.极差是4吨10.m是方程x2+x-1=0的根,则式子m3+2m2+2009的值为( )A.2008B.2009C.2010D.2011二、填空题:(每小题3分,计30分)11.方程x2= x 的根是_______________.12.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别,•随机从口袋中任取一只球,取得黄球的概率是_________.13. 化简:122432+--= .14. 如果圆锥的底面半径是3,高为4,那么他的侧面积是 。

九年级上册江阴数学期末试卷测试与练习(word解析版)

九年级上册江阴数学期末试卷测试与练习(word解析版)

九年级上册江阴数学期末试卷测试与练习(word 解析版)一、选择题1.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30°B .45°C .30°或150°D .45°或135°2.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .43B .42C .6D .43.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( ) A .②④B .①③C .②③④D .①③④4.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( ) A .8,10 B .10,9 C .8,9 D .9,10 5.已知二次函数y =(a ﹣1)x 2﹣x+a 2﹣1图象经过原点,则a 的取值为( ) A .a =±1B .a =1C .a =﹣1D .无法确定6.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则 ①二次函数的最大值为a+b+c ; ②a ﹣b+c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .47.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤8.下列条件中,一定能判断两个等腰三角形相似的是( ) A .都含有一个40°的内角 B .都含有一个50°的内角 C .都含有一个60°的内角D .都含有一个70°的内角9.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度 B .先向左平移2个单位长度,然后向下平移1个单位长度 C .先向右平移2个单位长度,然后向上平移1个单位长度 D .先向右平移2个单位长度,然后向下平移1个单位长度10.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x﹣2实数根的情况是 ( ) A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根11.如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( )A .3:2B .3:1C .1:1D .1:2 12.一组数据10,9,10,12,9的平均数是( )A .11B .12C .9D .10二、填空题13.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.14.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)15.如图,直线l 1∥l 2∥l 3,A 、B 、C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =3,且12m n =,则m +n 的最大值为___________.16.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为_____cm 2.(结果保留π)17.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.18.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m . 19.一组数据3,2,1,4,x 的极差为5,则x 为______.20.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.21.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).22.把函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.23.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.24.如图,在△ABC 中,AC :BC :AB =3:4:5,⊙O 沿着△ABC 的内部边缘滚动一圈,若⊙O 的半径为1,且圆心O 运动的路径长为18,则△ABC 的周长为_____.三、解答题25.如图,在矩形纸片ABCD 中,已知2AB =,6=BC ,点E 在边CD 上移动,连接AE ,将多边形ABCE 沿AE 折叠,得到多边形AB C E '',点B 、C 的对应点分别为点B ',C '.(1)连接AC .则AC =______,DAC ∠=______°; (2)当B C ''恰好经过点D 时,求线段CE 的长;(3)在点E 从点C 移动到点D 的过程中,求点C '移动的路径长.26.在矩形ABCD 中,AB =3,AD =5,E 是射线..DC 上的点,连接AE ,将△ADE 沿直线AE 翻折得△AFE .(1)如图①,点F 恰好在BC 上,求证:△ABF ∽△FCE ;(2)如图②,点F 在矩形ABCD 内,连接CF ,若DE =1,求△EFC 的面积; (3)若以点E 、F 、C 为顶点的三角形是直角三角形,则DE 的长为 .27.某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y (件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 与x 之间的函数关系式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少? (3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.28.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A 、B 和点C 、D ,先用卷尺量得AB=160m ,CD=40m ,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).29.九(3)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表: 甲 7 8 9 7 10 10 9 10 10 10 乙10879810109109(1)计算乙队的平均成绩和方差;(2)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是哪个队? 30.已知关于x 的一元二次方程()222140x m x m +++-=.(1)当m 为何值时,方程有两个不相等的实数根?(2)设方程两根分别为1x 、2x ,且21x 、22x 分别是边长为5的菱形的两条对角线,求m 的值.31.如图,AD 、A ′D ′分别是△ABC 和△A ′B ′C ′的中线,且AB BD ADA B B D A D==''''''.判断△ABC 和△A ′B ′C ′是否相似,并说明理由.32.如图,转盘A 中的6个扇形的面积相等,转盘B 中的3个扇形的面积相等.分别任意转动转盘A、B各1次,当转盘停止转动时,将指针所落扇形中的2个数字分别作为平面直角坐标系中一个点的横坐标、纵坐标.(1)用表格列出这样的点所有可能的坐标;(2)求这些点落在二次函数y=x2﹣5x+6的图象上的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意画出图形,连接OA和OB,根据勾股定理的逆定理得出∠AOB=90°,再根据圆周角定理和圆内接四边形的性质求出即可.【详解】解:如图所示,连接OA,OB,则OA=OB=3,∵AB=2,∴OA2+OB2=AB2,∴∠AOB=90°,∴劣弧AB的度数是90°,优弧AB的度数是360°﹣90°=270°,∴弦AB对的圆周角的度数是45°或135°,故选:D.【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数. 2.B【解析】 【分析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=42, 故选B. 【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.3.A解析:A 【解析】 【分析】根据三角形的外心得出OA=OC=OB ,根据正方形的性质得出OA=OC <OD ,求出OA=OB=OC=OE≠OD ,再逐个判断即可. 【详解】解:如图,连接OB 、OD 、OA ,∵O 为锐角三角形ABC 的外心, ∴OA =OC =OB , ∵四边形OCDE 为正方形, ∴OA =OC <OD , ∴OA =OB =OC =OE ≠OD ,∴OA =OC ≠OD ,即O 不是△ADC 的外心, OA =OE =OB ,即O 是△AEB 的外心, OB =OC =OE ,即O 是△BCE 的外心, OB =OA ≠OD ,即O 不是△ABD 的外心, 故选:A . 【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.4.D解析:D试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D.考点:众数;中位数.5.C解析:C【解析】【分析】将(0,0)代入y=(a﹣1)x2﹣x+a2﹣1 即可得出a的值.【详解】解:∵二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,∴a2﹣1=0,∴a=±1,∵a﹣1≠0,∴a≠1,∴a的值为﹣1.故选:C.【点睛】本题考查了二次函数,二次函数图像上的点满足二次函数解析式,熟练掌握这一点是解题的关键,同时解题过程中要注意二次项系数不为0.6.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.7.D解析:D【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围. 【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+= ∴4164tx ±-=∵15x << ∴54t -<≤ 故答案为D . 【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.8.C解析:C 【解析】试题解析:因为A,B,D 给出的角40,50,70可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A ,B ,D 错误;C. 有一个60的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C 正确. 故选C.9.D解析:D 【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x 2顶点为(0,0),抛物线y=(x ﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x 2向右平移2个单位,向下平移1个单位得到抛物线y=(x ﹣2)2﹣1的图象. 故选D .点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.10.C解析:C 【解析】 试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.11.D解析:D 【解析】 【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EFBC FC,利用点E 是边AD 的中点得出答案即可. 【详解】解:∵▱ABCD ,故AD ∥BC , ∴△DEF ∽△BCF , ∴=DE EFBC FC, ∵点E 是边AD 的中点, ∴AE=DE=12AD , ∴12EF FC . 故选D .12.D解析:D 【解析】 【分析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是1(10910129)105++++=故选:D .【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键. 二、填空题13.【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100 解析:9π 【解析】【分析】 分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算S S 半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100πcm 2,边长为30cm 的正方形ABCD 的面积=302=900cm 2, ∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π. 【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.14.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为>15.【解析】【分析】过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.【详解】解:过作于,延长交于,过作于,过解析:274【解析】【分析】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,得到3DM y =-,4DN x =-,根据相似三角形的性质得到xy mn =,29y x =-+,由12m n =,得到2n m =,于是得到()3m n m +=最大,然后根据二次函数的性质即可得到结论.【详解】解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,3BD =,3DM y ∴=-,3DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒,90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒,EAB CBF ∴∠=∠,ABE BFC ∴∆∆∽,∴AE BE BF CF=,即x m n y =, xy mn ∴=,ADN CDM ∠=∠,CMD AND ∴∆∆∽,∴AN DN CM DM =,即3132m x n y -==-, 29y x ∴=-+,12m n =, 2n m ∴=,()3m n m ∴+=最大,∴当m 最大时,()3m n m +=最大,22(29)292mn xy x x x x m ==-+=-+=,∴当92(29)4x =-=⨯-时,28128mn m ==最大, 94m ∴=最大, m n ∴+的最大值为927344⨯=. 故答案为:274. 【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m 的函数解析式是解题的关键.16.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可. 由题意得圆锥的母线长∴圆锥的侧面积. 考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 17.54【解析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1解析:54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.18.4【解析】【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.19.-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,解析:-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.x可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,则4-x=5,所以x=-1;故答案为-1或6.本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.20.【解析】【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【详解】根据二次函数的图象可知:对称轴为,已知一个点为,根据抛物线的对称性,则点关于对称性对称解析:20x -<<【解析】【分析】根据3y >,则函数图象在直线3y =的上方,所以找出函数图象在直线3y =的上方x 的取值范围即可.【详解】根据二次函数的图象可知:对称轴为1x =-,已知一个点为()03,, 根据抛物线的对称性,则点()03,关于对称性对称的另一个点为()23-,, 所以3y >时,x 的取值范围是20x -<<.故答案为:20x -<<.【点睛】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点()03,的对称点是解题的关键. 21.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm ,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm2).故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R,(l为弧长).22.y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达解析:y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达式是y=2(x﹣3)2﹣2,故答案为y=2(x﹣3)2﹣2.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.23.【解析】【分析】根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P∽△BA2 B3,△BB1Q∽△BB2A2,再得到PB1 和A2B3的关系以及QB1和A2B2的关系,根据解析:23【解析】【分析】根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.【详解】解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2, ∴112331==3PB BB A B BB ,112221==2QB BB A B BB , ∴1231=3PB A B ,1221=2QB A B , ∵2322=A B A B , ∴PB 1∶QB 1=13A 2B 3∶12A 2 B 2=2:3. 故答案为:23. 【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键. 24.30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ解析:30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG ,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BM ,DG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,继而则有矩形DEPG 、矩形EQNF 、矩形DFMH ,从而可知DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN ,∠PEF =90°,根据题意可知四边形CPEQ 是边长为1的正方形,根据相似三角形的判定可得△DEF ∽△ACB ,根据相似三角形的性质可知:DE ∶EF ∶FD =AC ∶CB ∶BA =3∶4∶5,进而根据圆心O 运动的路径长列出方程,求解算出DE 、EF 、FD 的长,根据矩形的性质可得:GP 、QN 、MH 的长,根据切线长定理可设:AG =AH =x ,BN =BM =y ,根据线段的和差表示出AC 、BC 、AB 的长,进而根据AC ∶CB ∶BA =3∶4∶5列出比例式,继而求出x 、y 的值,进而即可求解△ABC 的周长.【详解】∵AC ∶CB ∶BA =3∶4∶5,设AC =3a ,CB =4a ,BA =5a (a >0)∴()()()222222=345AC CB a a a BA ++==∴△ABC 是直角三角形,设⊙O 沿着△ABC 的内部边缘滚动一圈,如图所示,连接DE 、EF 、DF ,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BMDG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,∴DG ∥EP ,EQ ∥FN ,FM ∥DH ,∵⊙O 的半径为1∴DG =DH =PE =QE =FN =FM =1,则有矩形DEPG 、矩形EQNF 、矩形DFMH ,∴DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN,∠PEF =90°又∵∠CPE =∠CQE =90°, PE =QE =1∴四边形CPEQ 是正方形,∴PC =PE =EQ =CQ =1,∵⊙O 的半径为1,且圆心O 运动的路径长为18,∴DE +EF +DF =18,∵DE ∥AC ,DF ∥AB ,EF ∥BC ,∴∠DEF =∠ACB ,∠DFE =∠ABC ,∴△DEF ∽△ABC ,∴DE :EF :DF =AC :BC :AB =3:4:5,设DE =3k (k >0),则EF =4k ,DF =5k ,∵DE +EF +DF =18,∴3k+4k+5k=18,解得k=32,∴DE=3k=92,EF=4k=6,DF=5k=152,根据切线长定理,设AG=AH=x,BN=BM=y,则AC=AG+GP+CP=x+92+1=x+5.5,BC=CQ+QN+BN=1+6+y=y+7,AB=AH+HM+BM=x+152+y=x+y+7.5,∵AC:BC:AB=3:4:5,∴(x+5.5):(y+7):(x+y+7.5)=3:4:5,解得x=2,y=3,∴AC=7.5,BC=10,AB=12.5,∴AC+BC+AB=30.所以△ABC的周长为30.故答案为30.【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点.三、解答题25.(1),30;(2)CE=;(3)CC'的长3=【解析】【分析】(1)直接利用勾股定理可求出AC的长,再利用特殊角的三角函数值可得出∠DAC的度数(2)设CE=x,则x,根据已知条件得出AD B DEC'',再利用相似三角形对应线段成比例求解即可.(3)点C?运动的路径长为´CC的长,求出圆心角,半径即可解决问题.【详解】解:(1)连接AC22AC 2622AB BC =+=+=∵21sin 30222AB AC ===︒ ∴ACB DAC 30∠∠==︒ (2)由已知条件得出,A 2B '=,D 2B '=,D 62C '=-易证AB D DC E ''∆∆∽ ∴C E DC B D AB''='' ∴6222CE -=∴2322CE =-(3)如图所示,C'运动的路径长为CC '的长由翻折得:30C AD DAC '∠=∠=︒ ∴60CAC '∠=︒ ∴CC '的长602222π⋅==【点睛】本题考查的知识点有相似三角形的判定与性质,特殊的三角函数值,弧长的相关计算等,解题的关键是弄清题意,综合利用各知识点来求解. 26.(1)证明见解析;(2)513;(3)53、5、15、345)3【解析】 【分析】(1)利用同角的余角相等,证明∠CEF=∠AFB,即可解决问题;(2)过点F作FG⊥DC交DC与点G,交AB于点H,由△FGE∽△AHF得出AH=5GF,再利用勾股定理求解即可;(3)分①当∠EFC=90°时; ②当∠ECF=90°时;③当∠CEF=90°时三种情况讨论解答即可.【详解】(1)解:在矩形ABCD中,∠B=∠C=∠D=90°由折叠可得:∠D=∠EFA=90°∵∠EFA=∠C=90°∴∠CEF+∠CFE=∠CFE+∠AFB=90°∴∠CEF=∠AFB在△ABF和△FCE中∵∠AFB=∠CEF,∠B=∠C=90°△ABF∽△FCE(2)解:过点F作FG⊥DC交DC与点G,交AB于点H,则∠EGF=∠AHF=90°在矩形ABCD中,∠D=90°由折叠可得:∠D=∠EFA=90°,DE=EF=1,AD=AF=5∵∠EGF=∠EFA=90°∴∠GEF+∠GFE=∠AFH+∠GFE=90°∴∠GEF=∠AFH在△FGE和△AHF中∵∠GEF=∠AFH,∠EGF=∠FHA=90°∴△FGE∽△AHF∴EFAF=GFAH∴15=GFAH∴AH=5GF在Rt△AHF中,∠AHF=90°∵AH2+FH2=AF2∴(5 GF)2+(5-GF)2=52∴GF=5 13∴△EFC的面积为12×513×2=513;(3)解:①当∠EFC=90°时,A 、F 、C 共线,如图所示:设DE=EF=x,则CE=3-x, ∵AC=22223534AD CD +=+=,∴CF=34-x, ∵∠CFE=∠D=90°, ∠DCA=∠DCA,∴△CEF ∽△CAD, ∴CE EFCA AD =,即534x =,解得:ED=x=5(345)-; ②当∠ECF=90°时,如图所示:∵AD=1AF =5,AB=3, ∴1BF 221AF AB -设1DE =x,则1E C =3-x,∵∠DCB=∠ABC=90°,111CF E F AB ∠=∠∴11CE F ∽1BF A ,∴11111E C E F F B F A =,即345x x -=,解得:x=1E D =53; 由折叠可得 :222E F E D = ,设2E C x =,则2223E F DE x ==+,2549CF =+=, 在RT △22E F C 中,∵2222222CF CE E F +=,即9²+x²=(x+3)²,解得x=2E C =12, ∴231215DE =+=;③当∠CEF=90°时,AD=AF,此时四边形AFED 是正方形,∴AF=AD=DE=5,综上所述,DE 的长为:53、5、155(345)-. 【点睛】本题考查了翻折的性质,相似三角形的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.27.(1)10700y x =-+;(2)销售单价为50元时,每天获取的利润最大,最大利润是4000元;(3)44≤x ≤56 【解析】 【分析】(1)直接利用待定系数法求出一次函数解析式即可; (2)利用w=销量乘以每件利润进而得出关系式求出答案; (3)利用w=3640,进而解方程,再利用二次函数增减性得出答案. 【详解】解:(1)y 与x 之间的函数关系式为:y kx b =+ 把(35,350),(55,150)代入得:由题意得:3503515055k bk b =+⎧⎨=+⎩解得:10700k b =-⎧⎨=⎩∴y 与x 之间的函数关系式为:10700y x =-+. (2)设销售利润为W 元则W=(x ﹣30)•y =(x ﹣30)(﹣10x +700), W =﹣10x 2+1000x ﹣21000 W =﹣10(x ﹣50)2+4000∴当销售单价为50元时,每天获取的利润最大,最大利润是4000元. (3)令W =3640∴﹣10(x ﹣50)2+4000=3640 ∴x 1=44,x 2=56如图所示,由图象得:当44≤x ≤56时,每天利润不低于3640元. 【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确掌握二次函数的性质是解题关键.28.该段运河的河宽为303m . 【解析】 【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果. 【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形,40HE CD m ∴==, 设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,33BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,3AH xm ∴=,由160AH HE EB AB m ++==,得到3340160x x ++=, 解得:303x =,即303CH m =, 则该段运河的河宽为303m .【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键. 29.(1)9,1;(2)乙【解析】 【分析】(1)根据平均数与方差的定义即可求解; (2)根据方差的性质即可判断乙队整齐. 【详解】(1)乙队的平均成绩是:1(10482793)10⨯⨯+⨯++⨯=9 方差是:222214(109)2(89)(79)3(99)110⎡⎤⨯⨯-+⨯-+-+⨯-=⎣⎦ (2)∵乙队的方差<甲队的方差 ∴成绩较为整齐的是乙队. 【点睛】此题主要考查平均数与方差,解题的关键是熟知平均数与方差的求解公式及方差的性质. 30.(1)174m >-;(2)4m =- 【解析】 【分析】(1)由根的判别式2=40b ac ∆->即可求解;(2)根据菱形对角线互相垂直且平分,由勾股定理得222125x x +=,又由一元二次方程根与系数的关系1212, b c x x x x a a+=-=,所以有()2221212122x x x x x x +-=+,据此列出关于m 的方程求解. 【详解】(1)∵方程有两个不相等的实数根, ∴()()22=2144=417m m m ∆+--+>0解得:174m >- ∴当174m >-时,方程有两个不相等的实数根; (2)由题意得:2221212212521?4x x x x m x x m ⎧+=⎪+=--⎨⎪=-⎩ ∴()()()222222121212=2212424925x x x x x x m m m m ++-=----=++=解得:2m =或4m =-∵21x 、22x 分别是边长为5的菱形的两条对角线∴122 1 0x x m +=-->,即12m <- ∴4m =- 【点睛】本题考查一元二次方程根的判别式、结合菱形的性质考查勾股定理和韦达定理,熟知一元二次方程根与系数的关系是解题关键. 31.△ABC ∽△A 'B 'C ',理由见解析 【解析】 【分析】由题意知,根据相似三角形的判定定理:三边对应成比例的两个三角形相似,可证得△ABD ∽△A 'B 'D ',进而可得∠B =∠B ',再根据两边对应成比例及其夹角相等的两个三角形相似,即可得△ABC ∽△A 'B 'C '. 【详解】 △ABC ∽△A 'B 'C ',理由:∵==''''''AB BD ADA B B D A D ∴△ABD ∽△A 'B 'D ', ∴∠B =∠B ',∵AD 、A 'D '分别是△ABC 和△A 'B 'C '的中线 ∴12BD BC =,1''''2B D BC =, ∴12==1''''''2BCAB BCA B B C B C , 在△ABC 和△A 'B 'C '中∵=''''AB BCA B B C ,且∠B =∠B ' ∴△ABC ∽△A 'B 'C '. 【点睛】本题考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定定理:三边对应成比例的两个三角形相似;两边对应成比例及其夹角相等的两个三角形相似. 32.(1)见解析;(2)19【解析】 【分析】(1)根据题意列表,展示出所有等可能的坐标结果;(2)由(1)可求得点落在二次函数y =x 2﹣5x +6的图象上的结果数,再根据概率公式计算即可解答. 【详解】(1)根据题意列表如下:(2)由上表可知,点(1,2)、(4,2)都在二次函数y=x2﹣5x+6的图象上,所以P(这些点落在二次函数y=x2﹣5x+6的图象上)=218=19.【点睛】本题考查列表法或树状图法求概率,解题的关键是不重复不遗漏地列出所有等可能的结果.。

江阴市九年级上册期末精选试卷检测题

江阴市九年级上册期末精选试卷检测题

江阴市九年级上册期末精选试卷检测题一、初三数学一元二次方程易错题压轴题(难)1.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从去年年底至今年3月20日,猪肉价格不断走高,3月20日比去年年底价格上涨了60%.某市民在今年3月20日购买2.5千克猪肉至少要花200元钱,那么去年年底猪肉的最低价格为每千克多少元?(2)3月20日,猪肉价格为每千克60元,3月21日,某市决定投入储备猪肉并规定其销售价在每千克60元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克60元的情况下,该天的两种猪肉总销量比3月20日增加了a%,且储备猪肉的销量占总销量的34,两种猪肉销售的总金额比3月20日提高了1%10a,求a的值.【答案】(1)去年年底猪肉的最低价格为每千克50元;(2)a的值为20.【解析】【分析】(1)设去年年底猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设3月20日两种猪肉总销量为1;根据题意列出方程,解方程即可.【详解】解:(1)设去年年底猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥200,解得:x≥50.答:去年年底猪肉的最低价格为每千克50元;(2)设3月20日的总销量为1;根据题意得:60(1﹣a%)×34(1+a%)+60×14(1+a%)=60(1+110a%),令a%=y,原方程化为:60(1﹣y)×34(1+y)+60×14(1+y)=60(1+110y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.【点睛】本题考查了一元一次不等式的应用、一元二次方程的应用;根据题意列出不等式和方程是解决问题的关键.2.如图,在△ABC 中,∠B=90°,AB=12 cm,BC=16 cm.点 P从点 A 开始沿 AB 边向点 B 以1 cm/s的速度移动,点 Q从点 B开始沿 BC 边向点 C以 2 cm/s的速度移动.如果 P、 Q分别从 A、B同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为 t 秒.(1)当 t 为何值时,△PBQ的面积等于 35cm2?(2)当 t 为何值时,PQ的长度等82cm?(3)若点 P,Q的速度保持不变,点 P在到达点 B后返回点 A,点 Q在到达点 C后返回点B,一个点停止,另一个点也随之停止.问:当 t为何值时,△PCQ的面积等于 32cm2?【答案】(1)t为5或7;(2)t为45或4;(3)t为4或16【解析】【分析】(1)分别用含t的代数式表示PB,BQ的长,利用面积公式列方程求解即可.(2)分别用含t的代数式表示PB,BQ的长,利用勾股定理列方程求解即可.(3)分段要清楚,,P,Q都没有返回,表示好PB,CQ的长,用面积公式列方程,,P不返回,Q返回,表示好PB,CQ的长,用面积公式列方程,,两点都返回,表示好PB,CQ的长,用面积公式列方程即可得到答案.【详解】解:(1),.根据三角形的面积公式,得,即,整理,得,解得,.故当为5或7时,的面积等于35.(2)根据勾股定理,得,整理,得,解得,.故当为或4时,的长度等于.(3)①当时,,,由题意,得,解得:,(舍去).②当时,,,由题意,得,次方程无解.③当时,,,由题意,得,解得:(舍去),.综上所述,当为4或16时,的面积等于.【点睛】本题考查的是在运动过程中应用一元二次方程解决实际问题,建立正确情境下的几何模型是解决问题的关键,特别是最后一问,关键是弄懂分段的时间界点,才能正确的表示PB,CQ的长.3.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题4.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.(1)求证:对任意实数m,方程总有2个不相等的实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.【答案】(1)证明见解析;(2)m的值为±2,方程的另一个根是5.【解析】【分析】(1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可;(2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可.【详解】(1)证明:∵(x﹣3)(x﹣4)﹣m2=0,∴x2﹣7x+12﹣m2=0,∴△=(﹣7)2﹣4(12﹣m2)=1+4m2,∵m2≥0,∴△>0,∴对任意实数m,方程总有2个不相等的实数根;(2)解:∵方程的一个根是2,∴4﹣14+12﹣m2=0,解得m=±,∴原方程为x2﹣7x+10=0,解得x=2或x=5,即m的值为±,方程的另一个根是5.【点睛】此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.当△=b2-4ac>0时,方程有两个不相等的实数根;当△=b2-4ac=0时,方程有两个相等的实数根;当△=b2-4ac<0时,方程没有实数根.5.有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)【答案】(1)⑤;(2)x1=2n,x2=﹣4n.【解析】 【分析】(1)根据移项要变号,可判断;(2)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半,使左边是一个完全平方式,然后用直接开平方法求解. 【详解】解:(1)小静的解法是从步骤⑤开始出现错误的, 故答案为⑤; (2)x 2+2nx ﹣8n 2=0, x 2+2nx=8n 2, x 2+2nx+n 2=8n 2+n 2, (x+n )2=9n 2, x+n=±3n , x 1=2n ,x 2=﹣4n .二、初三数学 二次函数易错题压轴题(难)6.在平面直角坐标系中,O 为坐标原点,抛物线L :y =ax 2﹣4ax (a >0)与x 轴正半轴交于点A .抛物线L 的顶点为M ,对称轴与x 轴交于点D . (1)求抛物线L 的对称轴.(2)抛物线L :y =ax 2﹣4ax 关于x 轴对称的抛物线记为L ',抛物线L '的顶点为M ',若以O 、M 、A 、M '为顶点的四边形是正方形,求L '的表达式.(3)在(2)的条件下,点P 在抛物线L 上,且位于第四象限,点Q 在抛物线L '上,是否存在点P 、点Q 使得以O 、D 、P 、Q 为顶点的四边形是平行四边形,若存在,求出点P 坐标,若不存在,请说明理由.【答案】(1)2x =;(2)2122y x x =-+ ;(3)存在,P 点的坐标为(33,3或(33,3-或(13,3或(13,3+-或31,2⎛⎫- ⎪⎝⎭【解析】 【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M,M′的坐标即可解决问题.(3)分OD是平行四边形的边或对角线两种情形求解即可.【详解】解:(1)∵抛物线L:y=ax2﹣4ax(a>0),∴抛物线的对称轴x=﹣42aa=2.(2)如图1中,对于抛物线y=ax2﹣4ax,令y=0,得到ax2﹣4ax=0,解得x=0或4,∴A(4,0),∵四边形OMAM′是正方形,∴OD=DA=DM=DM′=2,∴M((2,﹣2),M′(2,2)把M(2,﹣2)代入y=ax2﹣4ax,可得﹣2=4a﹣8a,∴a=12,∴抛物线L′的解析式为y=﹣12(x﹣2)2+2=﹣12x2+2x.(3)如图3中,由题意OD=2.当OD为平行四边形的边时,PQ=OD=2,设P(m,12m2﹣2m),则Q[m﹣2,﹣12(m﹣2)2+2(m﹣2)]或[m+2,﹣12(m+2)2+2(m+2)],∵PQ∥OD,∴12m2﹣2m=﹣12(m﹣2)2+2(m﹣2)或12m2﹣2m=﹣12(m+2)2+2(m+2),解得m=33,∴P33或(333或(133和33,当OD是平行四边形的对角线时,点P的横坐标为1,此时P(1,﹣32 ),综上所述,满足条件的点P的坐标为33或(333或(133)和33)或(1,﹣32 ).【点睛】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题7.已知函数2266()22()x ax a x ayx ax a x a⎧-+>=⎨-++≤⎩(a为常数,此函数的图象为G)(1)当a=1时,①直接写出图象G对应的函数表达式②当y=-1时,求图象G上对应的点的坐标(2)当x>a时,图象G与坐标轴有两个交点,求a的取值范围(3)当图象G上有三个点到x轴的距离为1时,直接写出a的取值范围【答案】(1)①2266(1)22(1)x x x y x x x ⎧-+>=⎨-++≤⎩,②(1,1),(31),(31)--+--;(2)0a <或2635a <<;(3)315a --<,1153a <<,113a <<-【解析】 【分析】(1)①将1a =代入函数解析式中即可求出结论;②分1x >和1x ≤两种情况,将y=-1分别代入求出x 的值即可;(2)根据a 和0的大小关系分类讨论,然后根据二次函数的性质逐一求解即可; (3)先求出266y x ax a =-+的对称轴为直线6321ax a -=-=⨯,顶点坐标为()23,96a a a -+,222y x ax a =-++的对称轴为直线()221ax a =-=⨯-,顶点坐标为()2,2a aa +,然后根据a 和0的大小关系分类讨论,然后根据二次函数的性质逐一求解即可. 【详解】(1)①1a =时,2266(1)22(1)x x x y x x x ⎧-+>=⎨-++≤⎩②当1x >时,2661x x -+=-2670x x -+=1233x x ==当1x ≤时,2221x x -++=-2230x x --=121,3x x =-=(舍)∴坐标为(1,1),(31),(31)---- (2)当0a <时266()y x ax a x a =-+>与y 轴交点坐标(0,6)a ,266y x ax a =-+对称轴为直线6321ax a -=-=⨯,过点(1,1) ∴x >a >3a ,此时图像G 与坐标轴有两个交点(与x 轴一个交点,与y 轴一个交点) 当0a ≥时,266()y x ax a x a =-+>的图像与y 轴无交点顶点坐标为()23,96a a a -+当x a =时,256y a a =-+>0①,且2960a a -+<②时,此时图像G 与x 轴有两个交点 将①的两边同时除以a ,解得65a <; 将②的两边同时除以a ,解得23a > ∴2635a << 即当2635a <<时,图像G 与坐标轴有两个交点,综上,0a <或2635a << (3)266y x ax a =-+的对称轴为直线6321ax a -=-=⨯,顶点坐标为()23,96a a a -+ 222y x ax a =-++的对称轴为直线()221ax a =-=⨯-,顶点坐标为()2,2a a a + ①当a <0时,()222y x ax a x a =-++≤中,当x=a 时,y 的最大值为22a a +由()210a +≥可得221a a +≥-,即此图象必有一个点到x 轴的距离为1而()266y x ax a x a =-+>必过(1,1),即此图象必有一个点到x 轴的距离为1,此时x>3a ,y >225666a a a a a a ⋅+=-+-当2221561a a a a ⎧+<⎨-+<-⎩时,()222y x ax a x a =-++≤与x 轴只有一个交点,()266y x ax a x a =-+>与x 轴有两个交点解得:315a --<; 当2221561a a a a ⎧+>⎨-+>-⎩时,()222y x ax a x a =-++≤与x 轴有两个交点,()266y x ax a x a =-+>与x 轴有一个交点解得:315a +-+<<,与前提条件a <0不符,故舍去; ②当a ≥0时,()222y x ax a x a =-++≤中,当x=a 时,y 的最大值为22a a +,必过点(-1,-1),即此图象必有一个点到x 轴的距离为1而()266y x ax a x a =-+>,此时当x=3a 时,y 的最小值为296a a -+,由()2310a --≤可得2961a a -+≤,即此图象必有一个点到x 轴的距离为1 当222221561961961a a a a a a a a ⎧+<⎪-+>⎪⎨-+>-⎪⎪-+≠⎩时,()222y x ax a x a =-++≤与x 轴只有一个交点,()266y x ax a x a =-+>与x 轴有两个交点解得:115a <<-+且13a ≠;当222221561961961a a a a a a a a ⎧+<⎪-+<⎪⎨-+<-⎪⎪-+≠⎩时,()222y x ax a x a =-++≤与x 轴只有一个交点,()266y x ax a x a =-+>与x 轴有两个交点此不等式无解,故舍去;当222221561961961a a a a a a a a ⎧+>⎪-+<⎪⎨-+>-⎪⎪-+≠⎩时,()222y x ax a x a =-++≤与x 轴有两个交点,()266y x ax a x a =-+>与x 轴有一个交点此不等式无解,故舍去;综上:1a -<或1153a <<或113a <<-【点睛】此题考查的是二次函数的性质和分段函数的应用,此题难度较大,掌握二次函数的性质和分类讨论的数学思想是解决此题的关键.8.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C . (1)求抛物线的解析式;(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.【答案】(1)y=12x2﹣32x﹣2;(2)点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【解析】【分析】(1)根据题意直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,-2)、(4,0),即可求解;(2)由题意直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即4343mmm---=32,进行分析即可求解;(3)根据题意分∠PAB=∠AOB=90°、∠PAB=∠OAB、∠PAB=∠OBA三种情况,分别求解即可.【详解】解:(1)直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=12,故抛物线的表达式为:y=12x2﹣32x﹣2①;(2)设点M(m,12m2﹣32m﹣2)、点A(0,﹣2),将点M、A的坐标代入一次函数表达式:y=kx+b并解得:直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即:4343mmm---=32,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)①∠PAB=∠AOB=90°时,则直线AP的表达式为:y=﹣2x﹣2②,联立①②并解得:x=﹣1或0(舍去0),故点P(﹣1,0);②当∠PAB=∠OAB时,当点P在AB上方时,无解;当点P在AB下方时,将△OAB沿AB折叠得到△O′AB,直线OA交x轴于点H、交抛物线为点P,点P为所求,则BO=OB=4,OA=OA=2,设OH=x,则sin∠H=BO OAHB HA'=,即:2444x x=++,解得:x=83,则点H(﹣83,0),.则直线AH的表达式为:y=﹣34x﹣2③,联立①③并解得:x=32,故点P(32,﹣258);③当∠PAB=∠OBA时,当点P在AB上方时,则AH=BH,设OH=a,则AH=BH=4﹣a,AO=2,故(4﹣a)2=a2+4,解得:a=32,故点H(32,0),则直线AH的表达式为:y=43x﹣2④,联立①④并解得:x=0或173(舍去0),故点P(173,509);当点P在AB下方时,同理可得:点P(3,﹣2);综上,点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、勾股定理的运用等,要注意分类讨论,解题全面.9.已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数,且a≠0)上,L交y轴于点C,连接CP.(1)用a表示k,并求L的对称轴及L与y轴的交点坐标;(2)当L经过(3,3)时,求此时L的表达式及其顶点坐标;(3)横、纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有4个整点,求a的取值范围;(4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围.【答案】(1)k=-3-a ;对称轴x =1;y 轴交点(0,-3);(2)2y=2x -4x-3,顶点坐标(1,-5);(3)-5≤a <-4;(4)-1≤t ≤2.【解析】【分析】(1)将点P(2,-3)代入抛物线上,求得k 用a 表示的关系式;抛物线L 的对称轴为直线2a x==12a--,并求得抛物线与y 轴交点; (2)将点(3,3)代入抛物线的解析式,且k=-3-a ,解得a=2,k=-5,即可求得抛物线解析式与顶点坐标;(3)抛物线L 顶点坐标(1,-a-3),点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,可得1<-a-3≤2,即可求得a 的取值范围;(4)分类讨论取a >0与a <0的情况进行讨论,找出1x 的取值范围,即可求出t 的取值范围.【详解】解:(1)∵将点P(2,-3)代入抛物线L :2y=ax -2ax+a+k ,∴-3=4a 4a a+k=a+k -+∴k=-3-a ;抛物线L 的对称轴为直线-2a x=-=12a,即x =1; 将x=0代入抛物线可得:y=a+k=a+(-3-a)=-3,故与y 轴交点坐标为(0,-3); (2)∵L 经过点(3,3),将该点代入解析式中,∴9a-6a+a+k=3,且由(1)可得k=-3-a ,∴4a+k=3a-3=3,解得a=2,k=-5,∴L 的表达式为2y=2x -4x-3;将其表示为顶点式:2y=2(x-1)-5,∴顶点坐标为(1,-5);(3)解析式L 的顶点坐标(1,-a-3),∵在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,∴1<-a-3≤2,∴-5≤a <-4;(4)①当a <0时,∵2x 3≥,为保证12y y ≥,且抛物线L 的对称轴为x=1,∴就要保证1x 的取值范围要在[-1,3]上,即t ≥-1且t+1≤3,解得-1≤t ≤2;②当a >0时,抛物线开口向上,t ≥3或t+1≤-1,解得:t ≥3或t ≤-2,但会有不符合题意的点存在,故舍去,综上所述:-1≤t ≤2.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,数形结合解题是关键.10.如图,在平面直角坐标系中,二次函数y =﹣x 2+6x ﹣5的图象与x 轴交于A 、B 两点,与y 轴交于点C ,其顶点为P ,连接PA 、AC 、CP ,过点C 作y 轴的垂线l .(1)P 的坐标 ,C 的坐标 ;(2)直线1上是否存在点Q ,使△PBQ 的面积等于△PAC 面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)(3,4),(0,﹣5);(2)存在,点Q 的坐标为:(92,﹣5)或(212,﹣5) 【解析】【分析】(1)利用配方法求出顶点坐标,令x=0,可得y=-5,推出C (0,-5);(2)直线PC 的解析式为y=3x-5,设直线交x 轴于D ,则D (53,0),设直线PQ 交x 轴于E ,当BE=2AD 时,△PBQ 的面积等于△PAC 的面积的2倍,分两种情形分别求解即可解决问题.【详解】解:(1)∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴顶点P(3,4),令x=0得到y=﹣5,∴C(0,﹣5).故答案为:(3,4),(0,﹣5);(2)令y=0,x2﹣6x+5=0,解得:x=1或x=5,∴A(1,0),B(5,0),设直线PC的解析式为y=kx+b,则有534 bk b=-⎧⎨+=⎩,解得:35 kb=⎧⎨=-⎩,∴直线PC的解析式为:y=3x﹣5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=23,∴BE=43,∴E(113,0)或E′(193,0),则直线PE的解析式为:y=﹣6x+22,∴Q(92,﹣5),直线PE′的解析式为y=﹣65x+385,∴Q′(212,﹣5),综上所述,满足条件的点Q的坐标为:(92,﹣5)或(212,﹣5);【点睛】本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会用转化的思想思考问题,属于中考常考题型.三、初三数学旋转易错题压轴题(难)11.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°.(1)如图①,若∠B、∠ADC都是直角,把ABE△绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程;(2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;(3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.【答案】(1)见解析;(2)∠B+∠D=180°;(3)5 3【解析】【分析】(1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案;(2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即180ADG ADF∠+∠=︒,即180B D∠+∠=︒;(3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长.【详解】(1)解:如图,∵把△ABE 绕点A 逆时针旋转90°至△ADG ,使AB 与AD 重合,∴AE=AG ,∠BAE=∠DAG ,BE=DG ,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF 和△GAF 中AF AF EAF GAF AE AG =⎧⎪∠=∠⎨⎪=⎩∴△EAF ≌△GAF (SAS ),∴EF=GF ,∵BE=DG ,∴EF=GF=BE+DF ;(2)解:∠B+∠D=180°,理由是:如图,把△ABE 绕A 点旋转到△ADG ,使AB 和AD 重合,则AE=AG ,∠B=∠ADG ,∠BAE=∠DAG ,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴F 、D 、G 在一条直线上,和(1)类似,∠EAF=∠GAF=45°,在△EAF 和△GAF 中AF AF EAF GAF AE AG =⎧⎪∠=∠⎨⎪=⎩∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;故答案为:∠B+∠D=180°;(3)解:∵△ABC中,AB=AC=22,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC=22AB AC+=4,如图,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF.则AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中AD ADFAD EADAF AE=⎧⎪∠=∠⎨⎪=⎩∴△FAD≌△EAD,∴DF=DE,设DE=x,则DF=x,∵BD=1,∴BF=CE=4﹣1﹣x=3﹣x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:222DF BF BD=+,22(3)1x x=-+,解得:x=53,即DE=53.【点睛】本题综合考查三角形的性质和判定、正方形的性质应用、全等三角形的性质和判定、勾股定理等知识,解题关键在于正确做出辅助线得出全等三角形.12.已知抛物线y=ax 2+bx-3a-5经过点A(2,5)(1)求出a 和b 之间的数量关系.(2)已知抛物线的顶点为D 点,直线AD 与y 轴交于(0,-7)①求出此时抛物线的解析式;②点B 为y 轴上任意一点且在直线y=5和直线y=-13之间,连接BD 绕点B 逆时针旋转90°,得到线段BC ,连接AB 、AC ,将AB 绕点B 顺时针旋转90°,得到线段BH .截取BC 的中点F 和DH 的中点G .当点D 、点H 、点C 三点共线时,分别求出点F 和点G 的坐标.【答案】(1)a+2b=10;(2)①y= 2x 2+4x-11,②G 1,),F 1(,,G 2,F 2,) 【解析】【分析】(1)把点A 坐标代入抛物线y=ax 2+bx-3a-5即可得到a 和b 之间的数量关系;(2)①求出直线AD 的解析式,与抛物线y=ax 2+bx-3a-5联立方程组,根据直线与抛物线有两个交点,结合韦达定理求出a ,b ,即可求出解析式;②作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t ),根据旋转性质表示粗H 、D 、C 坐标,应含t 式子表示直线AD 的解析式,根据D 、H 、C 三点共线,把点C 坐标代入求出1t =,2t =,分两类讨论,分别求出G 、F 坐标。

江苏省无锡市2019-2020学年九年级上期末数学试卷

江苏省无锡市2019-2020学年九年级上期末数学试卷

无锡市2019-2020学年九年级上期末数学试卷(考试时长90分钟,全卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.如图,点O 是△ABC 的内切圆的圆心,若∠BAC=80°,则∠BOC 等于A.130°B.100°C.50°D.65°2.已知反比例函数()0>k xk y =的图象经过点()(),,、,b B a A 31则a 与b 的关系正确的是 A.b a = B.b a -= C.b a < D.b a >3.如图,AD ∥BE ∥CF ,直线21l l 、与这三条平行线分别交于点A 、B 、C 和点D 、E 、F ,已知AB=1,BC=3,DE=2,则EF 的长为A.4B.5C.6D.84.△ABC 在网格中的位置如图所示,则B cos 的值为A.55B.552C.21 D.25.两个全等的等腰直角三角形,斜边长为2,按如图放置,其中一个三角形45°角的项点与另一个三角形的直角顶点A 重合,若三角形ABC 固定,当另一个三角形绕点A 旋转时,它的角边和斜边所在的直线分别与边BC 交于点E 、F ,设BF=,x CE=,y 则y 关于x 的函数图象大致是6.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D. 7.方程x (x ﹣1)=0的解是( )A .x =1B .x =0C .x 1=1,x 2=0D .没有实数根8.下列说法错误的是( )A. 必然事件发生的概率是1B. 通过大量重复试验,可以用频率估计概率C. 概率很小的事件不可能发生D. 投一枚图钉,“钉尖朝上”的概率不能用列举法求得9.将抛物线y=x 2+4x+3向左平移1个单位,再向下平移3个单位的所得抛物线的表达式是( )A. y=(x+1)2-4B. y=-(x+1)2-4C. y=(x+3)2-4D. y=-(x+3)2-410.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( )。

【初三数学】江阴市九年级数学上期末考试测试题(解析版)

【初三数学】江阴市九年级数学上期末考试测试题(解析版)

人教版九年级第一学期期末模拟数学试卷(含答案)一、选择题(每小题3分,共24分)1.(3分)﹣的相反数是()A.3B.﹣3C.D.﹣2.(3分)钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为()A.44×105B.4.4×106C.0.44×107D.4.4×1053.(3分)不等式组的解集为()A.x<﹣2B.x≤﹣1C.x≤1D.x<34.(3分)如图中几何体的主视图是()A.B.C.D.5.(3分)方程x2﹣3x﹣2=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根6.(3分)如图为一次函数y=kx+b(k≠0)的图象,则下列正确的是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<07.(3分)下列命题中,正确的是()A.所有的等腰三角形都相似B.所有的直角三角形都相似C.所有的等边三角形都相似D.所有的矩形都相似8.(3分)如图,在平面直角坐标系中,一次函数y=kx﹣2的图象分别与x轴、y轴交于A、B两点,与函数y=(x>0)的图象交于点C.若点A为线段BC的中点,则k的值为()A.1B.C.2D.3二、填空题(每小题3分,共18分)9.(3分)分解因式:2m2﹣8=.10.(3分)一次函数y=3x+2的图象与x轴交点的坐标是.11.(3分)在比例尺为1:2500000的地图上,一条路长度约为8cm,那么这条路它的实际长度约为km.12.(3分)顺次连接矩形各边中点所得四边形为形.13.(3分)如图,在⊙O中,半径OA垂直弦于点D.若∠ACB=33°,则∠OBC的大小为度.14.(3分)如图,在平面直角坐标系中,正方形OABC的顶点A在y轴正半轴上,顶点C 在x轴正半轴上,抛物线y=a(x﹣1)2+c(a<0)的顶点为D,且经过点A、B.若△ABD为等腰直角三角形,则a的值为.三、解答题(本大题共10小题,共78分)15.(10分)解方程:(1)2x﹣5=3(x﹣2)(2)x2﹣3x+2=0.16.(6分)先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=.17.(6分)为了美化环境,某地政府计划对辖区内60km2的土地进行绿化,为了尽快完成任务,实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.18.(6分)如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)【参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81】19.(7分)某校学生会为了解本校学生每天做作业所用时间情况,采用问卷的方式对一部分学生进行调查,在确定调查对象时,大家提出以下几种方案:(A)对各班班长进行调查;(B)对某班的全体学生进行调查;(C)从全校每班随机抽取5名学生进行调查.在问卷调查时,每位被调查的学生都选择了问卷中适合自己的一个时间,学生会收集到的数据整理后绘制成如图所示的条形统计图.(1)为了使收集到的数据具有代表性,学生会在确定调查对象时选择了方案(填A、B或C);(2)被调查的学生每天做作业所用时间的众数为小时;(3)根据以上统计结果,估计该校800名学生中每天做作业用1.5小时的人数.20.(7分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.21.(8分)甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y (千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示.(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.22.(9分)问题情境:小明和小丽共同探究一道数学题:如图①,在△ABC中,点D是边BC的中点,∠BAD=65°,∠DAC=50°,AD=2,求AC的长为多少.探索发现;小明的思路是:延长AD至点E,使DE=AD,构造全等三角形.小丽的思路是:过点C作CE∥AB,交AD的延长线于点E,构造全等三角形.选择小明、小丽其中一人的方法解决问题情境中的问题.类比应用:如图②,在四边形ABCD中,对角线AC、BD相交于点O,点O是BD的中点,AB⊥AC.若∠CAD=45°,∠ADC=67.5°,AO=2,则BC的长为.23.(9分)如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6.点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动.点Q从点C出发,沿CA方向以每秒个单位长度的速度运动.点P、Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长.(用含t的代数式表示).(2)当PQ与△ABC的一边平行时,求t的值.(3)如图②,过点P作PE⊥AC于点E,以PE、QE为邻边作矩形PEQF,点D为AC 的中点,连接DF.直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值.24.(10分)对于给定的两个函数y=k1x+b1(k1≠0)和y=k2x+b2(k2≠0),在这里我们把y=(k1x+b1)(k2x+b2)叫做这两个函数的积函数,把直线y=k1x+b1和y=k2x+b2叫做抛物线y=(k1x+b1)(k2x+b2)的母线.(1)直接写出函数y=x﹣3和y=﹣x﹣1的积函数,然后写出这个积函数的图象与x轴交点的坐标.(2)点P在(1)中的抛物线上,过点P垂直于x轴的直线分别交此抛物线的母线于M、N两点,设点P的横坐标为m,求PM=PN时m的值.(3)已知函数y=x﹣2n和y=﹣x.当它们的积函数自变量的取值范围是﹣1≤x≤2,且当n≥2时,这个积函数的最大值是8,求n的值以及这个积函数的最小值.2018-2019学年吉林省长春外国语学校九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.【解答】解:﹣的相反数是,故选:C.2.【解答】解:4 400 000=4.4×106.故选:B.3.【解答】解:解不等式①得:x≤1,解不等式②得:x<3,∴不等式组的解集为x≤1,故选:C.4.【解答】解:从正面看易得左排3层,中间排是2九年级(上)数学期末考试试题(含答案)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑)1.(4分)在有理数﹣6,3,0,﹣7中,最小的数是()A.﹣6B.3C.0D.﹣72.(4分)如图是由几个相同的小正方体堆砌成的几何体,它的左视图是()A.B.C.D.3.(4分)在函数y=中,自变量x的取值范围是()A.x>2B.x≤2且x≠0C.x<2D.x>2且x≠04.(4分)下列图形都是由同样大小的地砖按照一定规律所组成的,其中第①个图形中有4块地砖,第②个图形中有9块地砖,第③个图形中有16块地砖,…,按此规律排列下去,第9个图形中地砖的块数为()A.81B.99C.100D.1215.(4分)如图,△ABC中,DE∥BC且=,若△ABC的面积等于,则四边形DBCE 的面积为()A.B.C.D.46.(4分)下列命题是真命题的是()A.一组对边平行,且另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.四边都相等的矩形是正方形D.对角线相等的四边形是矩形7.(4分)估计(﹣)的值应在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间8.(4分)按如图所示的程序运算,如果输出y的结果是4,则输入x的值可能是()A.±2B.2或3C.﹣2或3D.±2或39.(4分)如图,以Rt△ABC的直角边AB为直径作⊙O交BC于点D,连接AD,若∠DAC =30°,DC=1,则⊙O的半径为()A.2B.C.2﹣D.110.(4分)如图,小明站在某广场一看台C处,测得广场中心F的俯角为21°,若小明身高CD=1.7米,BC=1.9米,BC平行于地面F A,台阶AB的坡度为i=3:4,坡长AB=10.5米,则看台底端A点距离广场中心F点的距离约为()米.(参考数据:sin21°≈0.36,cos21°≈0.93,tan21°≈0.38)A.8.9B.9.7C.10.8D.11.911.(4分)若数a使关于x的二次函数y=x2+(a﹣1)x+b,当x<﹣1时,y随x的增大而减小;且使关于y的分式方程+=2有非负数解,则所以满足条件的整数a 的是()A.﹣2B.1C.0D.312.(4分)如图,已知Rt△ABC的直角顶点A落在x轴上,点B、C在第一象限,点B的坐标为(,4),点D、E分别为边BC、AB的中点,且tan B=,反比例函数y=的图象恰好经过D、E,则k的值为()A.B.8C.12D.16二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡(卷)中对应的位置上13.(4分)计算:|1﹣|+(π﹣3.14)0+=.14.(4分)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆O 交AB于点D,则图中阴影部分的面积为(结果保留π).15.(4分)如图,在4×4正方形网格中,有4个涂成黑色的小方格,现在任意选取一个白色的小方格涂成黑色,则使得黑色部分的图形构成轴对称图形的概率为.16.(4分)如图,在Rt△ABC中,∠ABC=90°,把△ABC沿斜边AC折叠,使点B落在B’,点D,点E分别为BC和AB′上的点,连接DE交AC于点F,把四边形ABDE沿DE折叠,使点B与点C重合,点A落在A′,连接AA′交B′C于点H,交DE于点G.若AB=3,BC=4,则GE的长为.17.(4分)一天学生小明早上从家去学校,已知小明家离学校路程为2280米(小明每次走的路程),小明从家匀速步行了105分钟后,爸爸发现小明的一科作业忘带,爸爸立刻拿起小明忘带的作业匀速跑步追赶小明,追上小明后爸爸立即将作业交给小明,小明继续以原速向学校行走(假定爸爸将作业交给小明的时间忽略不计),爸爸将作业带给小明后,原地接了2分钟的电话后,立即以更快的速度匀速返回家中.小明和爸爸两人相距的路程y(米)与小明出发的时间x(分钟)之间的关系如图所示,则爸爸到达家时,小明与学校相距的路程是米.18.(4分)某水果销售商在年末准备购进一批水果进行销售,经过市场调查,发现芒果、车厘子、奇异果、火龙果比较受顾客的喜爱,于是制定了进货方案.其中芒果、车厘子的进货量与奇异果、火龙果的进货量分别相同,而芒果、车厘子的单价与火龙果、奇异果的单价分别相同,已知芒果和车厘子的单价和为每千克180元,且芒果和车厘子的进货总价比奇异果和火龙果的进货总价多863元.由于年末资金周转不开,所以临时决定只购进芒果和车厘子,芒果和车厘子的进货量与原方案相同,且进货量总数不超过300kg,则该水果商最多需要准备元进货资金.三、解答题:(本大题2个小题,第19小题8分,第20小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上19.(8分)先化简,再求值:÷(a﹣2﹣)+,其中a2﹣2a﹣6=0 20.(8分)如图,直线AB∥CD,EF平分∠AEG,∠DFH=13°,∠H=21°,求∠EFG 的度数.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上21.(10分)如图,在平面直角坐标系中,直线l1与x轴交于点B,与y轴交于点C,直线l1与直线l2:y=﹣x交于点A,将直线l2:y=﹣x沿射线AB的方向平移得到直线l3,当l3经过点B时,与y轴交点记为D点,已知A点的纵坐标为2,sin∠ABO=.(1)求直线BC的解析式;(2)求△ABD的面积.22.(10分)距离中考体考时间越来越近,年级想了解初三年级2200名学生周末进行体育锻炼的情况,在初三年级随机抽查了20名男生和20名女生周末每天的运动时间进行了调查并收集到了以下数据(单位:min)男生:20 30 40 45 60 120 80 50 100 45 85 90 9070 90 50 90 50 70 40女生:75 30 120 70 60 100 90 40 75 60 75 75 8090 70 80 50 80 100 90根据统计数据制作了如下统计表:两组数据的极差、平均数、中位数、众数如下表所示:(1)请将上面两个表格补充完整:a=,b=,c=;(2)请根据抽样调查的数据估计初三年级周末每天运动时间在100分钟以上的同学大约有多少人?(3)李老师看了表格数据后认为初三年级的女生周末体锻坚持得比男生好,请你结合统计数据,写出支持李老师观点的理由.23.(10分)春节即将来临,根据习俗每家每户都会在门口挂红灯笼和贴对联.某商店看准了商机,准备购进一批红灯笼和对联进行销售,已知对联的进价比红灯笼的进价少10元,若用720元购进对联的数量比用720元购进红灯笼的数量多50件.(1)对联和红灯笼的单价分别为多少?(2)由于销售火爆,第一批售完后,该商店以相同的进价再购进300幅对联和200个红灯笼,已知对联的销售价格为12元一幅,红灯笼的销售价格为24元一个销售一段时间后发现对联售出了总数的,红灯笼售出了总数的,为了清仓,该店老板决定对剩下的红灯笼和对联以相同的折扣数打折销售,并很快全部售出,问商店最低打几折,才能使总的利润率不低于20%?24.(10分)已知平行四边形ABCD,过点A作BC的垂线,垂足为E,且满足AE=EC,过点C作AB的垂线,垂足为F,交AE于点G,连接BG,(1)如图1,若AC=,CD=4,求EG的长度;(2)如图2,取BE的中点K,在EC上取一点H,使得点K和点E为BH的三等分点,连接AH,过点K作AH的垂线,交AC于点Q,求证:BG=2CQ.25.(10分)阅读材料,解决问题:某数学学习小组在阅读数学史时,发现了一个有趣的故事;古希腊神话中的米诺斯王嫌别人为他建造的坟墓太小,命令将其扩大一倍,并说只要将每边扩大一倍就行,这当然是错误的,但这类问题却引出了著名的几何问题:倍立方问题.此时他们刚好学习了平面几何,所以甲同学提出:“任意给定一个正方形,是否存在另外一个正方形,它的周长和面积分别是已知正方形周长和面积的2倍呢?”,对于这个问题小组成员很快给出了解答:设原正方形的边长为a,则周长为4a,面积为a2∵另一个正方形的周长为2×4a=8a∴此时边长为2a,面积为(2a)2=4a2≠2a2∴不存在这样的正方形,它的周长和面积分别是已知正方形周长和面积的2倍.虽然甲同学的问题得到了很快的解决,但这一问题的提出触发了其他小组成员的积极思考,进一步乙同学提出:“任意给定一个矩形,是否存在另外一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍呢?”通过讨论,他们决定先研究:“已知矩形的长和宽分别为m和1,是否存在另外一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍呢?”,并给出了如下解答过程:设所求矩形的长为x,则根据题意可表示出所求矩形的宽为2(m+1)﹣x那么可建立方程:x•[2(m+1)﹣x]=2m∵判别式△=4m2+4>0∴原方程有解,即结论成立.根据材料解决下列问题(1)若已知一个矩形的长和宽分别为3和1,则是否存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半呢?若存在,请求出此矩形的长和宽;若不存在,请说明理由;(2)若已知一个矩形的长和宽分别为m和1,且一定存在另一个矩形的周长和面积分别是已知矩形周长和面积的k倍,求k的取值范围(写明解答过程).五、解谷题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.(12分)如图1,抛物线y=﹣x2+x+6与x轴交于A、B(B在A的左侧)两点,与y轴交于点C,将直线AC沿y轴正方向平移2个单位得到直线A′C′,将抛物线的对称轴沿x轴正方向平移最新人教版九年级(上)期末模拟数学试卷及答案一、选择题(本大题共12小题,共48.0分)1.计算:A. 3B.C.D. 【答案】C【解析】解:,故选:C.根据算术平方根和二次根式的性质化简可得.本题主要考查算术平方根,解题的关键是掌握算术平方根的定义和二次根式的性质.2.下列计算正确的是A. B. C. D.【答案】B【解析】解:A、不能化简,所以此选项错误;B、,所以此选项正确;C、,所以此选项错误;D、,所以此选项错误;本题选择正确的,故选B.A、和不是同类二次根式,不能合并;B、二次根式相乘,系数相乘作为积的系数,被开方数相乘,作为积中的被开方数;C、二次根式的乘方,把每个因式分别平方,再相乘;D、二次根式的除法,把分母中的根号化去.本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.3.在中,,则是的A. 正弦B. 余弦C. 正切D. 以【答案】A【解析】解:在中,,则是正弦,故选:A.根据锐角三角函数的定义即可得到结论.本题考查了锐角三角函数的定义,熟记三角函数的定义是解题的关键.4.用配方法解方程,则方程可变形为A. B. C. D. 【答案】D【解析】解:原方程为,二次项系数化为1,得,即,所以故选D.本题考查分配方法解一元二次方程.配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.5.已知 ∽,的面积为6,周长为周长的一半,则的面积等于A. B. 3 C. 12 D. 2【答案】D【解析】解: ∽,的周长为周长的一半,,,的面积为6,,故选:D.利用相似三角形的面积比等于相似比的平方即可解决问题.本题考查相似三角形的性质,记住相似三角形的周长比等于相似比,面积比等于相似比的平方.6.某中学开展“阳光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目每位同学必须选择一项,为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为A. 240B. 120C. 80D. 4【答案】D【解析】解:调查的总人数是:人,则参加调查的学生中最喜欢跳绳运动项目的学生数是:人.故选:D.根据A项的人数是80,所占的百分比是即可求得调查的总人数,然后李用总人数减去其它组的人数即可求解.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.7.在和中,已知,,在下面判断中错误的是A. 若添加条件,则 ≌B. 若添加条件,则 ≌C. 若添加条件,则 ≌D. 若添加条件,则 ≌【答案】B【解析】解:A,正确,符合SAS判定;B,不正确,因为边BC与不是与的一边,所以不能推出两三角形全等;C,正确,符合AAS判定;D,正确,符合ASA判定;故选:B.根据全等三角形的判定方法对各个选项进行分析,从而得到答案.此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有:AAS,SAS,SSS,HL等要根据已知与判断方法进行思考.8.在网格中的位置如图所示每个小正方形边长为,于D,下列四个选项中,错误的是A.B.C.D.【答案】C【解析】解:观察图象可知,是等腰直角三角形,,,,,,,故A正确,,故B正确,,故D正确,,,,故C错误.故选:C.观察图形可知,是等腰直角三角形,,,,,,利用锐角三角函数一一计算即可判断.本题考查锐角三角函数的应用等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图,中,AD是中线,,,则线段AC的长为A. 4B.C. 6D. 【答案】B【解析】解:,,在和中,,,∽ ,,,;故选:B.根据AD是中线,得出,再根据AA证出 ∽ ,得出,求出AC即可.此题考查了相似三角形的判断与性质,关键是根据AA证出 ∽ ,是一道基础题.10.若关于x的一元二次方程有实数根,则k的取值范围在数轴上表示正确的是A. B. C.D.【答案】A【解析】解:关于x的一元二次方程有实数根,,解得:.故选:A.根据一元二次方程的定义结合根的判别式,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围,将其表示在数轴上即可得出结论.本题考查了根的判别式、一元二次方程的定义以及在数轴上表示不等式的解集,根据一元二次方程的定义结合根的判别式,找出关于k的一元一次不等式组是解题的关键.11.我们知道方程的解是,,现给出另一个方程,它的解是A. ,B. ,C. ,D. ,【答案】D【解析】解:把方程看作关于的一元二次方程,所以或,所以,.故选:D.先把方程看作关于的一元二次方程,利用题中的解得到或,然后解两个一元一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.如图小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为,若米,,米,CE平行于AB,迎水坡BC的坡角的正切值为,坡长米,则AB的长约为参考数据:,,A. 米B. 米C. 米D. 米【答案】A【解析】解:如图,延长DE交AB延长线于点P,作于点Q,,,四边形CEPQ为矩形,米,,,设、,由可得,解得:或舍,则米,米,米,在中,米,米.故选:A.延长DE交AB延长线于点P,作,可得、,由,可设、,根据求得x的值,即可知,由,结合可得答案.此题考查了俯角与坡度的知识注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.二、填空题(本大题共6小题,共24.0分)13.的相反数是______.【答案】【解析】解:的相反数是,故答案为:.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.14.方程的解是______.【答案】,【解析】解:,,或,所以,.故答案是:,.先移项,然后利用因式分解法解方程.本题考查了解一元二次方程因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了数学转化思想.15.在实数范围内分解因式:______.【答案】【解析】解:,,,故答案为:先把前面两项配成完全平方式,然后根据平分差公式进行因式分解即可.本题考查了利用公式进行因式分解的方法:把整式先配成完全平分式或平分差的形式,然后利用公式法进行因式分解.16.某商品四天内每天每斤的进价与售价的信息如图所示,则售出这种商品每斤利润最大的是第______天【答案】二【解析】解:由图象中的信息可知,利润售价进价,利润最大的天数是第二天,故答案为:二.根据图象中的信息即可得到结论.本题考查了折线统计图,有理数大小的比较,正确的把握图象中的信息,理解利润售价进价是解题的关键.17.如图,在直角坐标系中,有两点、以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为______.【答案】【解析】解:由题意得, ∽ ,相似比是,,又,,,,点C的坐标为:,故答案为:.根据位似变换的性质可知, ∽ ,相似比是,根据已知数据可以求出点C的坐标.本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.18.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的正整数a的值为______.【答案】2【解析】解:①②,解不等式①得:,解不等式②得:,该不等式组有且只有四个整数解,该不等式组的解集为:,且,解得:,,方程两边同时乘以得:,去括号得:,移项得:,该方程的解为非负数,且,解得:且,综上可知:符合条件的正整数a的值为2,故人教版数学九年级上册期末考试试题及答案一、选择题(每小题3分,共30分)1.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.经过某路口的行人,可能直行,也可能左拐或右拐,假设这三种可能性相同,现在有一个人经过该路口,恰好直行的概率是()A.B.C.D.3.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1 B.m≥﹣1且m≠0 C.m>﹣1且m≠0 D.m≠0=4,4.如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S△AOT 则此函数的表达式为()A.B.C.D.5.如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)6.一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3 7.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.88.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y29.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.10.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()。

江苏省江阴市2019—2020学年九年级上期末调研考试数学试卷含答案

江苏省江阴市2019—2020学年九年级上期末调研考试数学试卷含答案

江阴市2019-2020学年第一学期九年级期末调研考试数学试卷(本试卷满分为130分,考试时间为120分钟)2020.01一、选择题(本大题共有10小题,每小题3分,共30分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内)1.sin60°的值是(▲)A .12B .33C .32D .32.若△ABC ∽△DEF ,相似比为1∶2,则△ABC 与△DE F 的周长比为(▲)A .2∶1B .1∶2C .4∶1D .1∶43.体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的(▲)A .平均数B .频数C .中位数D .方差4.方程x 2-3x =0的解为(▲)A .x 1=0,x 2=―3B .x 1=0,x 2=3C .x =0D .x =35.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =5cm ,CD =8cm ,则AE =(▲)A .2cmB .3cmC .5cmD .8cm(第5题)(第8题)(第9题)6.把抛物线y =x 2向上平移1个单位后得到的抛物线是(▲)A .y =x 2+1B .y =x 2-1C .y =(x +1)2D .y =(x -1)27.某人沿着坡度为1∶2.4的斜坡向上前进了130m ,那么他的高度上升了(▲)A .50mB .100mC .120mD .130m8.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕点A 逆时针方向旋转40°得到△ADE ,点B 经过的路径为⌒BD ,则图中阴影部分的面积为(▲)A .143π-6B .259πC .338π-3D .33+πBACDOE xyO ﹣121ABCED9.已知二次函数y =ax 2+bx +c (a ≠0)图像如图所示,对称轴为过点(-12,0)且平行于y轴的直线,则下列结论中正确的是(▲)A .abc >0B .a +b =0C .2b +c >0D .4a +c <2b10.如图,⊙O 是△ABC 的外接圆,∠A =60°,点P 是△ABC 外一点,BP =6,CP =3,则线段OP 的最大值为(▲)A .9B .4.5C .33D .3(第10题)(第17题)(第18题)二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程,只需把答案直接填写在题中的横线上)11.如果在比例尺为1∶1000000的地图上,甲、乙两地的图上距离是5.8cm ,那么甲、乙两地的实际距离是▲km .12.已知x =1是关于x 的一元二次方程2x 2-x +a =0的一个根,则a 的值是▲.13.已知二次函数y =x 2-2x +m 的图像与x 轴只有一个公共点,则m =▲.14.已知某小区的房价在两年内从每平方米8100元增加到每平方米12500元,设该小区房价平均每年增长的百分率为x ,根据题意可列方程为▲.15.若圆锥的底面圆半径为2cm ,圆锥的母线长为5cm ,则圆锥的侧面积为▲cm 2.16.已知二次函数y =ax 2+bx +c (a ≠0)中,函数y 与自变量x 的部分对应值如下表:x …-2-1012…y…105212…则当y <5时,x 的取值范围是▲.17.如图,□ABCD 中,点E 、F 分别是边AD 、CD 的中点,EC 、EF 分别交对角线BD于点H 、G ,则DG ∶GH ∶HB =▲.18.如图,已知射线BP ⊥BA ,点O 从B 点出发,以每秒1个单位长度沿射线BA 向右运动;同时射线BP 绕点B 顺时针旋转一周,当射线BP 停止运动时,点O 随之停止运动.以O 为圆心,1个单位长度为半径画圆,若运动两秒后,射线BP 与⊙O 恰好有且只有一个公共点,则射线BP 旋转的速度为每秒▲度.三、解答题(本大题共10小题,共84分,解答时应写出文字说明、证明过程或演算步骤)PBCOAPAB (O )HGFE DAC B19.(本题满分8分)(1)计算:2sin60°-3tan45°+9;(2)解方程:x 2-4x -1=0.20.(本题满分8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A 、B 、C 、D 、E 五个组,x 表示测试成绩,A 组:90≤x ≤100;B 组:80≤x <90;C 组:70≤x <80;D 组:60≤x <70;E 组:x <60),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有▲人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在▲组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?21.(本题满分8分)现有A 、B 两个不透明的盒子,A 盒中装有红色、黄色、蓝色卡片各1张,B 盒中装有红色、黄色卡片各1张,这些卡片除颜色外都相同.现分别从A 、B 两个盒子中任意摸出一张卡片.(1)从A 盒中摸出红色卡片的概率为▲;(2)用画树状图或列表的方法,求摸出的两张卡片中至少有一张红色卡片的概率.调查测试成绩条形统计图调查测试成绩扇形统计图A B 30%E 10%D 15%C 100806040120100806040200A B C D E成绩(分)人数22.(本题满分8分)如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A的坐标为(2,-1),请解答下列问题:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,点A 1的坐标为▲;(2)在网格内以点(1,1)为位似中心,把△A 1B 1C 1按相似比2∶1放大,得到△A 2B 2C 2,请画出△A 2B 2C 2;若边AC 上任意一点P 的坐标为(m点P 2的坐标为▲.23.(本题满分8分)如图,Rt △ABC 中,∠ACB =90°,D 是(1)求证:CD 2=DE ·DA ;(2)当∠BED =47°时,求∠ABC 的度数.24.(本题满分8分)如图,某数学社团成员想利用所学的知识测量广告牌的高度(即图中线段MN 的长),在地面A 处测得点M 的仰角为60°、点N 的仰角为45°,在B 处测得点M 的仰角为30°,AB =5m ,MN ⊥AB 于点P ,且B 、A 、P 三点在同一直线上.求广告牌MN 的长(结果保留根号).EACBDB A M NP广告牌25.(本题满分8分)如图,AB 为⊙O 的直径,C 、F 为⊙O 上两点,且点C 为⌒BF 的中点,过点C 作AF 的垂线,交AF 的延长线于点E ,交AB 的延长线于点D .(1)求证:DE 是⊙O 的切线;(2)当BD =2,sin D =35时,求AE 的长.26.(本题满分8分)某商场将进货单价为30元的商品以每个40元的价格售出时,平均每月能售出600个,调查表明:这种商品的售价每上涨1元,其销售量就减少10个.(1)为了使平均每月有10000元的销售利润且尽快售出,这种商品的售价应定为每个多少元?(2)当该商品的售价为每个多少元时,商场销售该商品的平均月利润最大?最大利润是多少?C27.(本题满分10分)如图,已知二次函数y =x 2-2x +m 的图像与x 轴交于点A 、B ,与y 轴交于点C ,直线AC 交二次函数图像的对称轴于点D ,若点C 为AD 的中点.(1)求m 的值;(2)若二次函数图像上有一点Q ,使得tan ∠ABQ =3,求点Q 的坐标;(3)对于(2)中的Q 点,在二次函数图像上是否存在点P ,使得△QBP ∽△COA ?若存在,求出点P 的坐标;若不存在,请说明理由.28.(本题满分10分)已知矩形ABCD 中,AB =1,BC =2,点E 、F 分别在边BC 、AD上,将四边形ABEF 沿直线EF 翻折,点A 、B 的对称点分别记为A′、B′.(1)当BE =23时,若点B′恰好落在线段AC 上,求AF 的长;(2)设BE =m ,若翻折后存在点B′落在线段AC 上,则m 的取值范围是▲.AB CDE FA 'B '江阴市2019—2020学年第一学期九年级期末调研考试数学试卷参考答案及评分标准2020.1一、选择题(本大题共10小题,每小题3分,共30分)1.C 2.B 3.D 4.B 5.D 6.A 7.A 8.B 9.D 10.C 二、填空题(本大题共8小题,每小题2分,共16分)11.5812.-113.114.8100(1+x )2=1250015.10π16.-1<x <317.3∶1∶818.30或60(答对一半不得分)三、解答题(本大题共10小题,共84分.解答时应写出文字说明、证明过程或演算步骤)19.解:(1)原式=2×32-3×1+3……………………………………………………(3分)=3.…………………………………………………………………(4分)(2)(x -2)2=5……………………………………………………………………(2分)∴x 1=2+5,x 2=2-5.…………………………………………………(4分)(方法不唯一,若用求根公式,求出根的判别式给2分)20.解:(1)400,扇形统计图25%、20%,条形统计图120.………………………(4分)(2)B ……………………………………………………………………………(6分)(3)660人.……………………………………………………………………(8分)21.解:(1)13……………………………………………………………………………(2分)(2)树状图或列表(略)…………………………………………………………(6分)共有6种等可能的情况,符合条件的情况有4种(缺掉一半,1分全扣)(7分)∴P(至少一张红色卡片)=23.……………………………………………(8分)22.解:(1)图略…………………………………………………………………………(2分)(2,1)………………………………………………………………………(4分)(2)图略…………………………………………………………………………(6分)(-2m +3,2n +3)…………………………………………………………(8分)23.解:(1)在△ACD 和△CED 中,∵∠ADC =∠CDE ,∠ACD =∠CED =90°,∴△ACD ∽△CED .………………………………………………………(2分)∴CD DE =ADCD,∴CD 2=DE ·DA .…………………………………………(3分)(2)∵D 是BC 中点,∴BD =CD ,∴BD DE =ADBD.……………………………(4分)∵∠BDE =∠ADB ,∴△BED ∽△ABD .…………………………………(6分)∴∠BED =∠ABC .…………………………………………………………(7分)∵∠BED =47°,∴∠ABC =47°.………………………………………(8分)24.解:∵∠BPM =90°,∠PBM =30°,∠PAM =60°,∴∠PMB =60°,∠PMA =30°.∴∠BMA =30°.∴∠BMA =∠ABM .∴AM=AB=5.………………………………………………………………………(3分)∴在Rt△APM中,AP=AM·sin∠AMP=5×sin30°=5 2,…………………………(4分)∴PM=53 2,…………………………………………………………………………(5分)∵在Rt△APN中,∠NAP=45°,∴PN=AP=5 2.………………………………(6分)∴MN=PM-PN=532-52.…………………………………………………………(7分)答:广告牌MN的长为(532-52)m.……………………………………………………(8分)(此题方法不唯一,酌情给分.)25.解:(1)连接OC,∵点C为⌒BF的中点,∴⌒BC=⌒CF.∴∠CAF=∠BAC.∵AF⊥CD,∴∠E=90°.∵OA=OC,∴∠OCA=∠OAC.∴∠CAF=∠OCA.∴OC∥AE.………………………………………………………………(2分)∴∠DCO=∠E=90°.∴OC⊥DE.……………………………………(3分)∴DE是⊙O的切线.……………………………………………………(4分)(2)在Rt△DCO中,sin D=OCOD=35,设OC=3x,OD=5x,则5x=3x+2,解之得:x=1.…………………………………………(5分)∴OC=3,OD=5,AD=8.……………………………………………(6分)∵在Rt△DEA中,sin D=AEAD=AE8=35,∴AE=245.…………………(8分)26.解:(1)设该商品的售价是每个x元,根据题意,得:(x-30)[600-10(x-40)]=10000………………………(2分)解之得:x1=50,x2=80.………………………………………………(3分)答:为了尽快售出,这种商品的售价应定为每个50元.………………(4分)(2)该商品的利润y=(x-30)[600-10(x-40)]=-x2+130x-3000=-10(x-65)2+12250…………………………………………………(6分)∴当x=65时,利润y最大,最大利润是12250元.答:最大利润是12250元,此时售价是每个65元.……………………(8分)27.解:(1)设对称轴与x轴交于点E,与直线AC交于点D.∵y轴∥ED,∴AC∶CD=AO∶OE.∴AO=OE=1.∴A(-1,0).………………………………………(2分)∴将点A (-1,0)代入函数表达式得:1+2+m =0,∴m =-3.…(3分)(2)设Q (n ,n 2-2n -3),①点Q 在x 轴上方时,n <0,此时n ²-2n -33-n=3,解得:n =-4,n =3(舍),∴Q (-4,21)…………………………(5分)②点Q 在x 轴下方时,点Q 与点C 关于直线x =1对称,∴Q (2,-3).……………………………………………………………(7分)(3)①当点Q 为(-4,21)时,可以求得此时P (-23,-119),∵BP ∶BQ ≠OA ∶OC ,∴P 不存在.…………………………………(8分)②当点Q 为(2,-3)时,可以求得此时P (-43,139),∵BP ∶BQ ≠OA ∶OC ,∴P 不存在.…………………………………(9分)综上所述,不存在满足条件的点P ,使得△QBP ∽△COA .…………(10分)(第(3)问也可以利用K 型相似,不需要求出P 点坐标,但要有具体的过程说明.如果第(3)问没有任何解答过程只有“不存在”,则只给1分.)28.(1)过B'作B'H ⊥BC 于H ,延长HB'交AD 于点Q ,设B'H =m ,由△ACB ∽△B'CH ,可得CH =2m ,∴EH =43-2m .…………………………………………………………………(2分)在Rt △EB'H 中,EH ²+BH ²=EB'²,∴(43-2m)2+m ²=49,∴m =25或23(舍).∴B'H =25,EH =815.……………………………………………………………(4分)∴B'Q =1-25=35,设AF =n ,则FQ =65-n .在Rt △FB'Q 中:n ²+1=(65-n )2+925.………………………………………(6分)解得:n =13.∴AF =13.………………………………………………………(7分)(2)5-12<m ≤1.………………………………………………………………(10分)。

2019-2020学年江苏省无锡市九年级上册期末数学试卷

2019-2020学年江苏省无锡市九年级上册期末数学试卷

2019-2020学年江苏省无锡市九年级上册期末数学试卷题号一二三总分得分第I卷(选择题)一、选择题(本大题共10小题,共30.0分)1.一元二次方程x(x−2)+x−2=0的根是()A. −1B. 2C. 1和2D. −1和22.若yx =34,则x+yx的值是()A. 73B. 74C. −74D. 73.已知⊙O和直线l相交,圆心到直线l的距离为10cm,则⊙O的半径可能为()A. 11cmB. 10cmC. 9cmD. 8cm4.在Rt△ABC中,∠C=90°,若sinA=12,则BC∶AC∶AB等于()A. 1∶2∶5B. 1∶√3∶√5C. 1∶√3∶2D. 1∶2∶√35.将抛物线y=−3x2先向右平移4个单位,再向下平移5个单位,所得图象的解析式为()A. y=−3(x−4)2−5B. y=−3(x+4)2+5C. y=−3(x−4)2+5D. y=−3(x−4)2−56.一个圆锥高为4,母线长为5,则这个圆锥的侧面积为()A. 15πB. 12πC. 25πD. 20π7.某文具店二月销售签字笔40支,三月、四月销售量连续增长,四月销售量为90支,求月平均增长率,设月平均增长率为x,根据题意可列方程为()A. 40 (1+x2)=90B. 40 (1+2x)=90C. 40 (1+x)2=90D. 90 (1−x)2=408.如下图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是()A. 60°C. 72°D. 144°9.对于二次函数y=−x2−4x+5.以下说法正确的是()A. x<−1时,y随x的增大而增大B. x<−5或x>1时,y>0C. A(−4,y1),B(−√2,y2)在y=−x2−4x+5的图象上,则y1<y2D. 此二次函数的最大值为810.如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=4√2,CD=3√2,点P在四边形ABCD的边上.若点P到BD的距离为3,则点P的个数为()A. 2B. 3C. 4D. 5第II卷(非选择题)二、填空题(本大题共8小题,共16.0分)11.若x=2是方程x2+3x−2m=0的一个根,则m的值为.12.一组数据:16,5,11,9,5的中位数是______.13.若关于x的一元二次方程(2k−1)x2−6x+9=0没有实数根,则k的取值范围是______.14.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=9,则S△EFC等于______.15.等腰△ABC是⊙O的内接三角形,∠A=45°,底边BC=4,则弦BC所对弧长为______.16.下列关于二次函数y=−(x−m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=−x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y 随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是______.17.如图是由边长都是1的小正方形组成的网格,A、B、P、Q则线段AM的长为______.18.已知抛物线y=x2−2x−3与x轴交于点A、B,与y轴交于点C,P是抛物线对称轴上的一个动点,则当|PB−PC|达到最大值时,点P的坐标为______.三、解答题(本大题共10小题,共84.0分)19.计算:(−1)2019−√12+tan60°+(π−3.14)0.20.△ABC在平面直角坐标系中的位置如图所示(坐标系内正方形网格的单位长度为1):(1)在网格内画出和△ABC以点O为位似中心的位似图形△A1B1C1,使△A1B1C1和△ABC的位似比为2:1且△A1B1C1位于y轴左侧;(2)分别写出A1、B1、C1三个点的坐标:A1______、B1______、C1______;(3)求△A1B1C1的面积为______.21.某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?22.一个不透明的盒子里有五张卡片,分别标有字母a,a,b,b,c,每张卡片除字母不同外其他都相同.(1)小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上字母相同的概率.(2)小玲从盒子中一次抽出两张卡片,用画树状图(或列表)的方法,求小玲抽出的两张卡片字母相同的概率.23.如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.24.如图,AE与BD交于点C,∠DME=∠A=∠B,且DM交AC于F,ME交BC于G.(1)求证:△AMF∽△BGM.(2)若∠DME=∠A=∠B=45°,点M是AB的中点,AB=4√2,AF=3.求FG.25.如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是60km,仰角是30°.n秒后,火箭到达B点,此时仰角是45°,求火箭在这n秒中上升的高度.26.某商品现在的售价为每件60元,每星期可卖出100件.市场调查反映:如调整价格,每降价1元,每星期可多卖出20件.已知商品的进价为每件30元,设每件降价x元(x为正整数),每星期可以卖y件.(1)求y与x的函数关系式,并指出自变量x的取值范围;(2)求每星期的利润w的最大值;(3)规定每件商品降价不超过18元,请直接写出x在什么范围内时,每星期的利润不低于5000元.27.已知二次函数y=ax2−9ax+18a的图象与x轴交于A,B两点(A在B的左侧),图象的顶点为C,直线AC交y轴于点D.(1)连接BD,若∠BDO=∠CAB,求这个二次函数的表达式;(2)是否存在以原点O为对称轴的矩形CDEF?若存在,求出这个二次函数的表达式,若不存在,请说明理由.28.如图,已知在△ABC中,AB=AC,tanB=12,BC=4,点E是在线段BA延长线上一点,以点E为圆心,EC为半径的圆交射线BC于点C、F(点C、F不重合),射线EF与射线AC交于点P.(1)求证:AE2=AP⋅AC;(2)当点F在线段BC上,设CF=x,△PFC的面积为y,求y关于x的函数解析式及定义域;(3)当FPEF =12时,求BE的长.答案和解析1.【答案】D【解析】【分析】本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).利用因式分解法解方程即可.【解答】解:,(x−2)(x+1)=0,x−2=0或x+1=0,所以x1=2,x2=−1.故选D.2.【答案】B【解析】解:yx =34,则x+yx =3+44=74,故选:B.根据合比性质计算即可.本题考查的是比例的性质,掌握比例的合比性质是解题的关键.3.【答案】A【解析】解:∵⊙O和直线l相交∴d<r又∵圆心到直线l的距离为10cm∴r>10cm故选:A.根据直线与圆的位置关系的判断的方法可求解.半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.4.【答案】C【解析】【分析】本题主要考查了锐角三角函数.根据正弦的定义和勾股定理可得比值.【解答】解:∵sinA=BCAB =12,∴设∠A的对边BC=x,则斜边AB=2x,根据勾股定理可得AC=√3x,∴BC:AC:AB=x:√3x:2x=1:√3:2.故选C.5.【答案】A【解析】【分析】直接利用二次函数的平移规律进而得出答案.此题主要考查了二次函数的几何变换,正确掌握平移规律是解题关键.【解答】解:将抛物线y=−3x2先向右平移4个单位,得到:y=−3(x−4)2,再向下平移5个单位,所得的图象解析式是:y=−3(x−4)2−5.故选A.6.【答案】A【解析】解:这个圆锥的底面圆的半径=√52−42=3,1先利用勾股定理计算出这个圆锥的底面圆的半径,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.【答案】C【解析】解:设月平均增长率为x,根据题意得:40(1+x)2=90.故选:C.设月平均增长率为x,根据二月及四月的销售量,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.【答案】C【解析】【分析】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n−2)×180°是解题的关键.根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.【解答】解:∵五边形ABCDE为正五边形,=108°,∴∠ABC=∠C=(5−2)×180°5∵CD=CB,∴∠CBD=180°−108°=36°,2∴∠ABD=∠ABC−∠CBD=72°,故选C.【解析】解:y=−x2−4x+5的对称轴为x=−2,∴x≤−2时,y随x的增大而增大;A不正确;−x2−4x+5=0时的两个根为x=−5,x=1,当−5<x<1时,y>0;B不正确;∵−4<−2,−√2>−2,点A到对称轴的距离大于点B到对称轴的距离,∴y1<y2;C正确;当x=−2时,y有最大值9;D不正确;故选:C.y=−x2−4x+5的对称轴为x=−2,x≤−2时,y随x的增大而增大;当−5<x<1时,y>0;点A到对称轴的距离大于点B到对称轴的距离,则y1<y2;当x=−2时,y有最大值9;本题考查二次函数的图象及性质;熟练掌握二次函数的图象与性质是解题的关键.10.【答案】B【解析】解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=4√2,CD=3√2,∴∠ABD=∠ADB=45°,∴∠CDF=90°−∠ADB=45°,∵sin∠ABD=AE,AB∴AE=AB⋅sin∠ABD=4√2⋅sin45°=4>3,CD=3,CF=√22∴所以在AB和AD边上有符合P到BD的距离为3的点各1个,还有点C满足条件,所以共计3个,故选:B.直接利用求出A点以及C点到BD的最短距离,进而得出得出答案.此题主要考查了解直角三角形的应用,正确得出A点以及C点到BD的最短距离是解题关键.【解析】解:把x=2代入,得22+3×2−2m=0,解得:m=5.故答案是:5.此题主要考查了一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.12.【答案】9【解析】解:将这组数据从小到大的顺序排列,处于中间位置的数是9,那么由中位数的定义可知,这组数据的中位数是9;故答案为:9.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);本题为统计题,考查中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.【答案】k>1【解析】解:∵关于x的一元二次方程(2k−1)x2−6x+9=0没有实数根,∴(−6)2−4×(2k−1)×9<0且2k−1≠0,解得:k>1,故答案为:k>1.根据方程没有实数根结合根的判别式可得出Δ<0,解不等式即可得出k的取值范围本题考查了根的判别式以及解一元一次不等式,解题的关键是根据方程无实数根找出关于k的一元一次不等式,注意二次项系数不为0.14.【答案】4【解析】解:∵四边形ABCD是平行四边形,∴BC//AD、BC=AD,而CE=2EB,∴△AFD∽△CFE,且它们的相似比为2:1,∴S△AFD:S△EFC=(32)2,而S△AFD=9,∴S△EFC=4.故答案为:4.由于四边形ABCD是平行四边形,所以得到BC//AD、BC=AD,而CE=2EB,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解.此题主要考查了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解.15.【答案】√2π或3√2π【解析】解:连接OB、OC,如图,∵∠A=45°,∴∠BOC=2∠A=90°,∴△OBC为等腰直角三角形,∴OB=√22BC=2√2,∴BC⏜的长度=90⋅π⋅2√2180=√2π,BAC⏜的长度=270⋅π⋅2√2180=3√2π,∴弦BC所对弧长为√2π或3√2π.故答案为√2π或3√2π.连接OB、OC,如图,先利用圆周角得到∠BOC=2∠A=90°,则可判断△OBC为等腰直角三角形得到OB=2√2,然后利用弧长公式计算BC⏜的长度和BAC⏜的长度即可.本题考查了三角形的外接圆与外心:熟练掌握三角形外心的定义与性质.也考查了等腰直角三角形的性质和圆周角定理.16.【答案】①②④【解析】【分析】本题考查二次函数的性质,一次函数的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.利用二次函数的性质一一判断即可.【解答】解:①∵二次函数y=−(x−m)2+m+1(m为常数)与函数y=−x2的二次项系数相同,∴该函数的图象与函数y=−x2的图象形状相同,故结论①正确;②∵在函数y=−(x−m)2+m2+1中,令x=0,则y=−m2+m2+1=1,∴该函数的图象一定经过点(0,1),故结论②正确;③∵y=−(x−m)2+m2+1,∴抛物线开口向下,对称轴为直线x=m,当x>m时,y随x的增大而减小,故结论③错误;④∵抛物线开口向下,当x=m时,函数y有最大值m2+1,∴该函数的图象的顶点在函数y=x2+1的图象上.故结论④正确,故答案为①②④.17.【答案】3√22【解析】解:如图,连接AP、PB、AQ,BQ.∵AP2=18、AB2=8、PB2=26,∴AP2+AB2=PB2,∴△PAB为直角三角形,∠PAB=90°,∵AQ2=10、AB2=8、BQ2=2,∴AB2+BQ2=AQ2,∴△ABQ为直角三角形,∠ABQ=90°,∵∠AMP=∠BMQ,∴△APM∽△BQM,∴AMBM =APBQ=√22=3,∴AMAB =34,即2√2=34,∴AM=3√22,故答案为:3√22.连接AP 、PB 、AQ 、BQ ,利用勾股定理逆定理证∠PAB =∠ABQ =90°,结合∠AMP =∠BMQ 证△APM∽△BQM ,得AM BM =AP BQ =3,即可知AM AB =34,据此可得答案.本题主要考查相似三角形的判定和性质,解题的关键是熟练掌握勾股定理逆定理及相似三角形的判定和性质. 18.【答案】(1,−6)【解析】解:当x =0时,y =x 2−2x −3=−3,则C(0,−3),当y =0时,x 2−2x −3=0,解得x 1=−1,x 2=3,则A(−1,0),B(3,0),∴抛物线的对称轴为直线x =1,如图,连接PA ,则PA =PB ,∴|PB −PC|=|PA −PC|≤AC(当点A 、C 、P 共线时取等号),延长AC 交直线x =1于点P′,如图,设直线AC 的解析式为y =mx +n ,把A(−1,0),C(0,−3)代入得{−m +n =0n =−3,解得{m =−3n =−3, ∴直线AC 的解析式为y =−3x −3,当x =1时,y =−3x −3=−6,即P′(1,−6),∴当|PB −PC|达到最大值时,点P 的坐标为(1,−6).故答案为(1,−6).计算自变量为0时的函数值可得到C(0,−3),通过解方程x 2−2x −3=0可得到A(−1,0),B(3,0),则抛物线的对称轴为直线x =1,如图,连接PA ,则PA =PB ,根据三角形三边的关系得|PB −PC|=|PA −PC|≤AC(当点A 、C 、P 共线时取等号),延长AC 交直线x =1于点P′,即P′点为所求,如图,然后利用待定系数法求出直线AC 的解析式,从而可得P′点坐标.本题考查抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c(a,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程问题.利用对称和三角形三边的关系解决了最短路径问题.19.【答案】解:原式=−1−2√3+√3+1=−√3.【解析】先计算乘方、化简二次根式、代入三角函数值、零指数幂,再计算加减可得.本题主要考查实数的运算,解题的关键是掌握乘方的定义、二次根式的性质及零指数幂的规定.20.【答案】解:(1)如图所示:△A1B1C1即为所求;(2)(−4,−8);(−2,−2);(−8,−2);(3)18.【解析】【分析】本题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用所画图形得出对应点坐标即可;(3)直接利用三角形面积求法得出答案.【解答】解:(1)见答案;(2)由图可得:A1坐标为(−4,−8)、B1坐标为(−2,−2)、C1坐标为(−8,−2);故答案为:(−4,−8);(−2,−2);(−8,−2);×6×6=18,(3)△A1B1C1的面积为:12故答案为18.21.【答案】解:(1)观察条形统计图与扇形统计图知:喜欢跳绳的有10人,占25%,故总人数有10÷25%=40人;(2)喜欢足球的有40×30%=12人,喜欢跑步的有40−10−15−12=3人,故条形统计图补充为:=90人.(3)全校最喜爱篮球的人数比最喜爱足球的人数多1200×15−1240【解析】(1)用喜欢跳绳的人数除以其所占的百分比即可求得被调查的总人数;(2)用总人数乘以足球所占的百分比即可求得喜欢足球的人数,用总数减去其他各小组的人数即可求得喜欢跑步的人数,从而补全条形统计图;(3)用样本估计总体即可确定最喜爱篮球的人数比最喜爱足球的人数多多少.本题考查了扇形统计图、条形统计图及用样本估计总体的知识,解题的关键是能够读懂两种统计图并从中整理出进一步解题的有关信息,难度不大.22.【答案】解:(1)如图:总情况有25种,字母相同法有9种,概率为9;25(2)如图:总情况有20种,字母相同法有4种,概率为420=15.【解析】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.(1)先画树状图展示所有25种等可能的结果数,再找出两次抽出的卡片上的字母相同的结果数,然后根据概率公式求解;(2)先画树状图展示所有25种等可能的结果数,再找出两次抽出的卡片上的字母相同的结果数,然后根据概率公式求解;23.【答案】(1)证明:连接OA,则∠COA=2∠B,∵AD=AB,∴∠B=∠D=30°,∴∠COA=60°,∴∠OAD=180°−60°−30°=90°,∴OA⊥AD,即CD是⊙O的切线;(2)解:∵BC=4,∴OA=OC=2,在Rt△OAD中,OA=2,∠D=30°,∴OD=2OA=4,AD=2√3,所以S△OAD=12OA⋅AD=12×2×2√3=2√3,因为∠COA=60°,所以S扇形COA =60π⋅22360=23π,所以S阴影=S△OAD−S扇形COA=2√3−2π3.【解析】(1)连接OA,则得出∠COA=2∠B=2∠D=60°,可求得∠OAD=90°,可得出结论;(2)可利用△OAD的面积−扇形AOC的面积求得阴影部分的面积.本题主要考查切线的判定及扇形面积的计算,证明切线时,连接过切点的半径是解题的关键.24.【答案】(1)证明:∵∠DMB是△AMF的外角,∴∠DMB=∠AFM+∠A,∵∠DMB=∠BMG+∠DME,且∠A=∠DME,∴∠AFM=∠BMG,∵∠A=∠B,∴△AMF∽△BGM;(2)解:当∠DME=∠A=∠B=45°时,可得AC⊥BC且AC=BC,∵M为AB的中点,∴AM=BM=2√2.∵△AMF∽△BGM,∴AMBG =AFBM,∴BG =AM⋅BM AF =2√2×2√23=83, ∵AC =BC ,AC 2+BC 2=AB 2=(4√2)2=32,∴AC =BC =4,∴CG =BC −BG =4−83=43,CF =AC −AF =4−3=1, ∴FG =√CF 2+CG 2=√12+(43)2=53.【解析】本题考查了相似三角形的判定与性质,属于较难题.(1)根据题意,可得∠AFM =∠BMG ,即可证得△AMF∽△BGM ;(2)由∠DME =∠A =∠B =45°,可得AC ⊥BC 且AC =BC ,又由△AMF∽△BGM ,即可求得BG 的长,进而可求得CF 与CG 的长,然后由勾股定理求得FG 的长. 25.【答案】解:在Rt △ARL 中,∵LR =AR ⋅cos30°=60×√32=30√3(km),AL =AR ⋅sin30°=30(km),在Rt △BLR 中,∵∠BRL =45°,∴RL =LB =30√3,∴AB =LB −AL =(30√3−30)km ,答:火箭在这n 秒中上升的高度为(30√3−30)km【解析】分别在Rt △ALR ,Rt △BLR 中,求出AL 、BL 即可解决问题.本题考查的是解直角三角形的应用−仰角俯角问题,锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的概念解决问题.26.【答案】解:(1)依题意,得y =(60−30−x)⋅(100+20x)=−20x 2+500x +3000, 1≤x ≤30,且x 为正整数;(2)y =−20x 2+500x +3000=−20(x −12.5)2+6125,∵1≤x ≤30,且x 为正整数,∴当x 取12或13时,有最大值,为6120,∴6120元是最大利润.(3)当y =5000时,−20(x −12.5)2+6125=5000,解得:x 1=5,x 2=20,又∵x ≤18,∴当5⩽x ⩽18且x 为正整数时,w ⩾5000即每星期的利润不低于5000元.【解析】本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.(1)根据利润y =每件利润×销售量,每件利润=60−30−x ,销售量=100+20x ,即可得y 与x 的函数关系式以及自变量x 的取值范围;(2)根据(1)的关系式配方后确定最大利润即可;(3)当y =5000时x 有两个解,可推出5≤x ≤20时,y ≥5000.再由每件商品降价不超过18元,确定x 的在什么范围内.27.【答案】解:(1)∵y =ax 2−9ax +18a =a(x −92)2−94a ,∴顶点C(92,−94a).作CM ⊥x 轴于M ,则OM =92,CM =|−94a|.当y =0时,ax 2−9ax +18a =0,解得x 1=3,x 2=6,∴A(3,0),B(6,0).∵∠BDO =∠CAB ,∠CAB =∠DAO ,∴∠DAO =∠BDO .在△ODA 与△OBD 中,{∠DAO =∠BDO ∠AOD =∠DOB =90∘, ∴△ODA∽△OBD ,∴OD OB =OA OD ,即OD 6=3OD ,∴OD =3√2.∵CM//OD ,∴OD CM =OA AM ,即3√2CM =392−3,∴CM =3√22, ∴|−94a|=3√22, ∴a =±2√23, ∴二次函数的解析式为y =2√23x 2−6√2x +12√2或y =−2√23x 2+6√2x −12√2;(2)存在.连接OC ,则OC =OD .∴∠ODC =∠OCD .∵CM//OD ,∴∠ODC =∠DCM ,∴∠OCD =∠DCM .作AN ⊥OC 于N ,AN =AM =32.∵sin∠AON =AN OA =323=12, ∴∠AON =30°,∴CM =OM ⋅tan30°=92×√33=3√32, ∴|−94a|=3√32, ∴a =±2√33, ∴二次函数的解析式为y =2√33x 2−6√3x +12√3或y =−2√33x 2+6√3x −12√3.【解析】(1)利用配方法求出抛物线y =ax 2−9ax +18a 的顶点C 的坐标为(92,−94a).作CM ⊥x 轴于M ,则OM =92,CM =|−94a|.求出A(3,0),B(6,0).再证明△ODA∽△OBD ,根据相似三角形对应边成比例求出OD =3√2.根据平行线分线段成比例定理得出OD CM =OA AM ,求得CM =3√22,那么|−94a|=3√22,求出a ,即可得到二次函数的解析式;(2)连接OC ,根据矩形的性质得出OC =OD ,那么∠ODC =∠OCD.再证明∠OCD =∠DCM.作AN ⊥OC 于N ,根据角平分线的性质得出AN =AM =32.由sin∠AON =AN OA =12,得出∠AON =30°,求出CM =OM ⋅tan30°=3√32,那么|−94a|=3√32,求出a ,即可得到二次函数的解析式.本题是二次函数的综合题,其中涉及到二次函数的性质,二次函数图象上点的坐标特征,相似三角形的判定与性质,平行线分线段成比例定理,平行线的性质,角平分线的性质,三角函数定义等知识,综合性较强,有一定难度.利用方程思想与数形结合是解题的关键. 28.【答案】证明:(1)∵AB =AC ,∴∠B =∠ACB .∵EF =EC ,∴∠EFC =∠ECF ,∵∠EFC=∠B+∠BEF,又∵∠ECF=∠ACB+∠ACE,∴∠BEF=∠ACE,∵∠EAC是公共角,∴△AEP∽△ACE,∴AEAC =APAE,∴AE2=AP⋅AC,(2)∵∠B=∠ACB,∠ECF=∠EFC,∴△ECB∽△PFC.∴S△PFCS△ECB =(FCCB)2,过点E作EH⊥CF于点H,∵EH经过圆心,EH⊥CF,∴CH=12FC=12x.∴BH=4−12x,在Rt△BEH中,∵tan∠B=EHBH =12,∴EH=2−14x.∴S△ECB=12BC⋅EH=12×4×(2−14x)=4−12x,∴y4−12x=(x4)2.∴y=8x2−x332(0<x<4),(3)①当点F在线段BC上时,∵FPEF =12,∴PEEF =PEEC=12,∵△AEP∽△ACE.∴AEAC =PEEC,∴AE=12AC,过点A作AM⊥BC,垂足为点M.∵AB=AC,BC=4,∴BM=12BC=2,在Rt△ABM中,∵tan∠B=12,∴AM=1,AB=AC=√5∴AE=√52,∴BE=3√52,②当点F在线段BC延长线上时,∵∠EFC=∠ECF,∠EFC=∠FCP+∠P,∠ECF=∠B+∠BEC.又∵∠B=∠ACB,∠ACB=∠FCP,∴∠B=∠FCP.∴∠P=∠BEC.∵∠EAC是公共角,∴△AEP∽△ACE,∴AEAC =PEEC,∵FPEF =12,∴PEEF =PEEC=32,∴AE=32AC=32√5,∴BE=5√52,综上所述,BE=3√52或5√52.【解析】此题是圆的综合题,主要考查了圆的性质,锐角三角函数,相似三角形的判定和性质,判断出△AEP∽△ACE是解本题的关键.(1)先判断出∠EFC=∠ECF,再判断出∠BEF=∠ACE,即可得出结论;(2)先判断出CH=12FC=12x.进而得出BH=4−12x,即可得出结论;(3)分两种情况,判断出两三角形相似,得出比例式进而得出AE与AC的关系,即可得出结论.。

2020-2021学年江苏省无锡市江阴市九年级上学期数学期末试题及答案

2020-2021学年江苏省无锡市江阴市九年级上学期数学期末试题及答案

2020-2021学年江苏省无锡市江阴市九年级上学期数学期末试题及答案一、选择题(本大题共有10小题,每小题3分,共30分,在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卷上相应的选项标号涂黑)1. cos30°=( )A. 12【答案】B【解析】【分析】直接根据cos30°进行回答即可.【详解】由特殊角的三角函数值可知,cos30° 故选B .【点睛】本题考查的是特殊角的三角函数值,熟练掌握特殊角的三角函数值是解答此类问题的关键.2. 一组数据1,2,2,3,4的众数是( )A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据众数的定义判断即可.【详解】解:数据1,2,2,3,4中,2出现了两次,出现的次数最多,这组数据的众数是2,故选:B . 【点睛】本题考查了众数的概念,解题关键是掌握众数的概念,注意:在一组数据中,众数可能不唯一. 3. 如果3x =4y (y≠0),那么下列比例式中成立的是( )A. B. C. D. 43x y =34x y =34x y =43=x y【答案】A【解析】【分析】根据比例的性质,可得答案.【详解】解:A .由比例的性质,得3x=4y 与3x=4y 一致,故A 符合题意;B .由比例的性质,得4x=3y 与3x=4y 不一致,故B 不符合题意;C .由比例的性质,得4x=3y 与3x=4y 不一致,故C 不符合题意;D .由比例的性质,得xy=12与3x=4y 不一致,故D 不符合题意.故选:A .【点睛】本题考查了比例的性质,利用比例的性质是解答本题的关键.4. 关于x 的一元二次方程的一个根为,则m 的值为( )2x 2x m 0-+=1-A.B. C. 1 D. 23-1-【答案】A【解析】【分析】将代入原方程即可求出结果.1x =-【详解】解:将代入原方程得,解得.1x =-120m ++=3m =-故选:A .【点睛】题考查一元二次方程根的定义,解题的关键是掌握一元二次方程根的定义.5. 若将抛物线y=2x 2向上平移3个单位,所得抛物线的解析式为( )A. y=2x 2+3B. y=2x 2﹣3C. y=2(x﹣3)2D. y=2(x+3)2【答案】A【解析】【详解】解:由“上加下减”的原则可知,将二次函数y=2x 2向上平移3个单位可得到函数y=2x 2+3,故选A .6. 如图,点A 、B 、C 在⊙O 上,点D 是AB 延长线上一点,若∠CBD=65°,则∠AOC 的度数为( )A. 115°B. 125°C. 130°D. 135°【答案】C【解析】 【分析】求出∠ABC,再求出它所对的弧对的圆心角,即可求∠AOC.【详解】解:∵∠CBD=65°,∴∠ABC=180°-65°=115°,优弧AC 所对的圆心角的度数为:115°×2=230°,∠AOC=360°-230°=130°,故选:C .【点睛】本题考查了圆周角的性质,解题关键是求出圆周角,根据同弧所对的圆周角和圆心角的关系求角.7. 圆锥的母线长为8cm ,底面半径为6cm ,则圆锥的侧面积是 ( )A. 96πcm 2B. 60πcm 2C. 48πcm 2D. 24πcm 2 【答案】C【解析】【分析】根据圆锥的侧面积=×底面周长×母线长计算即可求解.12【详解】解:底面半径为6cm ,则底面周长=12π, 侧面面积=×12π×8=48πcm 2.12故选C . 【点睛】本题考查圆锥的计算,解题的关键是熟练掌握圆锥的侧面积=×底面周长×母线12长.8. 已知二次函数y =ax 2+bx+c (a≠0)的图像如图所示,则下列结论:①abc 0;②a﹣b+c >0;③4a﹣2b+c 0,其中结论正确的个数为( )><A. 0个B. 1个C. 2个D. 3个【答案】D【解析】 【分析】由抛物线开口向下,得到a <0,再由对称轴在y 轴左侧,得到a 与b 同号,可得出b <0,又抛物线与y 轴交于正半轴,得到c >0,可得出abc >0,得到①正确;根据图象知,当x=﹣1时,y >0,即a﹣b+c>0,得到②正确;根据图象知,当x=﹣2时,y <0,即4a﹣2b+c<0,得到③正确,从而得出结论.【详解】解:∵抛物线的开口向下,∴a<0.∵, 02b a-<∴b<0.∵抛物线与y 轴交于正半轴,∴c>0,∴abc>0,故①正确;根据图象知,当x=﹣1时,y >0,即a﹣b+c>0,故②正确;根据图象知,当x=﹣2时,y <0,即4a﹣2b+c<0,故③正确.则其中正确的有3个,为①②③.故选:D .【点睛】本题考查了二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0)来说,a 的符号由抛物线开口方向决定;b 的符号由对称轴的位置及a 的符号决定;c 的符号由抛物线与y 轴交点的位置决定;此外还要注意利用抛物线的对称性及x=﹣1,﹣2时对应函数值的正负.9. 如图,在平面直角坐标系中,点A 的坐标是(4,0),点B 的坐标是(3,4),点P 是y 轴正半轴上的动点,连接AP 交线段OB 于点Q ,若△OPQ 是等腰三角形,则点P 的坐标是( )A. (0,)B. (0,) 5343C. (0,)或(0,)D. (0,)或(0,) 4316353163【答案】C 【解析】【分析】利用待定系数法分别求出OB 、PA 的函数关系式,设,,并由P 、(0,)P m 4(,)3Q n n Q 点坐标,可表示出OP 、OQ 和PQ ,根据△OPQ 是等腰三角形,可得或OP OQ =OP PQ =或,则可得到关于m 的方程,求得m 的值,即可求得P 点坐标.OQ PQ =【详解】解:设OB 的关系式为,y kx =将B (3,4)代入得:, 43k =∴, 43OB y x =设,, (0,)P m 4(,)3Q n n ∴,,, OP m=53OQ n ==PQ =设PA 的关系式为,将,代入得:y kx b =+(0,)P m (4,0)A , 40b m k b =⎧⎨+=⎩解得, 4b m m k =⎧⎪⎨=-⎪⎩∴, 4PA m y x m =-+将,联立方程组得: 4PA m y x m =-+43OB y x =, 443PA OB m y x m y x ⎧=-+⎪⎪⎨⎪=⎪⎩解得, 12163Q m x n m==+若△OPQ 是等腰三角形,则有或或,OP OQ =OP PQ =OQ PQ =当时,,, OP OQ =53m n =12163m n m =+即, 5123163m m m=⨯+解得,则P 点坐标为(0,), 43m =43当时,,, OP PQ =m =12163m n m =+解得,不合题意,舍去, 176m =-当时,根据等腰三角形性质可得:点Q 在OP 的垂直平分线上,, OQ PQ =12Q y OP =∴,且, 4132n m =12163m n m=+即, 412131632m m m ⨯=+解得,则P 点坐标为(0,) 163m =163综上可知存在满足条件的点P ,其坐标为(0,)或(0,). 43163故选:C . 【点睛】本题是一次函数的综合问题,考查了待定系数法、等腰三角形的性质等知识,掌握待定系数法与两点间的距离公式并注意分类讨论思想及方程思想的应用是解题的关键,综合性较强.10. 如图,正方形ABCD 中,AB =4,E 是AD 上一点,且AE =1,F 、G 是AB 、CD 上的动点,且BE⊥FG,连接EF 、FG 、BG ,当EF+FG+BG 的值最小时,CG 的长为( )A. 2B. C. D. 16985125【答案】D【解析】 【分析】由BE⊥FG,可得到BE=FG ,而BE 是定值,要使EF+FG+BG 的值最小,只需EF+BG 最小即可.设CG=x ,可得.设M (x ,0),P (0,4),Q (3,1),则通过构造新图形(图2),把问题转化为“将军饮马问题”,求解即可.【详解】过G 作GH⊥AB 于H ,GH 、BE 相交于I ,BE 、FG 相交于O ,如图1.∵GH⊥AB,∴∠BHI=∠FHG=90°,∴∠HBI+∠HIB=90°.∵FG⊥BE,∠IOG=90°,∴∠OGI+∠OIG=90°.∵∠HIB=∠OIG,∴∠HBI=∠OGI.∵ABCD是正方形,∴AB=BC,∠A=∠ABC=∠C=90°.∵∠BHI=90°,∴HBCG是矩形,∴HG=BC,BH=CG,∴AB=HG.∵∠A=90°,∠FHG=90°,∴∠A=∠FHG.∵∠HBI=∠OGI,AB=HG,∠A=∠FHG,∴△AEB≌△HFG,∴EB=FG,AE=HF.是定值,==∴要使EF+FG+BG的值最小,只需EF+BG最小即可.设CG=x,则BH=x.∵FH=AE=1,∴AF=4-1-x=3-x,==,,+设M (x ,0),P (0,4),Q (3,1),则 如图2,作P (0,4)关于x 轴的对称点P',则P' (0,-4). 连结P'Q 交x 轴于点M ,连结PM ,则MQ+MP=MQ+MP'=P'Q 最小. 过Q 作QN⊥x 轴于N ,则QN=1,ON=3,OP'=4.OM=x , ∴MN=ON-OM=3-x.∵∠QNM=∠P'OM=90°,∠QMN=∠P'MO,∴△QNM∽△P'OM,∴, 'QN MN OP OM=∴, 13=4x x-∴x=. 125故选:D .【点睛】本题考查了正方形的性质,相似三角形的判定与性质.把原题转化为“将军饮马问题”是解答本题的关键.二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程,只需把答案直接填写在答题卷上相应的位置)11. 一组数据1,3,8,9,6,4的极差是_____.【答案】8【解析】【分析】找出数据中的最大值与最小值进行相减即可得出答案.【详解】解:数据1,3,8,9,6,4的极差是9﹣1=8.故答案为:8.【点睛】本题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.12. 若△ABC∽△DEF,且相似比为1:2,则△ABC 与△DEF 面积比_____________.【答案】1:4【解析】【分析】由题意直接根据相似三角形面积的比等于相似比的平方进行求值即可.【详解】解:∵△ABC∽△DEF,且△ABC 与△DEF 的相似比为1:2,∴△ABC 与△DEF 的面积比为1:4,故答案为:1:4【点睛】本题考查的是相似三角形的性质,熟练掌握相似三角形面积的比等于相似比的平方是解题的关键.13. 一个半径为4cm 的圆内接正六边形的周长等于_____cm .【答案】24【解析】【分析】根据圆内接正六边形的边长等于半径,即可求得边长,进而求得周长.【详解】解:∵圆的半径为4cm ,∴圆内接正六边形的半径为4cm ,则边长是4cm ,∴正六边形的周长是:4×6=24(cm ).故答案是:24.【点睛】本题考查正多边形与圆,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题.14. 在△ABC 中,∠C=90°,AB =13,BC =5,则tanB =________. 【答案】 125【解析】【详解】∵∠C=90°,AB=13,BC=5,=12, ∴tanB=, 125AC BC =故答案为. 12515. 一种药品经过两次降价,药价从每盒100元下调至64元,设该药品平均每次降价的百分率为x ,则x 的值是_____.【答案】20%.【解析】【分析】根据该药品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:依题意得:100(1x )2=64,-解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故答案为:20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16. 如图,C 是线段AB 的一个黄金分割点(AC BC ),若AB =2,则BC 的长为_____(结果<保留根号).1-【解析】【分析】根据黄金分割点的定义,知AC 是较短线段,由黄金分割的公式:较长的线段=原线倍,计算即可. 【详解】解:∵线段AB=2,点C 是AB 黄金分割点,AC <BC ,∴BC=21. =.1-【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=,倍,较长的线段=倍. 17. 如图,四边形OABC 中,OA 在x 轴的正半轴上,∠C=∠OAB=90°,AB =3,BC =5,cos∠AOC =,则点C 的坐标是_____. 35【答案】(,6) 92【解析】【分析】过点C 作CD⊥x 轴于D ,过点B 作BE⊥CD 轴于E ,结合已知可得∠BCD=∠AOC,根据cos∠BCD=,BC =5可求出CE =3,利用矩形的判定可求得DE =AB =3,从而得35CE BC =出CD =CE+DE =6,再根据cos∠AOC=得,最后利用勾股定理求出OD ,即可3553OC OD =求解点C 的坐标.【详解】解:过点C 作CD⊥x 轴于D ,过点B 作BE⊥CD 轴于E ,∵∠OCD+∠BCD=90°,∠OCD+∠AOC=90°, ∴∠BCD=∠AOC. ∵cos∠AOC=, 35∴cos∠BCD=. 35CE BC =∴. 35CE BC =∵BC=5, ∴CE=3.∵∠CDA=∠BED=∠OAB=90°,∴四边形ABED 是矩形. ∴DE=AB =3. ∴CD=CE+DE =6. ∵cos∠AOC=, 35OD OC =∴. 53OC OD =∴在Rt△OCD 中,OD 2+CD 2=OC 2. 即OD 2+62=(OD)2,解得OD =. 5392∴点C 的坐标是(,6). 92故答案为:(,6). 92【点睛】此题考查了锐角三角函数、矩形的判定与性质等知识,掌握锐角三角形函数的应用及利用辅助线构造直角三角形是解题的关键. 18. 如图,二次函数y =﹣2的图像与x 轴交于A 、B 两点(A 在B 的左侧),与241033x x -y 轴交于点C ,连接BC ,在线段BC 上有一动点P ,过点P 作y 轴的平行线交二次函数的图像于点N ,交x 轴于点M ,若△CPN 与△BPM 相似,则点P 的坐标为_____.【答案】或 51(,)23-1113(,)812-【解析】【分析】分两种情形:当CN//AB 时,∠PBM=∠PCN,此时△PCN∽△PBM,当NC⊥BC 时,∠PCN=∠PMB=90°,此时△PCN∽△PMB,分别求解即可. 【详解】解:对于抛物线y=-2,令x=0,得到y=-2,可得C(0,-2), 241033x x -令y=0,可得0=-2,解得x=3或-, 241033x x -12∴A(-,0),B(3,0), 12设直线BC 的解析式为y=kx+b ,, 302k b b +=⎧⎨=-⎩解得, 232k b ⎧=⎪⎨⎪=-⎩∴直线BC 的解析式为y=x-2, 23设P(m ,m-2), 23∵∠BPM=∠CPN,当CN//AB 时,∠PBM=∠PCN,此时△PCN∽△PBM, 把y=-2代入y=-2,得 241033x x --2=-2, 241033x x -解得 x 1=,x 2=0(舍去), 52∴N(,-2), 52把x=代入y=x-2,得5223y=×-2=, 235213-∴P ,51(,23-当NC⊥BC 时,∠PCN=∠PMB=90°,此时△PCN∽△PMB, 过点N 作NH⊥y 轴于H .设N(n ,n 2-n-2),43103∵∠OCB+∠NCH=90°,∠OCB+∠OBC=90°, ∴∠OBC=∠NCH, ∴tan∠NCH=tan∠OBC, ∴, 23NH OC CH OB ==∴,2241032233nn n =--++∴n 1=,n 2=0(舍去), 118∴P , 1113(,)812-综上所述,满足条件的点P 的坐标为或, 51(,)23-1113(,)812-故答案为:或. 51(,23-1113(,)812-【点睛】本题考查相似三角形的判定和性质,锐角三角函数的知识,二次函数与坐标轴的交点问题,待定系数法求一次函数解析式,二次函数的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题. 三、解答题(本大题共10小题,共84分,请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. (1°; 0(2)2sin 30π+-(2)解方程:x 2+2x﹣2=0.【答案】(1)1(2)x 1,x 2. 【解析】【分析】(1)先计算算术平方根、0指数、三角函数值,再加减即可; (2)用配方法解方程即可.【详解】解:(1°, 0(2)2sin 30π-+-= 311--=1.(2)x 2+2x﹣2=0, 移项得,x 2+2x =2, 两边加1得,x 2+2x+1=3, 配方得,(x+1)2=3,开方得, x+1=x 1x 2【点睛】本题考查了实数的计算和解一元二次方程,解题关键是熟记特殊角三角函数值,会选择恰当的方法解一元二次方程.20. 某学校为了了解疫情期间学生在家体育锻炼情况,从全体学生中随机抽取若干学生进行调查,以下是根据调查数据绘制的统计图表的一部分,根据信息回答下列问题: 某校学生疫情期间在家锻炼情况的扇形统计图:组别 平均每日体育锻炼时间(分)人数 A 0x 10 ≤≤36 B 10x 20 <≤ C 20x 30 <≤84 Dx 30>48(1)本次调查共 人; (2)抽查结果中,B 组有 人;(3)在抽查得到的数据中,中位数位于 组(填组别);(4)若该校共有学生2400人,则估计平均每日锻炼超过20分钟的学生有 人. 【答案】(1)240;(2)72;(3)C ;(4)1320 【解析】【分析】(1)用D 组的人数除以其所占百分比可得; (2)总人数减去其他类别人数即可求得B 组的人数; (3)根据中位数的定义即可求解;(4)用总人数乘样本中平均每日锻炼超过20分钟的人数所占比例即可求解. 【详解】解:(1)本次调查共48÷20%=240(人), 故答案为:240;(2)抽查结果中,B 组有240-(36+84+48)=72(人), 故答案为:72;(3)∵共有240个数据,其中位数是第120、121个数据的平均数,而第120、121个数据均落在C 组,∴在抽查得到的数据中,中位数位于C 组, 故答案为:C ;(4)估计平均每日锻炼超过20分钟的学生有2400×=1320(人), 8448240故答案为:1320.【点睛】本题考查频数(率)分布表、扇形统计图、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21. 九年级某班要召开一次“走近抗疫英雄,讲好中国故事”主题班会活动,李老师制作了编号为A 、B 、C 、D 的4张卡片(如图,除编号和内容外,其余完全相同),并将它们背面朝上洗匀后放在桌面上.(1)小明随机抽取1张卡片,抽到卡片编号为B 的概率为 ;(2)小明从4张卡片中随机抽取1张(不放回),小丽再从余下的3张卡片中随机抽取1张,然后根据抽取的卡片讲述相关英雄的故事,求小明、小丽两人中恰好有一人讲述钟南山抗疫故事的概率(请用“画树状图”或“列表”等方法写出分析过程). 【答案】(1);(2)图见解析,. 1412【解析】【分析】(1)直接利用概率公式求解即可;(2)根据题意先画树状图列出所有等可能结果数的,根据概率公式求解可得. 【详解】解:(1)∵共有4张卡片,∴小明随机抽取1张卡片,抽到卡片编号为B 的概率为, 14故答案为:; 14(2)画树状图如下:共有12种等可能的结果数,其中小明、小丽两人中恰好有一人讲述钟南山抗疫故事的有6种结果,所以小明、小丽两人中恰好有一人讲述钟南山抗疫故事的概率为:. 61122【点睛】本题考查了概率的应用,掌握运用列表法或画树状图法列出所有可能的结果及概率的计算方法是解题的关键.22. 如图,在10×10的网格图内,建立如图所示的平面直角坐标系,△ABC 的顶点坐标分别为A (﹣1,2)、B (2,3)、C (3,1).(1)以原点O 为位似中心,将△ABC 按相似比2:1放大,得△A 1B 1C 1,请画出△A 1B 1C 1; (2)以原点O 为旋转中心,将△ABC 按顺时针方向旋转90°,画出旋转后的△A 2B 2C 2.直接写出点B 到B 2所经过的路径长 .【答案】(1)答案见详解;(2π. 【解析】【分析】(1)把A 、B 、C 的横纵坐标都乘以2得到A 1、B 1、C 1的坐标,然后描点连线即可; (2)利用网格特点和旋转性质画出A 、B 、C 的对应点A 2、B 2、C 2即可,然后利用弧长公式计算点B 到B 2所经过的路径长.【详解】解:(1)如图,△A 1B 1C 1为所作; (2)如图,△A 2B 2C 2为所作;OB ,==所以点B 到B 2所经过的路径长π. ==【点睛】本题考查了作图﹣位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k.也考查了旋转变换. 23. 江阴芙蓉大道城市快速路在2020年5月份通车,在安装路灯过程中,工人师傅发现垂直于地面的灯柱OA 与灯杆AB 相交成一定的角度才能产生光照效果,路灯采用锥形灯罩,在地面上的照射区域OC 长为8m ,从O 、C 两处测得路灯B 的仰角分别为∠BOC 和∠BCO,且tan∠BOC=4,tan∠BCO=. 43(1)求路灯B 到地面的距离;(2)若∠OAB=120°,求灯柱OA 的高度(结果保留根号).【答案】(1)路灯B 到地面的距离8m ;(2)灯柱OA m . 【解析】【分析】(1)过点B 作BF⊥OC 于F ,设BF =x .解直角三角形求得OF =x ,CF =x ,由1434OC =8求得x =8,据此知BF =8m ;(2)再过点A 作AG⊥BF 于点G ,求得∠BAG=∠OAB﹣∠OAG=30°.解直角三角形可得BG ,进而即可求得OA .【详解】解:(1)过点B 作BF⊥OC 于F ,设BF =x . 在Rt△BOF 中,∵tan∠BOC==4, BFOF∴OF=x , 14在Rt△BCF 中,∵tan∠BCO=, 43BF CF ∴CF=x , 34∵OC=8, ∴x+x =8, 1434∴x=8, ∴BF=8m ,即路灯B 到地面的距离8m ;(2)过点A 作AG⊥BF 于点G ,可知四边形AGFO 是矩形, ∵∠OAB=120°,∴∠BAG=∠OAB﹣∠OAG=120°﹣90°=30°. ∵OF=×8=2, 14∴AG=OF =2,在Rt△BAG 中,∵tan∠BAG=, BGAG∴BG=tan30°×2∴OA=GF (m ),即灯柱OA m .【点睛】本题主要考查解直角三角形仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力.24.如图,在△ABC 中,点D 是AB 上一点(不与A 、B 重合),过点D 作DE BC ,交AC 于点//E .连接CD ,若∠ACD=∠B. (1)求证:CD 2=DE•BC ; (2)若DE =3,BC =4,求的值. AEAD【答案】(1)证明见解析,(2 【解析】【分析】(1)证△CDE∽△BCD 即可;(2)根据DE =3,BC =4,求出CD ,再证△ADE∽△ACD,列比例式即可求. 【详解】(1)证明:∵DE BC , //∴∠CDE=∠BCD, ∵∠ACD=∠B, ∴△CDE∽△BCD,∴, CD DE BC CD=∴CD 2=DE•BC ;(2)由(1)得,CD 2=DE•BC∵DE=3,BC =4,∴CD=,∵DE BC ,//∴∠ADE=∠B,∵∠ACD=∠B,∴∠ADE=∠ACD∵∠A=∠A,∴△ADE∽△ACD,∴. AE DE AD CD ===【点睛】本题考查了相似三角形的判定与性质,解题关键是熟练运用相似三角形的判定定理进行证明.25. 如图,直线AB 经过⊙O 上一点C ,且OA =OB ,CA =CB .(1)求证:AB 是⊙O 的切线;(2)若AB =6,△AOB 的面积为9,求图中阴影部分的面积.【答案】(1)见解析;(2). 994π-【解析】【分析】(1)连接OC ,结合已知条件利用SSS 易证△AOC≌△BOC,再利用全等三角形的性质可得∠OCA=∠OCB=90°,然后利用切线的判定可得直线AB 与⊙O 相切;(2)根据AB =6和(1)中三角形的全等,可得AC =BC =3,根据△AOB 的面积为9,可得OC ,并推出∠AOB=90°,则可利用扇形面积公式与△AOB 的面积计算阴影部分的面积.【详解】(1)证明:如图,连接OC ,∵OA=OB ,CA =CB ,OC =OC ,∴△AOC≌△BOC(SSS ),∴∠OCA=∠OCB=90°,∴直线AB 与⊙O 相切;(2)解:∵△AOC≌△BOC,∴AC=BC =AB =3,12∵△AOB 的面积为9, ∴×AB•OC =9,12∴×6•OC =9,12∴OC=3,∴OC=AC ,∴△OAC 是等腰直角三角形,∴∠AOC=∠BOC=45°,∴∠AOB=90°, ∴S 阴影=S △AOB −S 扇形=. 29039993604ππ⋅-=-【点睛】本题考查了切线的判定和性质、全等三角形的判定和性质、扇形面积的计算等知识,解题的关键是掌握切线的判定与性质.26. 某公司最新研制出一种新型环保节能产品,成本每件40元,公司在销售过程中发现每天的销售量y (件)与销售单价x (元)之间的关系可以近似看作一次函数y =﹣10x+800.(1)该公司销售过程中,当销售单价x 为多少元时,每天获得的利润最大,最大利润是多少?(2)由于要把产品及时送达客户,公司每天需支付的物流费用是350元,为了保证每天支付物流费用后剩余的利润不少于1400元,则该产品的销售单价x (元)的取值范围是 .【答案】(1)当销售单价x 为4000元时,每天获得的利润最大,最大利润是4000元;(2)45≤x≤75.【解析】【分析】(1)设每天获得的利润为w ,根据利润等于每件的利润乘以销售量可得w 关于x 的二次函数,求得其对称轴,根据二次函数的性质可得答案;(2)用(1)中所得的利润函数减去350,再让其等于1400,可得关于x 的一元二次方程,求得方程的解,根据二次函数的性质可得答案.【详解】解:(1)设每天获得的利润为w ,由题意得:w =(−10x +800)(x −40)=−10x 2+1200x −32000,∴对称轴为直线x =, 12006022(10)b a -=-=⨯-∴当x =60时,w =−10×602+1200×60−32000=4000.∴当销售单价x 为4000元时,每天获得的利润最大,最大利润是4000元;(2)由(1)知w =−10x 2+1200x −32000,∵支付350元物流费用后剩余的利润不少于1400元,∴当−10x 2+1200x −32000−350=1400时,整理得:x 2−60x +3375=0,解得:x 1=45,x 2=75,∵二次函数w'=−10x 2+1200x −32000−350的二次项系数为负,对称轴为直线x =60, ∴当45≤x≤75时,每天支付物流费用后剩余的利润不少于1400元.故答案为:45≤x≤75.【点睛】本题考查了二次函数的应用,理清题中的数量关系并熟练掌握二次函数的图象与性质是解题的关键.27. 已知二次函数y =ax 2+k (a 0)的图像与y 轴交于点A (0,1),一次函数y =ax+2的图>像与二次函数的图像交于点P 、Q (P 在对称轴的左侧),与x 轴、y 轴交于点B 、C ,若PC :PB =1:3.(1)求二次函数的表达式和点Q 的坐标;(2)连接AP ,在二次函数的图像上是否存在点M ,使得∠MPQ=∠APQ?若存在,请求出12点M 的坐标,若不存在,请说明理由.【答案】(1)y =x 2+1(2)(,)或(1,1.5) 1211313918【解析】 【分析】(1)求出B 点、C 点坐标,根据比值,求出P 点坐标,代入解析式即可;(2)①过点P 作PE⊥y 轴,交抛物线于点M ,求出M 点坐标即可;②如图,在PQ 上方作∠MPQ=∠APQ,求出PM 解析式,再求交点即可.12【详解】解:(1)过点P 作PD 垂直于x 轴,垂足为D ,把A (0,1)代入y =ax 2+k 得,k=1;把x=0代入y =ax+2得,y=2,C 点坐标为(0,2),把y=0代入y =ax+2得,x=,B 点坐标为(,0), 2a -2a -∵PC:PB =1:3.∴, 34PD BD OC OB ==∵OC=2,OB= 2a∴PD=1.5,BD=,可得OD=, 32a 12a ∴P 点坐标为(,1.5),代入y =ax 2+1得,, 12a -11 1.54a +=解得, 12a =∴抛物线解析式为y =x 2+1;12(2)①过点P 作PE⊥y 轴,交抛物线于点M ,由(1)得,点E 的坐标为(0,1.5) ∵A 点坐标为(0,1),C 点坐标为(0,2),∴E 是AC 中点,∴PM 平分∠APQ,即∠MPQ=∠APQ12由(1)得,P 点坐标为(-1,1.5),根据对称性可知,M 点坐标为(1,1.5)②如图,在PQ 上方作∠MPQ=∠APQ,12由①得,∠CPE=∠CPM,过点C 作CF⊥PM,垂足为F ,过F 作y 轴垂线,垂足为N ,过P 点作PM⊥FN,垂足为M ,可知CF=CE=0.5,PE=PF=1,∵∠MPF+∠MFP=90°,∠NFC+∠MFP=90°,∴∠MPF=∠NFC,∵∠M=∠CNF=90°,∴△MPF∽△NFC, ∴, 2MP MF PF NF NC FC===设NC=a ,则MF=2a ,FN=1-2a ,MP=2(1-2a ),∵四边形MPEN 是矩形,∴MP=NE,∴2(1-2a )=a+0.5,解得,a=0.3,∴F 点坐标为(,), 25-2310设PM 解析式为y=kx+b,把F 、P 两点坐标代入得,22351032k b k b ⎧-+=⎪⎪⎨⎪-+=⎪⎩解得,, 43176k b ⎧=⎪⎪⎨⎪=⎪⎩PM 解析式为, 41736y x =+∵M 是PM 与抛物线交点,∴, 214171236x x +=+解得,, 12111,3x x =-=把代入得,y= 113x =41736y x =+13918∴M 点坐标为(,) 11313918综上得,M 点坐标为(,)或(1,1.5) 11313918【点睛】本题考查了二次函数的综合和二倍角问题,解题关键树立数形结合思想,分类讨论思想,并能够熟练运用知识和综合运用知识.28. 如图(1),在Rt△ABC 中,∠ACB=90°,∠B=30°,将△ABC 绕点C 按逆时针方向旋转一定角度后,得到△FEC,线段CE 与线段AB 交于点D (不与A 、B 重合),过A 、C 、D 三点的圆与CF 交于点G ,连接AG 、DG .(1)如图(2),当EF 恰好经过点A 时,求S△AGD :S△ABC 的值;(2)若S △AGD =S △ABC ,求的值. 16BD AD【答案】(1),(2)或. 143+3-【解析】 【分析】(1)根据圆内接四边形的性质可知∠GAD=90°,由旋转可知CF=CA ,易得△ACF 是等边三角形,证△ADG∽△BAC,用相似比即可求出面积比;【详解】解:(1)∵∠ACB=90°,∠B=30°,∴AB=2AC,∠BAC=60°,∵过A 、C 、D 三点的圆与CF 交于点G ,∴∠DAG+∠DCG=180°,∵∠DCG=90°,∴∠DAG=90°,∴∠GAC=30°,由旋转得,CF=CA ,∠F=60°,∵EF 恰好经过点A ,∴△ACF 是等边三角形,∴∠ACG=60°,∴∠AGC=90°,∴四边形AGCD 是矩形,∴AC=DG,∵∠ADG=∠ACG=60°,∴∠ADG=∠BAC,∵∠DAG=∠ACB=90°,∴△ADG∽△BAC, ∵ 12DG AC AB AB ==∴. 14AGC ABC S S ∆∆=(2)∵过A 、C 、D 三点的圆与CF 交于点G ,∴∠AGC+∠ADC=180°,∵∠BDC +∠ADC=180°,∴∠AGC=∠BDC,由(1)得,∠CAG=∠B=30°,∴△ACG∽△BCD,∵∠ACB=90°,∠B=30°,,tan AC B BC ==∴,AG AC BD BC ==设AG=a ,AC=b ,AD=c ,则,,AB=2b ,∵S △AGD =S △ABC , 162,,,代入2得,, 6ac =解得,,c a =,代入得, BD AD =或.3+3-.【点睛】本题考查了圆与相似的综合,解题关键是合理利用圆的性质,证明三角形相似,树立分类讨论思想,设参数,列方程.。

江苏省江阴市2019—2020学年九年级上学期期末数学试题

江苏省江阴市2019—2020学年九年级上学期期末数学试题

江苏省江阴市2019—2020学年九年级上学期期末数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.sin60°的值是( )A .12BC D2.若ABC ∆∽DEF ∆,相似比为1: 2,则ABC ∆与DEF ∆的周长比为( ) A .2:1 B .1: 2 C .4:1 D .1:4 3.体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的( )A .平均数B .频数C .中位数D .方差 4.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x = 5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,5,8OC cm CD cm ==,则AE =( )A .8cmB .5cmC .3cmD .2cm 6.如果将抛物线y =x 2向上平移1个单位,那么所得抛物线对应的函数关系式是( ) A .y =x 2+1 B .y =x 2﹣1 C .y =(x +1)2 D .y =(x ﹣1)2 7.某人沿着坡度为1:2.4的斜坡向上前进了130m ,那么他的高度上升了( ) A .50m B .100m C .120m D .130m 8.如图,在△ABC 中,AB=5,AC=3,BC=4,将△ABC 绕A 逆时针方向旋转40°得到△ADE ,点B 经过的路径为弧BD ,是图中阴影部分的面积为( )A .143π﹣6B .259πC .338π﹣3D +π9.已知二次函数()20y ax bx c a =++≠图象如图所示,对称轴为过点1,02⎛⎫- ⎪⎝⎭且平行于y 轴的直线,则下列结论中正确的是( )A .0abc >B .0a b +=C .20b c +>D .42a c b +< 10.如图,O 是ABC ∆的外接圆,60A ∠=︒,点P 是ABC ∆外一点,6BP =,3CP =,则线段OP 的最大值为( )A .9B .4.5C .D二、填空题 11.如果在比例尺为1:1000000的地图上,A 、B 两地的图上距离是5.8cm ,那么A 、B 两地的实际距离是_____km .12.已知x=1是关于x 的一元二次方程2x 2﹣x+a=0的一个根,则a 的值是_____. 13.二次函数2y x 2x m =-+的图象与x 轴只有一个公共点,则m 的值为________. 14.已知某小区的房价在两年内从每平方米8100元增加到每平方米12500元,设该小区房价平均每年增长的百分率为x ,根据题意可列方程为______.15.若圆锥的底面圆半径为2cm ,圆锥的母线长为5cm ,则圆锥的侧面积为______2cm .16.已知二次函数()20y ax bx c a =++≠中,函数y 与自变量x 的部分对应值如下表:y<时,x的取值范围是______.则当517.如图,ABCD中,点E、F分别是边AD、CD的中点,EC、EF分别交对DG GH HB=______.角线BD于点H、G,则::⊥,点O从B点出发,以每秒1个单位长度沿射线BA向18.如图,已知射线BP BA右运动;同时射线BP绕点B顺时针旋转一周,当射线BP停止运动时,点O随之停止运动.以O为圆心,1个单位长度为半径画圆,若运动两秒后,射线BP与O恰好有且只有一个公共点,则射线BP旋转的速度为每秒______度.三、解答题19.(1)计算:2sin603tan45︒-︒;(2)解方程:2410--=.x x20.某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A、B、C、D、E五个组,x表示测试成绩,A组:90100x;B组:8090x<;D组:x<;C组:7080 x<;E组:606070x<),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有______人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在______组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?21.现有A 、B 两个不透明的盒子,A 盒中装有红色、黄色、蓝色卡片各1张,B 盒中装有红色、黄色卡片各1张,这些卡片除颜色外都相同.现分别从A 、B 两个盒子中任意摸出一张卡片.(1)从A 盒中摸出红色卡片的概率为______;(2)用画树状图或列表的方法,求摸出的两张卡片中至少有一张红色卡片的概率. 22.如图,在平面直角坐标系中,ABC ∆的三个顶点都在格点上,点A 的坐标为()2,1-,请解答下列问题:(1)画出ABC ∆关于x 轴对称的111A B C ∆,点1A 的坐标为______;(2)在网格内以点()1,1为位似中心,把111A B C ∆按相似比2:1放大,得到222A B C ∆,请画出222A B C ∆;若边AC 上任意一点P 的坐标为(),m n ,则两次变换后对应点2P 的坐标为______.23.如图,Rt ABC ∆中,90ACB ∠=︒,D 是BC 的中点,CE AD ⊥于E .(1)求证:2CD DE DA =⋅;(2)当47BED ∠=︒时,求ABC ∠的度数.24.我校数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN 的长).直线MN 垂直于地面,垂足为点P ,在地面A 处测得点M 的仰角为60°,点N 的仰角为45°,在B 处测得点M 的仰角为30°,AB =5米.且A 、B 、P 三点在一直线上,请根据以上数据求广告牌的宽MN 的长.(结果保留根号)25.如图,AB 为O 的直径,C 、F 为O 上两点,且点C 为BF 的中点,过点C 作AF 的垂线,交AF 的延长线于点E ,交AB 的延长线于点D .(1)求证:DE 是O 的切线;(2)当2BD =,3sin 5D =时,求AE 的长. 26.某商场将进货单价为30元的商品以每个40元的价格售出时,平均每月能售出600个,调查表明:这种商品的售价每上涨1元,其销售量就减少10个.(1)为了使平均每月有10000元的销售利润且尽快售出,这种商品的售价应定为每个多少元?(2)当该商品的售价为每个多少元时,商场销售该商品的平均月利润最大?最大利润是多少?27.如图,已知二次函数22y x x m =-+的图象与x 轴交于点A 、B ,与y 轴交于点C ,直线AC 交二次函数图象的对称轴于点D ,若点C 为AD 的中点.(1)求m 的值;(2)若二次函数图象上有一点Q ,使得tan 3ABQ ∠=,求点Q 的坐标;(3)对于(2)中的Q 点,在二次函数图象上是否存在点P ,使得QBP ∆∽COA ∆?若存在,求出点P 的坐标;若不存在,请说明理由.28.已知矩形ABCD 中,1AB =,2BC =,点E 、F 分别在边BC 、AD 上,将四边形ABEF 沿直线EF 翻折,点A 、B 的对称点分别记为A '、B '.(1)当23BE =时,若点B '恰好落在线段AC 上,求AF 的长; (2)设BE m =,若翻折后存在点B '落在线段AC 上,则m 的取值范围是______.参考答案1.C【分析】根据特殊角的三角函数值解答即可.【详解】sin60° 故选C.【点睛】本题考查特殊角的三角函数值,熟记几个特殊角的三角函数值是解题关键.2.B【分析】根据相似三角形的性质:周长之比等于相似比解答即可.【详解】解:∵ABC ∆∽DEF ∆,相似比为1: 2,∴ABC ∆与DEF ∆的周长比为1: 2.故选:B.【点睛】本题考查的是相似三角形的性质,属于应知应会题型,熟练掌握相似三角形的性质是解题关键.3.D【分析】要判断成绩的稳定性,一般是通过比较两者的方差实现,据此解答即可.【详解】解:要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的方差.故选:D.【点睛】本题考查了统计量的选择,属于基本题型,熟知方差的意义是解题关键.4.D【分析】先将方程左边提公因式x ,解方程即可得答案.x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.5.A【分析】根据垂径定理可得出CE的长度,在Rt△OCE中,利用勾股定理可得出OE的长度,再利用AE=AO+OE即可得出AE的长度.【详解】∵弦CD⊥AB于点E,CD=8cm,∴CE=12CD=4cm.在Rt△OCE中,OC=5cm,CE=4cm,∴=3cm,∴AE=AO+OE=5+3=8cm.故选A.【点睛】本题考查了垂径定理以及勾股定理,利用垂径定理结合勾股定理求出OE的长度是解题的关键.6.A【分析】根据向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:∵抛物线y=x2向上平移1个单位后的顶点坐标为(0,1),∴所得抛物线对应的函数关系式是y=x2+1.故选:A.本题考查二次函数的平移,利用数形结合思想解题是本题的解题关键.7.A【分析】根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC 的值,即可解题.【详解】解:如图,根据题意知AB=130米,tanB=ACBC=1:2.4,设AC=x,则BC=2.4x,则x2+(2.4x)2=1302,解得x=50(负值舍去),即他的高度上升了50m,故选A.【点睛】本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.8.B【解析】【分析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可.【详解】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED 的面积=△ABC 的面积,由图形可知,阴影部分的面积=△AED 的面积+扇形ADB 的面积﹣△ABC 的面积,∴阴影部分的面积=扇形ADB 的面积=2405253609ππ⨯=,故选B .【点睛】考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB 的面积是解题的关键.9.D【分析】由抛物线开口向上,与y 轴交于负半轴,对称轴在y 轴左侧即可判断a 、c 、b 的符号,进而可判断A 项;抛物线的对称轴为直线x =﹣12,结合抛物线的对称轴公式即可判断B 项; 由图象可知;当x =1时,a +b +c <0,再结合B 项的结论即可判断C 项;由(1,0)与(﹣2,0)关于抛物线的对称轴对称,可知当x =-2时,y <0,进而可判断D 项.【详解】解:A 、∵抛物线开口向上,与y 轴交于负半轴,对称轴在y 轴左侧,∴a >0,c <0,2b a -<0,∴b >0,∴abc <0,所以本选项错误;B 、∵抛物线的对称轴为直线x =﹣12,∴122b a -=-,∴a ﹣b =0,所以本选项错误; C 、∵当x =1时,a +b +c <0,且a=b ,∴20b c +<,所以本选项错误;D 、∵(1,0)与(﹣2,0)关于抛物线的对称轴对称,且当x =1时,y <0,∴当x =-2时,y <0,即4a ﹣2b +c <0,∴42a c b +<,所以本选项正确.故选:D.【点睛】本题考查了二次函数的图象与性质,属于常考题型,熟练掌握抛物线的性质是解题关键. 10.C【分析】连接OB 、OC ,如图,则△OBC 是顶角为120°的等腰三角形,将△OPC 绕点O 顺时针旋转120°到△OMB 的位置,连接MP ,则∠POM =120°,MB=PC =3,OM=OP ,根据等腰三角形的性质和锐角三角函数可得 PM =,于是求OP 的最大值转化为求PM 的最大值,因为MB BP PM +≤,所以当P 、B 、M 三点共线时,PM 最大,据此求解即可.【详解】解:连接OB 、OC ,如图,则OB=OC ,∠BOC=2∠A=120°,将△OPC 绕点O 顺时针旋转120°到△OMB 的位置,连接MP ,则∠POM =120°,MB=PC =3,OM=OP ,过点O 作ON ⊥PM 于点N ,则∠MON =60°,MN =12PM ,在直角△MON 中,sin 602MN OM OM =︒=,∴PM ==, ∴当PM 最大时,OP 最大, 又因为MB BP PM +≤,所以当P 、B 、M 三点共线时,PM 最大,此时PM=3+6=9,所以OP=故选:C.【点睛】本题考查了圆周角定理、等腰三角形的性质、旋转的性质、解直角三角形和两点之间线段最短等知识,具有一定的难度,将△OPC 绕点O 顺时针旋转120°到△OMB 的位置,将求OP 的最大值转化为求PM 的最大值是解题的关键.11.58【分析】设A、B两地的实际距离是x厘米,根据比例尺的性质列出方程,求出x的值,再进行换算即可得出答案.【详解】设A.B两地的实际距离是x厘米,∵比例尺为1:1000000,A.B两地的图上距离是5.8厘米,∴1:1000000=5.8:x,解得:x=5800000,∵5800000厘米=58千米,∴A、B两地的实际距离是58千米.故答案为58.【点睛】考查图上距离,实际距离,和比例尺之间的关系,注意单位之间的转换.12.﹣1.【解析】【分析】将x=1代入方程得关于a的方程, 解之可得.【详解】解:将x=1代入方程得:2-1+a=0,解得:a=-1,故答案为: -1.【点睛】本题主要考查一元二次方程的解.13.1【分析】根据△=b2-4ac=0时,抛物线与x轴有1个交点得到△=(-2)2-4m=0,然后解关于m的方程即可.【详解】根据题意得△=(-2)2-4m=0,解得m=1.故答案是:1.【点睛】考查了抛物线与x 轴的交点:对于二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0),△=b 2-4ac 决定抛物线与x 轴的交点个数:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.14.()28100112500x +=【分析】根据相等关系:8100×(1+平均每年增长的百分率)2=12500即可列出方程.【详解】解:根据题意,得:()28100112500x +=.故答案为:()28100112500x +=.【点睛】本题考查的是一元二次方程的应用之增长降低率问题,一般的,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为:()21a x b ±=.15.10π【分析】根据圆锥的侧面积公式:S 侧=rl π代入数据计算即可.【详解】解:圆锥的侧面积=25102cm . 故答案为:10π【点睛】本题考查了圆锥的侧面积公式,属于基础题型,熟练掌握计算公式是解题关键.16.13x【分析】观察表格可得:(0,2)与(2,2)在抛物线上,由此可得抛物线的对称轴是直线x =1,顶点坐标是(1,1),且抛物线开口向上,于是可得点(-1,5)与(3,5)关于直线x =1对称,进而可得答案.【详解】解:根据表格中的数据可知:(0,2)与(2,2)关于直线x =1对称,所以抛物线的对称轴是直线x =1,顶点坐标是(1,1),且抛物线开口向上,∴点(-1,5)与(3,5)关于直线x =1对称,∴当5y <时,x 的取值范围是:13x. 故答案为:13x.【点睛】本题考查了抛物线的性质,通过观察得出抛物线的对称轴是直线x =1,灵活利用抛物线的对称性是解题的关键.17.3:1:8【分析】由四边形ABCD 是平行四边形可得AD ∥BC ,AD =BC ,△DEH ∽△BCH ,进而得12DH EH DE BH CH BC ===,连接AC ,交BD 于点M ,如图,根据三角形的中位线定理可得EF ∥AC ,可推得1DG DE MG AE ==,△EGH ∽△CMH ,于是得DG=MG ,12GH EH MH HC ==,设HG =a ,依次用a 的代数式表示出MH 、DG 、BH ,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴△DEH ∽△BCH ,∵E 是AD 中点,AD =BC ,∴12DH EH DE BH CH BC ===, 连接AC ,交BD 于点M ,如图,∵点E 、F 分别是边AD 、CD 的中点,∴EF ∥AC , ∴1DG DE MG AE ==,△EGH ∽△CMH ,∴DG=MG ,12GH EH MH HC ==, 设HG =a ,则MH =2a ,MG =3a ,∴DG =3a ,∴DM =6a ,∵四边形ABCD 是平行四边形,∴BM=DM =6a ,BH =8a ,∴::3::83:1:8DG GH HB a a a ==.故答案为:3:1:8.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、相似三角形的判定和性质、三角形的中位线定理等知识,连接AC,充分利用平行四边形的性质、构建三角形的中位线和相似三角形的模型是解题的关键.18.30或60【分析】射线BP与O恰好有且只有一个公共点就是射线BP与O相切,分两种情况画出图形,利用圆的切线的性质和30°角的直角三角形的性质求出旋转角,然后根据旋转速度=旋转的度数÷时间即得答案.【详解】解:如图1,当射线BP与O在射线BA上方相切时,符合题意,设切点为C,连接OC,则OC⊥BP,于是,在直角△BOC中,∵BO=2,OC=1,∴∠OBC=30°,∴∠1=60°,此时射线BP旋转的速度为每秒60°÷2=30°;如图2,当射线BP与O在射线BA下方相切时,也符合题意,设切点为D,连接OD,则OD⊥BP,于是,在直角△BOD中,∵BO=2,OD=1,∴∠OBD=30°,∴∠MBP=120°,此时射线BP旋转的速度为每秒120°÷2=60°;故答案为:30或60.【点睛】本题考查了圆的切线的性质、30°角的直角三角形的性质和旋转的有关概念,正确理解题意、熟练掌握基本知识是解题的关键.19.(1(2)12x =+22x =【分析】(1)把特殊角的三角函数值代入,同时根据算术平方根的定义计算最后一项,然后计算合并即可;(2)根据配方法求解.【详解】解:(1)原式23132=⨯-⨯+= (2)原方程可变形为:2445x x +=-,即()225x -=,∴2x -=∴12x =,22x =【点睛】本题考查了特殊角的三角函数值的运算和一元二次方程的解法,属于基础题型,熟练掌握特殊角的三角函数值和一元二次方程的解法是解题关键.20.(1)400,图详见解析;(2)B ;(3)660人.【分析】(1)用E 组的人数除以E 组所占的百分比即可得出学生总人数;根据总人数乘以B 组所占百分比可得B 组的人数,利用A 、C 各组的人数除以总人数即得A 、C 两组所占百分比,进而可补全两幅统计图;(2)根据中位数的定义判断即可;(3)利用总人数乘以A 、B 两组的百分比之和求解即可.【详解】解:(1)40÷10%=400,∴抽取的学生共有400人;B 组人数为:400×30%=120,A 组占:100÷400=25%,C 组占:80÷400=20%,补全统计图如下:故答案为:400;(2)∵A组有100人,B组有120人,C组有80人,D组有60人,E组有40人,∴400的最中间的两个数在B组,∴测试成绩的中位数落在B组.故答案为:B;(3)1200×(25%+30%)=660,∴该校初三测试成绩为优秀的学生有660人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到解题的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(1)13;(2)P(至少一张红色卡片)23.【分析】(1)根据A盒中红色卡片的数量除以A盒中卡片总数计算即可;(2)画出树状图得出所有可能的情况数与至少有一张红色卡片的情况数,再根据概率公式计算即可.【详解】解:(1)从A盒中摸出红色卡片的概率=13;(2)画出树状图如下:共有6种等可能的情况,其中至少有一张红色卡片的情况有4种,∴P (至少一张红色卡片)4263==. 【点睛】本题考查的是求两次事件的概率,属于常考题型,熟练掌握画树状图或列表的方法是解题的关键.22.(1)图见解析,(2,1);(2)图见解析,()23,23m n -++【分析】(1)依次作出点A 、B 、C 三点关于x 轴的对称点A 1、B 1、C 1,再顺次连接即可;根据关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数写出即可;(2)根据位似图形的性质作图即可;先求出经过一次变换(关于x 轴对称)的点的坐标,再根据关于(1,1)为位似中心的点的坐标规律:横坐标=-2×(原横坐标-1)+1,纵坐标=-2×(原纵坐标-1)+1,代入化简即可.【详解】解:(1)111A B C ∆如图所示,点1A 的坐标为(2,1); (2)222A B C ∆如图所示,点P 的坐标为(),m n ,则其关于x 轴对称的点的坐标是(m ,-n ),关于点()1,1位似后的坐标为(()211m --+,()211n ---+),即两次变换后对应点2P 的坐标为:()23,23m n -++.故答案为:()23,23m n -++.【点睛】本题考查了对称变换和位似变换的作图以及对应点的坐标规律探寻,属于常考题型,熟练掌握两种变换作图是解题的关键.23.(1)详见解析;(2)47ABC ∠=︒.【分析】(1)易证ACD ∆∽CED ∆,再利用相似三角形的性质即可得出结论;(2)已有BD CD =,然后利用(1)的结论进行代换,即可根据两边成比例且夹角相等证得BED ∆∽ABD ∆,再利用相似三角形的性质即可得出结果.【详解】解:(1)在ACD ∆和CED ∆中,∵ADC CDE ∠=∠,90ACD CED ∠=∠=︒,∴ACD ∆∽CED ∆,∴CD AD DE CD=,∴2CD DE DA =⋅; (2)∵D 是BC 中点,∴BD CD =,∵CD AD DE CD =,∴BD AD DE BD =. ∵BDE ADB ∠=∠,∴BED ∆∽ABD ∆,∴BED ABC ∠=∠.∵47BED ∠=︒,∴47ABC ∠=︒.【点睛】本题考查了相似三角形的判定和性质,属于常考题型,熟练掌握相似三角形的判定和性质是解题关键.24米 【分析】设AP=NP=x ,在Rt △APM 中可以求出,在Rt △BPM 中,∠MBP=30°,求得x ,利用MN =MP -NP 即可求得答案.【详解】解:∵在Rt △APN 中,∠NAP =45°,∴PA =PN ,在Rt △APM 中,tan ∠MAP =MP AP , 设PA =PN =x ,∵∠MAP =60°,∴MP =AP·tan ∠MAP , 在Rt △BPM 中,tan ∠MBP =MP BP , ∵∠MBP =30°,AB =5,∴3=5x +, ∴x =52,∴MN =MP -NP x -x .答:广告牌的宽MN 米. 【点睛】 本题考查解直角三角形在实际问题中的应用,将实际问题抽象为数学问题,选用适当的锐角三角函数解直角三角形是解题的关键,属于中考的必考点.25.(1)详见解析;(2)245AE =. 【分析】(1)连接OC ,如图,由点C 为BF 的中点可得CAF BAC ∠=∠,根据OA OC =可得OCA OAC ∠=∠,可得CAF OCA ∠=∠,于是//OC AE ,进一步即可得出OC DE ⊥,进而可证得结论;(2)在Rt DCO ∆中,利用解直角三角形的知识可求得半径的长,进而可得AD 的长,然后在Rt DEA ∆中利用∠D 的正弦即可求出结果.【详解】解:(1)连接OC ,如图,∵点C 为BF 的中点,∴BC CF =,∴CAF BAC ∠=∠. ∵OA OC =,∴OCA OAC ∠=∠,∴CAF OCA ∠=∠.∴//OC AE .∵AF CD ⊥,∴90E ∠=︒.∴90DCO E ∠=∠=︒,即OC DE ⊥.∴DE 是O 的切线;(2)在Rt DCO ∆中,∵3sin 5OC D OD ==,∴设3OC x =,则5OD x , 则532x x =+,解得:1x =.∴3OC =,5OD =,∴8AD =.在Rt DEA ∆中,∵3sin 85AE AE D AD ===,∴245AE =.【点睛】本题考查了圆的切线的判定、等腰三角形的性质、平行线的判定和性质以及解直角三角形的知识,属于中档题型,熟练掌握上述知识是解题的关键.26.(1)50元;(2)该商品的售价为每个65元时,商场销售该商品的平均月利润最大,最大利润是12250元.【分析】(1)设该商品的售价是每个x 元,根据利润=每个的利润×销售量,即可列出关于x 的方程,解方程即可求出结果;(2)设该商品的售价为每个x 元,利润为y 元,根据利润=每个的利润×销售量即可得出y 关于x 的函数关系式,然后利用二次函数的性质解答即可.【详解】解:(1)设该商品的售价是每个x 元,根据题意,得:()()30600104010000x x ---=⎡⎤⎣⎦,解之得:150x =,280x =(不合题意,舍去).答:为了尽快售出,这种商品的售价应定为每个50元;(2)设该商品的售价为每个x 元,利润为y 元,则()()2y x 3060010x 4010x 1300x 30000=---=-+-⎡⎤⎣⎦()2106512250x =--+, ∴当65x =时,利润y 最大,最大利润是12250元.答:该商品的售价为每个65元时,商场销售该商品的平均月利润最大,最大利润是12250元.【点睛】本题是一元二次方程和二次函数的应用题,属于常考题型,熟练掌握一元二次方程的解法和二次函数的性质是解题关键.27.(1)3m =-;(2)()4,21Q -或()2,3Q -;(3)不存在,理由见解析.【分析】(1)设对称轴与x 轴交于点E ,如图1,易求出抛物线的对称轴,可得OE 的长,然后根据平行线分线段成比例定理可得OA 的长,进而可得点A 的坐标,再把点A 的坐标代入抛物线解析式即可求出m 的值;(2)设点Q 的横坐标为n ,当点Q 在x 轴上方时,过点Q 作QH ⊥x 轴于点H ,利用tan 3ABQ ∠=可得关于n 的方程,解方程即可求出n 的值,进而可得点Q 坐标;当点Q 在x 轴下方时,注意到tan 3BAC ∠=,所以点Q 与点C 关于直线1x =对称,由此可得点Q 坐标;(3)当点Q 为x 轴上方的点时,若存在点P ,可先求出直线BQ 的解析式,由BP ⊥BQ 可求得直线BP 的解析式,然后联立直线BP 和抛物线的解析式即可求出点P 的坐标,再计算此时两个三角形的两组对应边是否成比例即可判断点P 是否满足条件;当点Q 取另外一种情况的坐标时,再按照同样的方法计算判断即可.【详解】解:(1)设抛物线的对称轴与x 轴交于点E ,如图1,∴y 轴//ED ,∴::1AC CD AO OE ==, ∵抛物线的对称轴是直线212x -=-=,∴OE =1,∴1AO OE ==,∴()1,0A - ∴将点()1,0A -代入函数表达式得:120m ++=,∴3m =-;(2)设()2,23Q n n n --,①点Q 在x 轴上方时,0n <,如图2,过点Q 作QH ⊥x 轴于点H ,∵tan 3ABQ ∠=,∴22333n n n--=-,解得:4n =-或3n =(舍),∴()4,21Q -;②点Q 在x 轴下方时,∵OA =1,OC =3,∴tan 3BAC ∠=,∵tan 3ABQ ∠=,∴点Q 与点C 关于直线1x =对称,∴()2,3Q -;(3)①当点Q 为()4,21-时,若存在点P ,使QBP ∆∽COA ∆,则∠PBQ =∠COA =90°, 由B (3,0)、Q ()4,21-可得,直线BQ 的解析式为:39y x =-+,所以直线PB 的解析式为:113y x =-, 联立方程组:211323y x y x x ⎧=-⎪⎨⎪=--⎩,解得:1130x y =⎧⎨=⎩,2223119x y ⎧=-⎪⎪⎨⎪=-⎪⎩,∴211,39P ⎛⎫-- ⎪⎝⎭, ∵:1:3OA OC =,:1:3BP BQ =≠, ∴::BP BQ OA OC ≠,∴P 不存在;②当点Q 为()2,3-时,如图4,由B (3,0)、Q ()2,3-可得,直线BQ 的解析式为:39y x =-,所以直线PB 的解析式为:113y x =-+, 联立方程组:211323y x y x x ⎧=-+⎪⎨⎪=--⎩,解得:1130x y =⎧⎨=⎩,2243139x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴413,39P ⎛⎫- ⎪⎝⎭, ∵:1:3OA OC =,:1:3BP BQ =≠, ∴::BP BQ OA OC ≠,∴P 不存在.综上所述,不存在满足条件的点P ,使QBP ∆∽COA ∆.【点睛】本题考查了平行线分线段成比例定理、二次函数图象上点的坐标特征、一元二次方程的解法、相似三角形的判定和性质、锐角三角函数和两个函数的交点等知识,综合性强、具有相当的难度,熟练掌握上述知识、灵活应用分类和数形结合的数学思想是解题的关键.28.(1)13AF =;(2)112m ≤≤且23m ≠. 【分析】(1)过B '作B H BC '⊥于H ,延长HB 交AD 于点Q ,如图1,易证ACB ∆∽B CH '∆,于是设B H a '=,则2CH a =,可得423EH a =-,然后在Rt EB H '∆中根据勾股定理即可求出a 的值,进而可得B Q '的长,设AF n =,则FQ 可用n 的代数式表示,连接FB 、FB ',如图2,根据轴对称的性质易得FB FB '==,再在Rt FB Q '∆中,根据勾股定理即可求出n 的值,于是可得结果;(2)仿(1)题的思路,在Rt EB H '∆中,利用勾股定理可得关于x 和m 的方程,然后利用一元二次方程的根的判别式和二次函数的知识即可求出m 的范围,再结合点B '的特殊位置可得m 的最大值,从而可得答案.【详解】解:(1)∵四边形ABCD 是矩形,∴AB ∥CD ,过B '作B H BC '⊥于H ,延长HB '交AD 于点Q ,如图1,则AB ∥CD ∥QH ,∴ACB ∆∽B CH '∆,∴12B H AB CH BC '==, 设B H a '=,则2CH a =,∴423EH a =-. 在Rt EB H '∆中,∵222EH B H EB ''+=,∴2244239a a ⎛⎫-+= ⎪⎝⎭,解得:25a =或23(舍去). ∴25B H '=,∴23155B Q '=-=,设AF n =,则462255FQ DQ n n n =--=--=-,连接FB 、FB ',如图2,则FB FB '=,在Rt FB Q '∆中,由勾股定理,得:222FB FQ B Q ''=+,∴22691525n n ⎛⎫+=-+ ⎪⎝⎭,解得:13n =,∴13AF =;(2)如图1,∵BE m =,∴B E m '=,设B H x '=,则2CH x =,∴22EH m x =--. 在Rt EB H '∆中,∵222EH B H EB ''+=,∴()22222x m x m --+=,整理,得:()2548440x m x m +-+-=,若翻折后存在点B '落在线段AC 上,则上述方程有实数根,即△≥0,∴()()24820440m m ---≥,整理,得:210m m +-≥,由二次函数的知识可得:m ≥,或m ≤(舍去), ∵B H BE '≠,∴x m ≠,当x=m 时,方程()2548440x m x m +-+-=即为:291240m m -+=,解得:23m =,∴23m ≠, 又∵当点B '与点C 重合时,m 的值达到最大,即当x =0时,440m -=,解得:m =1.∴m 1m ≤≤且23m ≠.1m ≤≤且23m ≠.【点睛】本题是矩形折叠综合题,主要考查了矩形的性质、轴对称的性质、相似三角形的判定和性质、勾股定理、一元二次方程的解法和根的判别式以及二次函数的性质等知识,综合性强、难度较大,熟练掌握折叠的性质和勾股定理、灵活利用方程的数学思想是解(1)题的关键,灵活应用一元二次方程的根的判别式和二次函数的知识是解(2)题的关键 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年江苏省无锡市江阴市九年级(上)期末数学试卷一、选择题(本大题共有10小题,每小题3分,共30分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内)1.sin60°=()A.B.C.D.2.若△ABC∽△DEF,相似比为1:2,则△ABC与△DEF的周长比为()A.2:1B.1:2C.4:1D.1:43.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的()A.平均数B.频数分布C.中位数D.方差4.方程x2﹣3x=0的根是()A.x=3B.x1=0,x2=3C.x1=,x2=﹣D.x1=3,x2=﹣35.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.2cm B.3cm C.5cm D.8cm6.将抛物线y=x2向上平移1个单位,就得到抛物线()A.y=x2+1B.y=(x+1)2C.y=x2﹣1D.y=(x﹣1)27.某人沿着坡度为1:2.4的斜坡向上前进了130m,那么他的高度上升了()A.50m B.100m C.120m D.130m8.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6B.πC.π﹣3D.+π9.已知二次函数y=ax2+bx+c(a≠0)图象如图所示,对称轴为过点(﹣,0)且平行于y轴的直线,则下列结论中正确的是()A.abc>0B.a+b=0C.2b+c>0D.4a+c<2b10.如图,⊙O是△ABC的外接圆,∠A=60°,点P是△ABC外一点,BP=6,CP=3,则线段OP的最大值为()A.9B.4.5C.3D.二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程,只需把答案直接填写在题中的横线上)11.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是km.12.已知x=1是关于x的一元二次方程2x2﹣x+a=0的一个根,则a的值是.13.二次函数y=x2﹣2x+m的图象与x轴只有一个公共点,则m的值为.14.已知某小区的房价在两年内从每平方米8100元增加到每平方米12500元,设该小区房价平均每年增长的百分率为x,根据题意可列方程为.15.若圆锥的底面半径为2cm,母线长为5cm,则此圆锥的侧面积是cm2.16.已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如表:x…﹣2﹣1012…y…105212…则当y<5时,x的取值范围是.17.如图,▱ABCD中,点E、F分别是边AD、CD的中点,EC、EF分别交对角线BD于点H、G,则DG:GH:HB=.18.如图,已知射线BP⊥BA,点O从B点出发,以每秒1个单位长度沿射线BA向右运动;同时射线BP绕点B顺时针旋转一周,当射线BP停止运动时,点O随之停止运动.以O为圆心,1个单位长度为半径画圆,若运动两秒后,射线BP与⊙O恰好有且只有一个公共点,则射线BP旋转的速度为每秒度.三、解答题(本大题共10小题,共84分,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:2sin60°﹣3tan45°+;(2)解方程:x2﹣4x﹣1=0.20.某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A、B、C、D、E五个组,x表示测试成绩,A组:90≤x≤100;B组:80≤x<90;C组:70≤x<80;D组:60≤x<70;E组:x<60),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?21.现有A、B两个不透明的盒子,A盒中装有红色、黄色、蓝色卡片各1张,B盒中装有红色、黄色卡片各1张,这些卡片除颜色外都相同.现分别从A、B两个盒子中任意摸出一张卡片.(1)从A盒中摸出红色卡片的概率为;(2)用画树状图或列表的方法,求摸出的两张卡片中至少有一张红色卡片的概率.22.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,﹣1),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,点A1的坐标为;(2)在网格内以点(1,1)为位似中心,把△A1B1C1按相似比2:1放大,得到△A2B2C2,请画出△A2B2C2;若边AC上任意一点P的坐标为(m,n),则两次变换后对应点P2的坐标为.23.如图,Rt△ABC中,∠ACB=90°,D是BC的中点,CE⊥AD于E.(1)求证:CD2=DE•DA;(2)当∠BED=47°时,求∠ABC的度数.24.如图,某数学社团成员想利用所学的知识测量广告牌的高度(即图中线段MN的长),在地面A处测得点M的仰角为60°、点N的仰角为45°,在B处测得点M的仰角为30°,AB=5m,MN⊥AB于点P,且B、A、P三点在同一直线上.求广告牌MN的长(结果保留根号).25.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为的中点,过点C作AF的垂线,交AF的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)当BD=2,sin D=时,求AE的长.26.某商场将进货单价为30元的商品以每个40元的价格售出时,平均每月能售出600个,调查表明:这种商品的售价每上涨1元,其销售量就减少10个.(1)为了使平均每月有10000元的销售利润且尽快售出,这种商品的售价应定为每个多少元?(2)当该商品的售价为每个多少元时,商场销售该商品的平均月利润最大?最大利润是多少?27.如图,已知二次函数y=x2﹣2x+m的图象与x轴交于点A、B,与y轴交于点C,直线AC交二次函数图象的对称轴于点D,若点C为AD的中点.(1)求m的值;(2)若二次函数图象上有一点Q,使得tan∠ABQ=3,求点Q的坐标;(3)对于(2)中的Q点,在二次函数图象上是否存在点P,使得△QBP∽△COA?若存在,求出点P的坐标;若不存在,请说明理由.28.已知矩形ABCD中,AB=1,BC=2,点E、F分别在边BC、AD上,将四边形ABEF沿直线EF翻折,点A、B的对称点分别记为A′、B′.(1)当BE=时,若点B′恰好落在线段AC上,求AF的长;(2)设BE=m,若翻折后存在点B′落在线段AC上,则m的取值范围是.2019-2020学年江苏省无锡市江阴市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共有10小题,每小题3分,共30分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内)1.【解答】解:sin60°=.故选:C.2.【解答】解:∵△ABC∽△DEF,△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的周长比为1:2.故选:B.3.【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生了5次短跑训练成绩的方差.故选:D.4.【解答】解:x2﹣3x=0,x(x﹣3)=0,x=0,x﹣3=0,x1=0,x2=3,故选:B.5.【解答】解:∵弦CD⊥AB于点E,CD=8cm,∴CE=CD=4cm.在Rt△OCE中,OC=5cm,CE=4cm,∴OE===(cm),∴AE=AO+OE=5+3=8(cm).故选:D.6.【解答】解:将抛物线y=x2向上平移1个单位得到的抛物线是y=x2+1.故选:A.7.【解答】解:如图,根据题意知AB=130米,tan B==1:2.4,设AC=x,则BC=2.4x,则x2+(2.4x)2=1302,解得x=50(负值舍去),即他的高度上升了50m,故选:A.8.【解答】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积==π,故选:B.9.【解答】解:由图象可得,a>0,b>0,c<0,故abc<0,故选项A错误;∵对称轴为直线x=﹣,∴﹣,得a=b,a﹣b=0,故选项B错误;∵当x=1时,y=a+b+c<0,∴2b+c<0,故选项C错误;∵对称轴为直线x=﹣,当x=1时,y<0,∴x=﹣2时的函数值与x=1时的函数值相等,∴x=﹣2时,y=4a﹣2b+c<0,∴4a+c<2b,故选项D正确;故选:D.10.【解答】解:如图,连接OB,OC,∵∠A=60°,∴∠BOC=120°,∴将△POC绕点O顺时针旋转120°,得到△HOB,连接PH,过点O,作OE⊥PH,∴PC=BH=3,OH=OP,∠POH=120°,∴∠OHP=∠OPH=30°,且OE⊥PH,∴PE=EH=OP,∴PH=OP,在△BPH中,PH≤BP+BH=9,∴OP≤3,∴OP的最大值为3,故选:C.二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程,只需把答案直接填写在题中的横线上)11.【解答】解:根据题意,5.8÷=5800000厘米=58千米.即实际距离是58千米.故答案为:58.12.【解答】解:将x=1代入方程得:2﹣1+a=0,解得:a=﹣1,故答案为:﹣1.13.【解答】解:根据题意得△=(﹣2)2﹣4m=0,解得m=1.故答案为1.14.【解答】解:设该小区房价平均每年增长的百分率为x,依题意,得:8100(1+x)2=12500.故答案为:8100(1+x)2=12500.15.【解答】解:圆锥的底面周长=4πcm,圆锥的侧面积=lr=×4π×5=10πcm2,故答案为10π.16.【解答】解:由表格可知,二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=1,该函数开口向上,则当y=﹣5对应的x的值是x=﹣1或x=﹣3,故当y<5时,x的取值范围是﹣1<x<3,故答案为:﹣1<x<3.17.【解答】解:连接AC交BD于O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD=BC,AD∥BC,∴△BCH∽△DEH,∴=,∵点E、F分别是边AD、CD的中点,∴BC=AD=2DE,EF是△ACD的中位线,∴==,EF∥AC,EF=AC=OA=OC,∴DG=OG,EG是△AOD的中位线,△EGH∽△COH,∴EG=OA=OC,==,∴OH=2GH,DG=OG=3GH,OB=OD=6GH,∴HB=8GH,∴DG:GH:HB=3:1:8;故答案为:3:1:8.18.【解答】解:∵射线BP与⊙O恰好有且只有一个公共点,∴射线BP与⊙O相切,如图,当BP′与⊙O相切于D,连接OD,则OD=1,OB=2,OD⊥BP′,∴∠OBD=30°,∵BP⊥BA,∴∠ABP=90°,∴∠PBP′=60°,∵=30°,∴射线BP与⊙O恰好有且只有一个公共点,则射线BP旋转的速度为每秒30°,当BP″与⊙O相切于E,连接OE,同理∠ABP″=30°,∴∠PBP″=120°,∵=60°,∴射线BP与⊙O恰好有且只有一个公共点,则射线BP旋转的速度为每秒60°,综上所述,射线BP与⊙O恰好有且只有一个公共点,则射线BP旋转的速度为每秒30°或60°,故答案为:30或60.三、解答题(本大题共10小题,共84分,解答时应写出文字说明、证明过程或演算步骤)19.【解答】解:(1)原式=2×﹣3+3=.(2)∵x2﹣4x﹣1=0,∴x2﹣4x+4=5,∴(x﹣2)2=5,∴x=2±20.【解答】解:(1)本次抽取的学生共有:40÷10%=400(人),故答案为:400;A所占的百分比为:100÷400×100%=25%,C所占的百分比为:80÷400×100%=20%,B组的人数为:400×30%=120,补全的统计图如右图所示;(2)由扇形统计图可知,抽取的测试成绩的中位数落在B组内,故答案为:B;(3)1200×(25%+30%)=660(人),答:该校初三测试成绩为优秀的学生有660人.21.【解答】解:(1)从A盒中摸出红色卡片的概率为,故答案为:.(2)画树状图如下:由树状图知,共有6种等可能结果,其中摸出的两张卡片中至少有一张红色卡片的有4种结果,∴摸出的两张卡片中至少有一张红色卡片概率为.22.【解答】解:(1)如图所示,△A1B1C1即为所求;点A1的坐标为(2,1);故答案为:(2,1);(2)如图所示,△A2B2C2即为所求;P2的坐标为(﹣2m+3,2n+3).故答案为:(﹣2m+3,2n+3).23.【解答】证明(1)∵CE⊥AD,∴∠CED=∠ACB=90°,∵∠CDE=∠ADC,∴△CDE∽△ADC,∴CD:AD=DE:CD,∴CD2=DE•AD.(2)∵D是BC的中点,∴BD=CD;∵CD2=DE•AD,∴BD2=DE•AD,∴BD:AD=DE:BD;又∵∠ADB=∠BDE,∴△BDE∽△ADB,∴∠BED=∠ABC,∵∠BED=47°,∴∠ABC=47°.24.【解答】解:∵在Rt△APN中,∠NAP=45°,∴P A=PN,在Rt△APM中,tan∠MAP=,设P A=PN=x米,∵∠MAP=60°,∴MP=AP•tan∠MAP=x,在Rt△BPM中,tan∠MBP=,∵∠MBP=30°,AB=5,∴=,∴x=,符合题意,∴MN=MP﹣NP=x﹣x=(米),答:广告牌的宽MN的长为米.25.【解答】(1)证明:连接OC,如图,∵点C为弧BF的中点,∴弧BC=弧CF.∴∠BAC=∠F AC,∵OA=OC,∴∠OCA=∠OAC.∴∠OCA=∠F AC,∴OC∥AE,∵AE⊥DE,∴OC⊥DE.∴DE是⊙O的切线;(2)∵sin D==,∴设OC=3x,OD=5x,则5x=3x+2,∴x=1,∴OC=3,OD=5,∴AD=8,∵sin D===,∴AE=.26.【解答】解:(1)设该商品售价x元,根据题意得:(40+x﹣30)[600﹣10(x﹣40)]=10000,解得x1=50,x2=80(不合题意舍去),答:为了尽快售出,这种商品的售价应定为每个50元;(2)该商品的利润为:y=(40+x﹣30)[600﹣10(x﹣40)]=﹣10x2+130x﹣3000;=﹣10(x﹣65)2+12250∵当售价为65元时,可得最大利润12250元.27.【解答】解:(1)设对称轴交x轴于点E,交对称轴于点D,函数的对称轴为:x=1,点C为AD的中点,则点A(﹣1,0),将点A的坐标代入抛物线表达式并解得:m=﹣3,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)tan∠ABQ=3,点B(3,0),则AQ所在的直线为:y=±3x(x﹣3)…②,联立①②并解得:x=﹣4或3(舍去)或2,故点Q(﹣4,21)或(2,﹣3);(3)不存在,理由:△QBP∽△COA,则∠QBP=90°①当点Q(2,﹣3)时,则BQ的表达式为:y=﹣(x﹣3)…③,联立①③并解得:x=3(舍去)或﹣,故点P(﹣,),此时BP:PQ≠OA:OB,故点P不存在;②当点Q(﹣4,21)时,同理可得:点P(﹣,),此时BP:PQ≠OA:OB,故点P不存在;综上,点P不存在.28.【解答】解:(1)由翻折的性质得:AB=A′B′=1,BE=B′E=,AF=A′F,∠A′=∠BAD=90°,过点B′作B′H⊥BC于H,延长HB′交AD于Q,连接B′F,如图所示:则四边形ABHQ与四边形CDQH是矩形,∴HQ=AB=1,∠EHB′=∠B′QF=90°,B′H∥AB,∴△CHB′∽△CBA,∴=,设B′H=a,即=,∴CH=2a,∴EH=BC﹣BE﹣CH=2﹣﹣2a=﹣2a,在Rt△EHB′中,EH2+B′H2=B′E2,即(﹣2a)2+a2=()2,解得:a=或a=(不合题意舍去),∴B′H=,EH=,B′Q=HQ﹣B′H=1﹣=,设AF=x,∵四边形ABCD与四边形CDQH是矩形,∴AD=BC=2,DQ=CH=,∴FQ=AD﹣DQ﹣AF=2﹣﹣x=﹣x,B′F2=A′F2+A′B′=x2+1,在Rt△FQB′中,x2+1=(﹣x)2+()2,解得:x=,∴AF=;(2)当F与A重合时,如图2所示:∵四边形ABCD是矩形,∴∠B=90°,∴AC===,由折叠的性质得:B'E=BE=m,AB'=AB=1,∠AB'E=∠B=90°,∴CE=BC﹣BE=2﹣m,∠CB'E=90°,∴CB'=AC﹣AB'=﹣1,在Rt△CEB'中,由勾股定理得:m2+(﹣1)2=(2﹣m)2,解得:m=;当B'与C重合时,E为BC的中点,如图3所示:m=BC=1;若翻折后存在点B′落在线段AC上,m的取值范围是≤m≤1;故答案为:≤m≤1.。

相关文档
最新文档