第10讲-数列与数表
10 第10讲 数列与数表
![10 第10讲 数列与数表](https://img.taocdn.com/s3/m/242148abdd3383c4bb4cd24c.png)
第十讲数列与数表兴趣篇1.观察数组(1,2,3),(2,3,4),(3,4,5),…的规律。
求:(1)第10组中三个数的和;(2)前10组中所有数的和。
2.请观察下列数列的规律:1,1,4,2,7,3,10,1,13,2,16,3,19,1,22,2,25,3, (100)问:(1)这个数列一共有多少项?(2)这个数列所有数的总和是多少?3.一个数列的第一项是1,之后的每一项是这样得到的:如果前一项是一位数,接着的一项就等于前一项的两倍;如果前一项是两位数,接着的一项就等于前一项个位数字的两倍。
请问:(1)第100项是多少?(2)前100项的和是多少?出“?”处的数。
5.如图,数阵中的数是按一定规律排列的。
请问:(1)100在第几行、第几列?(2)第20行第3列的数是多少?第1列第2列第3列第4列第5列第6列第1行 1 2 3 4第2行 5 6 7 8第3行9 10 11 12第4行13 14 15 16第5行17 ……………………6. 如图,从4开始的自然数是按某种规律排列的。
请问:(1)100在第几行第几列?(2)第5行第20列的数是多少?7. 如图,把偶数2,4,6,8…排成5列,各列从左到右一次为第1列、第2列、第3列、第4列和第5列。
请问:(1)100在第几行第几列? (2)第20行第2列的数是多少?8.如图,从1开始的连续奇数按某种方式排列起来。
请问:(1)第10行左起第3个数是多 少?(2)99在第几行左起第几个数?9.如图。
从1开始的自然数按某种方式排列起来。
请问:(1)100在第几行?100是这一行左起第几个数?(2)第25行左起第5个数是多少?1 2 3 6 5 4 7 8 9 10 15 14 13 12 11 … … … … … … … … …4 11 12 19 20 ... 5 13 ... 6 10 14 18 ... 7 15 ... 8 9 16 17 ... 2 4 6 8 14 12 10 16 18 20 22 28 26 24 ... ... (1)3 5 79 11 13 15 1719 21 23 25 27 29 31… … …10.如图。
第十讲 自然数串趣题
![第十讲 自然数串趣题](https://img.taocdn.com/s3/m/27c2487f1711cc7931b716df.png)
第十讲 自然数串趣题从1开始,1、2、3、4、5、6、7、8、9、10、11、12……连起来成一串,像一串糖葫芦,我们把这样的一串数叫作自然数串(也叫自然数列),其中的每一个数都叫作自然数。
自然数串的特点是:①从1开始,1是头;②在相邻的两个数中,后一个数比前一个数大1;③后面的数要多大有多大,也就是说,自然数串是有头无尾的。
在自然数串中,如果写到某一个数为止,就叫做有限自然数串,也简称自然数串。
这一讲的题目,都是与(有限)自然数串有关的。
例1 如下页图所示。
一份学习材料放在桌上,一阵风把材料吹落了一地。
小军拣起来一看,糟糕,少了两张。
根据下面拣到的材料的页码,你能说出少了哪几页吗?解:一张材料的正反两面用两个自然数作页码,这两个自然数是相邻的。
仔细观察找到的材料的页码,根据自然数串的特点,可知少了的两张纸的页码是(7、8)和(13、14)。
例2 从1连续地写到100,“0”出现了多少次?解:“0”出现了11次。
因为从1到100含有“0”的自然数是:10、20、30、40、50、60、70、80、90、100。
数一数,这些自然数中共有11个“0”。
例3 把1,2,3,4,5,……28,29,30这三十个数,从左往右依次排列起来,成为一个数,你知道这个数共有多少个数字吗?解:把这个数写出一部分来看看:123456789101112131415 (282930)下面,分段计算这个数共包含有多少个数字:1至9共有9个数字;10至19共有10个自然数,每个都由两个数字组成,这一段共有2×10=20个数字。
20至29这一段也有10个自然数,共有20个数字。
30这个数由两个数字组成。
所以这个数所包含的数字总数是:9+20+20+2=51(个)。
例4 小青每年都和家长一起参加植树节劳动。
七岁那年,他种了第一棵树,以后每年都比前一年多种一棵。
现在他已经长到15岁了,连续地种了九年树。
请你算一算,这九年中小青一共种了多少棵树?解:先把小青每年种几棵树写出来再把每年种树的棵树加起来1+2+3+4+5+6+7+8+9=45(棵)。
小学五年级奥数 数列与数表(二)
![小学五年级奥数 数列与数表(二)](https://img.taocdn.com/s3/m/5702f62c6edb6f1aff001f6b.png)
⑴ 第一行的第100个数是____. ⑵ 自然数207位于数表的第几行第几列?
1
247
11 ……
3 5 8 12 ……
6 9 13 ……
10 14 ……
15 ……
……Байду номын сангаас
知识大总结 1.等差数列常用公式.
⑴ 求和、求项数 2.常⑵见求数an列=:首项+(n-1)×公差.
等差数列、斐波那契、间隔数列、二级等差数列 3.关于数表
⑴ 看行、看列、看斜线 ⑵ 对数列进行分组 【今日讲题】
基本公式
例2,例4,例5,超常大挑战
【讲题心得】
__________________________________________________________________.
【家长评价】
_________________________________________________________________. 2
98
⑵第500个分数是几分之几?
1
版块二:数表找规律
【例4】(★★★☆)
将非零自然数按照表中规律地不断写出,发现有些数被写出多次,还
有些数永远不会出现,那么99在数表中共出现过几次?最小的永不出
现的数等于几?
1 2 3 4 … 97 98 99
2 3 4 5 … 98 99 100
4 5 6 7 … 100 101 102
【课前小练习】(★) ⑴ 1, 4, 7, 10, 13,____,…… ⑵ 1, 2, 4, 7, 11,____,…… ⑶ 1, 2, 4, 8, 16,____,…… ⑷ 1, 4, 9, 16, 25,____,……
【例1】(★★☆) 一串数按下述规律排列: 1,2,3,2,3,4,3,4, 5,4,5,6,…… ⑴ 数列中,第200个数是_______. ⑵ 数列中,前200个数的和是______.
高中数学 数列专题
![高中数学 数列专题](https://img.taocdn.com/s3/m/c2573b9928ea81c759f5781a.png)
高中数学-数列专题第1讲数列的概念及其表示 (1)第2讲等差数列及前n项和 (16)第3讲等比数列及前n项和 (31)第4讲数列求和、数列的综合应用 (46)第1讲数列的概念及其表示考点一数列的概念及其表示方法知识点1数列的定义(1)按照一定顺序排列的一列数叫做数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为这个数列的第一项,也叫首项.(2)数列与函数的关系从函数观点看,数列可以看成:以正整数集N*或N*的有限子集{1,2,3,…,n}为定义域的函数a n=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.2数列的表示方法3数列的分类注意点数列图象是一些孤立的点数列作为一种特殊的函数,由于它的定义域为正整数集N*或它的有限子集,所以它的图象是一系列孤立的点.入门测1.思维辨析(1)数列{a n}和集合{a1,a2,a3,…,a n}表达的意义相同.()(2)所有数列的第n项都能使用公式表达.()(3)根据数列的前几项归纳出数列的通项公式可能不止一个.()(4)数列:1,0,1,0,1,0,…,通项公式只能是a n=1+(-1)n+12.()答案(1)×(2)×(3)√(4)×2.数列13,18,115,124,…的一个通项公式为()A.a n=12n+1B.a n=1n+2C.a n=1n(n+2)D.a n=12n-1答案 C解析观察知a n=1(n+1)2-1=1n(n+2).3.若数列{a n}中,a1=3,a n+a n-1=4(n≥2),则a2015的值为()A.1 B.2C.3 D.4答案 C解析因为a1=3,a n+a n-1=4(n≥2),所以a1=3,a2=1,a3=3,a4=1,…,显然当n是奇数时,a n=3,所以a2015=3.解题法[考法综述]利用归纳法求数列的通项公式,或给出递推关系式求数列中的项,并研究数列的简单性质.命题法数列的概念和表示方法及单调性的判断典例(1)已知数列{a n}的通项公式为a n=n2-2λn(n∈N*),则“λ<1”是“数列{a n}为递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)写出下面各数列的一个通项公式:①3,5,7,9,…; ②1,3,6,10,15,…;③-1,32,-13,34,-15,36,…;④3,33,333,3333,….[解析] (1)若数列{a n }为递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N *都成立,于是有3>2λ,λ<32.由λ<1可得λ<32,但反过来,由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件,故选A.(2)①各项减去1后为正偶数,所以a n =2n +1. ②将数列改写为1×22,2×32,3×42,4×52,5×62,…因而有a n =n (n +1)2,也可逐差法a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,…,a n -a n -1=n ,各式累加得a n =n (n +1)2.③奇数项为负,偶数项为正,故通项公式中含因子(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1, 所以a n =(-1)n·2+(-1)nn.④将数列各项改写为93,993,9993,99993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n -1).[答案] (1)A (2)见解析【解题法】 归纳法求通项公式及数列单调性的判断(1)求数列的通项公式实际上是寻找数列的第n 项与序号n 之间的关系,常用技巧有:①借助于(-1)n 或(-1)n +1来解决项的符号问题.②项为分数的数列,可进行恰当的变形,寻找分子、分母各自的规律以及分子、分母间的关系.③对较复杂的数列的通项公式的探求,可采用添项、还原、分割等方法,转化为熟知的数列,如等差数列、等比数列等来解决.④根据图形特征写出数列的通项公式,首先,要观察图形,寻找相邻的两个图形之间的变化;其次,要把这些变化同图形的序号联系起来,发现其中的规律;最后,归纳猜想出通项公式.(2)数列单调性的判断方法①作差比较法:a n +1-a n >0⇔数列{a n }是单调递增数列;a n +1-a n <0⇔数列{a n }是单调递减数列;a n +1-a n =0⇔数列{a n }是常数列.②作商比较法:当a n >0时,则a n +1a n >1⇔数列{a n }是单调递增数列;a n +1a n<1⇔数列{a n }是单调递减数列;a n +1a n=1⇔数列{a n }是常数列. 当a n <0时,则a n +1a n >1⇔数列{a n }是单调递减数列;a n +1a n <1⇔数列{a n }是单调递增数列;a n +1a n=1⇔数列{a n }是常数列.③结合相应函数的图象直观判断数列的单调性.对点练1.设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则( ) A .d <0 B .d >0 C .a 1d <0 D .a 1d >0答案 C解析 ∵数列{2a 1a n }为递减数列,∴2 a 1a n >2 a 1a n +1,n ∈N *,∴a 1a n >a 1a n +1,∴a 1(a n +1-a n )<0.∵{a n }为公差为d 的等差数列,∴a 1d <0.故选C.2.下列可以作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A .a n =1B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪sin n π2D .a n =(-1)n -1+32答案 C解析 A 项显然不成立;n =1时,a 1=-1+12=0,故B 项不正确;n =2时,a 2=(-1)2-1+32=1,故D 项不正确.由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,…,故选C. 3.下列关于星星的图案构成一个数列,该数列的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n (n +2)2答案 C解析 解法一:令n =1,2,3,4,验证选项知选C.解法二:a 1=1,a 2=a 1+2,a 3=a 2+3,a 4=a 3+4,…,a n =a n -1+n . ∴(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)=n +(n -1)+…+3+2.因此a n =1+2+3+…+n =n (n +1)2.考点二 数列的通项公式知识点1 a n 与S n 的关系若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2).2 已知递推关系式求通项一般用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.注意点 已知S n 求a n 时应注意的问题(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1中需n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合“a n 式”,则需统一“合写”. (3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合“a n 式”,则数列的通项公式应分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2).入门测1.思维辨析(1)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) (2)在数列{a n }中,对于任意正整数m ,n ,a m +n =a mn +1,若a 1=1,则a 2=2.( ) (3)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.( )答案 (1)√ (2)√ (3)√ 2.数列{a n }中,a 1=1,a n =1a n -1+1,则a 4等于( )A.53B.43 C .1 D.23答案 A解析 由a 1=1,a n =1a n -1+1得,a 2=1a 1+1=2,a 3=1a 2+1=12+1=32,a 4=1a 3+1=23+1=53.故选A.3.在正项数列{a n }中,若a 1=1,且对所有n ∈N *满足na n +1-(n +1)a n =0,则a 2015=( ) A .1011 B .1012 C .2014 D .2015答案 D解析 由a 1=1,na n +1-(n +1)a n =0可得a n +1a n =n +1n ,得到a 2a 1=21,a 3a 2=32,a 4a 3=43,…,a n +1a n=n +1n ,上述式子两边分别相乘得a 2a 1×a 3a 2×a 4a 3×…×a n +1a n =a n +1=21×32×43×…×n +1n =n +1,故a n =n ,所以a 2015=2015,故选D.解题法[考法综述] 高考以考查a n 与S n 的关系为主要目标以求通项公式a n 为问题形式,特别是给出递推公式如何构造数列求通项公式作为一个重难点和命题热点.命题法 由S n 求a n 或由递推关系式求a n典例 (1)若数列{a n }的前n 项和S n =2n 2+3n ,则此数列的通项公式为a n =________. (2)已知数列{a n }的前n 项和为S n 满足a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,求S n .[解析] (1)当n =1时, a 1=S 1=2×12+3×1=5;当n ≥2时,a n =S n -S n -1=(2n 2+3n )-[2(n -1)2+3(n -1)]=4n +1.当n =1时,4×1+1=5=a 1,∴a n =4n +1.(2)∵当n ≥2,n ∈N *时,a n =S n -S n -1, ∴S n -S n -1+2S n S n -1=0,即1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是公差为2的等差数列,又S 1=a 1=12,∴1S 1=2,∴1S n =2+(n -1)·2=2n , ∴S n =12n.[答案] (1)4n +1 (2)见解析 【解题法】 求通项公式的方法 (1)由S n 求a n 的步骤 ①先利用a 1=S 1求出a 1.②用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n的表达式.③对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.(2)由递推公式求通项公式的常见类型与方法①形如a n +1=a n +f (n ),常用累加法.即利用恒等式a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)求通项公式.②形如a n +1=a n f (n ),常用累乘法,即利用恒等式a n =a 1·a 2a 1·a 3a 2·…·a na n -1求通项公式.③形如a n +1=ba n +d (其中b ,d 为常数,b ≠0,1)的数列,常用构造法.其基本思路是:构造a n +1+x =b (a n +x )⎝⎛⎭⎫其中x =db -1,则{a n +x }是公比为b 的等比数列,利用它即可求出a n .④形如a n +1=pa n qa n +r (p ,q ,r 是常数)的数列,将其变形为1a n +1=r p ·1a n +qp .若p =r ,则⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为q p ,可用公式求通项;若p ≠r ,则采用③的办法来求.⑤形如a n +2=pa n +1+qa n (p ,q 是常数,且p +q =1)的数列,构造等比数列.将其变形为a n +2-a n +1=(-q )·(a n +1-a n ),则{a n -a n -1}(n ≥2,n ∈N *)是等比数列,且公比为-q ,可以求得a n-a n -1=f (n ),然后用累加法求得通项.⑥形如a 1+2a 2+3a 3+…+na n =f (n )的式子, 由a 1+2a 2+3a 3+…+na n =f (n ),①得a 1+2a 2+3a 3+…+(n -1)a n -1=f (n -1),② 再由①-②可得a n .对点练1.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.答案2011解析 由a 1=1,且a n +1-a n =n +1(n ∈N *)得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2, 则1a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,故数列⎩⎨⎧⎭⎬⎫1a n 前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111=2⎝⎛⎭⎫1-111=2011. 2.已知数列{a n }满足a 1=1,a n +1=3a n +2,则数列{a n }的通项公式为________. 答案 a n =2·3n -1-1解析 ∵a n +1=3a n +2,∴a n +1+1=3(a n +1). ∴a n +1+1a n +1=3,∴数列{a n +1}是等比数列,公比q =3.又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1.3.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式为________.答案 a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2解析 当n =1时,a 1=S 1=-1; 当n ≥2时,a n =S n -S n -1=2n -1,∴a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.4.S n 为数列{a n }的前n 项和,已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和.解 (1)由a 2n +2a n =4S n +3,可知a 2n +1+2a n +1=4S n +1+3. 可得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即 2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由于a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知 b n =1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则 T n =b 1+b 2+…+b n =12⎣⎡⎦⎤⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n +1-12n +3 =n3(2n +3).5.已知数列{a n }的前n 项和S n =-12n 2+kn ,k ∈N *,且S n 的最大值为8.试确定常数k ,并求数列{a n }的通项公式.解 因为S n =-12n 2+kn =-12(n -k )2+12k 2,其中k 是常数,且k ∈N *,所以当n =k 时,S n取最大值12k 2,故12k 2=8,k 2=16,因此k =4,从而S n =-12n 2+4n .当n =1时,a 1=S 1=-12+4=72;当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫-12n 2+4n -⎣⎡⎦⎤-12(n -1)2+4(n -1)=92-n .当n=1时,92-1=72=a1,所以a n=92-n.微型专题数列中的创新题型创新考向以数列为背景的新定义问题是高考命题创新型试题的一个热点,考查频次较高.命题形式:常见的有新定义、新规则等.创新例题把1,3,6,10,15,21,…这些数叫做三角形数,这是因为以这些数目的点可以排成一个正三角形(如图).则第7个三角形数是()A.27 B.28C.29 D.30答案 B解析由图可知,第7个三角形数是1+2+3+4+5+6+7=28.创新练习1.将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2014项与5的差,即a2014-5=()A.2018×2012 B.2020×2013C.1009×2012 D.1010×2013答案 D解析观察图中的“梯形数”可得:a2-a1=4,a3-a2=5,a4-a3=6…a2014-a2013=2016,累加得:a2014-a1=4+5+6+…+2016=2013×20202=2013×1010,即a2014-5=2013×1010.2.在一个数列中,如果∀n∈N*,都有a n a n+1a n+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{a n}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+a3+…+a12=________.答案28解析依题意得数列{a n}是周期为3的数列,且a1=1,a2=2,a3=4,因此a1+a2+a3+…+a12=4(a1+a2+a3)=4×(1+2+4)=28.3.对于E={a1,a2,...,a100}的子集X={a i1,a i2,...,a ik},定义X的“特征数列”为x1,x2,...,x100,其中x i1=x i2=...=x ik=1,其余项均为0,例如:子集{a2,a3}的“特征数列”为0,1,1,0,0, 0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于________.(2)若E的子集P的“特征数列”为p1,p2,…,p100满足p1=1,p i+p i+1=1,1≤i≤99.E的子集Q的“特征数列”为q1,q2,…,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为________.答案(1)2(2)17解析(1)据“特征数列”定义知子集{a1,a3,a5}的特征数列为1,0,1,0,1,0,…,0,故其前三项和为2.(2)由定义知p1=1,p2=0,p3=1,p4=0…故集合P={a1,a3,a5,…,a99}={a i|i=2k+1,k∈N且k≤49},又q1=1,q2=q3=0,q4=1,q5=q6=0,q7=1,…,∴集合Q={a1,a4,a7,a10…}={a i|i=3k+1,k∈N且k≤33}.若a k∈P∩Q,则k=2k1+1=3k2+1,k1,k2∈N,k1≤49,k2≤33.即2k1=3k2,不妨设6k3=2k1=3k2,所以k1=3k3,k2=2k3,0≤3k3≤49,0≤2k3≤33,k3∈N,得k3∈{0,1,2,3,…,16},k =6k3+1,共有17个,P∩Q中元素个数为17.创新指导1.准确转化:解决数列新定义问题时,一定要读懂新定义的本质含义,将题目所给定义转化成题目要求的形式,切忌同已有概念或定义相混淆.2.方法选取:对于数列新定义问题,搞清定义是关键,仔细认真地从前几项(特殊处、简单处)体会题意,从而找到恰当的解决方法.已知数列{a n}中,a n=n2-kn(n∈N*),且{a n}单调递增,则k的取值范围是________.[错解][错因分析]在解答的过程中虽然注意了数列的定义域为正整数集,但是不能用二次函数对称轴法来判断数列的单调性.因为数列的图象不是连续的,而是离散的点.[正解]由题意得a n+1-a n=2n+1-k,又{a n}单调递增,故2n+1-k>0恒成立,即k<2n +1(n∈N*)恒成立,解得k<3.[答案]k<3[心得体会]课时练基础组1.数列{a n}的通项a n=nn2+90,则数列{a n}中的最大值是()A.310 B.19C.119 D.1060答案 C解析因为a n=1n+90n,运用基本不等式得,1n+90n≤1290,由于n∈N*,不难发现当n=9或10时,a n=119最大,故选C.2.数列{a n}的前n项积为n2,那么当n≥2时,{a n}的通项公式为() A.a n=2n-1 B.a n=n2C.a n=(n+1)2n2D.a n=n2(n-1)2答案 D解析设数列{a n}的前n项积为T n,则T n=n2,当n≥2时,a n=T nT n-1=n2 (n-1)2.3.已知数列{a n}的前n项和S n满足:S n+S m=S n+m,且a1=1,那么a10等于() A.1 B.9C.10 D.55答案 A解析∵S n+S m=S n+m,a1=1,∴S1=1.可令m=1,得S n+1=S n+1,∴S n+1-S n=1.即当n≥1时,a n+1=1,∴a10=1.4.已知数列{a n}的前n项和为S n,且S n=2a n-1(n∈N*),则a5等于()A.-16 B.16C.31 D.32答案 B解析当n=1时,S1=2a1-1,∴a1=1.当n ≥2时,S n -1=2a n -1-1, ∴a n =2a n -2a n -1, ∴a n =2a n -1.∴{a n }是等比数列且a 1=1,q =2, 故a 5=a 1×q 4=24=16.5.已知数列{a n }满足a 0=1,a n =a 0+a 1+…+a n -1(n ≥1),则当n ≥1时,a n 等于( ) A .2n B.12n (n +1) C .2n -1 D .2n -1答案 C解析 由题设可知a 1=a 0=1,a 2=a 0+a 1=2. 代入四个选项检验可知a n =2n -1.故选C.6. 已知数列{a n }的通项公式为a n =(n +2)⎝⎛⎭⎫78n,则当a n 取得最大值时,n 等于( ) A .5 B .6 C .5或6 D .7答案 C解析 由题意知⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1,∴⎩⎨⎧(n +2)⎝⎛⎭⎫78n≥(n +1)⎝⎛⎭⎫78n -1,(n +2)⎝⎛⎭⎫78n≥(n +3)⎝⎛⎭⎫78n +1.∴⎩⎪⎨⎪⎧n ≤6,n ≥5.∴n =5或6. 7.在数列{a n }中,a 1=1,a n +1-a n =2n +1,则数列的通项a n =________. 答案 n 2解析 ∵a n +1-a n =2n +1.∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=(2n -1)+(2n -3)+…+5+3+1=n 2(n ≥2).当n =1时,也适用a n =n 2.8.已知数列{a n }的首项a 1=2,其前n 项和为S n .若S n +1=2S n +1,则a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,3·2n -2,n ≥2解析 由S n +1=2S n +1,则有S n =2S n -1+1(n ≥2),两式相减得a n +1=2a n ,又S 2=a 1+a 2=2a 1+1,a 2=3,所以数列{a n }从第二项开始成等比数列,∴a n =⎩⎪⎨⎪⎧2,n =1,3·2n -2,n ≥2.9.已知数列{a n }中,a 1=1,a 2=2,设S n 为数列{a n }的前n 项和,对于任意的n >1,n ∈N *,S n +1+S n -1=2(S n +1)都成立,则S 10=________.答案 91解析 ∵⎩⎪⎨⎪⎧S n +1+S n -1=2S n +2,S n +2+S n =2S n +1+2,两式相减得a n +2+a n =2a n +1(n ≥2),∴数列{a n }从第二项开始为等差数列,当n =2时,S 3+S 1=2S 2+2,∴a 3=a 2+2=4,∴S 10=1+2+4+6+…+18=1+9(2+18)2=91. 10. 如图所示的图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n 个图形中小正方形的个数是________.答案n (n +1)2解析 由已知,有a 1=1,a 2=3,a 3=6,a 4=10, ∴a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n , 各式相加,得a n -a 1=2+3+…+n , 即a n =1+2+…+n =n (n +1)2,故第n 个图形中小正方形的个数是n (n +1)2. 11.已知数列{a n }满足:a 1=1,2n -1a n =a n -1(n ∈N *,n ≥2). (1)求数列{a n }的通项公式;(2)这个数列从第几项开始及以后各项均小于11000? 解 (1)n ≥2时,a n a n -1=⎝⎛⎭⎫12n -1, 故a n =a n a n -1·…·a 3a 2·a 2a 1·a 1=⎝⎛⎭⎫12n -1·⎝⎛⎭⎫12n -2·…·⎝⎛⎭⎫122·⎝⎛⎭⎫121 =⎝⎛⎭⎫121+2+…+(n -1)=⎝⎛⎭⎫12(n -1)n 2,当n =1时,a 1=⎝⎛⎭⎫120=1,即n =1时也成立. ∴a n =⎝⎛⎭⎫12(n -1)n 2.(2)∵y =(n -1)n 在[1,+∞)上单调递增, ∴y =⎝⎛⎭⎫12(n -1)n 2在[1,+∞)上单调递减. 当n ≥5时,(n -1)n 2≥10,a n =⎝⎛⎭⎫12(n -1)n 2 ≤11024. ∴从第5项开始及以后各项均小于11000. 12.已知数列{a n }满足a n +1=⎩⎨⎧2a n ,0<a n≤12,2a n-1,12<a n<1,且a 1=67,求a 2015.解 ∵a 1=67∈⎝⎛⎭⎫12,1,∴a 2=2a 1-1=57. ∵a 2∈⎝⎛⎭⎫12,1,∴a 3=2a 2-1=37. ∵a 3∈⎝⎛⎭⎫0,12,∴a 4=2a 3=67=a 1, ∴{a n }是周期数列,T =3,∴a 2015=a 3×671+2=a 2=57.能力组13.已知数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则数列{a n }的通项公式为( )A .a n =2n +1B .a n =⎩⎪⎨⎪⎧14(n =1)2n +1(n ≥2)C .a n =2nD .a n =2n +2答案 B解析 由题意可知,数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则12a 1+122a 2+123a 3+…+12n -1a n -1 =2(n -1)+5,n >1,两式相减可得:a n2n =2n +5-2(n -1)-5=2,∴a n =2n +1,n >1,n ∈N *. 当n =1时,a 12=7,∴a 1=14,综上可知,数列{a n }的通项公式为:a n =⎩⎪⎨⎪⎧14(n =1),2n +1(n ≥2).故选B.14.在如图所示的数阵中,第9行的第2个数为________.答案 66解析 每行的第二个数构成一个数列{a n },由题意知a 2=3,a 3=6,a 4=11,a 5=18,则a 3-a 2=3,a 4-a 3=5,a 5-a 4=7,…,a n -a n -1=2(n -1)-1=2n -3,各式两边同时相加,得 a n -a 2=(2n -3+3)×(n -2)2=n 2-2n ,即a n =n 2-2n +a 2=n 2-2n +3(n ≥2),故a 9=92-2×9+3=66. 15.已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解 (1)a 1=2,a n =S n -S n -1=2n -1(n ≥2).∴b n=⎩⎨⎧23(n =1)1n (n ≥2).(2)∵c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, ∴{c n }是递减数列.16.已知数列{a n }中,a 1=12,a n +1=3a na n +3.(1)求a n ;(2)设数列{b n }的前n 项和为S n ,且b n ·n (3-4a n )a n =1,求证:12≤S n <1.解 (1)由已知得a n ≠0则由a n +1=3a n a n +3,得1a n +1=a n +33a n ,即1a n +1-1a n =13,而1a 1=2,∴⎩⎨⎧⎭⎬⎫1a n 是以2为首项,以13为公差的等差数列.∴1a n =2+13(n -1)=n +53,∴a n =3n +5. (2)证明:∵b n ·n (3-4a n )a n =1,由(1)知a n =3n +5,∴b n =a n n (3-4a n )=1n (n +1)=1n -1n +1,∴S n =b 1+b 2+…+b n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1=1-1n +1, 又∵n ≥1,∴n +1≥2,∴0<1n +1≤12. ∴12≤S n <1. 第2讲 等差数列及前n 项和 考点一 等差数列的概念及运算知识点1 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,定义的表达式为a n +1-a n =d ,d 为常数.2 等差中项如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b2. 3 等差数列的通项公式及其变形通项公式:a n =a 1+(n -1)d ,其中a 1是首项,d 是公差.通项公式的变形:a n =a m +(n -m )d ,m ,n ∈N *.4 等差数列的前n 项和 等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . 5 等差数列的单调性当d >0时,数列{a n }为递增数列; 当d <0时,数列{a n }为递减数列; 当d =0时,数列{a n }为常数列.注意点 定义法证明等差数列时的注意事项(1)证明等差数列时,切忌只通过计算数列的a 2-a 1,a 3-a 2,a 4-a 3等有限的几个项的差后,发现它们都等于同一个常数,就断言数列{a n }为等差数列.(2)用定义法证明等差数列时,常采用a n +1-a n =d ,若采用a n -a n -1=d ,则n ≥2,否则n =1时无意义.入门测1.思维辨析(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (5)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案 (1)× (2)√ (3)√ (4)× (5)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于( ) A .1 B.53 C .2 D .3答案 C 解析 因为S 3=(a 1+a 3)×32=6,而a 3=4.所以a 1=0,所以d =a 3-a 12=2. 3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14答案 C解析 ∵S 3=3(a 1+a 3)2=3a 2=12,∴a 2=4.∵a 1=2,∴d =a 2-a 1=4-2=2. ∴a 6=a 1+5d =12.故选C.[考法综述] 等差数列的定义,通项公式及前n 项和公式是高考中常考内容,用定义判断或证明等差数列,由n ,a n ,S n ,a 1,d 五个量之间的关系考查基本运算能力.命题法1 等差数列的基本运算典例1 等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50. (1)求通项a n ; (2)若S n =242,求n .[解] (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50.解得a 1=12,d =2.所以a n =2n +10; (2)由S n =na 1+n (n -1)2d ,S n =242, 得方程12n +n (n -1)2×2=242, 解得n =11或n =-22(舍去).【解题法】 等差数列计算中的两个技巧(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.命题法2 等差数列的判定与证明典例2 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.[解] (1)证明:∵a n +2=2a n +1-a n +2, ∴b n +1-b n =a n +2-a n +1-(a n +1-a n ) =2a n +1-a n +2-2a n +1+a n =2.∴{b n }是以1为首项,2为公差的等差数列. (2)由(1)得b n =1+2(n -1),即a n +1-a n =2n -1, ∴a 2-a 1=1,a 3-a 2=3,a 4-a 3=5, …,a n -a n -1=2n -3,累加法可得 a n -a 1=1+3+5+…+(2n -3)=(n -1)2, ∴a n =n 2-2n +2.【解题法】 等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立. (3)通项公式法:验证a n =pn +q . (4)前n 项和公式法:验证S n =An 2+Bn .1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6答案 B解析 设数列{a n }的公差为d ,由a 4=a 2+2d ,a 2=4,a 4=2,得2=4+2d ,d =-1,∴a 6=a 4+2d =0.故选B.2.已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( ) A .a 1d >0,dS 4>0 B .a 1d <0,dS 4<0 C .a 1d >0,dS 4<0 D .a 1d <0,dS 4>0 答案 B解析 由a 24=a 3a 8,得(a 1+2d )(a 1+7d )=(a 1+3d )2,整理得d (5d +3a 1)=0,又d ≠0,∴a 1=-53d ,则a 1d =-53d 2<0,又∵S 4=4a 1+6d =-23d ,∴dS 4=-23d 2<0,故选B.3.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.答案 -12解析 由已知得S 1=a 1,S 2=a 1+a 2=2a 1-1,S 4=4a 1+4×32×(-1)=4a 1-6,而S 1,S 2,S 4成等比数列,所以(2a 1-1)2=a 1(4a 1-6),整理得2a 1+1=0,解得a 1=-12.4.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解 (1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1. 两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4. 故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.考点二 等差数列的性质及应用知识点等差数列及其前n 项和的性质已知{a n }为等差数列,d 为公差,S n 为该数列的前n 项和.(1)有穷等差数列中与首末两项等距离的两项的和相等,即a 1+a n =a 2+a n -1=a 3+a n -2=…=a k +a n -k +1=….(2)等差数列{a n }中,当m +n =p +q 时,a m +a n =a p +a q (m ,n ,p ,q ∈N *). 特别地,若m +n =2p ,则2a p =a m +a n (m ,n ,p ∈N *).(3)相隔等距离的项组成的数列是等差数列,即a k ,a k +m ,a k +2m ,…仍是等差数列,公差为md (k ,m ∈N *).(4)S n ,S 2n -S n ,S 3n -S 2n ,…也成等差数列,公差为n 2d .(5)⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }的公差的12.(6)在等差数列{a n }中,①若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a na n +1.②若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=nn -1.(7)若数列{a n }与{b n }均为等差数列,且前n 项和分别是S n 和T n ,则S 2m -1T 2m -1=a mb m. (8)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.注意点 前n 项和性质的理解等差数列{a n }中,设前n 项和为S n ,则S n ,S 2n ,S 3n 的关系为2(S 2n -S n )=S n +(S 3n -S 2n )不要理解为2S 2n =S n +S 3n .入门测1.思维辨析(1)等差数列{a n }中,有a 1+a 7=a 2+a 6.( )(2)若已知四个数成等差数列,则这四个数可设为a -2d ,a -d ,a +d ,a +2d .( ) (3)若三个数成等差数列,则这三个数可设为:a -d ,a ,a +d .( )(4)求等差数列的前n 项和的最值时,只需将它的前n 项和进行配方,即得顶点为其最值处.( )答案 (1)√ (2)× (3)√ (4)×2.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( ) A .12 B .18 C .22 D .44答案 C解析 由题可知S 11=11(a 1+a 11)2=11(a 2+a 10)2=11×42=22,故选C.3.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=90,则a 10-13a 14的值为( )A .12B .14C .16D .18答案 A解析 由题意知5a 8=90,a 8=18,a 10-13a 14=a 1+9d -13(a 1+13d )=23a 8=12,选A 项.[考法综述] 等差数列的性质是高考中的常考内容,灵活应用由概念推导出的重要性质,在解题过程中可以达到避繁就简的目的.命题法1 等差数列性质的应用典例1 等差数列{a n }中,如果a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( )A .297B .144C .99D .66[解析] 由a 1+a 4+a 7=39,得3a 4=39,a 4=13. 由a 3+a 6+a 9=27,得3a 6=27,a 6=9. 所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=9×(13+9)2=9×11=99,故选C. [答案] C【解题法】 应用等差数列性质应注意(1)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a mn -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.(2)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q ( m ,n ,p ,q ∈N *).一般地,a m+a n ≠a m +n ,必须是两项相加,当然也可以是a m -n +a m +n =2a m .因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件.命题法2 与等差数列前n 项和有关的最值问题典例2 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n最大?[解] 解法一:由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1.从而S n =d2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1,又a 1>0,所以-a 113<0.故当n =7时,S n 最大.解法二:由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由解法一可知a =-a 113<0,故当n =7时,S n 最大.解法三:由解法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0, 即⎩⎨⎧a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. 解法四:由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0, 所以a 7>0,a 8<0,所以当n =7时,S n 最大. 【解题法】 求等差数列前n 项和的最值的方法(1)二次函数法:用求二次函数最值的方法(配方法)求其前n 项和的最值,但要注意n ∈N *. (2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取得最值.(3)项的符号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a n ≥0a n +1≤0的项数n ,使S n 取最大值;当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1 ≥0的项数n ,使S n 取最小值,即正项变负项处最大,负项变正项处最小,若有零项,则使S n 取最值的n 有两个.1.设{a n }是等差数列.下列结论中正确的是( ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0 答案 C解析 若{a n }是递减的等差数列,则选项A 、B 都不一定正确.若{a n }为公差为0的等差数列,则选项D 不正确.对于C 选项,由条件可知{a n }为公差不为0的正项数列,由等差中项的性质得a 2=a 1+a 32,由基本不等式得a 1+a 32>a 1a 3,所以C 正确. 2.在等差数列{a n }中,a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,则使S n >0成立的最大自然数n 是( )A .4025B .4024C .4023D .4022答案 B解析 ∵等差数列{a n }的首项a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,假设a 2012<0<a 2013,则d >0,而a 1>0,可得a 2012=a 1+2011d >0,矛盾,故不可能. ∴a 2012>0,a 2013<0. 再根据S 4024=4024(a 1+a 4024)2=2012(a 2012+a 2013)>0,而S 4025=4025a 2013<0,因此使前n 项和S n >0成立的最大自然数n 为4024.3.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n =2n 3n +1,则a nb n =( )A.23 B.2n -13n -1 C.2n +13n +1D.2n -13n +4答案 B解析 a n b n =2a n2b n =2n -12(a 1+a 2n -1)2n -12(b 1+b 2n -1)=S 2n -1T 2n -1=2(2n -1)3(2n -1)+1=2n -13n -1.故选B.4.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 答案 10解析 由a 3+a 4+a 5+a 6+a 7=25,得5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.5.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________. 答案 5解析 设等差数列的首项为a 1,根据等差数列的性质可得,a 1+2015=2×1010,解得a 1=5.6.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.答案 ⎝⎛⎭⎫-1,-78 解析 由题意知d <0且⎩⎪⎨⎪⎧ a 8>0,a 9<0,即⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78.7.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 根据题意知a 7+a 8+a 9=3a 8>0,即a 8>0.又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时,{a n }的前n 项和最大.8.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c,求非零常数c . 解 (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项a n =4n -3. (2)由(1)知a 1=1,d =4. 所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝⎛⎭⎫n -142-18. 所以当n =1时,S n 最小,最小值为S 1=a 1=1. (3)由(2)知S n =2n 2-n ,所以b n =S nn +c =2n 2-n n +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c. 因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c, 所以2c 2+c =0,所以c =-12或c =0(舍去),故c =-12.已知等差数列{a n }的前n 项和为S n ,且a 5=9,S 5=15,则使其前n 项和S n 取得最小值时的n =________.[错解][错因分析] 等差数列的前n 项和最值问题,可以通过找对称轴来确定,本题只关注到n ∈N *,并未关注到n =1与n =2时,S 1=S 2,导致错误.[正解] ∵a 5=9,S 5=15,∴a 1=-3,d =3. ∴a n =3n -6,S n =32n 2-92n .把S n 看作是关于n 的二次函数,其对称轴为n =32.∴当n =1或n =2时,S 1=S 2且最小. [心得体会]课时练 基础组1.已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64答案 A解析 由题意可知2a 8=a 7+a 9=16⇒a 8=8,S 11=11(a 1+a 11)2=11×2a 62=11a 6=992,a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A. 2.已知S n 表示数列{a n }的前n 项和,若对任意的n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2014=( )A .1006×2013B .1006×2014C .1007×2013D .1007×2014答案 C解析 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,a 1=0,令n =2,则a 3=2=2a 2,a 2=1,于是a n +1-a n =1,故数列{a n }是首项为0,公差为1的等差数列,S 2014=2014×20132=1007×2013.故选C.3.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n答案 A解析由已知式2a n+1=1a n+1a n+2可得1a n+1-1a n=1a n+2-1a n+1,知⎩⎨⎧⎭⎬⎫1a n是首项为1a1=1,公差为1a2-1a1=2-1=1的等差数列,所以1a n=n,即a n=1n.4.设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9=()A.63 B.45C.36 D.27答案 B解析S3=9,S6-S3=36-9=27,根据S3,S6-S3,S9-S6成等差数列,S9-S6=45,S9-S6=a7+a8+a9=45,故选B.5.已知等差数列{a n}中,前四项和为60,最后四项和为260,且S n=520,则a7=() A.20 B.40C.60 D.80答案 B解析前四项的和是60,后四项的和是260,若有偶数项,则中间两项的和是(60+260)÷4=80.S n=520,520÷80不能整除,说明没有偶数项,有奇数项,则中间项是(60+260)÷8=40.所以共有520÷40=13项,因此a7是中间项,所以a7=40.6.已知等差数列{a n}的前n项和为S n,且S4S2=4,则S6S4=()A.94 B.32C.53D.4答案 A解析由S4S2=4,可设S2=x,S4=4x.∵S2,S4-S2,S6-S4成等差数列,∴2(S4-S2)=S2+(S6-S4).则S6=3S4-3S2=12x-3x=9x,因此,S6S4=9x4x=94.7.设等差数列{a n}的前n项和为S n,若a1=-3,a k+1=32,S k=-12,则正整数k=______.答案13解析由S k+1=S k+a k+1=-12+32=-212,又S k+1=(k+1)(a1+a k+1)2=(k+1)⎝⎛⎭⎫-3+322=-212,解得k=13.8.设正项数列{a n }的前n 项和是S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 1=________.答案14解析 设等差数列{a n }的公差为d , 则S n =d 2n 2+(a 1-d2)n ,∴S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,数列{S n }是等差数列,则S n 是关于n 的一次函数(或者是常数),则a 1-d2=0,S n =d2n ,从而数列{S n }的公差是d2,那么有d 2=d ,d =0(舍去)或d =12,故a 1=14.9.已知等差数列{a n }的前n 项和为S n ,若S 2=10,S 5=55,则a 10=________. 答案 39解析 设等差数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧a 1+(a 1+d )=10,5a 1+5×42d =55,即⎩⎪⎨⎪⎧2a 1+d =10,a 1+2d =11,解得a 1=3,d =4,a 10=a 1+(10-1)d =39. 10设数列{a n }为等差数列,数列{b n }为等比数列.若a 1<a 2,b 1<b 2,且b i =a 2i (i =1,2,3),则数列{b n }的公比为________.答案 3+2 2解析 设a 1,a 2,a 3分别为a -d ,a ,a +d ,因为a 1<a 2,所以d >0,又b 22=b 1b 3,所以a 4=(a -d )2(a +d )2=(a 2-d 2)2,则a 2=d 2-a 2或a 2=a 2-d 2(舍),则d =±2a .若d =-2a ,则q =b 2b 1=⎝⎛⎭⎫a 2a 12=(1-2)2=3-22<1,舍去;若d =2a ,则q =⎝⎛⎭⎫a 2a 12=3+2 2. 11.等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解 (1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数,又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52. 因此d =-3.数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝⎛⎭⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫17-110+⎝⎛⎭⎫14-17+…+⎝⎛ 110-3n -⎭⎫113-3n=13⎝⎛⎭⎫110-3n -110=n10(10-3n ).12.已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.解 数列{a n }不是等差数列,a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, ∴S n -S n -1+2S n S n -1=0(n ≥2), ∴1S n -1S n -1=2(n ≥2),又S 1=a 1=12, ∴⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列. ∴1S n =2+(n -1)×2=2n ,故S n =12n. ∴当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),∴a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝⎛⎭⎫1n +1-1n -1=1n (n -1)(n +1).∴当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.能力组13.已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .8C .2 2D .4答案 D解析 由2a 2n =a 2n +1+a 2n -1(n ≥2)可得,数列{a 2n }是首项为a 21=1,公差为a 22-a 21=3的等差数列,由此可得a 2n =1+3(n -1)=3n -2,即得a n =3n -2,∴a 6=3×6-2=4,故应选D.14.已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为( )A .11B .19C .20D .21答案 B 解析 ∵a 11a 10<-1,且S n 有最大值, ∴a 10>0,a 11<0,且a 10+a 11<0, ∴S 19=19(a 1+a 19)2=19·a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0, 故使得S n >0的n 的最大值为19.。
数列知识点总结及例题讲解
![数列知识点总结及例题讲解](https://img.taocdn.com/s3/m/67be6e5a00f69e3143323968011ca300a6c3f6b4.png)
人教版数学必修五第二章数列重难点解析第二章课文目录2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和【重点】1、数列及其有关概念,通项公式及其应用。
2、根据数列的递推公式写出数列的前几项。
3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。
4、等差数列n项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。
5、等比数列的定义及通项公式,等比中项的理解与应用。
6、等比数列的前n项和公式推导,进一步熟练掌握等比数列的通项公式和前n项和公式【难点】1、根据数列的前n项观察、归纳数列的一个通项公式。
2、理解递推公式与通项公式的关系。
3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。
4、灵活应用等差数列前n项公式解决一些简单的有关问题。
5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。
6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。
一、数列的概念与简单表示法1.数列的定义:按一定次序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….3.数列的一般形式:aj,az,ag, …,an, …,或简记为{a},其中a。
是数列的第n项4.数列的通项公式:如果数列{a}的第n项a。
与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意: (1)并不是所有数列都能写出其通项公式,如上述数列④;(2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0, …它的通项公式可以是,也可以是; 1.(3)数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第召项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系:数列可以看成以正整数集N(或它的有限子集{1,2,3,…,n})为定义域的函数an= f(n),当自变量从小到大依次取值时对应的一列函数值。
第十讲+找规律总结
![第十讲+找规律总结](https://img.taocdn.com/s3/m/db52f15f02d276a201292e3a.png)
第十讲 找规律总结第一种类型总结n 项式1)n 项式归纳基本方法:(一)标出序列号(二)公因式法:例如:1,9,25,49,(),(),的第n 为(2n-1)2(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、技巧找出每位数与位置的关系。
再在找出的规律上加上第一位数,恢复到原来。
(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
例 : 4,16,36,64,?,144,196,… ?(第一百个数)(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。
(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。
2)基本步骤1、 先看增幅是否相等,如相等,用基本方法(一)解题。
2、如不相等,综合运用技巧(一)、(二)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、 找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题3)常见n 项式规律:奇数,偶数,2的乘方,3的乘方,5的乘方,等差数列求和,正负或负正变化4)探索规律练习:1.如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,…,1n n n B D C +∆的面积为n S ,则2S = ;n S =____ (用含n 的式子表示).C 5C 4C 3C 2C 1B A2.在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点 正方形,如图,菱形ABCD 的四个顶点坐标分别是(80)-,,(04),,(80),,(04)-,,则菱形ABCD 能覆盖的单位格点正方形的个数是_______个;若菱形n n n n A B C D 的四个顶点坐标分别为(20)-,n ,(0),n ,(20),n ,(0)-,n (n 为正整数),则菱形n n n n A B C D 能覆盖的单位格点正方形的个数为_________(用含有n 的式子表示).3.如图,45AOB ∠=︒,过OA 上到点O 的距离分别为1357911...,,,,,的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为1234S S S S ,,,,.则第一个黑色梯形的面积1S = ;观察图中的规律,第n (n 为正整数)个黑色梯形的面积nS = .A...13119753104.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形A 1B 1C 1D 1,A 2B 2C 2D 2,A 3B 3C 3D 3……每个正方形四条边上的整点的个数.按此规律推算出正方形A 10B 10C 10D 10四条边上的整点共有 个.yxOD 1D 2D 3C 1C 2C 3B 1B 2B 3A 3A 2A 1123-1-2-3-3-2-13215.如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形1ABA ,再以等腰直角三角形1ABA 的斜边为直角边向外作第个等腰直角三角形11A BB ,……,如此作下去,若1OA OB ==,则第n 个等腰直角三角形的面积nS = ________(n 为正整数).B 2B 1A 1BOA6.如图,在平面直角坐标系xOy 中,1B (0,1),2B (0,3),3B (0,6),4B (0,10),…,以12B B 为对角线作第一个正方形1112A B C B ,以 23B B 为对角线作第二个正方形2223A B C B ,以34B B 为对角线作第三个正方形3334A B C B ,…,如果所作正方形的对角线1n n B B +都在y 轴上,且1n n B B +的长度依次增加1个单位,顶点nA 都在第一象限内(n ≥1,且n 为整数).那么1A 的纵坐标为 ;用n的代数式表示nA 的纵坐标: .7.一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(01),,然后接着按图中箭头所示方向运动,即(00)(01)(11)(10)→→→→,,,,…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是_______y 2 38.一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n个整数为____ (n 为正整数).9.一组按规律排列的式子:2581114916,,,,...(0)a a a a a--≠,其中第8个式子是 ,第n 个式子是 (n 为正整数).10.矩形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示放置.点A 1,A 2,A 3,A 4…和点C 1,C 2,C 3,C 4…,分别在直线y kx b =+ (k >0)和x 轴上,若点B 1(1,2),B 2(3,4),且满足2334n 1122334451nn n A A A A A A A A A A A A A A A A -+====,则直线y kx b =+的解析式为 ,点3B 的坐标为 ,点n B 的坐标为_ .11.如图,□ABCD 的面积为16,对角线交于点O ;以AB 、AO 为邻边做□AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做□AO 1C 2B ,对角线 交于点O 2;…;依此类推.则□AOC 1B 的面积为_______;□AO 4C 5B 的面积为_______;□AO n C n+1B 的面积为___________.212.如图,正方形ABCD 的边长为3,点E ,F 分别在边AB ,BC 上,AE =BF =1,小球P 从点E 出发沿直线向点F 运动, 每当碰到正方形的边时反弹,反弹时反射角等于入射角.当 小球P 第一次碰到BC 边时,小球P 所经过的路程为 ;当小球P 第一次碰到AD 边时,小球P 所经过的路程为 ;当小球P 第n (n 为正整数)次碰到点F 时,小球P 所经过的路程为 .13.如图,在平面直角坐标系xOy 中,已知抛物线y =-x (x -3)(0≤x ≤3)在x 轴上方 的部分,记作C 1,它与x 轴交于点O ,A 1, 将C 1绕点A 1旋转180°得C 2,C 2与x 轴交于另一点A 2.请继续操作并探究:将C 2绕点A 2旋转180°得C 3,与x 轴交于另一点A 3;将C 3绕点A 2旋转180°得C 4,与x 轴交于另一点A 4,这样依次得到x 轴上的点A 1,A 2,A 3,…,A n ,…,及抛物线C 1,C 2,…,C n ,….则点A 4的坐标为 ;C n 的顶点坐标为 (n 为正整数,用含n 的代数式表示) . 14.如图,在数轴上,从原点A 开始,以AB=1为边长画等边三角形,记为第一个等边三角形;以BC=2为边长画等边三角形,记为第二个等边三角形;以CD=4为边长画等边三角形,记为第三个等边三角形;以DE=8为边长画等边三角形,记为第四个等边三角形;……按此规律,继续画等边三角形,那么第五个等边三角形的面积是 ,第n 个等边三角形的面积是 .15.如图,在平面直角坐标系中, 已知点P 的坐标为(1,0),将线段OP 绕点O 按顺DCF Ay(1,0)P 5P 4P x OP 0时针方向旋转︒45,再将其长度伸长为OP 的2倍,得到线段1OP ;又将线段1OP 绕点O 按顺时针方向旋转︒45,再将其长度伸长为1OP 的2倍,得到线段2OP ,…,这样依次得到线段3OP ,4OP ,…,nOP .则点2P 的坐标为_______ ;当14+=m n (m 为自然数)时,点nP 的坐标为 ________ .16.如图,设四边形ABCD 是边长为1的正方形,以正方形ABCD 的对角 线AC 为边作第二个正方形ACEF ,再以第二个正方形的对角线AE 为边作第三个正方形AEGH ,如此下去…….(1)记正方形ABCD 的边长为11a =,按上述方法所作的 正方形的边长依次为2a ,3a ,4a ,……,na ,求出4a = ;(2) 根据以上规律写出第n 个正方形的边长n a 的表达式 .(n>=1)(n 是自然数) 17.在平面直角坐标系xOy 中,正方形O C B A 111、1222B C B A 、2333B C B A ,…,按右图所示的方式放置.点1A 、2A 、3A ,…和点1B 、2B 、3B ,…分别在直线b kx y +=和x 轴上.已知1C (1,1-),2C (27,23-), 则点3A 的坐标是________________;点n A 的坐标是___________.18.如图,在正方形ABCD 中,AB =1,E 、F 分别是BC 、CD 边上点,(1)若CE =12CB ,CF =12CD ,则图中阴影部分的面积是 ; (2)若CE =1n CB ,CF =1nCD ,则图中阴影部分的面积是 (用含n 的式子表示,n是正整数).19.如图,已知Rt △ABC 中,∠ACB =90°,AC =6,BC = 8,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直作下去,得到了一组线段CA 1,A 1C 1,C 1A 2,A 2C 2,…,A n C n ,则A 1C 1= ,A n C n = .20将1、2、3、6按右侧方式排列.若规定(m,n )表示第m 排从…JI EC BGF DABCA 1A 2A 3 A 4A 5 C 1 23 4 5 12题图B C 1y左向右第n 个数,则(7,3)所表示的数是 ;(5,2)与(20,17)表示的两数之积是21.一个正整数数表如下(表中下一行中数的个数是上一行中数的个数的2倍): 则第4行中的最后一个数是 ,第n 行中共有 个数, 第n 行的第n 个数是 .第二种类型循环类1.如图,在平面直角坐标系中,一颗棋子从点P 处开始跳动,第一 次跳到点P 关于x 轴的对称点1P 处,接着跳到点1P 关于y 轴的对称点 2P 处,第三次再跳到点2P 关于原点的对称点处,…,如此循环下去.当跳动第2009次时,棋子落点处的坐标是.2.如图,二次函数(2)(02)y x x x =-≤≤的图象,记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……如此进行下去,直至得C 14. 若P (27,m )在第14段图象C 14上,则m = .3.如图,在平面直角坐标系中,已知点()()3,00,4A B -,,对△AOB 连续作旋转变化,依次得到三角形①、②、③、④、…,则第⑦个三角形的直角顶点的坐标是 ;第 个三角形的直角顶点的坐标是 .4.如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点A (2,0)同时出发,沿矩形111122663263323第1排第2排第3排第4排第5排yxOC 1A 1 C 2A 2A 3……C 317xy②④③①-19121614OBABCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2次相遇地点坐标是 ;第2014次相遇地点的坐标是 .5. 我们知道,一元二次方程12-=x 没有实数根,即不存在一个实数的平方 等于-1,若我们规定一个新数“”,使其满足12-=i (即方程12-=x 有一个根为),并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有,1i i =12-=i ,,).1(23i i i i i -=-=⋅=.1)1()(2224=-==i i 从而对任意正整数n ,则6i =__________;由于,.)(.4414i i i i i i n n n ===+同理可得,1,,143424=-=-=++n n n i i i i 那么,20132012432i i i i i i +⋅⋅⋅++++的值为________________6.平面直角坐标系中有一点(1, 1)A ,对点A 进行如下操作:第一步,作点A 关于x 轴的对称点1A , 延长线段1AA 到点2A ,使得122A A =1AA ; 第二步,作点2A 关于y 轴的对称点3A , 延长线段23A A 到点4A ,使得34232A A A A =;第三步,作点4A 关于x 轴的对称点5A , 延长线段45A A 到点6A ,使得56452A A A A =;·······则点2A 的坐标为________,点2014A 的坐标为________.7. 在平面直角坐标系xOy 中,矩形OABC 如图放置,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第5次碰到矩形的边时,点P 的坐标为 ;当点P 第2014次碰到矩形的边时,点P 的坐标为____________.23. 如图,AB是⊙O的直径,弦CD⊥AB于点H,点G在弧BD上,连接AG,交CD于点K,过点G的直线交CD延长线于点E,交AB延长线于点F,且EG=EK.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为13,CH=12,AC∥EF,求OH和FG的长.。
小学奥林匹克数学 竞赛数学 第10讲-数列与数表
![小学奥林匹克数学 竞赛数学 第10讲-数列与数表](https://img.taocdn.com/s3/m/a3345be3284ac850ac024230.png)
【9】
下图是1911年到1926年的公元纪年不干支纪年的对照表.请问: (1)中国近代史上的“辛亥革命”发生在公元1911年,是干支纪年的辛亥年, 请问公元2049年是干支纪年的什么年? (2)21世纪的甲子年是公元纪年的哪一年? (3)“戊戌变法”发生在19世纪末的戊戌年,这一年是公元纪年的哪一年?
下节课见!
【6】
如图,将从5开始的连续自然数按规律填人数阵中,请问: (1)123应该排在第几列? (2)第2行第20列的数是多少?
第1列 第2列 第3列 …
5
10
15
…
6
11
16
…
7
12
17
…
8
13
18
…
9
14
19
…
【7】
如图所示,将自然数有规律地填入方格表中,请问: (1)500在第几行,第几列? (2)第100行第2列是多少?
123456
7
8
9
10 11 12 13 14 15
16
17
18
…
…
997
998
999
【Hale Waihona Puke 】如图所示,数阵中的数字是按一定规律排列的.这个数阵中第60行左起第4个 数字是多少?
12345678 91011121 31415161 71819202 ………………………………………….
【9】
中国古代的纪年方法叫“干支纪年”,是在“十天干”和“十二地支”的 基础上建立起来的.天干共十个,其排列顺序为:甲、乙、丙、丁、戊、 己、庚、辛、壬、癸; 地支共十二个,其排列顺序为:子、丑、寅、卯、辰、巳、午、未、申、 酉、戌、亥. 以一个天干和一个地支相配,天干在前,地支在后,每对干支表示一 年.在干支纪年中,每六十年纪年方式循环一次. 公元纪年则是国际通行的纪年方式.
(六年级数学)小升初数学课程:第十讲 找规律和统计、确定位置
![(六年级数学)小升初数学课程:第十讲 找规律和统计、确定位置](https://img.taocdn.com/s3/m/c9cf337a3d1ec5da50e2524de518964bcf84d2a0.png)
第十讲找规律和统计、确定位置一、知识梳理我们知道,事物发展变化具一定规律性,只有不断努力观察与深入探索,才可能逐步了解其基本规律并掌握它,从而为解决问题提供更为有效的方法与途径。
在日常思维学习及数学竞赛中,会经常出现填数和简单几何图形规律题型,解答此类问题的根本策略就在于熟悉基本算理且正确辨识平面图形的特殊变化。
统计是对大量数据信息进行收集整理、分析表述,阐释再应用于决策的一种经济运算活动。
数理内容主要包含统计图表的使用,它能行之有效且更为直观地反映数据特征及其变化规律,帮助我们可以把数图有效结合,是最佳的数学应用科学方式之一。
确定位置是指从现实生活与某一情境中通过观察、判断,分析及抽象概括出物体所在的准确方向和具体位置,进一步提升数形结合和空间思维能力。
1、填数规律找规律中的填数基础题型是指给予我们一些已知的残缺数据或数阵,通过深度观察和分析,逐步探寻出数列规律并完成填数运算。
2、图形规律找规律中的图形复合题型是指给予我们某些已知的平面图形,通过加工操作或变形所能得出的可能变化后图形乃至图形推算边角数的规律计算。
3、统计图表统计运算中将已有的统计表按照数理运算的核心要求编制成三种统计图用来展示数据特点和反馈解读信息的专有途径。
4、数对用来反映横行竖列,依据先列后行的顺序以类似坐标形式体现物体方位的形式之一。
5、方位角依据上北下南,左西右东的方位顺序和特殊角度、距离等来定义物体所在位置的方式之一。
二、例题精讲例1:请找出下列各组数排列的规律并根据规律在括号里填上适当的数。
(1)1,5,9,13,(),21,25。
(2)3,6,12,24,(),96,192。
(3)21,4,16,4,11,4,(),()。
(4)1,1,2,3,5,8,13,21,()。
【解析】(1)该题规律是抓住前后两数的公差相等,即等差数列的基本特征定义运算本质;5-1=4,9-5=4,13-9=4,……则:()-13=4→()=13+4=17。
数列的概念及简单表示法(高三一轮复习)
![数列的概念及简单表示法(高三一轮复习)](https://img.taocdn.com/s3/m/16935b76e55c3b3567ec102de2bd960591c6d968.png)
所以数列
S 2
n
是首项为S
2 1
=a
2 1
=1,公差为1的等差数列,所以S
2 n
=n,所以Sn=
n
(n∈N*).
数学 N 必备知识 自主学习 关键能力 互动探究
— 20 —
命题点2 由数列的递推公式求通项公式
考向1 累加法
例2
设数列
a
n
满足a1=1,且an+1-an=1(n∈N*),则数列
1 3
an+1,所以a2=3S1=3×
16 3
=16.当n≥2时,有an=Sn-Sn-1
=13an+1-13an,即an+1=4an.
所以从第二项起,数列an为首项为16,公比为4的等比数列,所以an= 4n(n≥2).
经检验,an=4n对n=1不成立,
所以an=136,n=1, 4n,n≥2.
数学 N 必备知识 自主学习 关键能力 互动探究
,所以a2=
4 2-a1
=
4 2-4
=-2,a3=
4 2-a2
=
4 2+2
=1,a4=
4 2-a3
=
4 2-1
=4,…,所以数列
a
n
是以3为周期的周期数列,又2
022=
673×3+3,所以a2 022=a673×3+3=1.
数学 N 必备知识 自主学习 关键能力 互动探究
— 12 —
4.(易错题)若数列
— 7—
4.数列的表示法 数列有三种表示法,它们分别是 8 列表法 、图象法和 9 解析法 .
数学 N 必备知识 自主学习 关键能力 互动探究
— 8—
常用结论► (1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有 关,还与这些“数”的排列顺序有关. (2)项与项数的概念:数列的项是指数列中某一确定的数,而项数是指数列的项 对应的位置序号. (3)若数列{an}的前n项和为Sn,则数列{an}的通项公式为an=SS1n,-nS=n-11,,n≥2.
第一讲+数列的概念与简单表示法课件-2025届高三数学一轮复习
![第一讲+数列的概念与简单表示法课件-2025届高三数学一轮复习](https://img.taocdn.com/s3/m/eaad6f8551e2524de518964bcf84b9d529ea2c42.png)
a6=( )
A.3×44
B.3×44+1
C.44
D.44+1
解析:由an+1=3Sn,得到an=3Sn-1(n≥2),
两式相减,得an+1-an=3(Sn-Sn-1)=3an, 则an+1=4an(n≥2),因为a1=1,a2=3S1=3a1=3,所以此数 列除去第一项后,为首项是3,公比为4的等比数列,所以an= a2qn-2=3×4n-2(n≥2).则a6=3×44.故选A.
1
=
(2n
+
1)
7 8
n+1
,
an+1 an
=
(2n+1)78n+1 (2n-1)78n
=
14n+7 16n-8
.
当
aan+n1>1 时,n<125;当aan+n1<1 时,n>125.∵an>0,∴数列{an}的最大项 是 a8.
答案:8
考向 2 数列的周期性
[例3]已知数列{an}满足:an+1=an-an-1(n≥2,n∈N*),a1=
2.数列的表示方法
列表法
列表格表示n与an的对应关系
图象法
把点(n,an)画在平面直角坐标系中
公 通项公式 把数列的通项用公式表示
式 法
递推公式
使用初始值a1和an+1=f(an)或a1,a2和an+1=f(an, an-1)等表示数列的方法
3.an 与 Sn 的关系 若数列{an}的前 n 项和为 Sn, 则 an=SS1n, -nSn=-11,,n≥2.
4.数列的分类
分类标准
类型
项数
有穷数列 无穷数列
项与项间的 大小关系
递增数列 递减数列
常数列
第10讲 数阵中的规律
![第10讲 数阵中的规律](https://img.taocdn.com/s3/m/3293447daf1ffc4ffe47acc7.png)
第10讲数阵中的规律不少同学早就对“幻方”有所了解了。
幻方之所以会引起人们的兴趣,不仅因为幻方中的数排列得很整齐(都排成正方形),更是因为幻方中的数排列得很有规律,而这些规律往往很奇妙。
自然数排列成其他形式的数阵也很整齐有序,也充满着规律。
在这一讲,我们将会大开眼界。
例题与方法例1.自然数1,2,3,4,…排成了下面的数阵:第1行 1 2 3 4第2行 3 4 5 6 (1)这个数阵中的第15行左起第3个数是。
第3行 5 6 7 8第4行 7 8 9 10 (2)48排在这个数列第行左起第个。
第5行 9 10 11 12……例2.在下面的数阵中,第10行左起第3个数是。
第1行 1第2行 2 3第3行 4 5 6第4行7 8 9 10第5行11 12 13 14 15第6行16 17 18 19 20 21……………………例3.自然数如下表的规律排列:1 2 5 10 17 …4 — 3 6 11 18 …9 —8 —7 12 19 …16 —15 —14 —13 20 …25—24 —23 —22 —21 ……………………………(1)求上起第10行,左起第7个数。
(2)数87应排在上起第几行,左起第几列?例4.下面的数阵中共有100个数,你能用几种方法把这100个数相加的结果算出来?练习与思考1.在空的○内填上适当的数。
2.观察下列各数组成的“三角阵”,它的第7行右起第1个数是 ,第15行左起第7个数是 。
3.将自然数按下表的顺序排列。
(1)最下面一横排从左到右第10个数是 。
(2)a= 。
16 ...... 11 17 ...... 7 12 18 a (4)813……1 2 3 4 5 6 7 8 9 102 3 4 5 6 7 8 9 10 11 3 4 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 14 6 7 8 9 10 11 12 13 14 15 7 8 9 10 11 12 13 14 15 16 8 9 10 11 12 13 14 15 16 17 9 10 11 12 13 14 15 16 17 18 10 11 12 13 14 15 16 17 18 1912 3 45 6 7 8 910 11 12 13 14 15 16 … … … … … … … … …2 5 9 14 (1)361015……4.一串数按下面方式排列。
小学三年级奥数 第10讲图形数列找规律
![小学三年级奥数 第10讲图形数列找规律](https://img.taocdn.com/s3/m/f58cfefebceb19e8b8f6bad6.png)
图形数列找规律【例1】(★★)观察图1中蝴蝶的变化规律,从图2中找出相应的选项填在空缺的位置上。
图形找规律秘籍⑴数量⑵图形(形状、颜色、大小等)⑶位置/方向(顺逆时针、前后、左右、上下等等)⑷组合1【拓展】(★★★)【例2】(★★★★)如图,沿箭头方向网格中图形变化的规律,在最后一个网格中填入适当的图形。
【例3】(★★★)根据前三个方格表中阴影部分的变化规律,填上第⑽个方格表中阴影部分的小正方形内的几个数之和?⑴18,15,12,( ),( )。
⑵3,5,8,12,17,( ),( )。
⑶2,1,3,3,4,5,5,7,( ),( ),( ),( )。
⑷1,3, 9,( ),( )。
⑸1, 1, 2, 3, 5,8,13, ( ),( )。
2【例4】(★★★★)下图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的。
仔细观察后,请回答:⑴十层的“宝塔”的最下层包含多少个小三角形?⑵整个十层“宝塔”一共包含多少个小三角形?⑶如果一个小三角形是用三根火柴棒拼成,那么整个十层“宝塔”一共需要多少根火柴棒?【例5】(★★★★★)有一天,安迪在黑板上写下了这样一列数:1,1,2,3,5,8,13,21,34,55,……,得意洋洋的问乐乐老师,“您知道这个数列吗?”聪明的小朋友们你们知道吗?请你回答下面的问题。
⑴这个数列的第11项是多少?⑵这个数列的第20项被5除余几?⑶这个数列的第4098项是奇数还是偶数?【例6】(★★★★)【趣味数学】有一串数如下:1,2,4,7,11,16,……它的规律是:由1开始,加1,加2,加3,……,依次逐个产生这串数,直到第50个数为止。
那么在这50个数中,被3除余1的数有多少个?聪明的小朋友,你知道吗?⑴请问下面3组数字间有什么关系吗?1 3 8 72 4 65 9⑵在下面的数列中继续向下填一行1 12 11 1 1 23 1 1 22 1 1 2 1 33【本讲总结】一、图形找规律方法:秘籍1:数量秘籍2:颜色秘籍3:形状秘籍4:位置/方向秘籍5:组合(分开看)二、数列找规律基本能力:1.观察能力2.计算能力【本讲总结】熟记常见数列类型:等差数列等比数列兔子数列(斐波那契数列)双重数列数的排列有规律,多种多样真有趣,有增加、有减少,变化可测有道理,图形排列善变化,变化总会有规律。
第十讲 等差数列等比数列与数列求和自主招生
![第十讲 等差数列等比数列与数列求和自主招生](https://img.taocdn.com/s3/m/3995797731b765ce05081497.png)
第十讲 等差数列等比数列与数列求和【考点说明】1.数列是自主招生必考的一个重要内容之一,在自主招生中占有一席之地!2.在自主招生中,数列考得较多的知识点有:极限、数学归纳法、递推数列、等差等比数列、及数列的应 用等。
【知识引入】一.等差数列:1.通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈;2.前n 项和公式:1()2n n n a a s +=1(1)2n n na d -=+. 二.等比数列:1.通项公式:1*11()n nn a a a qq n N q-==⋅∈; 2.前n 项和公式:11(1)111n n a q q S q na q ⎧-≠⎪=-⎨⎪=⎩,,或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩ .三.数列的通项公式与前n 项的和的关系:11,1,2n n n S n a S s n -=⎧=⎨-≥⎩(n S 为数列{}n a 的前n 项的和为).四.常见数列的前n 项和公式:(1)1232n n n +++++=21357(21)n n ++++-=24682(1)n n n ++++=+ 2222(1)(21)1236n n n n ++++++=33332(1)123[]2n n n +++++=【知识拓展】一.等差数列的主要判定方法:①1n n a a d +-=(d 为常数); ②122n n n a a a ++=+(*n N ∈); ③n a kn b =+(,k b 为常数); ④2n S An Bn =+(,A B 为常数)。
二.等差数列的主要性质: ①()n m a a n m d =+-或n ma a d n m-=-(d 是公差);②若,,,*m n k l N ∈,且m n k l +=+,则m n k l a a a a +=+。
注意,反之不一定成立; ③数列{}n a b λ+(,b λ是常数)是公差为d λ的等差数列; ④下标成等差数列,且公差为m 的项2,,,k k m k m a a a ++组成的数列仍然为等差数列,且公差为md 。
第10讲 数列与数表-完整版
![第10讲 数列与数表-完整版](https://img.taocdn.com/s3/m/a7ad855d87c24028915fc395.png)
第10讲数列与数表内容概述通过观察数列或数表中的已知数据,发现规律并进行填补与计算的问题。
注意数表形式的多样性,许算时常常考虑周期性,或进行合理估算.典型例题兴趣篇1.观察数组(1,2,3),(2,3,4),(3,4,5),…的规律,求:(l)第10组中三个数的和;(2)前10组中所有数的和.答案:(1) 33 (2) 195解析:发现每组都有三个数,而且这三个数是连续的.第1组三个数中,中间的那个数是2,第2组中间的数是3,第3组中间的数是4……第几组中间那个数就是几加1.又每组三个数是连续的,所以这三个数的平均数就是中间那个数,这三个数的和就是中间那个数的3倍.(1)第10组的三个数中,中间那个数是10+1= 11.所以第10组就是(1O,11,12),那么这三个数的和为11×3=33.(2)可以分析出每组三个数的和是这组中间数的3倍,那么前:O组的所有数的和是2×3+3×3+4×3+…+1l×3=3×(2+3+…+11)=195.2.请观察下列数列的规律:1,1,4,2,7,3, 10,1,13,2,16,3,19,1,22,2,25,3,…,100.问:(1)这个数列一共有多少项?(2)这个数列所有数的总和是多少?答案:(1)67项(2) 1783解析:观察发现数列中两种规律交替出现,也就是说,题中数列的第2项、第4项、第6项……即偶数项是:1,2,3,1,2,3,…,以“1,2,3”为一个周期,循环出现,周期的长度为3.再来看奇数项,把第1、3、5、7……项列出来是:1,4,7,10,13,16,…,显然,这是一个首项为1、公差为3的等差数列.(1)数列最后一项是100,这肯定不是“1,2,3”周期数列中的一项,而是等差数列中的一项.等差数列的项数是(100-1)÷3+1= 34,由于是等差开头,等差结尾,所以周期数列的项数比等差数列的步1,原数列的项数是34×2-1= 67.因此这个数列一共有67项.(2)在这个数列的67项中,周期数列有33项,每个周期内3个数的和是1+2+3=6,共有33÷3=11个周期,所以周期数列的总和就是11×6=66.等差数列有34项,首项为1,末项为100,项数是34,各项的和为(1+ 100)×34÷2=1717.综上,题中数列各项的总和是66+1717=1783.3.一个数列的第一项是1,之后的每一项是这样得到的:如果前一项是一位数,接着的一项就等于前一项的两倍;如果前一项是两位数,接着的一项就等于前一项个位数字的两倍.请问:(l)第100项是多少?(2)前100项的和是多少?答案:(1)8 (2) 975解析:(1)根据题意写出数列:1,2,4,8,16,12,4,8, 16, 12,4,8,16, 12,4,…可以看出,此数列是从第3项起,以“4,8,16,12”这4个数为一个周期的周期数列.前100项中,除去前2项还有98项,98÷4=24……2,这意味着98项里有24个周期,最后还多出来2项,如图所示:所以数列的第100项是8.(2)前100项的和是1+2+(4+8T16+12)×24+4+8=975.4.如图10-1,方格表中的数是按照一定规律填入的.请观察方格表,并填出“?”处的数.答案:105解析:观察表中的数,发现最小的数是1,其次是3,6,10,15,…,把这些数从小到大连接起来,可以看出,这些数从小到大按照螺旋的形状排列.“?”处的数就是91之后,120之前的数,这些数从小到大依次是1,3,6,10,15,21,28,36,…,可以看出:每两个数的差依次加1.从图上的“66”开始看,从小到大,按照“螺旋”的排列规律,由于所以“?”就是105.5.如图10 -2,数阵中的数是按一定规律排列的,请问:(1) 100在第几行第几列?(2)第20行第3列的数是多少?答案:(1)第25行,第6列(2) 79解析:每一个奇数行都有4个数,在右面的第3、4、5、6列;每一个偶数行也有4个数,在左面的第1、2、3、4列.所有的数从1开始,由小到大按自然数的顺序从左向右排列.可以看到,如果把每一个奇数行和它下面的偶数行看作一个“奇偶组”,那么一个“奇偶组”有8个数,每个“奇偶组”中8个数对应的排列方式是相同的.(1)首先,100就是从小到大的第100个数,每个“奇偶组”有8个数,100÷8=12……4,于是100之前有12个“奇倡组”,100是这12个“奇偶组”后的第4个数.12个“奇偶组”就占24行,第24行为偶数行,100就在从第25行开始数第4个数的位置,如图1所示:所以100在第25行,第6列.(2) 20行有2C÷2—10个“奇偶组”,每个“奇偶组”有8个数,一共有8×10=80个数,第80个数就是80,它是隽20行最后一个数.第20行为偶数行,偶数行都有4个数,在左面的第1、2、3、4列.如图2所示:所以第20行第3列的数就是79.6.如图10 -3,从4开始的自然数是按某种规律排列的.请问:(1) 100在第几行第几列?(2)第5行第20列的数是多少?答案:(1)第1行,第25列(2) 81解析:数阵中的数是从4开始,由小到大排列的.从左边第一列开始,奇数列都有5个数,是从上到下排列的;偶数列都有3个数,是从下到上排列的,每个奇数列和它后面相邻的偶数列组成一个“奇偶组”,每个“奇偶组”有8个数.(1)方法一:100是数列中第100-3=97个数,每个“奇偶组”有8个数,97÷8=12……1.所以前100个数中有12个“奇偶组”,还多出1个数.每个“奇偶组”包含一奇一偶两列,12个“奇偶组”有12×2=24列.于是第97个数就是第25列的第1个数,也就是说100在第1行,第25列.方法二:第1列第1行的数是4,第3列第1行的数是12,第5列第1行是20……可以发现,第奇数列第1行的数是这个奇数的4倍.因为100÷4=25,所以100就是第25列第1行上的数.(2)方法一:前20列有20÷2=10个“奇偶组”.每个“奇偶组”有8个数,一共有8×10=80个数,第80个数是前20列最后一个数.20是偶数,第20列最后一个数在第1衍.因此第20列第5行上的数是第80-2=78个数.第78个数就是78+3=81.方法二:找规律,第2列第5行是9,2×4+1=9.第4列第5行是17,4×4+1=17.第6列第5行是25,6×4+1=25.于是第20列第5行是20×4+1=81.7.如图10 -4所示,把偶数2,4,6,8,…排成5列,各列从左到右依次为第1列、第2列、第3列、第4列和第5列.请问:(1) 100在第几行第几列?(2)第20行第2列的数是多少?答案:(1)第15行,第2列(2) 138解析:先观察数阵中数的排列规律,发现数阵中的数是从2开始的连续的偶数,奇数行有4个数,在右面的第2、3、4、5列,从左向右排列;偶数行有3个数,在左面的第1、2、3列,从右向左排列,把一个奇数行和它相邻的偶数行看作一个周期,那么一个周期包含7个数.(1) 100是从2开始的第100÷2=50个数.每7个数为一个周期,50÷7=7……1. 50个数包含7个周期,并多出来一个数.7个周期就占据7×2—14行.所以数100是第15行的第!个数.第:5行是奇数行,奇数行第1个数是在第2列.因此100在第15行,第2列.(2)两行为一个周期,前20行有20÷2=10个周期,每个周期7个数,前20行共有10×7=70个数.所以第20行最后一个数就是第70个数,即第20行第1列是第70个数,那么第20行第2列的数是第69个数,第69个数是69×2=138.8.如图10 -5,从1开始的连续奇数按某种方式排列起来,请问:(l)第10行左起3个数是多少?(2) 99在第几行左起第几个数?答案:(1)167(2)第8行左起第1个数解析:(1)前9行有1+3+5+…+17=81个数,因此第10行第3个数是表中的第81+3=84个数,表中的数都是奇数,第84个奇数是84×2-1=167.(2) 99是第50个奇数,前7行有1+3+5+-+13=49个数,因此表中第50个数是第8行左起第1个数.9.如图10 -6,从1开始的自然数按某种方式排列起来.请问:(1) 100在第几行?100是这一行左起第几个数?(2)第25行左起第5个数是多少?答案:(1)第14行,左起第9个数(2) 321解析:从图中可看出,自然数排成了“S”形,且第1行有1个数,第2行有2个数……第几行就有几个数;奇数行是从右向左排列,偶数行则是从左向右排列.(1)数100是第100个数,因为1+2+3+…+13=91,前13行有91个数;1+2+3+…+14=105,前14行有105个数,所以100在第14行,第14行是偶数行,是从左向右排列的,100是第14行的第100-91=9个数.于是,100在第14行,是这一行左起第9个数.(2)前25行有1-l-2+3+-+25=(1+20)×25÷2=325个数,奇数行是从右向左排列的,所以第25行最后一个数即是左起第1个数,为325.那么第25行左起第5个数就是325-4=321.10.如图10-7,把从1开始的自然数排成数阵.试问:能否在数阵中放入一个3×3的方框,使得它围住的九个数之和等于:(1)1997; (2)2016; (3)2349.如果可以,请写出方框中最大的数.答案:只有2349是可以的,最大的数为269解析:可以看到,数阵中的行和列为等差数列,数列排列非常规律.然后可以观察到方框中9个数的平均数就是正中间的数,因此方框中的9个数之和必为正中间数字的9倍.1997÷9=221……8(不符合题意);2016÷9=224(暂时符合题意);2349÷9=261(暂时符合题意).又由于每行都是7个数,而224÷7=32, 261÷7=37……2.于是224是第32行最后一个数,224不可能是方框正中间的数.而261是第38行的第2个数,261可以作为方框正中间的数.因此只有2349是可能的,其中方框中的最大数比中间数大8,是261+8=269.拓展篇1.请观察下列数列的规律:1, 100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,1,84, 0请问:(l)这个数列中有多少项是2?(2)这个数列所有项的总和是多少?答案:(l) 26项(2) 2652解析:题中的数列是由两个数列合成的,它的奇数项是以“1,2,3,2”为周期的周期数列,偶数项是首项为100、公差为2的递减的等差数列!数列最后一项为O,因周期数列中没有O,所以它是等差数列中的一项.(1)只要分别找出奇数项和偶数项中的2,把它们的项数相加就是数列中2的项数.在从100递减到O的等差数列中,项数为(100 -O)÷2+1= 51.由于是周期开始,等差结束,所以周期数列的项数也是51.由51÷4=12…3可知,51项里共有12个完整的周期,除此以外还剩3项:1,2,3.每个周期有两项是2,所以周期数列里有2×12+1= 25项是2,等差数列中只有一项是2,所以数列里一共有25+1=26项是2.(2)可以分别算出奇数项之和与偶数项之和,把它们相加就是数列所有项的总和.周期数列51项之和为(1+2+3+2)×12+1+2+3 =102,等差数列51项之和为(O +100)×51÷2=2550.所以数列的所有项之和为2550+102=2652.2.观察数组(1,2,3),(3,4,5),(j,6,7),(7,8,9),…的规律,求:(1)第20组中三个数的和;(2)前20组中所有数的和.答案:(1) 120 (2) 1260解析:(1)笫20组的三个数中,中间那个数是20×2=40.所以第20组就是(39,40,41),三个数的和为40×3=120.(2)可以分析出每组三个数的和是组数的6倍,那么前20组的所有数的和是6×1+6×2+6×3+…+6×20=6×(1+2+3+…+20)=6×(1+20)×20÷2 = 1260.3.一列由两个数组成的数组:(1,1),(1,2),(2,2),(1,3),(2,3),(3,3),(1,4),(2,4),(3,4),(4,4),(1,5),…,请问:(1)第100组内的两数之和是多少?(2)前55组中“5”这个数出现了多少次?答案:(l) 23 (2) 11次解析:观察数组可以发现,如果有某些组括号里的第2个数相同,那这些组都紧挨着.如果按从左到右的顺序,把各组括号里的第2个数写成一行:1,2,2,3,3,3,…,可发现各组的第2个数排列得很有规律,从1开始逐渐变大,所以可以把数组按括号中的第2个数分成若干大组:观察这些大组可发现,第1大组有1个括号,第2大组有2个括号……第几大组就有几个括号,在每一组里,括号中的第1个数排成了从1开始递增的连续自然数数列.(1)1+2+3+…+13=91<100,1+2+…+14=105>100,所以第100个括号在第14大组.前13大组有91个括号,由100-91=9知,第100个括号是第14大组中的第9个.根据组的特点可知,第100个括号内的数为(9,14),它们的和是14+9=23.(2)方法一:因为1+2+-+10=55,所以前55个括号恰好被分为l0大组.前4大组没有出现5,从第5大组起,括号中的第1个数出现5的次数是每大组1次,所以第1个数中出现5的次数为104=6次.因为只有在第5组里,括号里的第2个数才能是5,所以括号中的第2个数出现5的次数是5次.综上,前55个括号中出现5的次数为6+5=11(次).方法二:观察前3个括号(也就是前2个大组)可发现,括号里正好一共有3个1,3个2.再看前6个括号(也就是前3个大组),类似地列出1、2、3,可发现正好一共有4个1,4个2,4个3.如图所示:也就是说,在前咒个完整的大组中,每个数都出现了n+l次,那么按照这种写法依次写下去可发现,前10个完整的大组中1,2,…,10出现的次数相同,都是10+1=11次,所以5出现的次数也是11次.4.有一列数,第一个数是3,第二个数是4,从第三个数开始,每个数都是它前面两个数的和的个位数.从这列数中取出连续的50个数,并求出它们的和,所得的和最大是多少?如果从中取出连续的500个数,这500个数的和最大又是多少?答案:257;2510解析:根据题意,把数列的前面若干项写出来就是:3,4,7,1,8,9,7,6,3,9,2,1,3,4,7,1,8,9,7,6,3,9,2,1,3,4,7,1,…容易发现这是一个周期数列,每连续12个数为一个周期,每个周期的和是60.50÷12=4……2,即取4个周期和连续的2个数.连续4个周期的数,无论从数列中哪个数开始,它们的和是一定的:60×4=240.让多出来的2个连续的数的和尽量大就可以了.数列中,连续2个数的和最大是8+9=17,取法如图1:和最大就是60×4+17=257.500÷12=41……8,取41个周期和连续的8个数.要选8个连续的数,让它们的和最大.因为每连续12个数的和是一定的,所以选4个连续的数,使他们的和最小,剩下的8个数的和一定最大.如果取连续的4个数,使其和最小,很明显是“2,1,3,4”这4个,余下的8个数的和一定最大,是60-3-4-2-1=50.取法如图2:这样连续的500个数,其和就是最大的,是60×41+50=2510.5.如图10-8,把从l开始的自然数填在图上,1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OG 上,8在射线OH上,9又回到射线OA上……如此循环下去.问:78在哪条射线上?射线OE上的第30个数是多少?答案:射线OF上;237解析:如图所示标出了自然数从1开始在射线上排列的规律:可以发现,排成的是从里到外逆时针的螺旋形.从射线OA开始,排8个数之后,第9个数又排到OA上,所以我们可以把8个数看做一个周期,而且在同一条射线上,相邻的两数相差8,也就是说落在同一条射线上昀数形成一个以8为公差的等差数列.(l)由78÷8=9……6可知,78落在从OA开始4逆时针数的第6条射线OF 上.(2)射线OE上的数形成了以8为公差的等差数列,第1个数是5,第30个数和第1个数相差29个公差,所以0E上第30个数是5+8×29=237.6.如图10 -9,将从5开始的连续自然数按规律填人数阵中,请问:(1) 123应该排在第几列?(2)第2行第20列的数是多少?答案:(1)第24列(2) 101解析:数列5,6,7,8,9,10,…是从5开始的自然数数列,按从小到大的顺序观察这个数阵中的自然数,可以发现它们是竖着排的,每一列的顺序都是从上至下,如果把每一列看作1个周期,一个周期里有5个数.(1)方法一:数阵中的数构成一个以5为首项的果把数阵中的一列看作一周期,那窟泣该是以5个数为一个周期.由119÷5=23……4可知,119个数包含23个周期,还多出4个数来. 23个周期就占据23列,所以数列的第119个数在第24列,也即123在第24列.方法二:注意到每一列第1行的数都是5的倍数,在第几列就是5的几倍.和123最接近的5的倍数是5×25=125,它在第25列第1行,123比它少2.所以在它的前一列,也就是第24列.(2)方法一:一个周期包含5个数,所以前19个周期共有19×5=95个数,第20列第2行的数也就是数列的第95+2=97个数.所以这个数是97+4=101.方法二:第20列第1行的数是5的20倍,也就是5×20=100.所以第2行的数是100+1=101.7.如图10 - 10所示,将自然数有规律地填入方格表中.请问:(1) 500在第几行第几列?(2)第100行第2列是多少?答案: (l)第111行,第5列(2) 448解析:(1)数表中的数构成一个从1~999的自然数数列,500是这个数列的第500个数,每一个奇数行和它下面的偶数行可看成一个周期.由500÷9=55……5可知,前500个数里包含了55个周期,还余下5个数.因为每个周期有2行,所以55个周期共占据55×2=110行,所以第500个数在数表的第11O+1=111衍,500在第111行的第5列.(2)方法一:前100行共有100÷2=50个周期,所以排到第100行第2列时,已经排了49个周期,还多出了7个数,所以,第100行第2列的数是数列的第49×9+7=448个数,也就是448.方法二:经仔细观察,每个周期的最后一个数都是9的倍数,在第几个周期就是9的几倍,前100行一共有100÷2=50个周期,那么第100行的最后一个数为9×50=450.450是第100行第6列的数,所以第100行第2列的数是450-2=448.8.如图10-11所示,数阵中的数字是按一定规律排列的.这个数阵中第60行左起第4个数字是多少?答案:9解析:横着看数阵,数阵的第1行是从1开始排到8,的连续自然数,第2行排了9后,接下来的数字是“1”,“0”,“1”,“1”,“1”,“2”,….观察发现,是把从1开始连续的自然数的各位数字依次排到了数阵中.在数阵中,自然数的每位数字都占一个位置.一位数每个占1个位置,两位数每个占2个位置,三位数每个占3个位置,所以我们先要确定排到第60行数列的第48餐59+4=476个数字,因为在自然数中,一位数有9个,两位数有90个,所以一位数和两位数共有9+90×2=189个数字.那么肯定是排到三位数了.由(476-189)÷3=95…2可知,数阵排到60行第4个数字时,已经排了95个三位数,并且还多排了2个数字.于是第63行第4个数字属于隽96个三位数,也就是195,并且是195的第2位数字,所以它是9.9.中国古代的纪年方法叫“干支纪年”,是在“十天干”和“十二地支”的基础上建立起来的.天干共十个,其排列顺序为:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;地支共十二个,其排列顺序为:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.以一个天干和一个地支相配,天干在前,地支在后,每对干支表示一年.在干支纪年中,每六十年纪年方式循环一次.公元纪年则是国际通行的纪年方式.图10 - 12是1911年到1926年的公元纪年与干支纪年的对照表,请问: (l)中国近代史上的“辛亥革命”发生在公元1911年,是于支纪年的辛亥年,公元2049年是干支纪年的什么年?(2) 21世纪的甲子年是公元纪年的哪一年?(3)“戍戌变法”发生在19世纪末的戊戌年,这一年是公元纪年的哪一年?答案:(l)己已年(2) 2044年(3) 1898年解析:(1)注意到2049–1919=10×13,所以2049年和1919年的天干相同,都为“己”,又因为2049-1917=12×11,所以2049年和1917年的地支相同,都为“巳”.综上所述,得2049年为“己已”年.(2) 60年为一个大周期,因为它是10和12的公倍数,所以相隔60年的整数倍数的年份,天干和地支的名称都不变,只要知道20世纪的甲子年,就很容易求出21世纪的甲子年了.因为1924年是甲子年,所以21世纪的甲子年的公元纪年年份和1924之差是60的倍数.由1924+60=1984<2000, 1924+60×2=2044可知,21世纪的甲子年是204/年.又因为2044+60=2104,已经到了22世纪,所以21世纪只有一个甲子年.(3)由1918年是戊年可知,1898、1888、1878、1868、1858年都是戊年.由1922年是戌年可知,1898、1886年都是戌年.所以“戊戌变法”发生在1898年,10.如图10 - 13,将1~400这400个自然数顺次填入20×20的方格表中,请问:(1) 246在第几行第几列?(2)第14行第13列的数是多少?(3)所有阴影方格中数的总和是多少?答案:(1)第13行,第6列(2) 273 (3) 8020解析:数表是从1开始,依次写下去.每行20个数,一共400个数.(1)因为第1个数是1,所以246就是第246个数.246÷20=12…6,于是246前面有12行,它是第13行的第6个数,也就是在第13行,第6列.(2)前13行有13×20=260个数,于是第14行的第13个数就是第260+13=273个数.因为第1个数是1,所以第273个数就是273.(3)把数表旋转180。
数列与数列的性质讲解与习题实例
![数列与数列的性质讲解与习题实例](https://img.taocdn.com/s3/m/23c1c5ac162ded630b1c59eef8c75fbfc77d941f.png)
数列与数列的性质讲解与习题实例数列是数学中的一个重要概念,它是由一系列有序的数按照一定的规律排列而成。
数列不仅在数学中具有重要意义,也广泛应用于其他领域,如物理、经济等。
本文将对数列的概念、性质进行讲解,并提供一些习题实例,以帮助读者更好地理解和运用数列。
一、数列的概念及表示方式数列是由一系列按照一定规律排列的数所组成的有序数集。
比如:1, 2, 3, 4, 5, ...就是一个从1开始的自然数列,其中每个数依次加1。
数列的表达方式有多种,常见的有列表法、通项公式和递推关系法。
1. 列表法:将数列的每一项按照一定的顺序列出来,用逗号隔开。
比如:1, 2, 3, 4, 5, ...就是一个数列的列表表示方式。
2. 通项公式:数列的通项公式是用一个变量n表示数列的项数,通过这个变量和一些常数表达数列的每一项。
比如:数列1, 4, 7, 10, ...的通项公式可以表示为an = 3n - 2。
3. 递推关系:数列的递推关系是通过前一项和后一项之间的关系来表示数列的。
比如:数列1, 1, 2, 3, 5, ...的递推关系可以表示为an = an-1 + an-2,其中an表示数列的第n项。
二、数列的性质数列具有一些重要的性质,掌握这些性质可以更好地理解数列,并在解题过程中作为辅助工具。
1. 单调性:数列可以是递增的(单调递增)或者递减的(单调递减),也可以是不增或不减的。
2. 有界性:数列可以是有上界或有下界的,也可以同时具有上下界,或者无界。
3. 整体性:数列的性质可以通过数列的前几项来确定,这样可以简化问题的分析和计算。
4. 规律性:数列的规律可以通过观察数列的前几项来找出,从而得到数列的通项公式或递推关系。
三、习题实例下面通过一些具体的习题实例来加深对数列的理解和应用。
习题1:求等差数列1, 3, 5, 7, ...的前n项和。
解析:这是一个公差为2的等差数列,可以使用等差数列的求和公式Sn = (a1 + an) * n / 2来解决。
秋季六年级数学同步课程第十讲 周期问题
![秋季六年级数学同步课程第十讲 周期问题](https://img.taocdn.com/s3/m/dd5bfea8a8114431b80dd80f.png)
第十讲周期问题一、知识梳理世间万物,千奇百怪;运动变化,千姿百态。
可这貌似“杂乱无章”的世界却受到各式各样的规律支配着。
在这些规律中,有一种最常见的规律就是从形形色色的周期现象中提炼出来的规律。
如果某一事物的变化具有周期性,那么,该事物在经历一段变化后,又会呈现原俩的状态。
我们把事物所经历的这一段,叫该事物变化的周期。
例如,在自然数列中,各位数字变化的周期是10;星期日出现的周期是7(天);用动物记年的走器是12(年)等等。
在数学中,我们把与周期性有关的数学问题叫做周期问题。
二、方法归纳一般解答思路:(1)判断是否是周期现象(几个重复一次周期就是几);(2)用除法算式来表示周期现象:总数÷…… 余数;整周期部分非整周期部分无余数:本组的最后一个;有余数:下一组的第余数个。
(3)根据除法算式想象排列图;(4)根据要求求解。
三、课堂精讲(一)、图形中的周期问题例1.两个小朋友比赛智力,一位小朋友画出了一组图形(排列如下),根据排列的规律。
请算出第60个图形是(),第121个图形是()。
【规律方法】每3个图形为一组,称为一个周期。
没有余数,说明组合里刚好有完整的周期数。
【搭配课堂训练题】【难度分级】A1. 如图所示,黑珠、白珠共l26个,穿成一串,这串珠子中最后一个珠子是__________颜色的,这种颜色的珠子共有__________个.2. 如图,算出第20个图形是什么?○△△□□□○△△□□□○△△…………3.观察图中图形的规律,第200个图形应该是下面A、B、C、D四个图形中的哪一个?例2.如图,将下面的每一列上、下两个字组成一组,例如第一组为(我奥),第二组为(最数),那么第235组为什么数呢?周期的项,比较繁。
我们可以分行找规律,求出该行第235组是什么,在将它们组合。
【搭配课堂训练题】【难度分级】A4.下表中每列上下两个汉字和字母组成一组,例如,第一组是(我A),第二组是(们B),…(1)第82组是什么?(2)如果(爱C)代表1978年,(数D)代表1979年,…那么,2000年将对应哪一组?5. 如图,将下面的每一列上、中、下三个字组成一组,例如第一组为(学看广),第二组为(好亚州),请问第289组为什么呢?学好数学学好数学学…看亚运看亚运看亚运…广州亚运会广州亚运…例3.如图,伸出左手,然后从大拇指开始数数。
五年级第10讲:等差数列
![五年级第10讲:等差数列](https://img.taocdn.com/s3/m/378c7503bfd5b9f3f90f76c66137ee06eff94ec8.png)
师:嗯,不错。
那么同学们知道了这个等差数列的通项公式:5)1(3⨯-+=n a n , 经过计算,可以写成:25-=n a n 。
怎么来求我们最后的问题呢? 生:把数字代到n 里,就可以算了。
师:就是这样。
现在同学们一起来算一下最后答案是多少。
生:第38项是188,第69项是343。
师:最后我们可以写成18838=a ,34369=a 。
同学们都很棒,已经会利用等差数列了。
经过第一题的学习,同学们可以帮老师归纳一下,等差数列的问题 应该怎么做了吗?同学们先讨论,然后告诉老师。
【给学生分组讨论,老师可走动询问各组的讨论结果】师:好了,老师刚刚问了几个同学,都很不错。
接下来呢,我们请一位同学来 帮我们归纳一下,哪位同学自告奋勇。
生:我们可以先找到题目中给出的信息有哪些,比如这道题给出了首项、公差, 所以我们可以求出它的通项公式,然后再把数字代进去,就可以了。
师:大家掌声鼓励一下。
这位同学不仅学会了等差数列的基本知识,还能自己归纳方法了。
我们平时做题的时候也要这样,不断归纳,我们做题就能越 来越快,越来越轻松。
我相信聪明的同学们应该都学会了,还有疑问的同 学可以举手或者下课后问老师和同学,一定要把疑问解决。
【课件再次展示计算过程,老师可以把同学的归纳再整理一下】板书:1a =3,d =8-3=5,n a =1a +〈n-1〉d=3+〈n-1〉×5=5n-2,38a =5×38-2=188,69a =5×69-2=343答:第38项是188,第69项是343。
练习一:〈6分钟〉等差数列1,4,7,10,13,…的第20项和第89项。
分析:这个题目的题型和难度与例题相同,解题方法和上题也相同。
学生在听懂例题后再来做这道题,难度较小。
【课件出示练习题,挑选两位同学上台板演,教师走动指导。
然后讲解计算过程,重点指导一些不懂的学生】板书:1a =1,d=4-1=3,最低一级作为第15项,15a =100,正中间一级是第8项,8a =〈1a +15a 〉÷2=〈100+30〉÷2=65答:正中间一级的宽是65厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
123456
7
8
9
10 11 12 13 14 15
16
17
18
…
…
997
998
999
【8】(高思学校竞赛数学导引P62)
如图所示,数阵中的数字是按一定规律排列的.这个数阵中第60行左起第4个 数字是多少?
12345678 91011121 31415161 71819202 ………………………………………….
123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 …2…8………2…9………3…0………3…1………3…2………3…3………3…4………3…5 ………3…6
下节课见!
【2】(高思学校竞赛数学导引P60)
观察数组(1,2,3),(3,4,5),(5,6,7),(7,8,9)的规律,求: (1)第20组中三个数的和; (2)前20组中所有数的和.
【3】(高思学校竞赛数学导引P60)
一列由两个数组成的数组: (1,1), (1,2), (2,2), (1,3), (2,3),(3, 3),(1,4),(2,4),(3,4),(4,4),(1,5),…,请问: (1)第100组内的两数之和是多少? (2)前55组中“5”这个数出现了多少次?
【6】(高思学校竞赛数学导引P61)
如图,将从5开始的连续自然数按规律填人数阵中,请问: (1)123应该排在第几列? (2)第2行第20列的数是多少?
第1列 第2列 第3列 …
5
10
15
…
6
11
16
…
7
12
17
…
8
13
18
…
9
14
19
…
【7】(高思学校竞赛数学导引P61)
如图所示,将自然数有规律地填入方格表中,请问: (1)500在第几行,第几列? (2)第100行第2列是多少?
【4】(高思学校竞赛数学导引P61)
有一列数,第一个数是3,第二个数是4,从第三个数开始,每个数都是它前面 两个数的和的个位数.从这列数中取出连续的50个数,并求出它们的和,所得 的和最大是多少?如果从中取出连续的500个数,500个数的和最大又是多少?
【5】(高思学校竞赛数学导引P61)
如图,把从1开始的自然数填在图上,1在射线OA上,2在射线OB上,3在射线 OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OG上,8在射 线OH上,9又回到射线OA上,如此循环下去,问:78在哪条射线上?射线OE 上的第30个数是多少?
如图,把从1开始的自然数按某种方式排列起来.请问: (1)200排在第几行,第几列? (2)第18行第22列的数是多少?
1 2 4 7 11 16 … 3 5 8 12 17 … 6 9 13 … 10 14 … 15 … …
【14】(高思学校竞赛数学导引P63)
如图所示,把自然数按规律排列起来.如果用“土”字型阴影覆盖出8个数并求和, 且和为798.这8个数中最大的数是多少?(“土”字丌能旋转或翻转)
00
【10】(高思学校竞赛数学导引P62)
如图,将1至400这400个自然数顺次填人20 x20的方格表中,请问: (1)246在第几行,第几列? (2)第14行第13列的数是多少? (3)所有阴影方格中数的总和是多少?
1
2
3 … 18 19 20
21 22 23 … 38 39 40
41 42 43 … 58 59 60
知识点回顾
1,寻找数列、数表中的数排列的规律,利用周期性计算
2,在数列中需要关注所求的是第几个数,在数表中则要考虑所求 的数在第几行、第几列。
【1】(高思学校竞赛数学导引P60)
1,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,l, 84,…,0.请观察上面数列的规律,请问: (1)这个数列中有多少项是2? (2)这个数列所有项的总和是多少?
…
…
…
…
…
…
341 342 343 … 358 359 360
361 362 363 … 378 379 380
381 382 383 … 398 399 400
【11】(高思学校竞赛数学导引P63)
如图所示,将1至400这400个自然数填入下面的小三角形中,每个小三角形内填 有一个数. “1”所处的位置为第1行;“2,3,4”所处的位置为第2行;……… 请问: (1)第15行正中间的数是多少? (2)第12行中所有空白三角形内的数之和是多少? (3)前8行中阴影三角形内的各数之和比空白三角形内的各数之和大多少?
【12】(高思学校竞赛数学导引P63)
如图,把从1开始的自然数按某种方式排列起来.请问: (1)150在第几行,第ຫໍສະໝຸດ 列? (2)第5行第10列的数是多少?
1 2 5 10 … 4 3 6 11 … 9 8 7 12 … 16 15 14 13 … 25 … … … … … … … ……
【13】(高思学校竞赛数学导引P63)
【9】(高思学校竞赛数学导引P62)
下图是1911年到1926年的公元纪年不干支纪年的对照表.请问: (1)中国近代史上的“辛亥革命”发生在公元1911年,是干支纪年的辛亥年, 请问公元2049年是干支纪年的什么年? (2)21世纪的甲子年是公元纪年的哪一年? (3)“戊戌变法”发生在19世纪末的戊戌年,这一年是公元纪年的哪一年?
【9】(高思学校竞赛数学导引P62)
中国古代的纪年方法叫“干支纪年”,是在“十天干”和“十二地支”的 基础上建立起来的.天干共十个,其排列顺序为:甲、乙、丙、丁、戊、 己、庚、辛、壬、癸; 地支共十二个,其排列顺序为:子、丑、寅、卯、辰、巳、午、未、申、 酉、戌、亥. 以一个天干和一个地支相配,天干在前,地支在后,每对干支表示一 年.在干支纪年中,每六十年纪年方式循环一次. 公元纪年则是国际通行的纪年方式.