过一点求曲线的切线方程的三种类型(沐风教育)

合集下载

求切线方程的三种方法

求切线方程的三种方法

求切线方程的三种方法宝子们,今天咱们来唠唠求切线方程的那些事儿。

这切线方程啊,就像是给曲线找到一个最亲密接触的直线小伙伴,可有意思啦。

一、利用导数求切线方程。

咱先说说这个用导数的方法。

导数这玩意儿啊,其实就是曲线在某一点的斜率。

比如说有个函数y = f(x),咱们先求出它的导数f'(x)。

那在某一点x = a处的切线斜率k呢,就等于f'(a)。

这时候啊,我们已经知道了斜率,再知道这个点(a, f(a))在切线上,就可以用点斜式y - y₁ = k(x - x₁)来求出切线方程啦。

就像你知道一个朋友的走路速度(斜率),又知道他从哪个地方(点)出发,就能算出他走的路线(切线方程)啦。

二、设切点法。

再来说说设切点法。

有时候啊,题目没有直接告诉你切点是啥。

这时候咱就可以聪明点,设切点为(x₀, y₀)。

那这个点既在曲线上又在切线上哦。

如果曲线方程是y = f(x),那y₀ = f(x₀)。

然后呢,求出函数在x₀处的导数f'(x₀),这就是切线的斜率啦。

再根据点斜式写出切线方程y - y₀ = f'(x₀)(x - x₀)。

这就像是在玩一个猜谜游戏,我们先假设一个神秘的点(切点),然后通过各种线索(曲线方程和导数)来找出这个切线方程这个宝藏呢。

三、利用已知切线方程的形式来求。

还有一种方法呢,就是利用已知切线方程的形式。

比如说对于圆的方程(x - a)²+(y - b)² = r²,在点(x₁, y₁)处的切线方程是(x₁ - a)(x - a)+(y₁ - b)(y - b)= r²。

对于椭圆、双曲线等一些特殊的曲线也有类似的固定形式的切线方程哦。

这就像是有个小秘籍一样,直接套用这个形式就能求出切线方程啦。

就好比你有一把万能钥匙,遇到特定的锁(特殊曲线在某点的切线),直接一插就能打开(求出切线方程)啦。

宝子们,这三种求切线方程的方法是不是很有趣呀?只要多练练,你就能在求切线方程这个小天地里畅游无阻啦。

求切线方程的三种类型

求切线方程的三种类型

求切线方程的三种类型切线是曲线上与该曲线在该点处相切的直线,它在数学和物理学中有着广泛的应用。

在求解切线方程的过程中,可以根据曲线的性质和方程的形式,将其分为三种类型:直线、圆和曲线。

第一种类型是求直线的切线方程。

直线是最简单的曲线,其方程一般具有形式y=ax+b,其中a和b为常数。

对于直线,任何一点的切线都与直线本身重合,即切线方程即为直线方程本身。

因此,直线的切线方程为y=ax+b。

第二种类型是求圆的切线方程。

圆是一个具有特殊性质的曲线,其方程一般具有形式(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。

对于圆,可以通过计算切线与圆的交点来求解切线方程。

根据切线与圆的几何性质,切线与半径的夹角为直角。

因此,可以利用圆心、切点和切线方程斜率的关系,结合直线的点斜式,推导出圆的切线方程。

设切点坐标为(x₀,y₀),圆心坐标为(a,b),切线方程斜率为k,则由直线的点斜式可得:y-y₀=k(x-x₀)(1)根据圆的方程,可以得到切线通过圆心的直线方程:y-b=k(x-a)(2)由于切线与圆的交点即为切点,因此将切点坐标代入方程(2)即可得到切线方程。

进一步地,可以将方程(2)展开,得到切线方程的其他形式。

第三种类型是求曲线的切线方程。

曲线的方程形式较为复杂,通常需要使用微分学的知识来求解。

曲线的切线方程可以通过求取曲线上一点的导数来实现。

设曲线方程为y=f(x),其中f(x)为连续可导函数。

对于曲线上的一点(x₀,y₀),其切线的斜率k等于函数在该点处的导数f'(x₀)。

因此,切线方程可以写为:y-y₀=f'(x₀)(x-x₀)(3)方程(3)即为曲线的切线方程,其中(x₀,y₀)为切点坐标,f'(x₀)为函数在该点处的导数。

注意到切点的选择是任意的,因此曲线上每一个点都有一个对应的切线。

而对于曲线上的垂直切线,即斜率不存在的情况,可以通过在曲线上求取该点的极限值来求解。

曲线方程求切

曲线方程求切

曲线方程求切曲线的切线是一条在该曲线上的直线,且该直线在该点处与曲线的切线方向一致。

曲线函数一般是解析式,可以通过求导的方式求出其在某一点的导数,进而求出该点处的切线方程。

关于曲线方程求切线,以下是一些常用的方法:1. 导数法导数法是求解曲线切线的最基础方法。

对于任意曲线函数y=f(x),我们可以通过求导得到该曲线的导函数y'=f'(x)。

在给定的点(x0,y0)处,该点处的切线斜率就是该点处的导数f'(x0)。

因此,该点处的切线方程为:y-y0 = f'(x0)(x-x0)这就提供了一个曲线函数求切线的最基础模板。

我们只需要求出函数的导数,以及给定的点,就可以通过上述公式了解切线的方程。

2. 参数方程法在某些情况下,我们并不知道函数y=f(x)的显式表达式,我们只知道该曲线的参数方程,比如:x = f(t)y = g(t)在这种情况下,我们可以同时求解x和y的导数,即有:dx/dt = f'(t)dy/dt = g'(t)在给定的点(t0,x0),我们可以求出导数dx/dt和dy/dt,并计算切线斜率:k = dy/dx = (dy/dt) / (dx/dt)这个斜率可以计算出切线方程,即:y-y0 = k(x-x0)3. 向量法如果给定某一点处的曲线斜率,我们可以利用该点处的向量方程,构建切线的向量方程。

具体来说,我们可以将切线的方向向量看作曲线在该点处的切线向量,将该向量除以该向量的模长,就可以得到单位向量。

而该向量的起点即为给定点,终点即为下一个点。

因此,切线向量就可以表示为:t = (1/sqrt(1+f'(x0)^2), f'(x0)/sqrt(1+f'(x0)^2))这个向量关于给定点的终点就是切线上的任一点,因此,我们可以取得任意一个上述公式中的点,我们就立即得到了切线方程。

过一点求曲线的切线方程的三种类型

过一点求曲线的切线方程的三种类型

过一点求曲线的切线方程的三种类型舒云水过一点求曲线的切线方程有三种不同的类型,下面举例说明﹒1.已知曲线)(x f y =上一点))(,(00x f x P ,求曲线在该点处的切线方程﹒这是求曲线的切线方程的基本类型,课本上的例、习题都是这种类型﹒其求法为:先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率,后写出切线方程)(0x f y -=)(0x f ')(0x x -,并化简﹒例1 求曲线33)(23+-=x x x f 在点)1,1(P 处的切线方程﹒解:由题设知点P 在曲线上,∵x x y 632-=',∴曲线在点)1,1(P 处的切线斜率为3)1(-='f ,所求的切线方程为)1(31--=-x y ,即43+-=x y ﹒2. 已知曲线)(x f y =上一点))(,(11x f x A ,求过点A 的曲线的切线方程﹒这种类型容易出错,一般学生误认为点A 一定为切点,事实上可能存在过点A 而点A 不是切点的切线,如下面例2,这不同于以前学过的圆、椭圆等二次曲线的情况,要引起注意,这类题型的求法为:设切点为))(,(00x f x P ,先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率(用0x 表示),写出切线方程)(0x f y -=)(0x f ')(0x x -,再将点A 坐标),(11y x 代入切线方程得)(01x f y -=)(0x f ')(01x x -,求出0x ,最后将0x 代入方程)(0x f y -=)(0x f ')(0x x -求出切线方程﹒例2 求过曲线x x y 23-=上的点)1,1(-的切线方程﹒解:设切点为点)2,(0300x x x -,232-='x y ,切线斜率为2320-x , 切线方程为))(23()2(020030x x x x x y --=--﹒又知切线过点)1,1(-,把它代入上述方程,得)1)(23()2(100030x x x x --=---﹒解得10=x ,或210-=x ﹒所求切线方程为)1)(23()21(--=--x y ,或)21)(243()181(+-=+--x y ,即02=--y x ,或0145=-+y x ﹒上面所求出的两条直线中,直线02=--y x 是以)1,1(-为切点的切线,而切线0145=-+y x 并不以)1,1(-为切点,实际上它是经过了点)1,1(-且以)87,21(-为切点的直线,如下图所示﹒这说明过曲线上一点的切线,该点未必是切点﹒3. 已知曲线)(x f y =外一点))(,(11x f x A ,求过点A 作的曲线的切线方程﹒这种类型的题目的解法同上面第二种类型﹒例 3 过原点O 作曲线6324+-=x x y 的切线,求切线方程﹒(2009年全国卷Ⅰ文21题改编 )解:由题设知原点O 不在曲线上,设切点坐标为P )63,(20400+-x x x , x x y 643-=',切线斜率为(03064x x -),切线方程为:))(64()63(00302040x x x x x x y --=+--﹒ 又知切线过点)0,0(,把它代入上述方程,得))(64()63(000302040x x x x x --=+--﹒ 整理得:0)2)(1(2020=-+x x ﹒ 解得20-=x ,或20=x ﹒ 所求切线方程为:x y 22-=或x y 22=﹒练习:1.求曲线14)(23+-=x x x f 在点)2,1(-P 处的切线方程﹒2. 求过曲线34313+=x y 上的点)4,2(的切线方程﹒3.过点)2,0(作抛物线12++-=x x y 的切线,求切线方程﹒ 答案:1.035=-+y x ;2.044=--y x 或02=+-y x ;3.023=+-y x 或02=--y x ﹒。

切线方程求法

切线方程求法

切线方程求法在数学中,切线是一条与曲线相切的直线。

当我们研究曲线的性质时,切线是非常重要的工具。

切线方程是描述切线的数学公式,可以帮助我们更好地理解和分析曲线的性质。

本文将介绍切线方程的求法及其应用。

一、切线的定义在平面直角坐标系中,曲线上一点的切线是通过该点的一条直线,与曲线在该点处相切且方向与曲线在该点处的切线方向相同。

切线可以用来描述曲线在该点处的斜率和变化率。

二、切线方程的求法1. 切线方程的一般形式切线方程的一般形式为:y-y0 = k(x-x0)其中,(x0, y0)是曲线上一点的坐标,k是曲线在该点处的斜率。

2. 求曲线在某点处的斜率曲线在某点处的斜率可以通过求导数来得到。

假设曲线的方程为y=f(x),则曲线在点(x0, y0)处的斜率为:k = f'(x0)其中,f'(x0)表示函数f(x)在点x0处的导数。

3. 求切线方程已知曲线在点(x0, y0)处的斜率k,可以将切线方程的一般形式中的参数代入得到具体的切线方程:y-y0 = k(x-x0)将该方程化简可得:y = kx + (y0-kx0)这就是切线方程的标准形式,其中k是曲线在该点处的斜率,(x0, y0)是曲线上的一点。

三、切线方程的应用切线方程可以帮助我们更好地理解和分析曲线的性质。

以下是一些切线方程的应用:1. 求曲线在某点处的切线已知曲线的方程和某一点的坐标,可以通过求导数和切线方程的求法来得到曲线在该点处的切线方程。

这可以帮助我们更好地理解曲线在该点处的性质。

2. 求曲线上的极值曲线上的极值是指曲线上的最大值或最小值。

当曲线在某点处的斜率为0时,该点就是曲线上的极值点。

可以通过求导数和切线方程来求得曲线上的极值。

3. 求曲线的拐点曲线的拐点是指曲线上的一点,在该点处曲线的方向发生了变化。

可以通过求导数和切线方程来求得曲线的拐点。

四、总结切线方程是描述切线的数学公式,可以帮助我们更好地理解和分析曲线的性质。

过一点求曲线的切线方程的三种类型

过一点求曲线的切线方程的三种类型
解:由题设知点在曲线上,
∵,∴曲线在点处的切线斜率为,所求的切线方程为,即﹒
2. 已知曲线上一点,求过点的曲线的切线方程﹒
这种类型容易出错,一般学生误认为点一定为切点,事实上可能存在过点而点不是切点的切线,如下面例2,这不同于以前学过的圆、椭圆等二次曲线的情况,要引起注意,这类题型的求法为:设切点为,先求出函数的导数,再将代入求出,即得切线的斜率(用表示),写出切线方程=,再将点坐标代入切线方程得=,求出,最后将代入方程=求出切线方程﹒
过一点求曲线的切线方程的三种类型
舒xx
过一点求曲线的切线方程有三种不同的类型,下面举例说明﹒
1.已知曲线上一点,求曲线在该点处的切线方程﹒
这是求曲线的切线方程的基本类型,课本上的例、习题都是这种类型﹒其求法为:先求出函数的导数,再将代入求出,即得切线的斜率,后写出切线方程=,并化简﹒
例1求曲线在点处的切线方程﹒
3. 已知曲线外一点,求过点作的曲线的切线方程﹒
这种类型的题目的解法同上面第二种类型﹒
例3 过原点作曲线的切线,求切线方程﹒(2009年全国卷Ⅰ文21题改编 )
解:由题设知原点不在曲线上,设切点坐标为, ,切线斜率为(),切线方程为:

又知切线过点,把它代入上述方程,得

整理得: ﹒
解得,或﹒
所求切线方程为:或﹒
练习:1.求曲线在点处的切线方程﹒
2. 求过曲线上的点的切线方程﹒
3.过点作抛物线的切线,求切线方程﹒
答案:1.;2.或;3.或﹒
例2求过曲线上的点的切线方程﹒
解:设切点为点,,切线斜率为,
切线方程为﹒
又知切线过点,把它代入上Leabharlann 方程,得﹒解得,或﹒
所求切线方程为,或,即,或﹒

求空间曲线在一点处的切线方程和法平面方程

求空间曲线在一点处的切线方程和法平面方程

求空间曲线在一点处的切线方程和法平面方程求空间曲线在一点处的切线方程和法平面方程空间曲线是三维空间中的一条曲线,它可以由参数方程或者一般方程表示。

在某一点处,我们可以求出该点处的切线方程和法平面方程。

我们来看一下切线方程的求解。

对于空间曲线来说,切线方程可以通过求曲线在该点处的切向量来获得。

切向量是曲线上一点的切线方向的向量表示。

设空间曲线的参数方程为:x = f(t)y = g(t)z = h(t)其中,x、y、z分别是曲线上一点的坐标,而f(t)、g(t)、h(t)是曲线的参数方程。

现在我们要求曲线在某一点P(t0)处的切向量。

我们可以求出曲线在点P(t0)处的切线方向的向量表示:r'(t0) = (f'(t0), g'(t0), h'(t0))其中,f'(t0)、g'(t0)、h'(t0)分别是f(t)、g(t)、h(t)对t求导后在t0处的值。

然后,我们可以得到曲线在点P(t0)处的切线方程的向量表示:r(t) = (x, y, z) = (f(t), g(t), h(t))切线方程的向量表示为:r(t) = r(t0) + (t - t0) * r'(t0)切线方程的参数方程为:x = f(t0) + (t - t0) * f'(t0)y = g(t0) + (t - t0) * g'(t0)z = h(t0) + (t - t0) * h'(t0)这就是空间曲线在一点处的切线方程。

接下来,我们来看一下法平面方程的求解。

对于空间曲线来说,法平面是垂直于曲线切线的平面。

设曲线在点P(t0)处的切线方程为:x = f(t0) + (t - t0) * f'(t0)y = g(t0) + (t - t0) * g'(t0)z = h(t0) + (t - t0) * h'(t0)其中,f(t0)、g(t0)、h(t0)是曲线在点P(t0)处的坐标,f'(t0)、g'(t0)、h'(t0)是曲线在点P(t0)处的切向量。

曲线切线求法

曲线切线求法

曲线切线求法摘要:1.曲线切线的基本概念2.求曲线切线的方法3.实例演示与应用正文:在数学和工程领域中,曲线切线是一个重要的概念。

切线是指在曲线上某一点,与该点处曲率相同的直线。

求曲线切线的方法有很多,本文将介绍几种常见的方法,并通过实例进行演示。

一、曲线切线的基本概念曲线切线是为了描述曲线在某一点处的局部性质而引入的概念。

在平面上,给定一条曲线C,设点P为曲线C上任意一点,点Q为曲线C上与点P 相邻的另一点,那么连接PQ的直线称为曲线C在点P处的切线。

切线的斜率等于曲线在点P处的曲率。

二、求曲线切线的方法1.斜率法求曲线切线的第一种方法是利用曲线在某一点的斜率。

对于一曲线上某点P(x,y),我们可以通过求该点前后相邻两点的斜率来得到切线的斜率。

斜率公式为:m = (y2 - y1) / (x2 - x1)其中,m为切线斜率,(x1, y1)和(x2, y2)为曲线上的两点。

2.导数法求曲线切线的另一种方法是利用曲线的导数。

对于一曲线的方程y =f(x),我们可以求其在某一点处的导数,得到切线的斜率。

导数公式为:m = dy/dx |_(x=a)其中,m为切线斜率,a为曲线上的某一点。

3.切线方程法已知曲线方程y = f(x),我们可以求出曲线在任意一点处的切线方程。

切线方程的一般形式为:y - y1 = m(x - x1)其中,(x1, y1)为曲线上的某一点,m为切线斜率。

三、实例演示与应用1.实例一:求圆的切线已知圆的方程为x + y = r,其中r为半径。

设圆上两点分别为A(x1, y1)和B(x2, y2),求AB的切线方程。

解:首先求两点间的斜率m,然后利用切线方程公式得到切线方程。

2.实例二:求椭圆的切线已知椭圆的方程为x/a + y/b = 1,求椭圆上某点的切线方程。

解:求椭圆在点P处的斜率m,然后利用切线方程公式得到切线方程。

总之,求曲线切线的方法有很多,如斜率法、导数法和切线方程法等。

过一点求曲线的切线方程的三种类型知识分享

过一点求曲线的切线方程的三种类型知识分享

过一点求曲线的切线方程的三种类型过一点求曲线的切线方程的三种类型舒云水过一点求曲线的切线方程有三种不同的类型,下面举例说明﹒1.已知曲线)(x f y =上一点))(,(00x f x P ,求曲线在该点处的切线方程﹒这是求曲线的切线方程的基本类型,课本上的例、习题都是这种类型﹒其求法为:先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率,后写出切线方程)(0x f y -=)(0x f ')(0x x -,并化简﹒例1 求曲线33)(23+-=x x x f 在点)1,1(P 处的切线方程﹒解:由题设知点P 在曲线上,∵x x y 632-=',∴曲线在点)1,1(P 处的切线斜率为3)1(-='f ,所求的切线方程为)1(31--=-x y ,即43+-=x y ﹒2. 已知曲线)(x f y =上一点))(,(11x f x A ,求过点A 的曲线的切线方程﹒这种类型容易出错,一般学生误认为点A 一定为切点,事实上可能存在过点A 而点A 不是切点的切线,如下面例2,这不同于以前学过的圆、椭圆等二次曲线的情况,要引起注意,这类题型的求法为:设切点为))(,(00x f x P ,先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率(用0x 表示),写出切线方程)(0x f y -=)(0x f ')(0x x -,再将点A 坐标),(11y x 代入切线方程得)(01x f y -=)(0x f ')(01x x -,求出0x ,最后将0x 代入方程)(0x f y -=)(0x f ')(0x x -求出切线方程﹒例2 求过曲线x x y 23-=上的点)1,1(-的切线方程﹒ 解:设切点为点)2,(0300x x x -,232-='x y ,切线斜率为2320-x , 切线方程为))(23()2(020030x x x x x y --=--﹒又知切线过点)1,1(-,把它代入上述方程,得 )1)(23()2(100030x x x x --=---﹒ 解得10=x ,或210-=x ﹒所求切线方程为)1)(23()21(--=--x y ,或)21)(243()181(+-=+--x y ,即02=--y x ,或0145=-+y x ﹒ 上面所求出的两条直线中,直线02=--y x 是以)1,1(-为切点的切线,而切线0145=-+y x 并不以)1,1(-为切点,实际上它是经过了点)1,1(-且以)87,21(-为切点的直线,如下图所示﹒这说明过曲线上一点的切线,该点未必是切点﹒3. 已知曲线)(x f y =外一点))(,(11x f x A ,求过点A 作的曲线的切线方程﹒这种类型的题目的解法同上面第二种类型﹒例3 过原点O 作曲线6324+-=x x y 的切线,求切线方程﹒(2009年全国卷Ⅰ文21题改编 )解:由题设知原点O 不在曲线上,设切点坐标为P )63,(20400+-x x x , x x y 643-=',切线斜率为(03064x x -),切线方程为:))(64()63(00302040x x x x x x y --=+--﹒ 又知切线过点)0,0(,把它代入上述方程,得))(64()63(000302040x x x x x --=+--﹒ 整理得:0)2)(1(2020=-+x x ﹒ 解得20-=x ,或20=x ﹒ 所求切线方程为:x y 22-=或x y 22=﹒练习:1.求曲线14)(23+-=x x x f 在点)2,1(-P 处的切线方程﹒2. 求过曲线34313+=x y 上的点)4,2(的切线方程﹒3.过点)2,0(作抛物线12++-=x x y 的切线,求切线方程﹒ 答案:1.035=-+y x ;2.044=--y x 或02=+-y x ;3.023=+-y x 或02=--y x ﹒。

求曲线在某点的切线方程公式

求曲线在某点的切线方程公式

求曲线在某点的切线方程公式曲线在某点的切线方程公式,我们可以通过求解曲线在该点的导数来得到。

设曲线的方程为y=f(x),求曲线在点(a,f(a))处的切线方程。

首先,我们需要求解曲线在该点的导数。

导数表示曲线在某一点处的斜率,也就是切线的斜率。

通过求取函数f(x)的导函数,我们可以得到导数的表达式。

记导函数为f'(x),则切线的斜率为f'(a)。

接下来,我们使用点斜式来确定切线方程。

点斜式由一个点和斜率确定,我们已经得到了切线的斜率f'(a),因此切线方程为:
y - f(a) = f'(a)(x - a)
这就是曲线在点(a,f(a))处的切线方程公式。

请注意,该公式中的f(x)和f'(x)代表了曲线的具体方程和导函数的形式,具体的求解步骤需要根据具体的曲线方程进行。

用导数求切线方程的四种类型

用导数求切线方程的四种类型

用导数求切线方程的四种类型求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法.类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =-B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|. 01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D. 评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x=,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.例3 求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--. 320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--. 解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点(20),且与曲线1y x=相切的直线方程.解:设00()P x y ,为切点,则切线的斜率为021x x y x ='=-|.∴切线方程为0021()y y x x x -=--,即02011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得0211(2)x x x -=--.解得000111x y x ===,,即20x y +-=.评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=. 评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.。

过一点求曲线的切线方程的三种类型

过一点求曲线的切线方程的三种类型

舒云水过一点求曲线的切线方程有三种不同的类型,下面举例说明﹒1.已知曲线)(x f y =上一点))(,(00x f x P ,求曲线在该点处的切线方程﹒这是求曲线的切线方程的基本类型,课本上的例、习题都是这种类型﹒其求法为:先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率,后写出切线方程)(0x f y -=)(0x f ')(0x x -,并化简﹒例1 求曲线33)(23+-=x x x f 在点)1,1(P 处的切线方程﹒解:由题设知点P 在曲线上,∵x x y 632-=',∴曲线在点)1,1(P 处的切线斜率为3)1(-='f ,所求的切线方程为)1(31--=-x y ,即43+-=x y ﹒2. 已知曲线)(x f y =上一点))(,(11x f x A ,求过点A 的曲线的切线方程﹒这种类型容易出错,一般学生误认为点A 一定为切点,事实上可能存在过点A 而点A 不是切点的切线,如下面例2,这不同于以前学过的圆、椭圆等二次曲线的情况,要引起注意,这类题型的求法为:设切点为))(,(00x f x P ,先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率(用0x 表示),写出切线方程)(0x f y -=)(0x f ')(0x x -,再将点A 坐标),(11y x 代入切线方程得)(01x f y -=)(0x f ')(01x x -,求出0x ,最后将0x 代入方程)(0x f y -=)(0x f ')(0x x -求出切线方程﹒例2 求过曲线x x y 23-=上的点)1,1(-的切线方程﹒ 解:设切点为点)2,(0300x x x -,232-='x y ,切线斜率为2320-x , 切线方程为))(23()2(020030x x x x x y --=--﹒又知切线过点)1,1(-,把它代入上述方程,得 )1)(23()2(100030x x x x --=---﹒ 解得10=x ,或210-=x ﹒所求切线方程为)1)(23()21(--=--x y ,或)21)(243()181(+-=+--x y ,即02=--y x ,或0145=-+y x ﹒上面所求出的两条直线中,直线02=--y x 是以)1,1(-为切点的切线,而切线0145=-+y x 并不以)1,1(-为切点,实际上它是经过了点)1,1(-且以)87,21(-为切点的直线,如下图所示﹒这说明过曲线上一点的切线,该点未必是切点﹒3. 已知曲线)(x f y =外一点))(,(11x f x A ,求过点A 作的曲线的切线方程﹒这种类型的题目的解法同上面第二种类型﹒例3 过原点O 作曲线6324+-=x x y 的切线,求切线方程﹒(2009年全国卷Ⅰ文21题改编 )解:由题设知原点O 不在曲线上,设切点坐标为P )63,(20400+-x x x , x x y 643-=',切线斜率为(03064x x -),切线方程为:))(64()63(00302040x x x x x x y --=+--﹒ 又知切线过点)0,0(,把它代入上述方程,得))(64()63(000302040x x x x x --=+--﹒ 整理得:0)2)(1(2020=-+x x ﹒ 解得20-=x ,或20=x ﹒ 所求切线方程为:x y 22-=或x y 22=﹒练习:1.求曲线14)(23+-=x x x f 在点)2,1(-P 处的切线方程﹒2. 求过曲线34313+=x y 上的点)4,2(的切线方程﹒3.过点)2,0(作抛物线12++-=x x y 的切线,求切线方程﹒ 答案:1.035=-+y x ;2.044=--y x 或02=+-y x ;3.023=+-y x 或02=--y x ﹒。

高中数学:曲线上一点的切线方程

高中数学:曲线上一点的切线方程

曲线上一点的切线方程定理高三数学00222200222200(,),1,:2,(,)()()()()()()P x y x y r x x y y r a b x a y b r x a x a y b y b r +=+=-+-=--+--=设曲线上一点下面就是各种常用曲线上的点的切线方程。

一,圆的切线方程圆心在原点的圆:的切线方程圆心的圆的切线方程00220022222200222200220022222200222(,)1,112,11(,)1,112,1P x y x x y y x y x a b a by y x x y x y a b a bP x y x x y y x y x a b a by y x x y x y a b a b +=+=+=+=-=-=-=-二,椭圆上一点的切线方程焦点在轴上椭圆的切线方程:焦点在轴上椭圆的切线方程:三,双曲线上一点的切线方程焦点在轴上双曲线的切线方程:焦点在轴上双曲线的切线方程:21=00200200200200(0)(,)1,2:()2,2:()3,2:()4,2:()p P x y x y px y y p x x x y px y y p x x y x py x x p y y y x py x x p y y >==+=-=-+==+=-=-+四,抛物线上一点的切线方程焦点在轴正半轴上的切线方程焦点在轴负半轴上的切线方程焦点在轴正半轴上的切线方程焦点在轴负半轴上的切线方程椭圆上一点的切线方程推导抛物线的切线方程的推导过程设过抛物线22y px =上一点M(x 0,y 0)的切线的斜率为k,则,由点斜式得切线方程为:)(00x x k y y -=-联合抛物线方程,有:整理,得:消去,,2),(200y px y x x k y y ⎩⎨⎧=-=-,0)2(4)](2[0,0)2()(2002022*********022000222=-+⨯-+--=∆∴=-+++--y kx x k y k p ky x k y kx x k y x p ky x k x k 即:,相切, 整理,得:,022020=+-p k y k x )(),(,2,2),(2),(2,2,084,22),(,2284200002020002000000000200202000200x x p y y x x y y pyp y x px y x x y y x x x x yy y x y k px y px y px y y x M x px y y k +=+=⨯=∴=+=-=-=∴=-∴=∴=⨯-±=∴即:代入上式,得:又整理,得:代入,得:上的点,是抛物线点 所以,过抛物线px y 22=上一点M(x 0,y 0)的切线的方程为:)(00x x p y y +=.同理:过抛物线px y 22-=上一点M(x 0,y 0)的切线的方程为:)(00x x p y y +-=过抛物线py x 22=上一点M(x 0,y 0)的切线的方程为:)(00y y p x x +=过抛物线py x 22-=上一点M(x 0,y 0)的切线的方程为:)(00y y p x x +-=。

用导数求切线方程的四种类型知识讲解

用导数求切线方程的四种类型知识讲解

用导数求切线方程的四种类型用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+=B.230x y --=C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--. 解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点(20),且与曲线1y x=相切的直线方程. 解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|. ∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得020011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。

高考数学复习,导数,求曲线切线方程的2种题型的通用方法

高考数学复习,导数,求曲线切线方程的2种题型的通用方法

高考数学复习,导数,求曲线切线方程的2种题型的通用方法高考数学复习,导数,求曲线切线方程的2种题型的通用方法。

考察知识:1、导数的几何意义;2、借助导数的知识求曲线的切线方程的方法。

题型一:求曲线在某点处的切线方程。

通用解法为:先求切点,然后根据导数的几何意义“切线的斜率等于曲线在切点处的导数”求出切线的斜率,最后写出切线方程。

详细见第1题。

题型二:求曲线过某点处的切线方程。

这种题型一般要分两种情况进行讨论,具体见第2题。

“曲线在点x=2处”意思是切点的横坐标是2,根据切点在曲线上,把x=2代入曲线方程,可以求出切点的纵坐标;然后根据导数的几何意义求出切线的斜率k;最后使用点斜式写出切线的方程。

第2题,求曲线过某点的切线方程,一定要先判断这个点是否在曲线上,如果在曲线上,按照第1题的方法即可求出切线方程,如果不在曲线上,那这个点肯定不是切点,求切线方程明显就不能使用第1题的方法。

切线过点(2,4),不能说明点(2,4)就是切点,所以要验证一下这个点有没有可能是切点,方法是把这个点的横纵坐标代入曲线表达式,容易得出其适合这个表达式,即这个点在曲线上,所以这个点有可能是切点,所以要分两种情况来讨论:情况一:点(2,4)是切点;则只需要根据导数的几何意义求出切线的斜率就可以了,具体过程如下。

情况二:点(2,4)不是切点;下面这个过程就是这种情况求切线方程的通用求法,一定要熟练掌握。

解方程②,求出x0的值,就可以求出切点坐标以及切线的斜率,使用点斜式即可写出切线方程。

这个方程是一个高次方程,解高次方程一个重要的方法是分解因式,过程如下:现在又求出了一条切线方程,所以满足题意的切线方程共有两个。

温馨提醒:在菜单处可以查看经过分类整理的课程。

加油!。

过曲线一点的切线方程

过曲线一点的切线方程

过曲线一点的切线方程过曲线一点的切线方程数学是一门探究规律和真理的学科,而曲线方程则是数学中的一个重要组成部分。

在数学中,曲线方程是描述平面上点的位置的等式,而曲线的切线则是在任何点处的切线方程。

本文将会着重讨论一种叫做“过曲线一点的切线方程”这一话题。

首先,我们需要理解什么是曲线的切线。

在数学中,曲线的切线是曲线在任意一点处的切线,它是与曲线在该点处相切的一条直线。

找到曲线的切线有很多种方法,以下介绍具体的步骤。

首先,我们需要确定曲线上的某一点,然后找到该点处的导数,导数告诉我们曲线在该点处的斜率。

接着,我们将该点和斜率代入点斜式公式,就可以得到曲线在该点处的切线方程。

接下来,我们就进入了本文的主题——过曲线一点的切线方程。

过曲线一点的切线方程是一种特殊的切线方程。

我们可以通过以下步骤来得到过曲线一点的切线方程。

首先,我们需要确定该曲线的方程,随后,我们选定一个点在曲线上,假设该点的坐标为(a, f(a))。

接着,我们需要对曲线方程求导,求导后代入(a, f(a))点的坐标,就可以得到曲线在该点处的斜率m。

然后,我们就可以将该点和斜率代入点斜式公式,从而可以得到过曲线一点的切线方程。

具体的计算流程如下:曲线方程:y = f(x)选定的点:(a, f(a))求导后的斜率:f'(a)切线公式:y – f(a) = f'(a) * (x – a)过曲线一点的切线方程可以用于许多实际问题,例如物理学和工程学中。

比如,一个物体在一个弯曲的曲面上滑动,那么我们就需要求出该点的切线方程来确定它的速度和加速度。

最后,总结一下,通过本文的介绍,我们了解到曲线方程和曲线的切线是数学中的重要基础概念。

同时,我们也学习了如何求出过曲线一点的切线方程。

过曲线一点的切线方程的应用不仅可以帮助我们更好地理解曲线的特性,还可以应用于实际问题的求解中。

过某个点的切线方程

过某个点的切线方程

过某个点的切线方程过某个点的切线方程是指通过给定点并且与曲线相切的直线方程。

在数学中,我们可以使用导数来求解过某个点的切线方程。

下面将详细介绍如何求解过某个点的切线方程。

一、导数的定义和求解1. 导数的定义导数表示函数在某一点处的变化率,即函数在该点附近的斜率。

对于函数y=f(x),其导数可以表示为dy/dx或f'(x)。

2. 导数的求解要求解一个函数在某一点处的导数,可以通过以下步骤进行:a. 计算函数f(x)。

b. 使用求导法则计算f'(x)。

c. 将给定点(x0, y0)代入f'(x)中,得到斜率k。

二、过给定点的切线方程1. 切线方程的一般形式对于曲线上任意一点P(x0, y0),其切线方程可以表示为y = k(x - x0) + y0,其中k为斜率。

2. 求解斜率k将给定点P(x0, y0)代入函数f'(x)中,得到斜率k。

a. 计算f'(x)。

b. 将x = x0代入f'(x),得到斜率k。

3. 切线方程的具体形式将斜率k和给定点P(x0, y0)代入切线方程的一般形式中,得到过给定点的切线方程。

三、实例演示假设我们要求解曲线y = x^2 + 2x + 1在点P(2, 9)处的切线方程。

1. 计算函数f(x)根据给定曲线,我们可以得到f(x) = x^2 + 2x + 1。

2. 求解导数f'(x)使用求导法则对f(x)进行求导:f'(x) = 2x + 2。

3. 求解斜率k将给定点P(2, 9)代入f'(x)中,得到斜率k:k = f'(2) = 2(2) + 2 = 6。

4. 求解切线方程将斜率k和给定点P(2, 9)代入切线方程的一般形式中:y = k(x - x0) + y0y = 6(x - 2) + 9y = 6x - 3曲线y = x^2 + 2x +1在点P(2,9)处的切线方程为y = 6x -3。

切线

切线

在初中时就学过圆的切线,高中又学过切线方程的求法,由于这一内容比较单一,方法简单,在高考中出现不多。

但教材改革以后,引入了导数的概念,切线的内容得到巨大的丰富和充实,且灵活多样,迅速成为高考的一个重点内容,成为高考的一个热点问题。

认真全面学习切线知识,灵活掌握切线方程的各种求法,成为我们平时学习的重要内容,也是高考备考复习的一个重要知识点。

曲线的切线方程的求法主要分为切线过曲线上一点和切线过曲线外一点两种情况。

一.过曲线上一点求曲线的切线方程过曲线上一点求曲线的切线方程,主要在于求切线的斜率,这类题目方法比较简单明了,但不同方法的计算量相差很大。

例1已知抛物线的方程为y=x2,求过点A(1,1)的抛物线的切线方程。

法1:已知一个点的坐标,求直线的方程,关键是求直线的斜率。

设直线方程为y-1=k(x-1)即y=kx-k+1,代入抛物线的方程得x2-kx+k-1=0因为A是切点,所以方程有两个相等的实根,即有重根,则判别式△=k2-4(k-1)=0得k=2所以所求切线方程为y-1=2(x-1)即2x-y-1=0法2:由于学习了导数,导数反映了函数在某点处的变化率,它的几何意义就是相应曲线在该点处切线的斜率,所以可以利用导数来求切线的斜率,这种方法计算量要小很多。

∵y`=2x,∴y`|x=1=2即k=2所以所求切线方程为y-1=2(x-1)即2x-y-1=0例2曲线y=2x-x3在横坐标为-1的点处的切线为l,则l的方程为。

Ax+y+2=0Bx-y=0Cx+y-2=0Dx-y+2=0分析:∵x=-1,∴y=-1即切点为(-1,-1)又∵y`=2-3x2,∴y`|x=—1=-1即k=-1所以所求切线方程为y+1=-(x+1)即x+y+2=0即答案为A二过曲线外一点求曲线的切线方程这类问题的求解往往没有前一类题目那么直接,它要充分考虑题目已知条件,抓住切线的定义,挖掘题目的隐含条件,寻找解题的等量关系。

例3求过点P(2,4)和圆(x-1)2+(y-1)2=1相切的直线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过一点求曲线的切线方程的三种类型
舒云水
过一点求曲线的切线方程有三种不同的类型,下面举例说明﹒
1.已知曲线)(x f y =上一点))(,(00x f x P ,求曲线在该点处的切线方程﹒
这是求曲线的切线方程的基本类型,课本上的例、习题都是这种类型﹒其求法为:先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率,后写出切线方程)(0x f y -=)(0x f ')(0x x -,并化简﹒
例1 求曲线33)(23+-=x x x f 在点)1,1(P 处的切线方程﹒
解:由题设知点P 在曲线上,
∵x x y 632-=',∴曲线在点)1,1(P 处的切线斜率为3)1(-='f ,所求的切线方程为)1(31--=-x y ,即43+-=x y ﹒
2. 已知曲线)(x f y =上一点))(,(11x f x A ,求过点A 的曲线的切线方程﹒
这种类型容易出错,一般学生误认为点A 一定为切点,事实上可能存在过点A 而点A 不是切点的切线,如下面例2,这不同于以前学过的圆、椭圆等二次曲线的情况,要引起注意,这类题型的求法为:设切点为))(,(00x f x P ,先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率(用0x 表示),写出切线方程
)(0x f y -=)(0x f ')(0x x -,再将点A 坐标),(11y x 代入切线方程得
)(01x f y -=)(0x f ')(01x x -,求出0x ,最后将0x 代入方程)(0x f y -=)(0x f ')(0x x -求出切线方程﹒
例2 求过曲线x x y 23-=上的点)1,1(-的切线方程﹒ 解:设切点为点)2,(0300x x x -,232-='x y ,切线斜率为2320-x , 切线方程为))(23()2(020030x x x x x y --=--﹒
又知切线过点)1,1(-,把它代入上述方程,得
)1)(23()2(100030x x x x --=---﹒
解得10=x ,或210-=x ﹒
所求切线方程为)1)(23()21(--=--x y ,或)21)(243()181(+-=+--x y ,即02=--y x ,或0145=-+y x ﹒
上面所求出的两条直线中,直线02=--y x 是以)1,1(-为切点的切线,而切线0145=-+y x 并不以)1,1(-为切点,实际上它是经过了点)1,1(-且以)8
7,21(-为切点的直线,如下图所示﹒这说明过曲线上一点的切线,该点未必是切点﹒
3. 已知曲线)(x f y =外一点))(,(11x f x A ,求过点A 作的曲线的切线方程﹒
这种类型的题目的解法同上面第二种类型﹒
例3 过原点O 作曲线6324+-=x x y 的切线,求切线方程﹒(2009
年全国卷Ⅰ文21题改编 )
解:由题设知原点O 不在曲线上,设切点坐标为
P )63,(20400+-x x x , x x y 643-=',切线斜率为(03064x x -),切线方程为:
))(64()63(003
02040x x x x x x y --=+--﹒ 又知切线过点)0,0(,把它代入上述方程,得
))(64()63(0003
02040x x x x x --=+--﹒ 整理得:0)2)(1(2020=-+x x ﹒ 解得20-=x ,或20=x ﹒ 所求切线方程为:x y 22-=或x y 22=﹒
练习:1.求曲线14)(23+-=x x x f 在点)2,1(-P 处的切线方程﹒
2. 求过曲线3
4313+=x y 上的点)4,2(的切线方程﹒
3.过点)2,0(作抛物线12++-=x x y 的切线,求切线方程﹒ 答案:1.035=-+y x ;2.044=--y x 或02=+-y x ;3.023=+-y x 或02=--y x ﹒。

相关文档
最新文档