(完整版)集合与常用逻辑用语测试题及详解
集合、常用逻辑用语(解析版)
专题一 集合、常用逻辑用语一、选择题1.(2020·浙江高考真题)已知集合P ={|14}<<x x ,{}23Q x =<<,则P Q =( ) A .{|12}x x <≤ B .{|23}x x << C .{|34}x x ≤< D .{|14}<<x x【答案】B 【解析】(1,4)(2,3)(2,3)P Q ==故选:B2.(2020·浙江高考真题)已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件. 故选:B3.(2020·浙江高考真题)设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足: ①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T ②对于任意x ,y ∈T ,若x <y ,则yx∈S ;下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有4个元素D .若S 有3个元素,则S ∪T 有5个元素 【答案】A 【解析】 首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8S T =,包含4个元素,排除选项D ; 若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32ST =,包含5个元素,排除选项C ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128S T =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21pS p ∈,若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍.若12p ≥,则32311p p p p p <<,故322111,p pp p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =,故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆. 若q T ∈, 则31q S p ∈,故131,1,2,3,4i qp i p ==,故31,1,2,3,4i q p i +==, 即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =, 此时{}234456711111111,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确. 故选:A .4.(2019年浙江卷)若0,0a b >>,则“4a b +≤”是 “4ab ≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】当0, 0a >b >时,2a b ab +≥,则当4a b +≤时,有24ab a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.5.(2019年浙江卷)已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}101B =-,,,则UA B =( )A. {}1-B. {}0,1C. {}1,2,3-D. {}1,0,1,3-【答案】A 【解析】={1,3}U C A -,则(){1}U C A B =-6.(2018年浙江卷)已知全集U ={1,2,3,4,5},A ={1,3},则A .B .{1,3}C .{2,4,5}D .{1,2,3,4,5} 【答案】C 【解析】 因为全集,,所以根据补集的定义得,故选C.7.(2018年浙江卷)已知直线,和平面,,则“”是“”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】D 【解析】 直线,平面,且,若,当时,,当时不能得出结论,故充分性不成立;若,过作一个平面,若时,则有,否则不成立,故必要性也不成立.由上证知“”是“”的既不充分也不必要条件,故选D .8.(2017年浙江卷)已知等差数列的公差为d,前n 项和为,则“d>0”是 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】C【解析】由,可知当时,有,即,反之,若,则,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .9.(2017年浙江卷)已知集合,那么 A .(-1,2) B .(0,1) C .(-1,0) D .(1,2) 【答案】A【解析】利用数轴,取所有元素,得 .10.(2016年浙江文)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则=A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5} 【答案】C【解析】根据补集的运算得.故选C. 11.(2016年浙江文)已知函数f(x)=x 2+bx ,则“b <0”是“f(f(x))的最小值与f(x)的最小值相等”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件{}n a n S 465"+2"S S S >的()46511210212510S S S a d a d d +-=+-+=0d >46520S S S +->4652S S S +>4652S S S +>0d >{}{}x|-1<x 1 Q=x 0x 2P =<<<,P Q=⋃,P Q P Q ⋃=()1,2-()UP Q ⋃{}(){}{}{}2,4,6,2,4,61,2,41,2,4,6UP UP Q =∴⋃=⋃=【解析】由题意知,最小值为. 令,则,当时,的最小值为,所以“”能推出“的最小值与的最小值相等”;当时,的最小值为0,的最小值也为0,所以“的最小值与的最小值相等”不能推出“”.故选A.12.(2016年浙江理)已知集合 则( )A .[2,3]B .( 2,3 ]C .[1,2)D . 【答案】B 【解析】 根据补集的运算得.故选B .13.(2016年浙江理)命题“,使得”的否定形式是( ) A .,使得 B .,使得 C .,使得 D .,使得 【答案】D【解析】 的否定是, 的否定是, 的否定是.故选D . 14.(2015年浙江理)命题“且的否定形式是( )A .且B .或C .且D .或222()()24b b f x x bx x =+=+-24b -2t x bx =+2222(())()(),244b b b f f x f t t bt t t ==+=+-≥-0b <(())f f x 24b -0b <(())f f x ()f x 0b =4(())f f x x =()f x (())f f x ()f x 0b <{}{}213,4,P x x Q x x =∈≤≤=∈≥R R ()P Q =R -(,2][1,)-∞-+∞{}[](]24(2,2),()1,3(2,2)2,3Q x x P Q =<=-∴=-=-RR *x R n N ∀∈∃∈,2n x ≥*x R n N ∀∈∃∈,2n x <*x R n N ∀∈∀∈,2n x <*x R n N ∃∈∃∈,2n x <*x R n N ∃∈∀∈,2n x <∀∃∃∀2n x ≥2n x <【解析】根据全称命题的否定是特称命题,可知选D.15.(2015年浙江理)设,是有限集,定义,其中表示有限集A 中的元素个数,命题①:对任意有限集,,“”是“ ”的充分必要条件; 命题②:对任意有限集,,,,( ) A.命题①和命题②都成立 B.命题①和命题②都不成立 C.命题①成立,命题②不成立 D.命题①不成立,命题②成立 【答案】A. 【解析】命题①显然正确,通过如下文氏图亦可知表示的区域不大于的区域,故命题②也正确,故选A.16.(2015年浙江文)已知集合, ,则( ) A . B . C . D . 【答案】A【解析】由题意得, ,所以,故选A. 17.(2015年浙江文)设,是实数,则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件A B (,)()()d A B card AB card A B =-()card A A B A B ≠(,)0d A B >A BC (,)(,)(,)d A C d A B d B C ≤+),(C A d ),(),(C B d B A d+2{|23}x x x P =-≥Q {|24}x x =<<Q P ⋂=[)3,4(]2,3()1,2-(]1,3-{|31}P x x x =≥≤或[)3,4P Q ⋂=【解析】本题采用特殊值法:当时,,但,故是不充分条件;当时,,但,故是不必要条件.所以“”是“”的即不充分也不必要条件.故选D.18.(2015年浙江理)已知集合,,则( )A. B. C. D. 【答案】C.【解析】由题意得,,∴,故选C.2{20}P x x x =-≥{12}Q x x =<≤[0,1)(0,2](1,2)[1,2])2,0(=P C R。
高中数学集合与常用逻辑用语100题(含答案解析)
高中数学集合与常用逻辑用语100题(含答案解析)一、单选题1.已知集合{}2,0xA y y x ==≥,(){}ln 2B x y x ==-,则A B =( )A .[]1,2B .()1,2C .[)1,2D .(),-∞+∞2.已知,R a b ∈,则“ln ln a b >”是“sin sin a b b a +>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.命题():0,p x ∀∈+∞,1ln x x +≤的否定为( ) A .()0,x ∃∈+∞,1ln x x +≤ B .()0,x ∀∈+∞,1ln x x +≥ C .()0,x ∃∈+∞,1ln x x +>D .()0,x ∀∈+∞,1ln x x +>4.若集合{}23A x Z x x =∈≤,{}2,B x y x y A ==∈,则A B =( )A .{}0,1,2B .{}0,2C .{}0,1D .{}1,25.已知向量(),2m k =-,()1,3n =,则“k 6<”是“m 与n 的夹角为钝角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知集合2{|230}A x x x =--≥,{B x y ==,则A B ⋃=( ) A .[)3,+∞B .[)2,+∞C .(][),10,-∞-⋃+∞D .(][),12,-∞-⋃+∞7.已知集合{}2()1A xx a =-<∣,{1,0,1,2,3}B =-,若{0,1}A B =,则实数a 的取值范围是( ) A .[0,1]B .(0,1)C .[1,)+∞D .(,0)-∞8.方程22x x =的所有实数根组成的集合为( ) A .()0,2B .(){}0,2C .{}0,2D .{}22x x =9.设全集{}24U x N x =∈-<<,{}0,2A =,则UA 为( )A .{}1,3B .{}0,1,3C .{}1,1,3-D .{}1,0,1,3-10.已知0a >,则“3a a a >”是“3a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件11.设p :3x <,q :()()130x x +-<,则p 是q 成立的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件12.设π:3p α=;:tan q α=p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件13.设{M x x =≥,b = ) A .b M ⊆B .b M ∉C .{}b M ∉D .{}b M ⊆14.已知集合{A x y ==,{}1,2,3,4,5B =,则A B =( ). A .{}2,3B .{}1,2,3C .{}1,2,3,4D .{}2,3,415.已知非零向量a ,b ,c ,则“||1a b -≤,||2b c -≤”是“||3a c -≤”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件16.设集合{}|33A x x =-<<,集合{}|25B x x =-≤≤,则A B =( ) A .{}|35x x -<≤B .{}|32x x -<≤-C .{}|23x x -≤<D .{}|35x x <≤17.已知集合(){}{}22log 213,40A x x B x x =-≤=-≤,则()A B =R ( )A .122x x ⎧⎫-≤≤⎨⎬⎩⎭ B .122x x ⎧⎫<≤⎨⎬⎩⎭C .{}22x x -≤≤D .∅18.命题“0x ∀>,2x x >”的否定是( )A .00x ∃>,200x x ≤B .00x ∃≤,200x x ≤C .0x ∀>,2x x ≤D .0x ∀≤,2x x >19.若01a <<,则“log log a a x y >”是“x y a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件20.若数列{}n a 满足11a =-,则“m ∀,*n N ∈,m n m n a a a +=”是“{}n a 为等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件21.设集合{}1,0,1,2A =-,{B y y ==,则A B =( ) A .{}0B .{}0,1,2C .{}0,1D .{}0,2 22.已知集合(){}ln 3A x N y x =∈=-,{}12B x x =-≤<,则A B =( ) A .{}1,0,1-B .{}1C .{}0,1D .{}0,1,223.已知集合{1,0,1,2,3,4}A =-,{}2ln 2B x x =<,图中阴影部分为集合M ,则M 中的元素个数为( )A .1B .2C .3D .424.设x ∈R ,则“(1)(2)0x x -+≥”是“|2|1x -<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件25.设全集{}2,1,0,1,2,3U =--,集合{}1,0,1,3A =-,{}2,0,2B =-,则U ()A B ⋂=( ) A .{}0,1,2B .2,0,2C .{}0,2D .{}1,1,3-26.给出下列三个命题:①“全等三角形的面积相等”的否命题 ①若“2lg 0x =,则1x =-”的逆命题 ①“若x y ≠或x y ≠-,则x y ≠”的逆否命题.其中真命题的个数是( ) A .0B .1C .2D .327.已知全集2,1,0,1,2U ,{}21A x Z x =∈-<<,{}1,0,1B =-,则()U B A ⋂=( )A .∅B .{}0C .{}1D .{}0,128.已知集合{}2230A x x x =∈--<Z ,{}1,1,2,3B =-,则A B =( )A .{}1,2-B .{}1,1,2,3-C .{}1,2D .{}1,329.“4a <”是“过点()1,1有两条直线与圆2220x y y a ++-=相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件30.已知集合{1,0,1,2,3,4,5}A =-,集合{|34}=-<<B x x ,则 A B =( ) A .{1,0,1,2,3}-B .{0,1,2,3}C .{1,0,1,2}-D .{1,0,1,2,3,4}-31.设集合{}12022A x x =-<<,{}22530B x x x =+-≤,则A B =( )A .{}32022x x -<≤B .132x x ⎧⎫-<≤⎨⎬⎩⎭C .112x x ⎧⎫-<≤⎨⎬⎩⎭D .{}1x x ≥-32.已知集合(){}2log 12A x x =-≤,{}2230B x x x =--≤,则()RA B =( )A .[]1,3B .()(),13,-∞-⋃+∞C .(]1,3D .(](),13,-∞⋃+∞33.已知集合{}2,3,4,5A =,{B x y ==,则A B =( )A .{}2B .{}3C .{}2,3D .{}2,3,434.“b <是“圆22:9C x y +=上有四个不同的点到直线:l y x b =-的距离等于1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件35.设命题3:,3n p n N n ∀∈>,则命题p 的否定为( ) A .3,3n n N n ∃∉> B .3,3n n N n ∃∉≤ C .3,3n n N n ∃∈≤D .3,3n n N n ∀∈>36.已知α,R β∈,则“cos cos αβ=”是“存在k Z ∈使得()1kk απβ=+-”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件37.将有理数集Q 划分为两个非空的子集M 与N ,且满足M N Q M N ⋃=⋂=∅,,M 中的每一个元素都小于N 中的每一个元素,这种有理数的分割()M N ,就是数学史上有名的戴德金分割.试判断,对于任一戴德金分割()M N ,,下列选项中不可能成立的是( )A .M 有最大元素,N 有一个最小元素B .M 没有最大元素,N 也没有最小元素C .M 没有一个最大元素,N 有一个最小元素D .M 有一个最大元素,N 没有最小元素 38.设x R ∈,则“322x -≤”是“2102x x +≤-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件39.设集合{}{}|14|3A x x B x x =-<<=≤,,则()B A =R ( )A .{}|34x x ≤<B .{}|34x x <<C .{}|13x x -<≤D .{}1x x >-40.若01a <<,则“log log a a b c <”是“b c >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件41.已知集合{}03A x x =<<,{}24B x x =≤,则A B =( )A .()0,2B .[)2,0-C .[)0,3D .(]0,242.已知集合{}02A x x =<<,{}2230B x x x =+-≥,则如图所示的阴影部分表示的集合为( )A .(][),32,-∞-⋃+∞B .()[),32,-∞-⋃+∞C .()(),02,-∞+∞D .(][),02,-∞⋃+∞43.若向量(),3a m =-,()3,1b =,则“1m <”是“向量a ,b 夹角为钝角”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件44.设集合{}A y y x ==,{B x y ==,全集为R ,则RA B =( )A .[)0,∞+B .(),0∞-C .{}0,1D .()(){}0,0,1,145.已知集合1|0,N 4x A x x x +⎧⎫=≤∈⎨⎬-⎩⎭,{0,1,2,3,4}B =,则( ) A .A B = B .B A C .A B B = D .A B46.若集合12xA x x ⎧⎫-=∈>⎨⎬⎩⎭R ,(){}2log 11B x x =+<,则A B =( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .10,3⎛⎫⎪⎝⎭D .1,13⎛⎫ ⎪⎝⎭47.若集合{}20A x x x =-=,B x y ⎧=⎨⎩,则A B =( )A .∅B .{}0C .{}1D .{}0,148.已知集合{}24A x Z x =∈<,{}1,B a =,B A ⊆,则实数a 的取值集合为( ) A .{}2,1,0--B .{}2,1--C .{1,0}-D .{}1-49.若集合61A x ZN x ⎧⎫=∈∈⎨⎬-⎩⎭,(){}lg 3B x y x ==-,则A B =( ) A .{}2,3,4,7 B .{}3,4,7 C .{}1,4,7 D .{}4,750.已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,5-B .(]1,1-C .()1,3D .[)1,351.已知,l m 是两条不同的直线,αβ,是两个不同的平面,命题p :若m α⊂,m β∥,则αβ∥;命题q :若m α⊥,l β⊥,αβ∥,则m l ∥;则下列命题正确的是( ) A .p q ∧B .p q ⌝∧C .p q ∨⌝D .p q ⌝∧⌝52.“2x =”是“2320x x -+=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件53.已知命题p :0x ∃∈R ,0sin 1x <;命题q :0x ∃∈R ,00sin cos x x +,则下列命题中的真命题是( ) A .p q ∧B .()p q ⌝∧C .()p q ∧⌝D .()p q ⌝∨54.已知集合{}2,x A y y x R ==∈,{}24B x x =≤,则A B =( )A .[]22-,B .[)2,0-C .[]0,2D .(]0,255.已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是( ) A .3B .4C .8D .1656.已知全集{}N 27U x x =∈-≤<,(){}1,5,6UA B ⋃=,{}2,4B =,则图中阴影部分表示的集合是( )A .{}2,1,0,3--B .{}0,3C .{}0,2,3,4D .{}357.已知集合{}34A x x =-<<,{}250B x x x =+>.则A B ( )A .()5,4-B .()0,4C .()3,0-D .()5,0-58.已知集合(){},22,0M x y y x xy ==-≤,(){}2,5N x y y x ==-,则M N ⋂中的元素个数为( ) A .0B .1C .2D .l 或259.设集合402x A xx -⎧⎫=>⎨⎬+⎩⎭,{}27100B x x x =-+≥,则()R A B ⋂=( ) A .{}22x x -<< B .{}22x x -≤≤ C .{4x x ≤或}5x ≥D .{2x x ≤或}5x ≥60.设非零复数1z ,2z 在复平面内分别对应向量OA ,OB ,O 为原点,则OA OB ⊥的充要条件是( )A .211z z =-B .21i zz =C .21z z 为实数D .21z z 为纯虚数61.命题“若24x <,则22x -<<”的逆否命题是( ) A .若22x -<<,则24x < B .若24x ≥,则2x ≥或2x -≤ C .若22x -<<,则24x ≥ D .若2x ≥或2x -≤,则24x ≥62.已知集合(){}22,4A x y xy =+=,(){},2B x y y ==,则集合A B 中元素的个数为( ) A .3B .2C .1D .063.已知集合{}213M x x =+<,{}N x x a =<,若N M ⊆,则实数a 的取值范围为( ) A .[)1,+∞ B .[)2,+∞ C .(],1-∞D .(),1-∞64.已知集合{}23180A x x x =--≤,{}2log 1B x x =>,则A B =( )A .[)(]3,22,6-B .[)(]3,22,6--⋃C .[)3,2--D .(]2,665.已知命题p :“23m <<是方程22123x y m m+=--表示椭圆”的充要条件;命题q :“2b ac =是a ,b ,c 成等比数列”的必要不充分条件,则下列命题为真命题的是( ) A .p q ∧B .p q ∨⌝C .p q ⌝∨⌝D .p q ⌝∧⌝66.已知命题p :()010,x ∃∈+∞,0lg 1x >,则命题p 的否定为( ) A .()10,x ∀∈+∞,1lg x ≤ B .()10,x ∀∈+∞,lg 1x C .()10,x ∀∉+∞,lg 1xD .()10,x ∀∉+∞,1lg x ≤67.集合{}0,1,2,3A =的真子集的个数是( ) A .16B .15C .8D .768.已知集合{}1A x x =>,{}13B x x =-≤<,则()R A B ⋂=( ) A .{}13x x <<B .{}11x x -≤<C .{}13x x ≤<D .{}11x x -≤≤69.若p :24x ≤≤,q :13x ≤≤,则p 为q 的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分又不必要条件70.若命题p 为“0x ∃≥,()10x x -<”,则p ⌝为( ) A .0x ∀<,()10x x -≥ B .0x ∀≥,()10x x -≥ C .0x ∃≥,()10x x -≥D .0x ∃<,()10x x -<71.已知p :a m <(其中R a ∈,m ∈Z ),q :关于x 的一元二次方程2210ax x ++=有一正一负两个根.若p 是q 的充分不必要条件,则m 的最大值为( ) A .1B .0C .1-D .272.命题“0x ∀>,210x ->”的否定为( ) A .0x ∀>,210x -≤ B .0x ∀≤,210x -≤ C .00x ∃>,0210x -≤D .00x ∃>,0210x ->73.已知{}2430M x x x =-+<,{|N x y ==,则M N ⋃=( )A .(]1,2B .(](),21,3-∞-⋃C .(](),23,-∞-+∞ D .(](),21,-∞-⋃+∞74.命题“0x ∃∈R ,使得320000x ax bx c +++=”的否定是( ) A .x ∃∉R ,320x ax bx c +++≠ B .x ∀∈R ,320x ax bx c +++≠ C .x ∀∉R ,320x ax bx c +++≠D .x ∀∈R ,320x ax bx c +++=75.已知集合{}220A xx x =+-≤∣, 集合(){}2log 1B x y x ==+∣, 则A B ⋂=( ) A .[-21],B .(-11],C .(]12-,D .[)1,∞+ 76.若集合{12}A x x =-<<∣,{|1B x x =<或}3x >,则()R A B ⋂=( ) A .{13}xx -<<∣ B .{11}xx -<<∣ C .{23}x x <≤∣ D .{12}xx ≤<∣ 77.已知命题20:,0p x x ∃∈R ,则p ⌝是( )A .2,0x x ∀∉RB .2,0x x ∀∈<RC .200,0x x ∃∈RD .200,0x x ∃∈<R78.若方程22121x y m m +=+--表示的曲线为C ,则( )A .21m -<<-是C 为椭圆的充要条件B .21m -<<-是C 为椭圆的充分条件C .312m -<<-是C 为焦点在x 轴上椭圆的充要条件D .302m -<<是C 为焦点在x 轴上椭圆的充分条件79.已知集合{}{|ln 1|A x x B x =<=,,则()R A B =( ) A .[2,e )B .(0,2)C .(2,e ]D .(0,e )80.“0mn >”是“方程221x y m n-=为双曲线方程”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、多选题81.已知函数()()2221e xf x ax x =-+,则( )A .()f x 有零点的充要条件是1a <B .当且仅当(]0,1a ∈,()f x 有最小值C .存在实数a ,使得()f x 在R 上单调递增D .2a ≠是()f x 有极值点的充要条件 82.下列选项中,能够成为“关于x 的方程2||10x x a -+-=有四个不等实数根”的必要不充分条件是( ) A .51,4a ⎛⎫∈ ⎪⎝⎭B .51,4a ⎡⎫∈⎪⎢⎣⎭C .()1,2a ∈D .91,8a ⎛⎫∈ ⎪⎝⎭三、解答题83.若实数数列()12:,,,2n n A a a a n ≥满足()111,2,,1k k a a k n +-==-,则称数列nA 为E 数列.(1)请写出一个5项的E 数列5A ,满足150a a ==,且各项和大于零; (2)如果一个E 数列n A 满足:存在正整数()1234512345,,,,i i i i i i i i i i n <<<<≤使得12345,,,,i i i i i a a a a a 组成首项为1,公比为2-的等比数列,求n 的最小值;(3)已知()122,,,2m a a a m ≥为E 数列,求证:3211,,,222m a a a -为E 数列且224,,,222m a a a 为E 数列”的充要条件是“122,,,m a a a 是单调数列”.84.已知命题p :实数x 满足()42220x x a a ⋅+-⋅-≤;命题q :实数x 满足2320x x -+<.若p 是q 的必要条件,求实数a 的取值范围.85.设p :()224300x ax a a -+<>,q :211180x x -+≤.(1)若命题“()1,2x ∀∈,p 是真命题”,求a 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围.86.著名的“康托尔三分集”是由德国数学家康托尔构造的,是人类理性思维的产物,其操作过程如下:将闭区间[]0,1均分为三段,去掉中间的区间段12,33⎛⎫ ⎪⎝⎭记为第一次操作;再将剩下的两个闭区间10,3⎡⎤⎢⎥⎣⎦,2,13⎡⎤⎢⎥⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷.每次操作后剩下的闭区间构成的集合即是“康托尔三分集”.例如第一次操作后的“康托尔三分集”为120,,,133⎧⎫⎡⎤⎡⎤⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭. (1)求第二次操作后的“康托尔三分集”;(2)定义[],s t 的区间长度为t s -,记第n 次操作后剩余的各区间长度和为()*n a n N ∈,求4a ;(3)记n 次操作后“康托尔三分集”的区间长度总和为n T ,若使n T 不大于原来的110,求n 的最小值.(参考数据:lg 20.3010=,lg30.4771=)87.已知命题p :“0x R ∃∈,20048x a x +≤”为假命题,命题q :“实数a 满足415a>-”.若p q ∨是真命题,p q ∧是假命题,求a 的取值范围. 88.求证:角θ为第二象限角的充要条件是sin 0tan 0θθ>⎧⎨<⎩. 89.已知P ={x |x 2-x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ①P 是x ①S 的必要条件,求m 的取值范围.90.已知p :()222100x x a a -+-≥>,q :()()150x x +-<.(1)当3x =-时,p 为真命题,求实数a 的取值范围;(2)若p ⌝是q 的充分不必要条件:求实数a 的取值范围.91.已知集合{}2,12x A y y x ==-≤≤,集合{}1ln 2B x x =<≤,集合{}22320,0C x x ax a a =-+≤>. (1)求A B ;(2)若C A ⊆,求实数a 的取值范围.92.判断命题的真假:如果12,n n 分别是直线12,l l 的一个方向向量,则1l 与2l 垂直的充要条件是1n 与2n 垂直.四、填空题93.设集合{}{}240,,20A xx x A x x a =-≤∈=+≤R ∣∣,且[]2,1A B =-,则=a ___________.94.以下有关命题的说法错误的命题的序号是_______.①若命题p :某班所有男生都爱踢足球,则¬p :某班至少有一个男生爱踢足球; ①已知a ,b 是实数,那么“a b >”是"ln ln "a b >的必要不充分条件;①若αβ>则sin sin αβ>;①幂函数253(1)m y m m x --=--在,()0x ∈+∞时为减函数,则2m =.95.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________.96.曲线0:p x ∃∈R ,320010x x -+≥,则p ⌝为___________.97.命题“0x ∃①R ,使20mx -(m +3)x 0+m ≤0”是假命题,则实数m 的取值范围为__________.98.命题“x R ∃∈,20x +≤”的否定是______.五、概念填空99.存在量词与存在量词命题100.判断正误.(1)命题“任意一个自然数都是正整数”是全称量词命题.( )(2)命题“三角形的内角和是180 ”是全称量词命题.( )(3)命题“梯形有两边平行”不是全称量词命题.( )参考答案:1.C【解析】【分析】利用指数函数的性质可化简集合A ,根据对数函数性质得集合B ,然后计算交集.【详解】 由已知{}2,0[1,)x A y y x ∞==≥=+,{}ln(2)B x y x ==-(){|20}{|2},2x x x x =->=<=-∞,①[1,2)A B ⋂=.故选:C .2.A【解析】【分析】由ln ln a b >及对数函数的单调性可得0a b >>;将sin sin a b b a +>+变形化同构,进而构造函数,利用导数讨论函数的单调性可得a b >,即可得解.【详解】由ln ln a b >,得0a b >>.由sin sin a b b a +>+,得sin sin a a b b ->-.记函数()sin ()x x f x x R =-∈,则()1cos 0f x x '=-≥,所以函数()f x 在R 上单调递增,又sin sin a a b b ->-,则()()f a f b >,所以a b >.因此“ln ln a b >”是“sin sin a b b a +>+”的充分不必要条件.故选:A .3.C【解析】【分析】根据全称量词命题的否定直接得出结果.【详解】因为全称量词命题的否定是特称量词命题,故原命题的否定是()0,x ∃∈+∞,1ln x x +>.故选:C4.C【解析】【分析】先解不等式求出集合A ,再求出集合B ,然后求两集合的交集即可【详解】解不等式23x x ≤,得03x ≤≤,又x ∈Z ,所以{}0,1,2,3A =, 所以{}132,0,,1,22B x y x y A ⎧⎫==∈=⎨⎬⎩⎭,所以{}0,1A B =. 故选:C5.B【解析】【分析】先求出m 与n 的夹角为钝角时k 的范围,即可判断.【详解】当m 与n 的夹角为钝角时,0m n ⋅<,且m 与n 不共线,即6032k k -<⎧⎨≠-⎩所以k 6<且23k ≠-.故“k 6<”是“m 与n 的夹角为钝角”的必要不充分条件.故选B.6.D【解析】【分析】根据一元二次不等式的解法和函数定义域的定义,求得集合,A B ,集合集合并集的运算,即可求解.【详解】由不等式2230x x --≥,解得1x ≤-或3x ≥,所以集合{|1A x x =≤-或3}x ≥, 又由20x -≥,解得2x ≥,所以集合{}2B x x =≥,所以(][),12,A B ⋃=-∞-⋃+∞.故选:D .7.B【解析】【分析】按照交集的定义,在数轴上画图即可.【详解】由题可得集合{}{}2()111A xx a x a x a =-<=-<<+∣,所以要使{0,1}A B =,则需110112a a -≤-<⎧⎨<+≤⎩,解得01a <<, 故选:B.8.C【解析】【分析】首先求出方程的解,再根据集合的表示方法判断即可;【详解】解:由22x x =,解得2x =或0x =,所以方程22x x =的所有实数根组成的集合为{}{}2|20,2x R xx ∈==; 故选:C9.A 【解析】【分析】根据全集U 求出A 的补集即可.【详解】{}{}24=0,1,2,3U x N x =∈-<<,{}0,2A =,{}U =1,3A ∴.故选:A.10.B【解析】【分析】对a 的取值进行分类讨论,结合指数函数的单调性解不等式3a a a >,利用集合的包含关系判断可得出结论.【详解】若01a <<,由3a a a >可得3a <,此时01a <<;若1a =,则3a a a =,不合乎题意;若1a >,由3a a a >可得3a >,此时3a >.因此,满足3a a a >的a 的取值范围是{01a a <<或}3a >, 因为{01a a <<或}3a > {}3a a >,因此,“3a a a >”是“3a >”的必要不充分条件.故选:B.11.C【解析】【分析】解不等式化简命题q ,再利用充分条件、必要条件的定义直接判断作答.【详解】解不等式得:13x ,即:13q x -<<,显然{|13}x x -<< {|3}x x <,所以p 是q 成立的必要不充分条件.故选:C12.A【解析】【分析】根据特殊角的三角函数值以及充分条件与必要条件的定义可得结果.【详解】当π3α=时,tan α=p 则q 成立;当tan α=,3k k Z παπ=+∈,即若q 则p 不成立;综上得p 是q 充分不必要条件,故选:A.13.D【解析】【分析】根据元素与集合的关系,集合与集合的关系判断即可得解.【详解】解:因为{M x x =≥,b =所以b M ∈,{}b M ⊆.故选:D.14.C【解析】【分析】先化简集合A ,再利用集合的交集运算求解.【详解】因为集合{{}4A x y x x ==≤,{}1,2,3,4,5B =,所以A B = {}1,2,3,4,故选:C15.A【解析】【分析】根据充分、必要性的定义,结合向量减法的几何意义判断条件间的推出关系,即可得答案.【详解】由||1a b -≤,||2b c -≤,如下图示,||||||3a c a b b c -≤-+-≤,当且仅当a ,b ,c 共线时前一个等号成立,充分性成立;当||3a c -≤,不一定有||1a b -≤,||2b c -≤,必要性不成立. 综上,“||1a b -≤,||2b c -≤”是“||3a c -≤”的充分而不必要条件. 故选:A16.C【解析】【分析】利用集合的交运算求A B 即可.【详解】由题设,A B ={}|33x x -<<⋂{}|25{|23}x x x x -≤≤=-≤<. 故选:C17.A【解析】【分析】先求出集合A 和集合A 的补集,集合B ,再求出()A B ⋂R【详解】由22log (21)3log 8x -≤=,得0218x <-≤,解得1922x <≤, 所以1922A x x ⎧⎫=<≤⎨⎬⎩⎭,所以12R A x x ⎧=≤⎨⎩或x >92}, 由240x -≤得22x -≤≤,所以{}22B x x =-≤≤,所以()A B =R 122x x ⎧⎫-≤≤⎨⎬⎩⎭故选:A18.A【解析】【分析】根据命题的否定的定义判断.【详解】全称命题的否定是特称命题,命题“0x ∀>,2x x >”的否定是:00x ∃>,200x x ≤.故选:A.19.A【解析】【分析】根据一直关系判断,x y 的大小关系进行等价转化即可得解.【详解】由01a <<,log log 0a a x y y x >⇔>>,x y a a y x ≥⇔>,故为充分不必要条件. 故选:A20.A【解析】【分析】利用等比数列的定义通项公式即可判断出结论.【详解】解:“m ∀,*n N ∈,m n m n a a a +=”,取1m =,则11n n a a +=-, {}n a ∴为等比数列.反之不成立,{}n a 为等比数列,设公比为q ()0q ≠,则1m n m n a q +-+=-,()()112n n m m m n a a q q q --+-=-⨯-=,只有1q =-时才能成立满足m n m n a a a +=. ∴数列{}n a 满足11a =-,则“m ∀,*n N ∈,m n m n a a a +=”是“{}n a 为等比数列”的充分不必要故选:A .21.B【解析】【分析】求得集合B 中对应函数的值域,再求A B 即可.【详解】因为{B y y ==∣{|0}y y =≥,又{}1,0,1,2A =-, 故A B ={}0,1,2.故选:B22.C【解析】【分析】由对数函数定义域可求得集合A ,由交集定义可得结果.【详解】由30x ->得:3x <,(){}{}ln 30,1,2A x N y x ∴=∈=-=,{}0,1A B ∴⋂=.故选:C.23.C【解析】【分析】由Venn 图得到()A M A B =⋂求解. 【详解】如图所示()A M A B =⋂,2ln 2x <,22ln ln e x ∴<,解得e e x -<<且0x ≠,(e,0)(0,e)B ∴=-又{1,0,1,2,3,4}A =-,{1,1,2}A B ∴=-,(){0,3,4}A A B ∴⋂=,{0,3,4}M ∴=,所以M 中元素的个数为3 故选:C24.B【分析】根据充分必要条件的定义判断.【详解】(1)(2)0x x -+≥,则2x -≤或1≥x ,不满足21x -<,如2x =-,不充分,21x -<时,13x <<,满足(1)(2)0x x -+≥,必要性满足.应为必要不充分条件.故选:B .25.D【解析】【分析】根据集合的运算法则计算.【详解】由已知{1,1,3}U B =-,所以U (){1,1,3}A B =-.故选:D .26.B【解析】【分析】写出相应命题,根据相关知识直接判断可得.【详解】“全等三角形的面积相等”的否命题为:不全等的三角形的面积不相等.易知为假命题;若“2lg 0x =,则1x =-”的逆命题为:若1x =-,则2lg 0x =.显然为真命题;“若x y ≠或x y ≠-,则x y ≠”的逆否命题为:若x y =,则x y =且x y =-.易知为假命题. 故选:B27.C【解析】【分析】根据集合的运算法则计算.{2,1,2}U A =-,(){1}U B A =.故选:C .28.C【解析】【分析】求出集合A ,利用交集的定义可求得结果.【详解】{}{}{}2230130,1,2A x x x x x =∈--<=∈-<<=Z Z ,因此,{}1,2A B =. 故选:C.29.B【解析】【分析】先由已知得点()1,1在圆2220x y y a ++-=外,求出a 的范围,再根据充分条件和必要条件的定义分析判断【详解】由已知得点()1,1在圆2220x y y a ++-=外,所以22211210240a a ⎧++⨯->⎨+>⎩,解得14a -<<, 所以“4a <”是“过点()1,1有两条直线与圆2220x y y a ++-=相切”的必要不充分条件, 故选:B30.A【解析】【分析】根据交集的定义计算.【详解】由已知{1,0,1,2,3}A B =-.故选:A .【解析】【分析】化简集合B ,结合交集运算即可.【详解】 因为集合{}21253032B x x x x x ⎧⎫=+-≤=-≤≤⎨⎬⎩⎭,所以112A B x x ⎧⎫⋂=-<≤⎨⎬⎩⎭, 故选:C .32.D【解析】【分析】先解出集合A 、B ,再求A B ,从而求解补集.【详解】由()2log 12x -≤,即014x <-≤,解得15x <≤,所以(]1,5A =.由2230x x --≤得()3x -⋅()10x +≤,即13x -≤≤,所以[]1,3B =-,由此(]1,3A B =,于是()(]()R ,13,A B ⋂=-∞⋃+∞,故选:D.33.C【解析】【分析】由一元二次不等式的解法求出函数y B ,然后根据交集的定义即可求解.【详解】解:因为集合{}2,3,4,5A =,集合{{}{}23003B x y x x x x x ===-≥=≤≤,所以{}2,3A B ⋂=.故选:C.34.A【分析】根据直线和圆的位置关系求出b ,然后利用充分条件和必要条件的定义进行判断.【详解】①圆22:9C x y +=的半径3r =,若圆C 上恰有4个不同的点到直线l 的距离等于1,则必须满足圆心(0,0)到直线:l y x b =-的距离2d =<,解得b -<<又((⊆-,①“b <是“圆22:9C x y +=上有四个不同的点到直线:l y x b =-的距离等于1”的充分不必要条件.故选:A.35.C【解析】【分析】由全称命题的否定是特称命题即可得解.【详解】根据全称命题的否定是特称命题可知,命题3:,3n p n N n ∀∈>的否定命题为3,3n n N n ∃∈≤,故选:C36.D【解析】【分析】根据充分条件,必要条件的定义,以及诱导公式即可判断.【详解】(1)当存在k Z ∈使得()1kk απβ=+-时, 则()cos ,2,cos cos (1)cos ,21,k k n n Z k k n n Z βαπββ=∈⎧=+-=⎨-=+∈⎩;即不能推出cos cos αβ=.(2)当cos cos αβ=时,2k αβπ=+或2k απβ=-,k Z ∈,所以对第二种情况,不存在k Z ∈时,使得()1kk απβ=+-成立,故“cos cos αβ=”是“存在k Z ∈使得()1k k απβ=+-”的既不充分不必要条件.故选:D37.A【解析】【分析】由题意依次举例对四个命题判断,从而确定答案.【详解】M 有一个最大元素,N 有一个最小元素,设M 的最大元素为m ,N 的最小元素为n ,若有m <n ,不能满足M①N=Q ,A 错误;若{|M x Q x =∈<,{|2}N x Q x =∈;则M 没有最大元素, N 也没有最小元素,满足其它条件,故B 可能成立;若{|0}M x Q x =∈<,{|0}N x Q x =∈,则M 没有最大元素,N 有一个最小元素0,故C 可能成立;若{|0}M x Q x =∈,{}0N x Q x =∈;M 有一个最大元素,N 没有最小元素,故D 可能成立;故选:A .38.D【解析】 【分析】 首先解出绝对值不等式与分式不等式,再根据充分条件、必要条件的定义判断即可;【详解】解:因为322x -≤,所以33222x -≤-≤,解得1722x ≤≤;由2102x x +≤-,即()()212020x x x ⎧+-≤⎨-≠⎩,解得122x -≤<;所以1722x ≤≤与122x -≤<互相不能推出,故“322x -≤”是“2102x x +≤-”的既不充分也不必要条件; 故选:D39.B【解析】【分析】根据补集运算得{}R |3x B x =>,再根据交集运算求解即可.【详解】解:因为{}{}|14|3A x x B x x =-<<=≤,,所以{}R |3x B x =>,所以{}()|34R B A x x ⋂=<<故选:B40.A【解析】【分析】利用函数log a y x =在(0,)+∞单调递减,可得log log 0a a b c b c <⇔>>,分析即得解【详解】由01a <<,故函数log a y x =在(0,)+∞单调递减故log log 0a a b c b c <⇔>>即log log a a b c b c <⇒>,充分性成立; b c >推不出log log a a b c <,必要性不成立;故“log log a a b c <”是“b c >”的充分不必要条件.故选:A41.D【解析】解一元二次不等式求集合B ,再利用集合交运算求A B .【详解】 由题设,{}24{|22}B x x x x =≤=-≤≤,又{}03A x x =<<, 所以{}(]{|22}030,2A x x B x x -≤≤⋂<<==.故选:D42.A【解析】【分析】根据阴影部分表示的集合为R A B ⋂求解.【详解】 因为集合{}02A x x =<<,所以R {|0A x x =≤或2}x ≥, 又因为{}2230{|3B x x x x x =+-≥=≤-或1}x ≥, 所以阴影部分表示的集合为R {|3A B x x ⋂=≤-或2}x ≥,故选:A43.B【解析】【分析】 由向量a ,b 夹角为钝角可得0a b ⋅<且a ,b 不共线,然后解出m 的范围,然后可得答案.【详解】若向量a ,b 夹角为钝角,则0a b ⋅<且a ,b 不共线所以330133m m -<⎧⎨⋅≠-⋅⎩,解得1m <且9m所以“1m <”是“向量a ,b 夹角为钝角”的必要不充分条件故选:B44.B【分析】化简集合A ,B ,根据补集及交集运算即可.【详解】{}A y y x R ===,{[0,)B x y ∞===+(,0)R R A B B ∴==-∞,故选:B45.D【解析】【分析】解分式不等式求集合A ,再判断集合之间的包含关系,即可判断各选项的正误.【详解】由题设,{|14,N}{0,1,2,3}A x x x =-≤<∈=,又{0,1,2,3,4}B =,所以A B ,即A 、B 、C 错误,D 正确.故选:D46.C【解析】【分析】根据分式不等式解法解出集合A ,根据对数的运算法则计算出集合B ,再根据集合交集运算得结果. 【详解】(){}113003A x x x x x ⎧⎫=-⋅>=<<⎨⎬⎩⎭, (){}{}{}2log 1101211B x x x x x x =+<=<+<=-<<,①10,3A B ⎛⎫ ⎪⎝=⎭. 故选:C.47.B【解析】先化简集合A ,B ,再利用交集运算求解.【详解】 因为{}{}200,1A x x x =-==,B x y ⎧=⎨⎩={}|1x x <, 所以A B ={}0,故选:B48.C【解析】【分析】先解出集合A ,再根据B A ⊆确定集合B 的元素,可得答案.【详解】由题意得,{}{|22}1,0,1A x Z x =∈-<<=-,①{}1,B a =,B A ⊆, ①实数a 的取值集合为{}1,0-,故选:C.49.D【解析】【分析】首先用列举法表示集合A ,再根据对数函数的性质求出集合B ,最后根据交集的定义计算可得;【详解】 解:集合{}62,3,4,71A x Z N x ⎧⎫=∈∈=⎨⎬-⎩⎭,集合(){}{}lg 33B x y x x x ==-=>,则{}4,7A B ⋂=,故选:D .50.D【解析】【分析】先根据一元二次不等式解得集合A ,然后利用交集运算法则求出答案.【详解】解:由题意得:{}{}2230|13A x x x x x =--<=-<<,{}15B x x =≤≤ {}[)|131,3A B x x ∴=≤<=故选:D51.B【解析】【分析】先根据空间线面位置关系判断命题,p q 的真假,再根据且、或、非命题判断真假即可.【详解】解:命题p :若m α⊂,m β∥,则αβ∥,还可能相交,故是假命题,;命题q :若m α⊥,l β⊥,αβ∥,则m l ∥,是真命题.所以p ⌝为真命题,q ⌝为假命题,所以p q ∧,p q ∨⌝,p q ⌝∧⌝均为假命题,p q ⌝∧为真命题,故选:B52.A【解析】【分析】解方程2320x x -+=,利用集合的包含关系判断可得出结论.【详解】解方程2320x x -+=可得1x =或2x =,{}2 {}1,2,因此,“2x =”是“2320x x -+=”的充分不必要条件.故选:A.53.A【解析】【分析】判断命题p ,q 的真假,再借助真值表逐一判断作答.【详解】因当00x =时,0sin 01x =<,即命题p 是真命题,因当04x π=时,00sin cos x x +,即命题q 是真命题, 因此,p q ∧,p q ∨都是真命题,()p q ⌝∨是假命题,而p ⌝是假命题,则()p q ⌝∧是假命题,同理()p q ∧⌝是假命题,所以,B ,C ,D 都不正确,A 正确.故选:A54.D【解析】【分析】首先解一元二次不等式求出集合B ,再根据指数函数的性质求出集合A ,最后根据交集的定义计算可得;【详解】解:由24x ≤,即()()220x x -+≤,解得22x -≤≤,所以{}{}24|22B x x x x =≤=-≤≤,又{}()2,0,x A y y x R ∞==∈=+,所以(]0,2A B ⋂=. 故选:D55.C【解析】【分析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.56.B【解析】【分析】确定全集中的元素,根据(){}1,5,6U A B ⋃=可确定A B ⋃={}0,2,3,4,再结合图中阴影部分的含义即可得答案.全集{}{}N 270,1,2,3,4,5,6U x x =∈-≤<=,又因为(){}1,5,6U A B ⋃=,所以A B ⋃={}0,2,3,4,而{}2,4B =所以阴影部分表示的集合是()U A B ∩即为{}0,3,故选:B.57.B【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()()2550,50,x x x x B +=+>⇒=-∞-⋃+∞, 又{34}A x x =-<<,所以()0,4A B =.故选:B58.A【解析】【分析】首先联立方程,然后判断交点个数,即可判断选项.【详解】首先联立方程22250y x y x xy =-⎧⎪=-⎨⎪≤⎩,得2230x x --=,解得:1x =-或3x =,当1x =-时,4y =-,此时0xy >,舍去;当3x =时,4y =,此时0xy >,舍去,所以M N ⋂为空集.故选:A59.B【分析】根据不等式的解法,分别求得集合,A B ,结合集合补集和交集的运算,即可求解.【详解】 由不等式402x x ->+,解得2x <-或4x >,所以{|2A x x =<-或4}x >, 又由不等式27100x x -+≥,解得2x ≤或5x ≥,所以{|2B x x =≤或5}x , 可得R {|24}A x x =-≤≤,所以()R A B ⋂={}22x x -≤≤.故选:B.60.D【解析】【分析】设()11111i ,z x y x y R =+∈,()22222i ,z x y x y R =+∈,则11(,)OA x y =,22(,)OB x y =,计算出21z z ,然后结合OA OB ⊥可得答案. 【详解】设()11111i ,z x y x y R =+∈,()22222i ,z x y x y R =+∈,则11(,)OA x y =,22(,)OB x y =, 且21212122122111()i z x x y y x y x y z x y ++-=+, 由OA OB ⊥知12120x x y y +=且12x y -210x y ≠,故OA OB ⊥的充要条件是21z z 为纯虚数, 故选:D .61.D【解析】【分析】根据命题和逆否命题的关系可得答案.【详解】 原命题的条件是“若24x <”,结论为“22x -<<”,则其逆否命题是:若2x ≥或2x -≤,则24x ≥,故选:D .【解析】【分析】利用直线与圆的位置关系判断.【详解】因为圆心(0,0)到直线y =2的距离d =2=r ,所以直线2y =与圆224x y +=相切,所以A B 的元素的个数是1,故选:C .63.C【解析】【分析】根据集合的包含关系,列出参数a 的不等关系式,即可求得参数的取值范围.【详解】①集合{}{}2131M x x x x =+<=<,且N M ⊆,①1a ≤.故选:C .64.B【解析】【详解】先求解集合A 和集合B 中的不等式,利用交集的定义即得解【分析】由2318(6)(3)0x x x x --=-+≤,解得36x -≤≤,则[]3,6A =-, 不等式2log 1x >,即2x ,可得2x <-或2x >,则(,2)(2,)B =-∞-⋃+∞所以[)(]3,22,6A B ⋂=--⋃故选:B .65.C【解析】【分析】先判断命题p,q 的真假,从而判断,p q ⌝⌝的真假,再根据“或”“且”命题的真假判断方法,可得答案.【详解】 当52m =时,22123x y m m+=--表示圆, 故命题p :“23m <<是方程22123x y m m+=-- 表示椭圆”的充要条件是假命题, 命题q :“2b ac =是a ,b ,c 成等比数列”的必要不充分条件为真命题,则p ⌝是真命题,q ⌝是假命题,故p q ∧是假命题,p q ∨⌝是假命题,p q ⌝∨⌝是真命题,p q ⌝∧⌝是假命题, 故选:C66.A【解析】【分析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【详解】因为命题p :()010,x ∃∈+∞,0lg 1x >,故命题p 的否定为:()10,x ∀∈+∞,1lg x ≤. 故选:A.67.B【解析】【分析】确定集合的元素个数,利用集合真子集个数公式可求得结果.【详解】集合A 的元素个数为4,故集合A 的真子集个数为42115-=.故选:B.68.D【解析】【分析】先求出集合A 的补集,进而求交集即可.【详解】①{}1A x x =>,①(]R ,1A ∞=-,又{}13B x x =-≤<,①()[]R 1,1A B ⋂=-.故选:D69.D【解析】【分析】根据充分条件和必要条件的定义即可得出答案.【详解】解:因为p :24x ≤≤,q :13x ≤≤, 所以,p q q p ⇒⇒,所以p 为q 的既不充分又不必要条件.故选:D.70.B【解析】【分析】特称命题的否定是全称命题,把存在改为任意,把结论否定.【详解】“0x ∃≥,()10x x -<”的否命题为“0x ∀≥,()10x x -≥”,故选:B71.C【解析】【分析】 由一元二次方程根的分布可得010a∆>⎧⎪⎨<⎪⎩求命题q 的参数a 范围,再由命题间的关系求m 的最值即可.【详解】因为2210ax x ++=有一正一负两个根,所以224010a a ⎧∆=->⎪⎨<⎪⎩,解得0a <. 因为p 是q 的充分不必要条件,所以0m <,且m ∈Z ,则m 的最大值为1-.故选:C72.C【解析】【分析】根据含有一个量词的命题的否定的方法进行求解.【详解】全称命题的否定是特称命题,则命题“0x ∀>,210x ->”的否定为“00x ∃>,0210x -≤”. 故选:C.73.D【解析】【分析】利用集合M 、N 的含义,将其化简,然后求其并集即可.【详解】解:由2430x x -+<可得13x <<,所以(1,3)M =,由240x -≥可得2x -≤或2x ≥,所以(][),22,N =-∞-+∞, 所以(](),21,M N =-∞-+∞.故选:D.74.B【解析】【分析】根据特称命题的否定的知识确定正确选项.【详解】原命题是特称命题,其否定是全称命题,注意否定结论,所以,命题“0x ∃∈R ,使得320000x ax bx c +++=”的否定是x ∀∈R ,320x ax bx c +++≠.故选:B75.B【解析】【分析】先求出集合A ,B ,进而根据交集的定义求得答案.【详解】由题意,()(){}[]()|1202,1,1,A x x x B =-+≤=-=-+∞,所以(1,1]A B ⋂=-故选:B.76.D【解析】【分析】先求得R B ,然后求得正确答案.【详解】{}R |13B x x =≤≤,()R A B ⋂={12}x x ≤<∣故选:D77.B【解析】【分析】根据存在量词命题的否定的知识确定正确选项.【详解】原命题是存在量词命题,其否定是全称量词命题,注意到要否定结论,所以B 选项符合. 故选:B78.C【解析】【分析】根据椭圆的性质及焦点的性质可写出其充要条件,然后逐项分析即可.【详解】解:对于A 、B 选项: 曲线22:121x y C m m -=++表示椭圆的充要条件是2010,2121m m m m m +>⎧⎪-->⇔-<<-⎨⎪+≠--⎩且32m ≠-,所以A ,B 不正确;对于C 、D 选项: 方程22121x y m m +=+--表示焦点在x 轴上椭圆321012m m m ⇔+>-->⇔-<<-,所以C 对,D 错.故选:C79.A【解析】【分析】先化简集合A ,B ,再利用集合的补集和交集运算求解.【详解】因为集合{}(){|ln 10,|[1,2)A x x e B x =<==-=,, 所以{|1R B x x =<-或2}x ≥,()[. 2,)R A B e ⋂=故选:A80.C【解析】【分析】 先求出方程221x y m n -=表示双曲线时,m n 满足的条件, 然后根据“小推大”的原则进行判断即可.【详解】 因为方程221x y m n-=为双曲线方程,所以0mn >, 所以“0mn >”是“方程221x y m n-=为双曲线方程”的充要条件. 故选:C.81.BCD【解析】【分析】对于A ,将函数有零点的问题转化为方程有根的问题,根据一元二次方程有根的条件可判断其正误;对于B ,分类讨论a 的取值范围,利用导数判断函数的最值情况;对于C ,可举一具体实数,说明()f x 在R 上单调递增,即可判断其正误;对于D ,根据导数与函数极值的关系判断即可. 【详解】对于A ,函数()()2221e xf x ax x =-+有零点⇔方程2210ax x -+=有解,当0a =时,方程有一解12x =; 当0a ≠时,方程2210ax x -+=有解01,0440a a a a ≠⎧⇔⇒≤≠⎨∆=-≥⎩, 综上知()f x 有零点的充要条件是1a ≤,故A 错误;对于B ,由()()2221e xf x ax x =-+得()()222e x f x x ax a '=+-,当0a =时,()24e xf x x '=-,()f x 在(),0∞-上单调递增,在()0,∞+上单调递减,此时()f x 有最大值()0f ,无最小值;当01a <<时,方程2210ax x -+=有两个不同实根1x ,()212x x x <,当[]12,x x x ∈时,()f x 有最小值()00f x <,当()()12,,x x x ∈-∞⋃+∞时,()0f x >;当1a =时,()()221e x f x x =-有最小值0;当1a >时,()0f x >且当x →-∞时,()0f x →,()f x 无最小值; 当0a <时,x →+∞时,()f x →-∞,()f x 无最小值, 综上,当且仅当(]0,1a ∈时,()f x 有最小值,故B 正确;对于C ,因为当2a =时,()()22221e xf x x x =-+,()224e 0x f x x '=≥在R 上恒成立,此时()f x 在R 上单调递增,故C 正确;对于D ,由()()222e xf x x ax a '=+-知,当0a =时,0x =是()f x 的极值点,当0a ≠,2a ≠时,0x =和2ax a-=都是()f x 的极值点,。
集合与常用逻辑用语测试题+答案-精选.pdf
故选 A.
2.设集合
A=
{(
x,
y)|x2+ 4
y2 16
=1}
,
B=
{(
x,
y)|y=
3x}
,则
A∩ B 的子集的个数是
(
)
A.4
B. 3
C.2
D. 1
解析: 选 A. 集合 A 中的元素是椭圆 x2+ y2= 1 上的点,集合 B 中的元素是函数
4 16
y= 3x 的
图象上的点.由数形结合,可知 A∩ B 中有 2 个元素,因此 A∩ B 的子集的个数为 4.
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个 选项中,只有一项是符 合题目要求的。
1.已知全集 U 和集合 A, B 如图所示,则 ( ?U A)∩ B( )
A . {5,6}
B .{3,5,6}
C.{3}
D. {0,4,5,6,7,8}
解析: 选 A. 由题意知: A= {1,2,3} ,B= {3,5,6} ,?UA={0,4,7,8,5,6} ,∴(?UA)∩ B= {5,6} ,
∴ m=- 3. 答案: - 3 12.设全集 I = {2,3 ,a2+ 2a- 3} , A= {2 , |a+1|} ,?IA= {5} ,M = { x|x= log 2|a|} ,则集合 M 的所有子集是 ________.
解析: ∵ A∪ (?IA)= I , ∴ {2,3 , a2+ 2a-3} = {2,5 ,|a+ 1|} , ∴ |a+ 1|= 3,且 a2+ 2a- 3= 5,
结合数轴可得 6≤ a<7,故选 C
8.下列命题中,真命题是 ( ) A . ? m∈ R ,使函数 f(x)= x2+ mx( x∈ R)是偶函数 B.? m∈ R,使函数 f(x)= x2+mx(x∈ R)是奇函数 C.? m∈ R,函数 f( x)=x2+ mx(x∈ R) 都是偶函数 D. ? m∈ R ,函数 f(x) =x2+ mx(x∈ R)都是奇函数 解析: 选 A. 对于选项 A ,? m∈R ,即当 m= 0 时, f(x)= x2+ mx=x2 是偶函数.故
第一章 集合与常用逻辑用语综合测试(解析版)
第一章 集合与常用逻辑用语综合测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2022·新疆昌吉·高一期末)“0a b >>”是“1a b >”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【答案】B【解析】【分析】根据充分条件、必要条件的定义判断即可;【详解】解:由0a b >>,得1a b >,反之不成立,如2a =-,1b =-,满足1a b >,但是不满足0a b >>, 故“0a b >>”是“1a b>”的充分不必要条件. 故选:B2.(2022·全国·高一期末)已知{}13U x R x =∈-≤≤,{}13A x U x =∈-<<,{}2230B x R x x =∈--=,{}13C x x =-≤<,则有( )A .U AB = B .U BC = C .U A C ⊇D .A C ⊇【答案】A【解析】【分析】化简集合B ,再由集合的运算即可得解.【详解】 因为{}13U x R x =∈-≤≤,{}13A x U x =∈-<<,{}13C x x =-≤<,所以{}1,3U A =-, 又{}{}22301,3B x R x x =∈--==-,所以U A B =,故A 正确,所以U B A C =≠,故B 错误;所以集合C 与集合U A ,集合A 均没有互相包含关系,故CD 错误.故选:A.3.(2022·福建·莆田一中高一期末)已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( ) A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4 【答案】A【分析】首先进行并集运算,然后进行补集运算即可.【详解】由题意可得:{}1,2,3,4MN =,则(){}5U M N =. 故选:A.4.(2022·江苏·高一)已知集合(){}223A x y x y x Z y Z =+≤∈∈,,,,则A 中元素的个数为( ) A .9B .8C .5D .4【答案】A【解析】【分析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤23,x ∴≤ x Z ∈1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【点睛】本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.5.(2022·宁夏·银川唐徕回民中学高一期中)已知全集U =R ,{|0}A x x =≤,{|1}B x x =≥,则集合()U C A B =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<【答案】D【解析】【详解】试题分析:因为A ∪B={x|x≤0或x≥1},所以(){|01}U C A B x x ⋃=<<,故选D.考点:集合的运算.6.(2022·江苏·高一期末)已知命题p :∀x ∈R ,ax 2+2x +3>0.若命题p 为假命题,则实数a 的取值范围是A .13a a ⎧⎫<⎨⎬⎩⎭∣ B .103a a ⎧⎫<≤⎨⎬⎩⎭∣ C .13a a ⎧⎫≤⎨⎬⎩⎭∣ D .13a a ⎧⎫≥⎨⎬⎩⎭∣ 【答案】C【解析】【分析】求得命题p 为真命题时a 的取值范围,由此求得命题p 为假命题时a 的取值范围.【详解】先求当命题p :x R ∀∈,2230ax x ++>为真命题时的a 的取值范围(1)若0a =,则不等式等价为230x +>,对于x R ∀∈不成立,(2)若a 不为0,则04120a a >⎧⎨∆=-<⎩,解得13a >, ∴命题p 为真命题的a 的取值范围为13a a ⎧⎫>⎨⎬⎩⎭∣, ∴命题p 为假命题的a 的取值范围是13a a ⎧⎫≤⎨⎬⎩⎭∣. 故选:C【点睛】本小题主要考查根据全称量词命题真假性求参数的取值范围.7.(2022·广东广雅中学高一期末)设集合U ={1,2,3,4,5},A ={1,3,5},B ={2,3,5},则图中阴影部分表示的集合的真子集有( )个A .3B .4C .7D .8【答案】C【解析】【分析】 先求出A∩B={3,5},再求出图中阴影部分表示的集合为:CU (A∩B )={1,2,4},由此能求出图中阴影部分表示的集合的真子集的个数.【详解】∵集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},∴A∩B={3,5},图中阴影部分表示的集合为:C U (A∩B )={1,2,4},∴图中阴影部分表示的集合的真子集有:23–1=8–1=7.故选C .【点睛】本题考查集合的真子集的个数的求法,考查交集定义、补集、维恩图等基础知识,考查运算求解能力,是基础题.8.(2022·江苏·高一单元测试)在整数集Z 中,被4除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}4k n k n Z =+∈,0k =,1,2,3.给出如下四个结论:①[]20151∈;②[]22-∈;③[][][][]0123Z =⋃⋃⋃;④“整数a ,b 属于同一‘类’”的充要条件是“[]0a b -∈”其中正确的结论有( )A .①②B .③④C .②③D .②③④ 【答案】D【解析】【分析】根据“类”的定义计算后可判断①②④的正误,根据集合的包含关系可判断③的正误,从而可得正确的选项.【详解】因为201550343=⨯+,故[]20153∈,故①错误;而242-=+,故[]22-∈,故②正确;由“类”的定义可得[][][][]012Z 3⊆,任意Z c ∈,设c 除以4的余数为}{()0,1,2,3r r ∈,则[]c r ∈,故[][][][]0123c ∈⋃⋃⋃,所以[][][][]0123Z ⊆, 故[][][][]0123Z =,故③正确若整数a ,b 属于同一“类”,设此类为[]}{()0,1,2,3r r ∈,则4,4a m r b n r =+=+,故()4a b m n -=-即[]0a b -∈,若[]0a b -∈,故-a b 为4的倍数,故a ,b 除以4 的余数相同,故a ,b 属于同一“类”,故整数a ,b 属于同一“类”的充要条件为[]0a b -∈,故④正确;故选:二、多选题9.(2022·江苏·高一单元测试)已知p :1x >或3x <-,q :x a >,则a 取下面那些范围,可以使q 是p 的充分不必要条件( )A .3a ≥B .5a ≥C .3a ≤-D .1a <【答案】AB【解析】【详解】p :1x >或3x <-,q :x a >,q 是p 的充分不必要条件,故1a ≥,范围对应集合是集合{}1a a ≥的子集即可,对比选项知AB 满足条件.故选:AB.10.(2022·江苏·南京师大附中高一期末)设r 是p 的必要条件,r 是q 的充分条件,s 是r 的充分必要条件,s 是p 的充分条件,则下列说法正确的有( ) A .r 是q 的必要条件B .s 是q 的充分条件C .s 是p 的充分必要条件D .p 是q 的既不充分也不必要条件【答案】BC【解析】【分析】 根据条件得到p r s q ⇔⇔⇒可判断每一个选项.【详解】由题意,,,,p r r q r s s p ⇒⇒⇔⇒,则p r s q ⇔⇔⇒.故选:BC.11.(2022·广东汕尾·高一期末)设{}29140A x x x =-+=,{}10B x ax =-=,若A B B =,则实数a 的值可以为( )A .2B .12C .17D .0【答案】BCD【解析】【分析】先求出集合A ,再由A B B =可知B A ⊆,由此讨论集合B 中元素的可能性,即可判断出答案.【详解】集合2{|9140}{2A x x x =-+==,7},{|10}B x ax =-=,又A B B =,所以B A ⊆,当0a =时,B =∅,符合题意,当0a ≠时,则1{}B a =,所以12a=或17a =, 解得12a =或17a =, 综上所述,0a =或12或17, 故选:BCD 12.(2022·重庆·高一期末)已知全集为U ,A ,B 是U 的非空子集且U A B ⊆,则下列关系一定正确的是( )A .x U ∃∈,x A ∉且xB ∈B .x A ∀∈,x B ∉C .x U ∀∈,x A ∈或x B ∈D .x U ∃∈,x A ∈且x B ∈ 【答案】AB【解析】【分析】根据给定条件画出韦恩图,再借助韦恩图逐一分析各选项判断作答.【详解】全集为U ,A ,B 是U 的非空子集且U A B ⊆,则A ,B ,U 的关系用韦恩图表示如图,观察图形知,x U ∃∈,x A ∉且x B ∈,A 正确;因A B =∅,必有x A ∀∈,x B ∉,B 正确;若A U B ,则()()U U A B ⋂≠∅,此时x U ∃∈,[()()]U U x A B ∈⋂,即x A ∉且x B ∉,C 不正确; 因A B =∅,则不存在x U ∈满足x A ∈且x B ∈,D 不正确.故选:AB三、填空题13.(2022·安徽·高一期中)设集合12|3A x N y N x ⎧⎫=∈=∈⎨⎬+⎩⎭,则集合A 的子集个数为________ 【答案】16【解析】【分析】先化简集合A ,再利用子集的定义求解.【详解】解:{}0,1,3,9=A ,故A 的子集个数为4216=,故答案为:1614.(2022·浙江浙江·高一期中)0x ∃>,12x x +>的否定是___________. 【答案】0x ∀>,12x x+≤ 【解析】【分析】利用含有一个量词的命题的否定的定义求解.【详解】解:因为0x ∃>,12x x +>是存在量词命题, 所以其否定是全称量词命题,即0x ∀>,12x x+≤, 故答案为:0x ∀>,12x x +≤. 15.(2022·江苏·高一)某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.【答案】5【解析】【分析】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,根据容斥原理可求出结果.【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =,所以同时参加数学和化学小组有5人.故答案为:5.16.(2022·江苏·高一)已知集合{|1A x x =<-,或{}2}|23x B x a x a >=≤≤+,,若“x A ∈”是“x B ∈”的必要条件,则实数a 的取值范围是___________.【答案】4a或13a【解析】∵“x A ∈”是x B ∈”的必要条件,∴B A ⊆,当B =∅时,23a a >+,则3a >;当B ≠∅时,根据题意作出如图所示的数轴,由图可知3231a a a +>⎧⎨+<-⎩或3222a a a +>⎧⎨>⎩,解得4a 或13a ,综上可得,实数a 的取值范围为4a或13a .四、解答题 17.(2022·江苏·高一)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R .(1)求A ∪B ,()U A B ;(2)若A ∩C ≠∅,求a 的取值范围.【答案】(1)A ∪B ={x |1<x ≤8},()U A B ={x |1<x <2} (2){a |a <8}【解析】【分析】(1)根据集合的交并补的定义,即可求解;(2)利用运算结果,结合数轴,即可求解.(1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}.∵U A ={x |x <2或x >8},∴()U A ∩B ={x |1<x <2}.(2)∵A ∩C ≠∅,作图易知,只要a 在8的左边即可,∴a <8.∴a 的取值范围为{a |a <8}.18.(2022·江苏·高一)设全集为Z ,2{|2150}A x x x =+-=,{|10}B x ax =-=.(1)若15a =,求()Z A B ⋂; (2)若B A ⊆,求实数a 的取值组成的集合C .【答案】(1){}5,3- (2)11,,053⎧⎫-⎨⎬⎩⎭【解析】【分析】(1)若15a =,求出集合A ,B ,即可求()Z A B ⋂; (2)若B A ⊆,讨论集合B ,即可得到结论.(1)解: {}2{|2150}5,3A x x x =+-==-, 当15a =,则{}{|10}5B x ax =-==, 则{}()5,3Z A B ⋂=-;(2)解:当B =∅时,0a =,此时满足B A ⊆,当B ≠∅时,1{}B a=,此时若满足B A ⊆, 则15a =-或13a=,解得15a =-或13, 综上11,,053C ⎧⎫=-⎨⎬⎩⎭. 19.(2022·河南驻马店·高一期末)已知集合{}213A x t x t =-≤≤-,{}215B x x =-<+<.(1)若A B =∅,求实数t 的取值范围;(2)若“x B ∈”是“x A ∈”的必要不充分条件,求实数t 的取值范围.【解析】(1)解:由215x -<+<得解34x -<<,所以{}{}21534B x x x x =-<+<=-<<,又{}213A x t x t =-≤≤- 若A B =∅,分类讨论:当A =∅,即213t t ->-解得43t >,满足题意; 当A ≠∅,即213t t -≤-,解得43t ≤时,若满足A B =∅,则必有21443t t -≥⎧⎪⎨≤⎪⎩或3343t t -≤-⎧⎪⎨≤⎪⎩; 解得t ∈∅.综上,若A B =∅,则实数t 的取值范围为43t >. (2)解:由“x B ∈”是“x A ∈”的必要不充分条件,则集合A B ,若A =∅,即213t t ->-,解得43t >, 若A ≠∅,即213t t -≤-,即43t ≤,则必有4321334t t t ⎧≤⎪⎪->-⎨⎪-<⎪⎩,解得413t -<≤, 综上可得,1t >-,综上所述,当“x B ∈”是“x A ∈”的必要不充分条件时,1t >-即为所求. 20.(2022·江苏·高一)已知命题:R P x ∃∈,使240x x m -+=为假命题.(1)求实数m 的取值集合B ;(2)设{}34A x a x a =<<+为非空集合,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值围.【解析】(1)解:由题意,得关于x 的方程240x x m -+=无实数根,所以1640∆=-<m ,解得4m >,即}|{4m m B =>;(2)解:因为{}34A x a x a =<<+为非空集合,所以34a a <+,即2a <,因为x A ∈是x B ∈的充分不必要条件,则34a ≥,即43a ≥, 所以423a ≤<, 21.(2022·江苏·高一)已知集合{}|14A x x =-≤≤,{2B x x =<-或}5x >.(1)求B R ,()A ⋂R B ;(2)若集合{}21|C x m x m =<<+,且∃x C x A ∈∈,为假命题.求m 的取值范围.【答案】(1){}25B x x =-≤≤R ,()()(),25,R A B ⋂=-∞-⋃+∞(2)2m ≤-或1m ≥【解析】(1){}25B x x =-≤≤R ,{R 1A x x =<-或}4x >,(){R 2A B x x ⋂=<-或}5x >;(2)∵∃x C x A ∈∈,为假命题,∴x C x A ∀∈∉,为真命题,即A C ⋂=∅,又{}21|C x m x m =<<+,{}|14A x x =-≤≤,当C =∅时,21m m ≥+,即1m ≥,A C ⋂=∅;当C ≠∅时,由A C ⋂=∅可得,2111m m m <+⎧⎨+≤-⎩,或2124m m m <+⎧⎨≥⎩, 解得2m ≤-,综上,m 的取值范围为2m ≤-或1m ≥.22.(2022·北京西城·高一期末)设A 是实数集的非空子集,称集合{|,B uv u v A =∈且}u v ≠为集合A 的生成集.(1)当{}2,3,5A =时,写出集合A 的生成集B ;(2)若A 是由5个正实数构成的集合,求其生成集B 中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =,并说明理由.【答案】(1){}6,10,15B =(2)7(3)不存在,理由见解析【解析】【分析】(1)利用集合的生成集定义直接求解.(2)设{}12345,,,,A a a a a a =,且123450a a a a a <<<<<,利用生成集的定义即可求解;(3)不存在,理由反证法说明. (1){}2,3,5A =,{}6,10,15B ∴=(2)设{}12345,,,,A a a a a a =,不妨设123450a a a a a <<<<<,因为41213141525355a a a a a a a a a a a a a a <<<<<<,所以B 中元素个数大于等于7个,又{}254132,2,2,2,2A =,{}34689572,2,2,2,2,2,2B =,此时B 中元素个数大于等于7个, 所以生成集B 中元素个数的最小值为7.(3)不存在,理由如下:假设存在4个正实数构成的集合{},,,A a b c d =,使其生成集{}2,3,5,6,10,16B =,不妨设0a b c d <<<<,则集合A 的生成集{},,,,,B ab ac ad bc bd cd =则必有2,16ab cd ==,其4个正实数的乘积32abcd =;也有3,10ac bd ==,其4个正实数的乘积30abcd =,矛盾;所以假设不成立,故不存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =【点睛】关键点点睛:本题考查集合的新定义,解题的关键是理解集合A 的生成集的定义,考查学生的分析解题能力,属于较难题.。
集合与常用逻辑用语测试题及详解
集合与常用逻辑用语本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.(文)(2011·巢湖市质检)设U ={1,2,3,4,5},A ={1,2,3},B ={2,3,4},则下列结论中正确的是( )A .A ⊆B B .A ∩B ={2}C .A ∪B ={1,2,3,4,5}D .A ∩(∁U B )={1}[答案] D(理)(2011·安徽百校联考)已知集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M 且a ≠b },则集合M 与集合N 的关系是( )A .M =NB .M NC .N MD .M ∩N =∅[答案] C[解析] ∵a 、b ∈M 且a ≠b ,∴a =-1时,b =0或1,x =0或-1;a =0时,无论b 取何值,都有x =0;a =1时,b =-1或0,x =-1或0.综上知N ={0,-1},∴N M .2.(2011·合肥质检)“a =1”是“函数f (x )=lg(ax +1)在(0,+∞)上单调递增”的( ) A .充分必要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件[答案] C[解析] a =1时,f (x )=lg(x +1)在(0,+∞)上单调递增;若f (x )=lg(ax +1)在(0,+∞)上单调递增,∵y =lg x 是增函数,∴y =ax +1在(0,+∞)上单调递增,∴⎩⎪⎨⎪⎧a >0a ×0+1>0,∴a >0,故选C. 3.(2011·福州期末)已知p :|x |<2;q :x 2-x -2<0,则綈p 是綈q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[答案] A[解析] ∵p :-2<x <2,∴綈p :x ≤-2或x ≥2; q :-1<x <2,∴綈q :x ≤-1或x ≥2, ∴綈p 是綈q 的充分不必要条件.4.(2011·福州期末)在△ABC 中,“AB →·AC →=BA →·BC →”是“|AC →|=|BC →|”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] 如图,在△ABC 中,过C 作CD ⊥AB ,则|AD →|=|AC →|·cos ∠CAB ,|BD →|=|BC →|·cos ∠CBA ,AB →·AC →=BA →·BC →⇔|AB →|·|AC →|·cos ∠CAB =|BA →|·|BC →|·cos ∠CBA ⇔|AC →|·cos ∠CAB =|BC →|·cos ∠CBA ⇔|AD →|=|BD →|⇔|AC →|=|BC →|,故选C.5.(文)(2011·山东日照调研)设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若α∥β,l ⊂α,m ⊂β则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则α⊥β.则下列命题为真命题的是( )A .p 或qB .p 且qC .綈p 或qD .p 且綈q[答案] C[解析] p 为假命题,q 为假命题,故p 或q ,p 且q ,p 且綈q 均为假命题,选C. (理)(2011·辽宁省丹东四校联考)已知α、β、γ为互不重合的三个平面,命题p :若α⊥β,β⊥γ,则α∥γ;命题q :若α上不共线的三点到β的距离相等,则α∥β.对以上两个命题,下列结论中正确的是( )A .命题“p 且q ”为真B .命题“p 或綈q ”为假C .命题“p 或q ”为假D .命题“綈p 且綈q ”为假[答案] C[解析] 如图(1),正方体中,相邻三个面满足β⊥α,β⊥γ,但α⊥γ,故p 为假命题;如图(2),α∩β=l ,直线AB ,CD 是α内与l 平行且与l 距离相等的两条直线,则直线AB ,CD 上任意一点到平面β的距离都相等,三点A 、B 、C 不共线,且到平面β的距离相等,故命题q 为假命题,∴“p 或q ”为假命题.6.(2011·宁夏银川一中检测)下列结论错误的...是()A.命题“若p,则q”与命题“若綈q,则綈p”互为逆否命题B.命题p:∀x∈[0,1],e x≥1,命题q:∃x∈R,x2+x+1<0,则p∨q为真C.“若am2<bm2,则a<b”的逆命题为真命题D.若p∨q为假命题,则p、q均为假命题[答案] C[解析]根据四种命题的构成规律,选项A中的结论是正确的;选项B中的命题p是真命题,命题q是假命题,故p∨q为真命题,选项B中的结论正确;当m=0时,a<b⇒/ am2<bm2,故选项C中的结论不正确;选项D中的结论正确.7.(文)(2011·福州期末)已知集合M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R},则M∩N等于()A.(0,1),(1,2) B.{(0,1),(1,2)}C.{y|y=1或y=2} D.{y|y≥1}[答案] D[解析]由集合M、N的代表元素知M、N都是数集,排除A、B;又M={y|y≥1},N =R,∴选D.(理)(2011·陕西宝鸡质检)已知集合A={x|y=1-x2,x∈Z},B={y|y=x2+1,x∈A},则A∩B为()A.∅B.{1}C.[0,+∞) D.{(0,1)}[答案] B[解析]由1-x2≥0得,-1≤x≤1,∵x∈Z,∴A={-1,0,1},当x∈A时,y=x2+1∈{2,1},即B={1,2},∴A∩B={1}.8.(2011·天津河西区质检)命题p:∀x∈[0,+∞),(log32)x≤1,则()A.p是假命题,綈p:∃x0∈[0,+∞),(log32)x0>1B.p是假命题,綈p:∀x∈[0,+∞),(log32)x≥1C.p是真命题,綈p:∃x0∈[0,+∞),(log32)x0>1D.p是真命题,綈p:∀x∈[0,+∞),(log32)x≥1[答案] C[解析] ∵0<log 32<1,∴y =(log 32)x 在[0,+∞)上单调递减,∴0<y ≤1,∴p 是真命题;∀的否定为“∃”,“≤”的否定为“>”,故选C.9.(2010·广东湛江模拟)“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题是( ) A .若x =a 且x =b ,则x 2-(a +b )x +ab =0. B .若x =a 或x =b ,则x 2-(a +b )x +ab ≠0. C .若x =a 且x =b ,则x 2-(a +b )x +ab ≠0. D .若x =a 或x =b ,则x 2-(a +b )x +ab =0. [答案] D10.(2011·四川资阳市模拟)“cos θ<0且tan θ>0”是“θ为第三角限角”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件[答案] A[解析] ∵cos θ<0,∴θ为第二或三象限角或终边落在x 轴负半轴上,∵tan θ>0,∴θ为第一或三象限角,∴θ为第三象限角,故选A.11.(文)(2011·湖南长沙一中月考)设命题p :∀x ∈R ,|x |≥x ;q :∃x ∈R ,1x =0.则下列判断正确的是( )A .p 假q 真B .p 真q 假C .p 真q 真D .p 假q 假[答案] B[解析] ∵|x |≥x 对任意x ∈R 都成立,∴p 真,∵1x =0无解,∴不存在x ∈R ,使1x =0,∴q 假,故选B.(理)(2011·福建厦门市期末)下列命题中,假命题是( ) A .∀x ∈R,2x -1>0B .∃x ∈R ,sin x = 2C .∀x ∈R ,x 2-x +1>0D .∃x ∈N ,lg x =2[答案] B[解析] 对任意x ∈R ,总有|sin x |≤1,∴sin x =2无解,故选B.12.(2011·辽宁大连期末)已知全集U =R ,集合A ={x |x =2n ,n ∈N }与B ={x |x =2n ,n ∈N },则正确表示集合A 、B 关系的韦恩(Venn)图是( )[答案] A[解析] n =0时,20=1∈A ,但1∉B,2×0=0∈B ,但0∉A ,又当n =1时,2∈A 且2∈B ,故选A.[点评] 自然数集N 中含有元素0要特别注意,本题极易因忽视0∈N 导致错选C.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知命题甲:a +b ≠4,命题乙:a ≠1且b ≠3,则命题甲是命题乙的________条件. [答案] 既不充分也不必要[解析] 当a +b ≠4时,可选取a =1,b =5,故此时a ≠1且b ≠3不成立(∵a =1).同样,a ≠1且b ≠3时,可选取a =2,b =2,此时a +b =4,因此,甲是乙的既不充分也不必要条件.[点评] 也可通过逆否法判断非乙是非甲的什么条件. 14.方程x 24-t +y 2t -1=1表示曲线C ,给出以下命题:①曲线C 不可能为圆; ②若1<t <4,则曲线C 为椭圆; ③若曲线C 为双曲线,则t <1或t >4; ④若曲线C 为焦点在x 轴上的椭圆,则1<t <52.其中真命题的序号是______(写出所有正确命题的序号). [答案] ③④[解析] 显然当t =52时,曲线为x 2+y 2=32,方程表示一个圆;而当1<t <4,且t ≠52时,方程表示椭圆;当t <1或t >4时,方程表示双曲线,而当1<t <52时,4-t >t -1>0,方程表示焦点在x 轴上的椭圆,故选项为③④.15.(文)函数f (x )=log a x -x +2(a >0且a ≠1)有且仅有两个零点的充要条件是________. [答案] a >1[解析] 若函数f (x )=log a x -x +2(a >0,且a ≠1)有两个零点,即函数y =log a x 的图象与直线y =x -2有两个交点,结合图象易知,此时a >1;当a >1时,函数f (x )=log a x -x +2(a >0,且a ≠1)有两个零点,∴函数f (x )=log a x -x +2(a >0,且a ≠1)有两个零点的充要条件是a >1.(理)(2010·济南模拟)设p :⎩⎪⎨⎪⎧4x +3y -12≥03-x ≥0x +3y ≤12,q :x 2+y 2>r 2(x ,y ∈R ,r >0),若p 是q的充分不必要条件,则r 的取值范围是________.[答案] ⎝⎛⎭⎫0,125 [解析] 设A ={(x ,y )|⎩⎪⎨⎪⎧4x +3y -12≥03-x ≥0x +3y ≤12},B ={(x ,y )|x 2+y 2>r 2,x ,y ∈R ,r >0},则集合A 表示的区域为图中阴影部分,集合B 表示以原点为圆心,以r 为半径的圆的外部,设原点到直线4x +3y -12=0的距离为d ,则d =|4×0+3×0-12|5=125,∵p 是q 的充分不必要条件,∴A B ,则0<r <125.16.(2011·河南豫南九校联考)下列正确结论的序号是________. ①命题∀x ∈R ,x 2+x +1>0的否定是:∃x ∈R ,x 2+x +1<0.②命题“若ab =0,则a =0,或b =0”的否命题是“若ab ≠0,则a ≠0且b ≠0”. ③已知线性回归方程是y ^=3+2x ,则当自变量的值为2时,因变量的精确值为7. ④若a ,b ∈[0,1],则不等式a 2+b 2<14成立的概率是π4.[答案] ②[解析] ∀x ∈R ,x 2+x +1>0的否定应为∃x ∈R ,x 2+x +1≤0,故①错;对于线性回归方程y ^=3+2x ,当x =2时,y 的估计值为7,故③错;对于0≤a ≤1,0≤b ≤1,满足a 2+b 2<14的概率为p =14×π×⎝⎛⎭⎫1221×1=π16,故④错,只有②正确. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(文)(2011·重庆南开中学期末)已知函数f (x )=x +1x -2的定义域是集合A ,函数g (x )=lg[x 2-(2a +1)x +a 2+a ]的定义域是集合B .(1)分别求集合A 、B ;(2)若A ∪B =B ,求实数a 的取值范围. [解析] (1)A ={x |x ≤-1或x >2} B ={x |x <a 或x >a +1}.(2)由A ∪B =B 得A ⊆B ,因此⎩⎪⎨⎪⎧a >-1a +1≤2所以-1<a ≤1,所以实数a 的取值范围是(-1,1]. (理)已知函数f (x )=6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值. [解析] 由6x +1-1≥0知,0<x +1≤6,∴-1<x ≤5,A ={x |-1<x ≤5}. (1)当m =3时,B ={x |-1<x <3} 则∁R B ={x |x ≤-1或x ≥3} ∴A ∩(∁R B )={x |3≤x ≤5}.(2)A ={x |-1<x ≤5},A ∩B ={x |-1<x <4}, ∴有-42+2·4+m =0,解得m =8. 此时B ={x |-2<x <4},符合题意.18.(本小题满分12分)(文)已知函数f (x )是R 上的增函数,a 、b ∈R ,对命题“若a +b ≥0,则f (a )+f (b )≥f (-a )+f (-b ).”(1)写出其逆命题,判断其真假,并证明你的结论; (2)写出其逆否命题,判断其真假,并证明你的结论.[解析] (1)逆命题是:若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0,真命题. 用反证法证明:设a +b <0,则a <-b ,b <-a , ∵f (x )是R 上的增函数, ∴f (a )<f (-b ),f (b )<f (-a ),∴f (a )+f (b )<f (-a )+f (-b ),这与题设f (a )+f (b )≥f (-a )+f (-b )矛盾,所以逆命题为真. (2)逆否命题:若f (a )+f (b )<f (-a )+f (-b ), 则a +b <0,为真命题.由于互为逆否命题同真假,故只需证原命题为真. ∵a +b ≥0,∴a ≥-b ,b ≥-a ,又∵f (x )在R 上是增函数, ∴f (a )≥f (-b ),f (b )≥f (-a ).∴f (a )+f (b )≥f (-a )+f (-b ),∴原命题真,故逆否命题为真.(理)(2011·厦门双十中学月考)在平面直角坐标系xOy 中,直线l 与抛物线y 2=2x 相交于A 、B 两点.(1)求证:“如果直线l 过点(3,0),那么OA →·OB →=3”是真命题.(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由. [解析] (1)设l :x =ty +3,代入抛物线y 2=2x ,消去x 得y 2-2ty -6=0. 设A (x 1,y 1),B (x 2,y 2),∴y 1+y 2=2t ,y 1·y 2=-6, OA →·OB →=x 1x 2+y 1y 2=(ty 1+3)(ty 2+3)+y 1y 2 =t 2y 1y 2+3t (y 1+y 2)+9+y 1y 2 =-6t 2+3t ·2t +9-6=3. ∴OA →·OB →=3,故为真命题.(2)(1)中命题的逆命题是:“若OA →·OB →=3,则直线l 过点(3,0)”它是假命题. 设l :x =ty +b ,代入抛物线y 2=2x ,消去x 得y 2-2ty -2b =0. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t ,y 1·y 2=-2b . ∵OA →·OB →=x 1x 2+y 1y 2=(ty 1+b )(ty 2+b )+y 1y 2=t 2y 1y 2+bt (y 1+y 2)+b 2+y 1y 2=-2bt 2+bt ·2t +b 2-2b =b 2-2b , 令b 2-2b =3,得b =3或b =-1,此时直线l 过点(3,0)或(-1,0).故逆命题为假命题.19.(本小题满分12分)(文)(2011·华安、连城、永安、漳平龙海,泉港六校联考)已知集合A ={x |x 2-2x -3≤0,x ∈R },B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.(1)若A ∩B =[0,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围. [解析] A ={x |-1≤x ≤3} B ={x |m -2≤x ≤m +2}. (1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧ m -2=0m +2≥3,⎩⎪⎨⎪⎧m =2m ≥1,∴m =2. 故所求实数m 的值为2. (2)∁R B ={x |x <m -2或x >m +2} A ⊆∁R B ,∴m -2>3或m +2<-1. ∴m >5或m <-3.因此实数m 的取值范围是m >5或m <-3.(理)(2011·山东潍坊模拟)已知全集U =R ,非空集合A ={x |x -2x -(3a +1)<0},B ={x |x -a 2-2x -a<0}.(1)当a =12时,求(∁U B )∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围. [解析] (1)当a =12时,A ={x |x -2x -52<0}={x |2<x <52},B ={x |x -94x -12<0}={x |12<x <94}.∴(∁U B )∩A ={x |x ≤12或x ≥94}∩{x |2<x <52}={x |94≤x <52}.(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B , 由a 2+2>a ,得B ={x |a <x <a 2+2}, 当3a +1>2,即a >13时,A ={x |2<x <3a +1},⎩⎪⎨⎪⎧a ≤2a 2+2≥3a +1,解得13<a ≤3-52;当3a +1=2,即a =13时,A =∅,符合题意; 当3a +1<2,即a <13时,A ={x |3a +1<x <2}.⎩⎪⎨⎪⎧a ≤3a +1a 2+2≥2,解得-12≤a <13;综上,a ∈[-12,3-52].20.(本小题满分12分)(2010·常德模拟)已知命题p :∀x ∈[1,2],x 2-a ≥0.命题q :∃x 0∈R ,使得x 20+(a -1)x 0+1<0.若“p 或q ”为真,“p 且q ”为假,求实数a 的取值范围.[解析] 由条件知,a ≤x 2对∀x ∈[1,2]成立,∴a ≤1;∵∃x 0∈R ,使x 20+(a -1)x 0+1<0成立,∴不等式x 2+(a -1)x +1<0有解,∴Δ=(a -1)2-4>0,∴a >3或a <-1; ∵p 或q 为真,p 且q 为假,∴p与q一真一假.①p真q假时,-1≤a≤1;②p假q真时,a>3.∴实数a的取值范围是a>3或-1≤a≤1.21.(本小题满分12分)(文)已知函数f(x)=x2-2x+5,若存在一个实数x0,使不等式f(x0)-m>0成立,求实数m的取值范围.[解析]不等式f(x0)-m>0可化为m<f(x0),若存在一个实数x0使不等式m<f(x0)成立,只需m<f(x)min.又∵f(x)=x2-2x+5=(x-1)2+4,∴f(x)min=4,∴m<4.故所求实数m的取值范围是(-∞,4).(理)(2011·雅安中学期末)设函数f(x)=(x+1)ln(x+1),若对所有的x≥0,都有f(x)≥ax 成立,求实数a的取值范围.[解析]令g(x)=(x+1)ln(x+1)-ax,则g′(x)=ln(x+1)+1-a,令g′(x)=0,解得x=e a-1-1.(1)当a≤1时,对所有x>0,g′(x)>0.所以g(x)在[0,+∞)上是增函数.又g(0)=0,所以对x≥0,有g(x)≥g(0),即当a≤1时,对于所有x≥0,都有f(x)≥ax.(2)当a>1时,对于0<x<e a-1-1,g′(x)<0,所以g(x)在(0,e a-1-1)上是减函数.又g(0)=0,所以对0<x<e a-1-1,有g(x)<g(0),即f(x)<ax.所以当a>1时,不是对所有的x≥0,都有f(x)≥ax成立.综上所述a的取值范围是(-∞,1].22.(本小题满分12分)若规定E={a1,a2,…,a10}的子集{ai1,ai2,…,ai n}为E的第k个子集,其中k=2i1-1+2i2-1+…+2i n-1,则(1){a1,a3}是E的第几个子集?(2)求E的第211个子集.[解析](1)由k的定义可知k=21-1+23-1=5.因此{a1,a3}是E的第5个子集.(2)∵21-1=1,22-1=2,23-1=4,24-1=8,…k=211,且211=128+64+16+2+1,∴i1=1,i2=2,i3=5,i4=7,i5=8,故E的第211个子集是{a1,a2,a5,a7,a8}.高考总复习[点评]本题是新定义题型,构思新颖,视角独特,亮点明显,对考生在新情境下灵活运用所学知识分析,解决问题的能力要求较高,有较高的区分度.含详解答案。
2023-2024学年高一上数学《集合与常用逻辑用语》测试试卷及答案解析
2023-2024学年高一数学《集合与常用逻辑用语》一.选择题(共12小题)1.(2022春•马尾区校级月考)已知全集U={1,2,3,4,5},集合M={1,3,5},∁U N ={3,4},则M∩N=()A.{1}B.{1,2}C.{1,5}D.{1,2,5} 2.(2021秋•福州期末)设集合A={x|x2﹣3x﹣4<0},B={x|x<3},则A∩B=()A.{x|x<﹣1}B.{x|x<4}C.{x|﹣4<x<1}D.{x|﹣1<x<3} 3.(2021秋•福州期末)已知集合A={﹣2,﹣1},B={x∈N*|x2﹣x﹣2≤0},则A∪B=()A.∅B.{﹣2,﹣1,1}C.{﹣2,﹣1,1,2}D.{﹣2,﹣1,0,1,2}4.(2021秋•福清市校级月考)已知集合A={﹣1,0,1,2},B={x|﹣1<x<2},则A∩B =()A.{﹣1,0,1}B.{0,1}C.{﹣1,1,2}D.{1,2} 5.(2018春•仓山区校级期末)设U=R,A={﹣2,﹣1,0,1,2},B={x|x≥1},则A∩∁U B=()A.{1,2}B.{﹣1,0,1}C.{﹣2,﹣1,0}D.{﹣2,﹣1,0,1}6.(2021秋•仓山区校级期中)已知集合A={x|y=},B={y|y=﹣|x﹣3|﹣2},则A∪B=()A.[﹣2,0)B.(﹣∞,﹣2]C.(﹣∞,0]D.(﹣∞,0)7.(2022•福州模拟)“0<a<b”是“a ﹣<b ﹣”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.(2021秋•福州期末)“四边形是菱形”是“四边形是平行四边形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.(2021秋•鼓楼区校级月考)x2<4的一个必要不充分条件是()第1页(共14页)。
高一数学集合与常用逻辑用语试题答案及解析
高一数学集合与常用逻辑用语试题答案及解析1.若集合,则中元素的个数为()A.3个B.4个C.1个D.2个【答案】B【解析】,,所以B中共4个元素.【考点】1.一元二次不等式的解法;2.集合的表示方法(描述法).2.已知集合A={a,b},集合B={0,1},下列对应不是A到B的映射的是()【答案】C【解析】映射要满足对于A中的每一个元素a,b在B中都有唯一的元素与之对应,C项中对应关系不满足要求【考点】映射的概念3.(12分)已知集合A={x|-2≤x≤5},B={x|m≤x≤2m-1} A∩B="B," 求m的取值范围。
【答案】【解析】由A∩B=B得到,将两集合标注在数轴上使其满足子集关系,进而得到m的不等式,得到m的范围,求解时要将B集合分为空集与非空集两种情况讨论试题解析:①B=∅时,m>2m-1m<1②B∅时, m2m-1 即m 1又有则【考点】1.集合的子集关系;2.分情况讨论4.市场调查公司为了解某小区居民在阅读报纸方面的取向,抽样调查了500户居民,调查显示:订阅晨报的有334户,订阅晚报的有297户,其中两种都订阅的有150户,则两种都不订阅的有.【答案】19【解析】(1)只订日报不订晚报的人数为(人).(2)只订晚报不订日报的人数为(人).(3)只订一种报纸的人数为(人).又两种都订的人数为150人,所以至少订一种报纸的人数为(人).(4)不订报纸的人数为(人).【考点】集合的运算.【思路点晴】本题采用集合表示法中的图示法分析问题可使问题简化.5.设全集集合则.【答案】【解析】集合M表示的是直线除去点(2,3)的所有点;集合P表示的是不在直线上的所有点,显然表示的是平面内除去点(2,3)的所有点,故.【考点】集合运算.6.已知集合,,,则等于()A.B.C.D.【答案】C【解析】,,则,.故选C.【考点】集合的全集、补集、交集运算.7.已知集合,,若,则实数=()A.-1B.2C.-1或2D.1或-1或2【答案】C【解析】由题故或解得,又根据集合中元素的互异性可得或。
完整版)集合与常用逻辑用语测试题及详解
完整版)集合与常用逻辑用语测试题及详解本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间为120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.(文)(2011·巢湖市质检)设U={1,2,3,4,5},A={1,2,3},B={2,3,4},则下列结论中正确的是()。
A。
A⊆BB。
A∩B={2}C。
A∪B={1,2,3,4,5}D。
A∩(∁U B)={1}答案:C解析:由集合的定义可知,XXX表示A是B的子集,即A中的每个元素都在B中出现。
显然,A不是B的子集,排除A选项。
XXX表示A和B的交集,即A和B中都出现的元素构成的集合。
根据A和B的定义可知,它们的交集为{2,3},因此排除B选项。
A∪B表示A和B的并集,即A和B中所有元素构成的集合。
根据A和B的定义可知,它们的并集为{1,2,3,4,5},因此选C。
A∩(∁U B)表示A和B的补集的交集,即除去B中所有元素后,A中剩余的元素构成的集合。
根据A和B的定义可知,它们的补集分别为{4,5}和{1},因此A∩(∁U B)={1},排除D选项。
2.(2011·安徽百校联考)已知集合M={-1,0,1},N={x|x=ab,a,b∈M且a≠b},则集合M与集合N的关系是()。
A。
M=NB。
MNC。
NMD。
M∩N=∅答案:C解析:根据集合N的定义可知,N中的元素是由M中的元素相乘得到的,其中a≠b。
因此,当a=-1时,b为0或1,x 为-1或0;当a=0时,x为0;当a=1时,b为-1或0,x为-1或0.综上所述,N={-1,0},因此M和N的关系是NM。
3.(2011·福州期末)已知p:|x|<2;q:x^2-x-2<0,则綈p是綈q的()。
A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
高二数学集合与常用逻辑用语试题答案及解析
高二数学集合与常用逻辑用语试题答案及解析1.设全集为R,集合,则()A.B.C.D.【答案】D【解析】,【考点】1.解不等式;2.集合的子集关系2.已知集合,,若,则的值为( )A.B.C.或D.或【答案】A【解析】集合A化简得若,【考点】集合的子集关系3.否定“自然数中恰有一个偶数”时正确的反设为A.都是奇数B.都是偶数C.至少有两个偶数D.至少有两个偶数或者都是奇数【答案】D【解析】否定“自然数中恰有一个偶数”时正确的反设为“至少有两个偶数或者都是奇数”.【考点】反证法.4.(本小题16分)设n为给定的不小于3的正整数,数集P={x|x≤n,x∈N*},记数集P的所有k(1≤k≤n,k∈N*)元子集的所有元素的和为Pk.(1)求P1,P2;(2)求P1+P2+…+Pn.【答案】(1)P1=, P2=(2)n(n+1)·2n-2【解析】(1)及时定义的题目,关键从定义出发:P1=1+2+3+…+n=,数集P的2元子集中,每个元素均出现n-1次,故P2=(n-1)(1+2+3+…+n)=(2)类似得Pk=·(1+2+3+…+n)=,则P1+P2+…+Pn=(+++…)=·2n-1试题解析:(1)易得数集P={1,2,3,…,n},则P1=1+2+3+…+n=,数集P的2元子集中,每个元素均出现n-1次,故P2=(n-1)(1+2+3+…+n)=.(2)易得数集P的k(1≤k≤n,k∈N*)元子集中,每个元素均出现次,故Pk=·(1+2+3+…+n)=,则P1+P2+…+Pn=(+++…)=·2n-1=n(n+1)·2n-2.【考点】新定义题目,组合数性质5.(本小题满分10分)已知集合.(Ⅰ)若的充分条件,求的取值范围;(Ⅱ)若,求的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】先解集合中的不等式,将集合化简.讨论集合中方程两根的大小,从而可得的解集即集合,(Ⅰ)根据的充分条件可知,根据可得关于的不等式,从而可求得的范围.(Ⅱ)根据画数轴分析可得关于的不等式,从而可求得的范围.试题解析:解:(Ⅰ)①当时,,不合题意;②当时,,由题意知③当时,,由得,此时无解,综上:(Ⅱ)当时,,合题意.当时,,由得当时,,由得综上述:时【考点】1一元二次不等式;2集合的关系.6.设集合,则=()A.B.C.D.【答案】B【解析】因为所以,故选B.【考点】1、一元二次不等式的解法;2、集合的运算.7.(本小题10分)命题:实数满足,其中;命题:实数满足或;若是的必要不充分条件,求的取值范围.【答案】实数的取值范围为.【解析】先由命题和是真命题,解出每个不等式的解集;再根据是的必要不充分条件,由命题的等价性,得到或,即可解得实数的取值范围.试题解析:方程对应的根为,;由于,则的解集为,故命题成立有;由得,由得,故命题成立有若是的必要不充分条件,所以或,即或.【考点】1、一元二次不等式的解法;2、逻辑与命题.8.已知命题则命题的否定形式是()A.B.C.D.【答案】C【解析】全称命题的否定是特称命题,需将结论加以否定,因此命题的否定为【考点】全称命题与特称命题9.若命题,则命题为.【答案】【解析】非P命题只需把P命题中的特称改为全称,把大于改为小于等于.其他内容与顺序不变.【考点】特称命题的否定.10.已知命题,则命题的否定是()A.B.C.D.【答案】B【解析】由全称命题的否定为特称命题可知,所求命题的否定为,故应选B.【考点】特称命题的否定.11.已知p:存在x∈R,.q:任意,若或为假命题,则实数的取值范围是().A.B.C.D.【答案】A【解析】∵存在x∈R,,∴,∵任意,∴,∴,∵为假命题,∴为假命题,也为假命题,∵为假命题,则,为假命题,则或,∴实数的取值范围是,即,故选A.【考点】复合命题的真假判断.12.已知,设命题函数是上的单调递减函数;命题:函数的定义域为.若“”是真命题,“”是假命题,求实数的取值范围.【答案】.【解析】要使“”是真命题,“”是假命题,应有p,q一真一假即“p真q假”或“P假q真”两种情况,可分情况讨论,解题时可先分别求出“p真”、“q真”时的取值范围,其补集即为使“p假”、“q假”的的范围.试题解析:解:若为真,则若为真,则或为真命题,为假命题,一真一假当真假时,当假真时,综上所述:实数的取值范围为【考点】简易逻辑中“”、“”形式符合命题真假判断的应用及分类讨论数学思想的应用.13.命题“若”的逆否命题是()A.若B.C.若D.【答案】D【解析】一个命题的逆否命题是把原命题的假设和结论否定并且交换位置,所以命题“若”的逆否命题是,故选D.【考点】四种命题14.下列结论中,正确的是()①命题“如果,则”的逆否命题是“如果,则”;②已知为非零的平面向量.甲:,乙:,则甲是乙的必要条件,但不是充分条件;③是周期函数,是周期函数,则是真命题;④命题的否定是:.A.①②B.①④C.①②④D.①③④【答案】C【解析】①中,根据命题的逆否关系,可知命题“如果,则”的逆否命题是“如果,则”;,所以是正确的;②中,乙:,根据向量的数量积公式,能推出甲:的等价条件是,反之推不出,所以是正确的;③中,不是周期函数,所以是假命题;④中,根据存在性命题的否定可知:命题的否定是:,所以是正确的.【考点】全称命题与存在命题;命题的否定.15.下列四个命题申是真命题的是______(填所有真命题的序号)①“为真”是“为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成的角:④动圆过定点,且在定圆的内部与其相内切,则动圆圆心的轨迹为一个椭圆.【答案】①③④.【解析】:①“为真”,则p,q同时为真命题,则“为真”,当p真q假时,满足为真,但为假,则“为真”是“为真”的充分不必要条件正确,故①正确;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故②错误,③设正三棱锥为,顶点在底面的射影为,则为的中心,为侧棱与底面所成角,如图:∵正三棱锥的底面边长为3,∵侧棱长为2,∴在直角△POC中,∴侧棱与底面所成角的正切值为,,即侧棱与底面所成角为30°,故③正确,④如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点和定圆的圆心的距离之和恰好等于定圆半径,即.∴点P的轨迹是以A、B为焦点的椭圆,故动圆圆心P的轨迹为一个椭圆,故④正确,故答案应填:(1),(2),(3).【考点】命题的真假判断与应用.【方法点晴】本题主要考查命题的真假判断,涉及的知识点较多,复合命题真假的判断、立体几何中的线面角、解析几何中圆与圆的位置关系及轨迹问题,综合性较强,难度中等.对于这种多个命题真假的判断,宜采用逐个判断的方法进行,利用相关知识逐个判断即可.16.设集合,,则“x∈A”是“x∈B”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】B【解析】“x∈A”是“x∈B”的充分不必要条件【考点】充分条件与必要条件17.已知命题:方程表示焦点在轴上的椭圆;命题:双曲线的离心率;若为真,且为假,求实数的取值范围.【答案】或【解析】根据题意求出命题p、q为真时m的范围分别为0<m<5、.由p∨q为真,p∧q为假得p真q假,或p假q真,进而求出答案即可试题解析:命题为真时:,即:命题为假时:命题为真时:命题为假时:由为真,为假可知: 、一真一假①真假时:②假真时:综上所述: 或【考点】1.命题的真假判断与应用;2.椭圆的定义;3.双曲线的简单性质18.有下列四个命题:(1)“若,则”的否命题;(2)“若,则”的逆否命题;(3)“若,则”的否命题;(4)“对顶角相等”的逆命题.其中真命题的个数是()A.B.C.D.【答案】A【解析】对于(1)中,命题“若,则”的逆命题为“若,则”是假命题,所以命题的否命题也为假命题;(2)中命题“若,则”为假命题,所以它的逆否命题为假命题;(3)中,命题“若,则”的否命题为“若,则”是假命题;(4)中,命题“对顶角相等”的逆命题为“相等角为对顶角”,所以也为假命题,故选A.【考点】四种命题及命题的真假判定.19.5.A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】当时,在区间内单调递增,当时,结合二次函数的图像可得函数在区间内单调递增,当时,函数图像如图所示,在区间内有增有减【考点】二次函数及充要条件.20.(2015秋•运城期末)命题p:“不等式的解集为{x|x≤0或x≥1}”;命题q:“不等式x2>4的解集为{x|x>2}”,则()A.p真q假B.p假q真C.命题“p且q”为真D.命题“p或q”为假【答案】D【解析】先判断两个命题的真假,然后再依据或且非命题的真假判断规则判断那一个选项是正确的.解:∵x=1时,不等式没有意义,所以命题p错误;又不等式x2>4的解集为{x|x>2或x <﹣2}”,故命题q错误.∴A,B,C不对,D正确应选D.【考点】复合命题的真假.21.(2015春•咸阳校级期中)“m=1”是复数z=m2﹣1+(m+1)i为纯虚数的()A.充分不必要条件B.必要不从分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】根据复数的概念进行求解即可.解:若复数z=(m2﹣1)+(m+1)i为纯虚数,必有:m2﹣1=0且m+1≠0,解得,m=1,∴“m=1”是复数z=m2﹣1+(m+1)i为纯虚数的充要条件,故选:C.【考点】必要条件、充分条件与充要条件的判断.22.命题“对任意的x∈R,x3﹣x2+1≤0”的否定是.【答案】存在x∈R,x3﹣x2+1>0.【解析】直接利用全称命题的否定是特称命题写出结果即可.解:因为全称命题的否定是特称命题,所以命题“对任意的x∈R,x3﹣x2+1≤0”的否定是:存在x∈R,x3﹣x2+1>0.故答案为:存在x∈R,x3﹣x2+1>0.【考点】命题的否定.23.已知命题函数在定义域上单调递减;命题不等式对任意实数恒成立.若是真命题,求实数的取值范围.【答案】-2<a ≤2【解析】由对数函数的性质知0<a<1;由不等式分类讨论求恒成立,从而解出a,再求并集即可试题解析:命题P函数y=loga (1+2x)在定义域上单调递减;∴0<a<1又∵命题Q不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立;当a=2时,不等式化简为-4< 0,成立当a ≠ 2时∴当-2<a ≤ 2时原不等式恒成立∵P∨Q是真命题,∴a的取值范围是-2<a ≤2【考点】1.复合命题的真假;2.函数与不等式的应用24.“x=2”是“(x﹣2)•(x+5)=0”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】B【解析】解方程“(x﹣2)•(x+5)=0”,进而结合充要条件的定义可得答案.解:当“x=2”时,“(x﹣2)•(x+5)=0”成立,故“x=2”是“(x﹣2)•(x+5)=0”的充分条件;当“(x﹣2)•(x+5)=0”时,“x=2”不一定成立,故“x=2”是“(x﹣2)•(x+5)=0”的不必要条件,故“x=2”是“(x﹣2)•(x+5)=0”的充分不必要条件,故选:B.【考点】必要条件、充分条件与充要条件的判断.25.已知p:x2﹣8x﹣20≤0;q:1﹣m2≤x≤1+m2.(Ⅰ)若p是q的必要条件,求m的取值范围;(Ⅱ)若¬p是¬q的必要不充分条件,求m的取值范围.【答案】(Ⅰ)[,](Ⅱ)m≥3或m≤﹣3【解析】(Ⅰ)求出p,q成立的等价条件,根据p是q的必要条件,建立条件关系即可.(Ⅱ)利用¬p是¬q的必要不充分条件,即q是p的必要不充分条件,建立条件关系进行求解即可.解:由x2﹣8x﹣20≤0得﹣2≤x≤10,即p:﹣2≤x≤10,由x2+2x+1﹣m2≤0得[x+(1﹣m)][x+(1+m)]≤0,q:1﹣m2≤x≤1+m2.(Ⅰ)若p是q的必要条件,则,即,即m2≤3,解得≤m≤,即m的取值范围是[,].(Ⅱ)∵¬p是¬q的必要不充分条件,∴q是p的必要不充分条件.即,即m2≥9,解得m≥3或m≤﹣3.即m的取值范围是m≥3或m≤﹣3.【考点】必要条件、充分条件与充要条件的判断.26.已知集合A=,B={x|x+m2≥1}.命题p:x∈A,命题q:x∈B,并且命题p是命题q的充分条件,求实数m的取值范围.【答案】或.【解析】首先将集合进行化简,再根据命题是命题的充分条件知道,利用集合之间的关系,就可以求出实数的取值范围.试题解析:解:化简集合,由,配方,得.,,.,化简集合,由,,命题是命题的充分条件,.,解得,或.实数的取值范围是【考点】1、充分条件;2、二次函数的值域;3、集合之间的关系.27.已知c>0,设命题p:函数y=c x为减函数;命题q:当x∈[,2]时,函数f(x)=x+>恒成立,如果p∨q为真命题,p∧q为假命题,求c的取值范围.【答案】(0,]∪[1,+∞)【解析】根据指数函数的图象和性质可求出命题p为真命题时,c的取值范围,根据对勾函数的图象和性质,结合函数恒成立问题的解答思路,可求出命题q为真命题时,c的取值范围,进而根据p∨q为真命题,p∧q为假命题,可知p与q一真一假,分类讨论后,综合讨论结果,可得答案.解:∵若命题p:函数y=c x为减函数为真命题则0<c<1当x∈[,2]时,函数f(x)=x+≥2,(当且仅当x=1时取等)若命题q为真命题,则<2,结合c>0可得c>∵p∨q为真命题,p∧q为假命题,故p与q一真一假;当p真q假时,0<c≤当p假q真时,c≥1故c的范围为(0,]∪[1,+∞)【考点】复合命题的真假.28.设命题p:实数x满足x2﹣(a+)x+1<0,其中a>1;命题q:实数x满足x2﹣4x+3≤0.(1)若a=2,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.【答案】(1)1≤x<2(2)3<a【解析】(1)命题p:实数x满足x2﹣(a+)x+1<0,其中a>1,解得,由a=2,可得;命题q:实数x满足x2﹣4x+3≤0,解得x范围.利用p∧q为真即可得出.(2)p是q的必要不充分条件,可得q⇒p,且p推不出q,设A=,B=[1,3],则B⊊A,即可得出.解:(1)命题p:实数x满足x2﹣(a+)x+1<0,其中a>1,化为<0,解得,∵a=2,∴;命题q:实数x满足x2﹣4x+3≤0,解得1≤x≤3.∵p∧q为真,∴,解得1≤x<2.∴实数x的取值范围是1≤x<2.(2)p是q的必要不充分条件,∴q⇒p,且p推不出q,设A=,B=[1,3],则B⊊A,∴,解得3<a.∴实数a的取值范围是3<a.【考点】必要条件、充分条件与充要条件的判断;复合命题的真假.29.命题:“若a2+b2=0(a,b∈R),则a=b=0”的逆否命题是()A.若a≠b≠0(a,b∈R),则a2+b2≠0B.若a=b≠0(a,b∈R),则a2+b2≠0C.若a≠0且b≠0(a,b∈R),则a2+b2≠0D.若a≠0或b≠0(a,b∈R),则a2+b2≠0【答案】D【解析】试题分析:根据逆否命题的定义,直接作答即可,注意常见逻辑连接词的否定形式.解:“且”的否定为“或”,因此其逆否命题为“若a≠0或b≠0,则a2+b2≠0”;故选D.【考点】四种命题.30.给出下列四个命题:①命题“”的否定是“”;②在空间中,是两条不重合的直线,是两个不重合的平面,如果,,那么;③将函数的图象向右平移个单位,得到函数的图象;④函数的定义域为,且,若方程有两个不同实根,则的取值范围为.其中真命题的序号是________.【答案】③④【解析】对于①中,命题“”的否定是“”,所以是错误的;对于②,在空间中,是两条不重合的直线,是两个不重合的平面,如果,,那么与的关系是或或与相交,所以不正确;对于③中,将函数的图象向右平移个单位,得到函数的图象,所以是正确的;对于④中,函数的定义域为,且,当时,函数;当时,函数,当时,,类比有,,也就是说,的部分是将的部分,周期性向右平移个单位长度得到的,若方程有两个不同实根,则的取值范围为,所以是正确的.【考点】命题的真假判定.【方法点晴】本题主要考查了命题的真假判定与应用,着重考查了分段函数的解析式的而求解和三角函数的图象变换、直线与平面位置关系的判定、全称命题与存在性命题的关系的综合应用,训练了函数的零点的判定方法,属于中档试题,本题④的解答中,由分段函数的解析式得到函数在的部分是将的部分,周期性向右平移个单位长度得到的,确定方程有两个不同实根,则的取值范围为是解答的一个难点,充分体现了转化的思想方法和数形结合思想的应用.31.若“”,“”,则是的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由题意知:,所以是的充分不必要条件.故选A.【考点】充分条件和必要条件.32.直线的图像经过第一、二、四象限的一个必要而不充分条件是()A.B.C.且D.且【答案】B【解析】直线的图像经过第一、二、四象限,则,所以,故A,C错误,D是充要条件,B是必要不充分条件.故选B.【考点】充分必要条件.33.在一次跳高比赛前,甲、乙两名运动员各试跳了一次.设命题表示“甲的试跳成绩超过2米”,命题表示“乙的试跳成绩超过2米”,则命题表示()A.甲、乙恰有一人的试跳成绩没有超过2米B.甲、乙至少有一人的试跳成绩没有超过2米C.甲、乙两人的试跳成绩都没有超过2米D.甲、乙至少有一人的试跳成绩超过2米【答案】D【解析】命题为: “甲的试跳成绩超过2米或乙的试跳成绩超过2米”.所以表示甲、乙至少有一人的试跳成绩超过2米.故D正确.【考点】复合命题.34.已知命题关于的方程有实数根,命题.(Ⅰ) 若是真命题,求实数的取值范围;(Ⅱ) 若是的必要非充分条件,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)为真命题,则方程无实根,所以其判别式小于0.从而可求得的范围. (Ⅱ)命题为真,则其判别式大于等于0.是的必要非充分条件,则命题中取值的集合是命题中取值集合的真子集,从而可得关于的不等式.试题解析:解法一:(Ⅰ) 当命题是真命题时,满足则解得或是真命题,则是假命题即实数的取值范围是.(Ⅱ) 是的必要非充分条件则是的真子集即或解得或实数的取值范围是.解法二:(Ⅰ) 命题:关于的方程没有实数根是真命题,则满足即解得实数的取值范围是.(Ⅱ) 由 (Ⅰ)可得当命题是真命题时,实数的取值范围是是的必要非充分条件则是的真子集即或解得或实数的取值范围是.【考点】1命题;2充分必要条件.35.对于任意实数、、、,下列真命题是( )A.若,,则B.若,则C.若,则D.若,则【答案】C【解析】A中当时才成立;B中当时才成立;C中由已知可知,所以命题成立;D 中时不成立【考点】不等式性质36.设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若非p是非q的充分不必要条件,求实数a的取值范围.【答案】(1) (2,3) (2) (1,2]【解析】分别化简命题p:a<x<3a;命题q:实数x满足,解得2≤x≤3.(1)若a=1,则p化为:1<x<3,由p∧q为真,可得p与q都为真;(2)¬p是¬q的充分不必要条件,可得q是p的充分不必要条件,即可得出试题解析:(1)由x2-4ax+3a2<0,得(x-3a)(x-a)<0. ……2分又a>0,所以a<x<3a,当a=1时,1<x<3,即p为真命题时,1<x<3.由解得即2<x≤3.所以q为真时,2<x≤3.若p∧q为真,则⇔2<x<3,所以实数x的取值范围是(2,3).(2)因为非p是非q的充分不必要条件,所以q是p的充分不必要条件,于是满足解得1<a≤2,故所求a的取值范围是(1,2].【考点】复合命题的真假;必要条件、充分条件与充要条件的判断37.若集合,则()A.B.C.D.【答案】B【解析】,故选B.【考点】集合的补集及对数不等式解法.38. “a=”是“直线l 1:(a+2)x+(a ﹣2)y=1与直线l 2:(a ﹣2)x+(3a ﹣4)y=2相互垂直”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】当时,两条直线分别化为:,此时两条直线相互垂直;当时,两条直线分别化为:,此时两条直线不相互垂直,舍去;当且时,由于两条直线相互垂直,∴,解得.综上可得:两条直线相互垂直的充要条件为:或.∴“”是“直线与直线相互垂直”的充分不必要条件,故选A .【考点】必要条件、充分条件与充要条件的判断.39. 已知集合,函数的定义域为集合,若,求实数的值. 【答案】. 【解析】先将集合明确化,再借助建立方程分类求解即可.试题解析:由且得:,即.当即时,,不满足; 当即时,,由得, 此时无解; 当即时,,由得,解得. 故所求实数的值为.【考点】集合相等的条件及运用.40. 已知:函数f (x )对一切实数x ,y 都有f (x+y )﹣f (y )=x (x+2y+1)成立,且f (1)=0. (1)求f (0)的值. (2)求f (x )的解析式. (3)已知a ∈R ,设P :当时,不等式f (x )+3<2x+a 恒成立;Q :当x ∈[﹣2,2]时,g (x )=f (x )﹣ax 是单调函数.如果满足P 成立的a 的集合记为A ,满足Q 成立的a 的集合记为B ,求A∩∁R B (R 为全集).【答案】(1)﹣2;(2)f (x )=x 2+x ﹣2;(3)A∩C R B={a|1≤a <5}.【解析】(1)对抽象函数满足的函数值关系的理解和把握是解决该问题的关键,对自变量适当的赋值可以解决该问题,结合已知条件可以赋x=﹣1,y=1求出f (0); (2)在(1)基础上赋值y=0可以实现求解f (x )的解析式的问题;(3)利用(2)中求得的函数的解析式,结合恒成立问题的求解策略,即转化为相应的二次函数最值问题求出集合A ,利用二次函数的单调性求解策略求出集合B . 解:(1)令x=﹣1,y=1,则由已知f (0)﹣f (1)=﹣1(﹣1+2+1) ∴f (0)=﹣2(2)令y=0,则f (x )﹣f (0)=x (x+1) 又∵f (0)=﹣2 ∴f (x )=x 2+x ﹣2(3)不等式f (x )+3<2x+a 即x 2+x ﹣2+3<2x+a 也就是x 2﹣x+1<a .由于当时,,又x 2﹣x+1=恒成立,故A={a|a≥1},g (x )=x 2+x ﹣2﹣ax=x 2+(1﹣a )x ﹣2 对称轴x=,又g (x )在[﹣2,2]上是单调函数,故有,∴B={a|a≤﹣3,或a≥5},C R B={a|﹣3<a <5} ∴A∩C R B={a|1≤a <5}.41. 设集合,那么“”是“”的____________条件.【答案】必要不充分【解析】 由于集合M 真包含集合N ,所以“”是“”的必要不充分条件.【考点】充要条件42. 设集合,,则( )A .B .C .D .【答案】C 【解析】【考点】集合运算 43. “”是“”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件【答案】A 【解析】由可得到,反之由可得到,所以“”是“”的充分非必要条件【考点】充分条件与必要条件 44. 是直线与圆相切的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由直线与圆相切等价于,由可推出,即直线与圆相切,充分性成立;反之,解得或,必要性不成立.故选A. 【考点】1、直线与圆的位置关系;2、充分条件与必要条件.【方法点睛】本题通过直线与圆的位置关系主要考查充分条件与必要条件,属于中档题.判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.45. 设集合,,则A .B .C .D .【答案】A【解析】由题意可知【考点】集合运算46.给出下列四个命题:(1)若为假命题,则、均为假命题;(2)命题“”为真命题的一个充分不必要条件可以是;(3)已知函数则;(4)若函数的定义域为R,则实数的取值范围是.其中真命题的个数是A.0B.1C.2D.3【答案】C【解析】(1)根据复合命题的真假关系可知,若p∨q为假命题,则p、q均为假命题,正确(2)命题“”为真命题,则,∵x∈[1,2),∴∈[1,4),则a≥4,则a≥1是命题为真命题的一个必要不充分条件,故(2)错误,(3)已知函数,则,则f(2)=6;故(3)正确,(4)若函数的定义域为R,则等价为,当m=0时,不等式,等价为3≠0,此时满足条件,故则实数m的取值范围是错误.故(1)(3)正确【考点】命题的真假判断与应用47.设集合A={1,2,3,4,5,6},B={4,5,6,7,8},则满足S⊆A且S∩B≠的集合S的个数是()A.57B.56C.49D.8【答案】B【解析】若满足,那么的个数为个,但其中有的子集不满足条件,所以的子集个数为个,所以共有个,故选B.【考点】集合的子集48.全集,集合,,则等于()A.B.C.D.【答案】C【解析】或,,,那么,故选C.【考点】集合的运算M)等于()49.设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(CUA.{1,3}B.{1,5}C.{3,5}D.{4,5}【答案】C【解析】,所以。
集合与常用逻辑用语单元综合检测(试卷)解析版--2023年初升高暑假衔接之高一数学
1.6第一单元:集合与常用逻辑用语单元综合检测一、单选题1.设全集{}1,2,3,4,5U =,集合M 满足{}1,2,3U M =ð,则()A .2M ∈B .3M∈C .4MÎD .5M∉【答案】C【分析】由条件求出集合M ,进而求解.【详解】因为{}1,2,3,4,5U =,{}1,2,3U M =ð,所以{}4,5M =.故选:C.2.设Z,x A ∈是奇数集,B 是偶数集,则“2x A x B ∀∈∈,”的否定是()A .2x A xB ∀∈∉,B .2x A x B ∀∉∉,C .2x A x B ∃∉∈,D .2x A x B ∃∈∉,【答案】D【分析】根据全称命题的否定,即可判断出答案.【详解】由题意知命题“2x A x B ∀∈∈,”为全称命题,其否定为特称命题,即2x A x B ∃∈∉,,故选:D3.已知集合{}33A x x =-≤<,{}1B x x =≥,则()R A B ⋂=ð()A .{}3x x ≥-B .{}1x x ≥C .{}13x x ≤<D .{}31x x -≤<【答案】D【分析】根据集合交集,补集运算解决即可.【详解】由题知,集合{}33A x x =-≤<,{}1B x x =≥,所以{}R 1B x x =<ð,所以(){}R 31A B x x ⋂=-≤<ð,故选:D4.已知p :存在一个平面多边形的内角和是540°,则()A .p 为真命题,且p 的否定:所有平面多边形的内角和都不是540°B .p 为真命题,且p 的否定:存在一个平面多边形的内角和不是540°C .p 为假命题,且p 的否定:存在一个平面多边形的内角和不是540°D .p 为假命题,且p 的否定:所有平面多边形的内角和都不是540°【答案】A【分析】举例说明判断命题p 的真假,再利用存在量词命题的否定方法判断p 的否定作答.【详解】平面五边形的内角和为(52)180540-⨯= ,因此命题p 是真命题,CD 错误;又命题p 是存在量词命题,其否定为全称量词命题,因此p 的否定是:所有平面多边形的内角和都不是540°,B 错误,A 正确.故选:A5.已知集合{}|23M x x =-<≤,{}N x x m =≥,若M N M ⋂=,则m 的取值范围是()A .[]2,3-B .(]2,3-C .(),2-∞-D .(],2-∞-【答案】D【分析】根据交集的知识求得m 的取值范围.【详解】依题意,集合{}|23M x x =-<≤,{}N x x m =≥,由于M N M ⋂=,所以2m ≤-,所以m 的取值范围是(],2-∞-.故选:D6.已知集合{A x y ==,{}B x x a =≥,若A B ⊆,则a 的取值范围为()A .2a ≤B .2a ≥C .0a ≤D .0a ≥【答案】A【分析】先根据定义域求出{}2A x x =≥,由A B ⊆得到a 的取值范围.【详解】由题意得20x -≥,解得2x ≥,故{}2A x x =≥,因为A B ⊆,所以2a ≤.故选:A 7.设命题p :14m ≥,命题q :一元二次方程20x x m ++=有实数解.则p ⌝是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】先求命题q 为真时m 的范围,结合条件的定义进行求解.【详解】因为命题1:4p m ≥,命题:q 一元二次方程20x x m ++=有实数解.等价于140m -≥,即14m ≤;因此可知,则p ⌝:14m <是1:4q m ≤的充分不必要条件.故选:A.8.设集合A 、B 、C 均为非空集合,下列命题中为真命题的是()A .若AB BC ⋂=⋂,则A C =B .若A B B C ⋃=⋃,则A C =C .若A B B C ⋃=⋂,则C B ⊆D .若A B B C = ,则C B⊆【答案】D【分析】取特例,根据由集合的运算关系可判断ABC ,根据集合的交、并运算,子集的概念可判断D.【详解】对于A ,A B B C ⋂=⋂,当{}{}{}1,2,1,1,2,3A B C ===时,结论不成立,则A 错误;对于B,A B B C ⋃=⋃,当{}{}{}1,2,3,1,2,3A B C ===时,结论不成立,则B 错误;对于C ,A B B C ⋃=⋂,当{}{}{}1,1,2,1,2,3A B C ===时,结论不成立,则C 错误;对于D ,因为A B B ⊆ ,A B B C = ,所以B C B ⋃⊆,又B B C ⊆ ,所以B B C = ,则C B ⊆,则D 正确.故选:D二、多选题9.若集合{}1,1,3,5M =-,集合{}3,1,5N =-,则正确的是()A .{}1,5M N =B .(){}Z 1,3M N ⋂=-ðC .,x N x M ∀∉∉D .,x N x M∃∈∈【答案】AD【分析】利用集合的交并补运算和对元素是否属于集合的判断即可得到答案.【详解】因为集合{}1,1,3,5M =-,集合{}3,1,5N =-,对A ,{}1,5,M N ⋂=A 正确;对B ,(){}Z 3,M N ⋂=-ðB 不正确;对C ,1N -∉,但1,M -∈C 不正确;对D ,1N ∈,且1,M ∈D 正确.故选:AD.10.在下列所示电路图中,下列说法正确的是()A .如图①所示,开关1L 闭合是灯泡M 亮的充分不必要条件B .如图②所示,开关1L 闭合是灯泡M 亮的必要不充分条件C .如图③所示,开关1L 闭合是灯泡M 亮的充要条件D .如图④所示,开关1L 闭合是灯泡M 亮的必要不充分条件【答案】ABC【分析】根据充分条件和必要条件的定义逐一判断即可.【详解】对于选项A ,由图①可得,开关1L 闭合,灯泡M 亮;而灯泡M 亮时,开关1L 不一定闭合,所以开关1L 闭合是灯泡M 亮的充分不必要条件,选项A 正确.对于选项B ,由图②可得,开关1L 闭合,灯泡M 不一定亮;而灯泡M 亮时,开关1L 必须闭合,所以开关1L 闭合是灯泡M 亮的必要不充分条件,选项B 正确.对于选项C ,由图③可得,开关1L 闭合,灯泡M 亮;而灯泡M 亮时,开关1L 必须闭合,所以开关1L 闭合是灯泡M 亮的充要条件,选项C 正确.对于选项D ,由图④可得,开关1L 闭合,灯泡M 不一定亮;而灯泡M 亮时,开关1L 不一定闭合,所以开关1L 闭合是灯泡M 亮的既不充分也不必要条件,选项D 错误.故选:ABC.11.取整函数:[]x =不超过x 的最大整数,如[1.2]1,[3.9]3,[1.5]2==-=-,取整函数在现实生活中有着广泛的应用,如停车收费、出租车收费等等都是按照“取整函数”进行计费的,以下关于“取整函数”的性质是真命题有()A .,[2]2[]x R x x ∀∈=B .,[2]2[]x R x x ∃∈=C .,,[][],x y R x y ∀∈=则1x y -<D .,,[][][]x y R x y x y ∀∈+≤+【答案】BC【分析】根据取整函数的定义,ABD 举列判断,C 根据定义给予证明.【详解】 1.5x =时,[2][3]3x ==,但2[]2[1.5]212x ==⨯=,A 错;2x =时,[2][4]42[2]2[]x x ====,B 正确;设[][]x y k Z ==∈,则1k x k ≤<+,1k y k ≤<+,∴1x y -<,C 正确;0.5,0.6x y ==,则[][]0x y +=,但[][1.1]1x y +==[][]x y >+,D 错.故选:BC .【点睛】本题考查含有一个量词的命题的真假判断,考查新定义函数取整函数,对于全称命题与存在命题的真假判断,要根据量词进行判断是进行证明还是可举例判断.12.给定集合A ,若对于任意a ,b A ∈,有a b A +∈,且a b A -∈,则称集合A 为闭集合,以下结论正确的是()A .集合{}0A =为闭集合;B .集合{}42024A =--,,,,为闭集合;C .集合{}3|A n n k k =∈Z =,为闭集合;D .若集合12A A 、为闭集合,则12A A ⋃为闭集合.【答案】AC,分别判断a b A +∈,且a b A -∈是否满足即可得到结论.【详解】对于A :按照闭集合的定义,000,000,0.A +=-=∈故A 正确;对于B :当4,2a b =-=-时,()()426a b A +=-+-=-∉.故{}42024A =--,,,,不是闭集合.故B 错误;对于C :由于任意两个3的倍数,它们的和、差仍是3的倍数,故{}3|A n n k k =∈Z =,是闭集合.故C 正确;对于D :假设{}1|3,Z A n n k k ==∈,{}2|5,Z A n n k k ==∈.不妨取123,5A A ∈∈,但是,12358A A +=∉⋃,则12A A ⋃不是闭集合.故D 错误.故选:AC三、填空题13.已知{}{}{}()3,4,7,(5,26),U U A B A B B A === 痧,{}*()()|10,N ,6U U A B x x x x =<∈≠ 痧,则()U A B ⋃=ð__________.【答案】{}1,8,9【分析】由题意可画出Venn 图,即可求得答案.【详解】由题意,{}*()()|10,N ,6{1,2,3,4,5,7,8,9}U U A B x x x x =<∈≠= 痧,故画Venn 图如图:即得{}()1,8,9U A B = ð,故答案为:{}1,8,914.向某50名学生调查对A ,B 两事件的态度,其中有30人赞成A ,其余20人不赞成A ;有33人赞成B ,其余17人不赞成B ;且对A ,B 都不赞成的学生人数比对A ,B 都赞成的学生人数的三分之一多1人,则对A ,B 都赞成的学生人数为__________.【答案】21Venn 图列出方程求解作答.【详解】记赞成A 的学生组成集合A ,赞成B 的学生组成集合B ,50名学生组成全集U ,则集合A 有30个元素,集合B 有33个元素.设对A ,B 都赞成的学生人数为x ,则集合()U A B ð的元素个数为13x+,如图,由Venn 图可知,(30)(33)1503x x x x ⎛⎫-+-+++= ⎪⎝⎭,即21403x -=,解得21x =,所以对A ,B 都赞成的学生有21人.故答案为:21.15.已知集合(){}21320A x m x x =-+-=恰有两个非空真子集,则m 的值可以是______.(说明:写出满足条件的一个实数m 的值)【答案】2(答案不唯一)【分析】先根据题意得集合A 中所含元素个数,再通过二次方程0∆>得答案.【详解】集合(){}21320A x m x x =-+-=恰有两个非空真子集,则集合A 中含有2个元素,即方程()21320m x x -+-=由2个不等实根,()10Δ9810m m -≠⎧∴⎨=+->⎩,解得18m >-且1m ≠.故答案为:2(答案不唯一).16.下面六个关系式:①{}a ∅⊆;②{}a a ⊆;③{}{}a a ⊆;④{}{,}a a b ∈;⑤{,,}a a b c ∈;⑥{,}a b ∅∈,其中正确的是__.【答案】①③⑤【分析】根据集合与集合,元素与集合的关系判断即可.【详解】空集是任何集合的子集,故①正确;由元素与集合的关系可知,{},{,,}a a a a b c ∈∈,故②错误,⑤正确;由集合与集合的关系可知,{}{},{}{,},{,}a a a a b a b ⊆⊆∅⊆,故③正确,④⑥错误;故答案为:①③⑤四、解答题17.已知全集{}N 16U x x =∈≤≤,集合{}2680A x x x =-+=,{}3,4,5,6B =.(1)求A B ⋃,A B ⋂;(2)求()U A B I ð,并写出它的所有子集.【答案】(1){2,3,4,5,6}A B = ,{4}A B ⋂=;(2)(){3,5,6}U A B ⋂=ð,对应所有子集见解析.【分析】(1)解一元二次方程求集合A ,应用集合的交、并运算求A B ⋃、A B ⋂;(2)应用交补运算可得(){3,5,6}U A B ⋂=ð,进而写出所有子集.【详解】(1)由题设{1,2,3,4,5,6}U =,{2,4}A =,{}3,4,5,6B =,所以{2,3,4,5,6}A B = ,{4}A B ⋂=.(2)由(1)知:{1,3,5,6}U A =ð,则(){3,5,6}U A B ⋂=ð,对应子集有∅,{3},{5},{6},{3,5},{3,6},{5,6},{3,5,6}.18.已知全集U =R ,集合{}221,20|}|3{A x x B x x x =-≤<=--<.(1)求A B ⋃;(2)如图阴影部分所表示的集合M 可以是(把正确答案序号填到横线处),并求图中阴影部分表示的集合M ;.①()U B A ⋂ð②()U B A ⋃ð③()U A B ∩ð④()U A B ⋃ð【答案】(1){|23}x x -≤<(2)③;{|21}x x -≤≤-【分析】(1)根据集合的并集运算求解;(2)根据韦恩图确定阴影部分所表示的集合M 为()U A B ∩ð,再根据集合的交集与补集求解即可.【详解】(1)因为{}{}2|230|13B x x x x x =--<=-<<,2{}1|,A x x =-≤<所以{|3}2,A B x x ⋃=-≤<(2)根据韦恩图确定阴影部分所表示的集合M 为③:()U A B ∩ð,{|1U B x x =≤-ð或3}x ≥,所以(){|}21U A B x x =-≤≤-∩ð.19.已知集合{}123A x a x a =-≤≤+,{}24B x x =-≤≤,全集U =R .(1)当2a =时,求()()U U A B ⋂痧;(2)若x A ∈是x B ∈成立的充分不必要条件,求实数a 的取值范围.【答案】(1){2x x <-或7}x >(2)4a <-或112a -≤≤【分析】(1)将2a =代入,求出集合,U UA B 痧,再根据集合的交集运算即可;(2)x A ∈是x B ∈成立的充分不必要条件即A 是B 的真子集,分A =∅,A ≠∅两种情况讨论即可.【详解】(1)解:由题知,当2a =时,{}17A x x =≤≤,所以{1U A x x =<ð或7}x >,因为{}24B x x =-≤≤,所以{2U B x x =<-ð或4}x >,所以()(){2U U A B x x ⋂=<-痧或7}x >;(2)由题知x A ∈是x B ∈成立的充分不必要条件,故A 是B 的真子集,①当A =∅时,123a a ->+,解得4a <-,②当A ≠∅时,即12234123a a a a -≥-⎧⎪+<⎨⎪-≤+⎩或12234123a a a a ->-⎧⎪+≤⎨⎪-≤+⎩,解得:112a -≤<或112a -<≤,综上:4a <-或112a -≤≤.20.设集合{}(){}22220,|41410A x x x B x x a x a =+==+++-=∣.(1)若A B B ⋃=,求a 的值;(2)若A B B = ,求a 的取值范围.【答案】(1)12a =-(2)51,82⎛⎫⎧⎫-∞-⋃-⎨⎬⎪⎝⎭⎩⎭【分析】(1)结合A B B ⋃=以及根与系数关系来求得a 的值;(2)根据A B B = ,结合判别式进行分类讨论,由此求得a 的取值范围.【详解】(1)()2220x x x x +=+=,解得10x =或22x =-,所以{}0,2A =-.对于一元二次方程()2241410x a x a +++-=,至多有2个不相等的实数根,由于A B B ⋃=,故{}0,2B A ==-,由根与系数关系得()2204120410a a ⎧-+=-+⎨-⨯=-=⎩,解得12a =-(2)对于一元二次方程()2241410x a x a +++-=,()()221614413220a a a ∆=+--=+,当Δ0<,即58a <-时,B =∅,满足A B B = .当Δ0=,即58a =-时,()2222393414102164x a x a x x x ⎛⎫+++-=++=+= ⎪⎝⎭,解得34x =-,则34B ⎧⎫=-⎨⎬⎩⎭,A B B ≠I ,不符合题意.当0∆>,即58a >-时,一元二次方程()2241410x a x a +++-=有两个不相等的实数根,由于A B B = ,所以{}0,2B A ==-,由(1)得12a =-.综上所述,a 的取值范围是51,82⎛⎫⎧⎫-∞-⋃-⎨⎬ ⎪⎝⎭⎩⎭.21.在①A B A = ,②()R A B A = ð,③A B ⋂=∅这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合{}123A x a x a =-<<+,{}2280B x x x =--<.(1)当2a =时,求A B ⋃;(2)若___________,求实数a 的取值范围.【答案】(1){}27A B x x ⋃=-<<(2)见解析【分析】(1)可得出{}24B x x =-<<,2a =时,得出集合A ,然后进行并集的运算即可;(2)若选条件①,可得出A B ⊆,然后讨论A 是否为空集:A =∅时,得出123a a -≥+;A ≠∅时,得出12312234a a a a -<+⎧⎪-≥-⎨⎪+≤⎩,然后解出a 的范围.若选择条件②和③,同样的方法,可得出a 的取值范围.【详解】(1)2a =时,{}17A x x =<<,{}24B x x =-<<,∴{}27A B x x ⋃=-<<;(2)若选择①A B A = ,则A B ⊆,A =∅时,123a a -≥+,解得4a ≤-;A ≠∅时,412234a a a >-⎧⎪-≥-⎨⎪+≤⎩,解得:112a -≤≤;综上知,实数a 的取值范围是(]1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦;若选择②()R A B A = ð,则R A B ⊆ð的子集,][()R ,24,B =-∞-+∞ð,A =∅时,123a a -≥+,解得4a ≤-;A ≠∅时,4232a a >-⎧⎨+≤-⎩或414a a >-⎧⎨-≥⎩,解得:542a -<≤-或5a ≥综上所述,a 的取值范围是:[)5,5,2⎛⎤-∞-+∞ ⎝⎦ ;若选择③A B ⋂=∅,则:A =∅时,123a a -≥+,解得4a ≤-;A ≠∅时,4232a a >-⎧⎨+≤-⎩或者414a a >-⎧⎨-≥⎩解得:542a -<≤-或5a ≥综上知,实数a 的取值范围是:[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦ .22.已知集合{}310A x x =-≤≤,{}2132B x m x m =+≤≤-,且B ≠∅.(1)若命题p :“x B ∀∈,x A ∈”是真命题,求实数m 的取值范围;(2)若命题q :“x A ∃∈,x B ∈”是真命题,求实数m 的取值范围.【答案】(1)34m ≤≤(2)392m ≤≤【分析】(1)由命题p :“x B ∀∈,x A ∈”是真命题,可知B A ⊆,根据子集的含义解决问题;(2)命题q :“x A ∃∈,x B ∈”是真命题,所以A B ⋂≠∅,通过关系解决.(1)由命题p :“x B ∀∈,x A ∈”是真命题,可知B A ⊆,又B ≠∅,所以21322133210m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,解得34m ≤≤.(2)因为B ≠∅,所以2132m m +≤-,得3m ≥.因为命题q :“x A ∃∈,x B ∈”是真命题,所以A B ⋂≠∅,所以32110m -≤+≤,或33210m -≤-≤,得922m -≤≤.综上,392m ≤≤.。
高三数学集合与常用逻辑用语试题答案及解析
高三数学集合与常用逻辑用语试题答案及解析1.已知集合,且若则集合最多会有__ __个子集.【答案】8【解析】略2.下面四个条件中,使成立的充分而不必要的条件是()A.B.C.D.【答案】A【解析】而;,而-;,且;因此选A.【考点】充要关系3.已知集合{或,,对于,表示和中相对应的元素不同的个数,若给定,则所有的和为__________.【答案】【解析】由题意可得集合{或,中,共有个元素,记为,的共有个,的共有个,故答案为.【考点】推理与证明.4.设集合,则()A.B.C.D.【答案】C【解析】因为,所以,选C.【考点】集合运算,解分式不等式5.“”是“”的A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由题可知,解得,因此当时,可推出,当时,无法推出,即“”是“”的充分非必要条件;【考点】必要条件、充分条件以及冲要条件的判断6.已知向量a=(-1,2),b=(3,m),m∈R,则“m=-6”是“a∥(a+b)”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】A【解析】∵a=(-1,2),b=(3,m),a∥(a+b),∴,,即;当时,,,,∴a∥(a+b).【考点】充分必要条件、向量平行、向量运算.7.已知集合A={x|x>1},B={x|x2-2x<0},则A∪B=____________.【答案】{x|x>0}【解析】由题意得:,则【考点】集合运算B=()8.已知集合U={1,2,3,4,5,6},A={2,3,5},B={1,3,4,6},则集合A CUA.{3}B.{2,5}C.{1,4,6}D.{2,3,5}【答案】B【解析】因为,所以,故选B.【考点】集合的运算.9.已知集合,,若,则实数的取值范围是()A.B.C.D.【答案】D【解析】∵,,,∴,∴.【考点】集合的子集关系.10.已知命题则命题的否定形式是A.B.C.D.【答案】C【解析】由特称命题与全称命题之间的关系知,命题的否定形式是:,故应选.【考点】1、全称命题;2、特称命题;11.“”是“曲线过坐标原点”的()A.充分且不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当曲线过原点时,则有即,.所以“”是“曲线过坐标原点”的充分不必要条件.故A正确.【考点】1充分必要条件;2三角函数值.12.(本小题满分10分)已知集合.(1)若,求出实数的值;(2)若命题命题且是的充分不必要条件,求实数的取值范围.【答案】(1);(2).【解析】(1)分与求得集合,再利用求得实数的值;(2)由可得且,从而可将问题转化为集合间的关系来求解.试题解析:(1)当时;当时显然,故时,(2)当时,则解得当时,则综上是的充分不必要条件,实数的取值范围是或【考点】1、集合间的关系;2、充分条件与必要条件的判定.13.已知条件p:;条件q:,若p是q的充分不必要条件,则m 的取值范围是()A.[21,+∞)B.[9,+∞)C.[19,+∞)D.(0,+∞)【答案】B【解析】由已知,,.因为是的充分不必要条件,则,即,故选B.【考点】充分、必要条件的判断.【方法点睛】本题考点为空间直线与平面的位置关系,重点考查线面、面面平行问题和充要条件的有关知识.充分不必要条件、必要不充分条件、既不充分也不必要条件的判断的一般方法:①充分不必要条件:如果,且,则说p是q的充分不必要条件;②必要不充分条件:如果,且,则说p是q的必要不充分条件;③既不充分也不必要条件:如果,且,则说p是q的既不充分也不必要条件.14.命题“∈N,x02 +2xo≥3”的否定为()A.∈N,x02 +2x≤3B.∈N ,x2+2x≤3C.∈N,x02 +2x<3D.∈N ,x2 +2x<3【答案】D【解析】特称命题的否定是将改为,同时对结论进行否定,所以已知命题的否定是“∈N ,x2 +2x<3”,故选D.【考点】特称命题的否定.15.已知集合,,则________.【答案】【解析】因为,,,所以.【考点】1、集合的表示;2、集合的交集.16.复数在复平面内对应的点在第三象限是a≥0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】,因为其在复平面内对应的点在第三象限所以,即因为是充分不必要条件所以在复平面内对应的点在第三象限是充分不必要条件故答案选【考点】1.复数的运算;2.命题的充分必要性.17.设集合,,则()A.B.C.D.【答案】C【解析】由已知,,所以,故选C.【考点】集合的运算.18.下列选项叙述错误的是()A.命题“若x≠1,则”的逆否命题是“若,则x=1”B.若为真命题,则p,q均为真命题C.若命题,则D.“x>2”是“”的充分不必要条件【答案】B【解析】由命题与逆否命题的关系可知选项A正确;由为真命题可得p与q只到少有一个命题是真命题,所以选项B错误;故选B.【考点】1.四种命题之间的关系;2.逻辑联结词与命题;3.充分条件与必要条件.19.(2015秋•渭南校级月考)设集合A={0,1,2,4},B=,则A∩B=()A.{1,2,3,4}B.{2,3,4}C.{4}D.{x|1<x≤4}【答案】C【解析】求出B中不等式的解集确定出B,找出A与B的交集即可.解:由B中不等式变形得:(x﹣4)(x﹣2)≤0,且x≠2,解得:2<x≤4,即B=(2,4],∵A={0,1,2,4},∴A∩B={4},故选:C.【考点】交集及其运算.20.若命题“,使得”为假命题,则实数的取值范围是()A.B.C.D.【答案】A【解析】由题意知不等式对一切恒成立,所以,解得,故选A.【考点】特称命题的真假.21.若“”是“”的充分不必要条件,则实数的取值范围为()A.B.C.D.【答案】C【解析】若,则,符合题意,若,则,于是.所以.故选C.【考点】充分必要条件.22.“”是“方程表示双曲线”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当时,方程即为其中,即表示双曲线,但“方程表示双曲线”时可得“或”,故“”是“方程表示双曲线”的充分而不必要条件,选A【考点】充要条件23.若集合,,则()A.B.C.D.或【答案】B【解析】由题意得,或,所以,故选B.【考点】集合的运算.24.设集合,集合,则()A.B.C.D.【解析】解不等式得,所以集合,解不等式得,所以集合,有集合的运算可求得,故本题正确选项为B.【考点】函数的定义域,集合的运算.25.设甲:,乙:,那么甲是乙的条件.(填写:充分不必要、必要不充分、既不充分也不必要或者充要)【答案】必要不充分【解析】由乙:两式相加得,两式相乘得,所以乙成立能推出甲成立,在甲中取,则不符合乙的要求,所以甲成立不能推出乙成立,因此甲是乙的必要不充分条件.【考点】四种命题的相互关系.26.设集合,则S T=A.[2,3]B.(−,2][3,+)C.[3,+)D.(0,2][3,+)【答案】D【解析】由解得或,所以,所以,故选D.【考点】不等式的解法,集合的交集运算.【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.27.设集合,,则( )A.B.C.D.【答案】C【解析】,,;故选C.【易错点睛】本题考查利用描述法表示集合以及集合的运算,属于基础题;利用描述法表示集合时,要注意其代表元素的意义,如表示函数的定义域,表示函数的值域,表示函数的图象.【考点】1.集合的表示;2.集合的运算.28.设集合,,则()A.B.C.D.【答案】C【解析】,,,故选C.【考点】集合的运算29.设集合,,则等于()A.B.C.D.【解析】因,故,应选B.【考点】集合的交集运算.30.已知集合,集合,则()A.B.C.D.【答案】A【解析】集合,集合,故.【考点】1.集合交集;2.分式不等式.31.设全集,集合,则()A.B.C.D.【答案】A【解析】由补集定义得,选A.【考点】补集【方法点睛】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.32.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要【答案】B【解析】,所以“”是“”的必要不充分条件,选B.【考点】充要关系【名师】充分、必要条件的三种判断方法.1.定义法:直接判断“若p则q”、“若q则p”的真假.并注意和图示相结合,例如“p⇒q”为真,则p是q的充分条件.2.等价法:利用p⇒q与非q⇒非p,q⇒p与非p⇒非q,p⇔q与非q⇔非p的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.33.设集合,,则等于()A.{0,1}B.{-1,0,1,2}C.{0,1,2}D.{-1,0,1}【答案】D【解析】∵,,∴,故选D.【考点】1、集合的表示;2、集合的交集.34.设集合,则()A.B.C.D.【答案】A【解析】,所以,选A.【考点】集合运算【方法点睛】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.35.命题“,,使得”的否定形式是()A.,,使得B.,,使得C.,,使得D.,,使得【答案】D【解析】命题的否定,是条件不变,结论否定,同时存在题词与全称题词要互换,因此命题“,,使得”的否定是“,,使得”.故选D.【考点】命题的否定.36.若命题是假命题, 则实数的取值范围是.【答案】【解析】为真命题,.【考点】特称命题与全称命题.37.命题“”的否定为_____________.【答案】【解析】命题的否定是只把结论否定,同时存在量词与全称量词互换,因此命题“”的否定为“”.【考点】命题的否定.38.设集合,,则()A.B.C.D.【答案】D【解析】,选D【考点】集合的运算39.已知命题函数的图象必过定点;命题如果函数的图象关于原点对称,那么函数的图象关于点对称,则命题为__________(填“真”或“假”).【答案】真【解析】命题为真;的图象关于原点对称,则函数的图象关于点对称成立,命题为真,因此命题为真.【考点】1、命题的真假;2、函数的定点;3、函数图象的对称.【方法点晴】本题主要考命题的真假、函数的定点和函数图象的对称,涉及方程思想、数形结合思想和转化化归思想,考查逻辑推理能力和化归能力,综合程度较高,属于较难题型.通过方程思想可判断命题为真,利用形结合思想和转化化归思想可得命题为真,从而推出命题为真.平时应注重数学思想的培养,从而促进核心素养的提升.40.若全集,集合,,则()A.B.或C.D.或【答案】B【解析】由题意,得,,所以,所以,故选B.【考点】1、不等式的解法;2、集合的交集与补集运算.41.命题成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解析】直线与直线垂直,则,,因此命题是命题的既不充分也不必要的条件.故选D.【考点】充分必要条件.42.设集合,集合,则等于()A.B.C.D.【答案】C【解析】故选C.【考点】1、集合的交、补运算;2、一元二次不等式.43.已知,集合,集合,若,则()A.1B.2C.4D.8【答案】A【解析】因为,则且,所以,,即,,所以,故选A.【考点】1、集合的元素;2、集合的交集运算.44.已知集合,,则等于()A.B.{0}C.[0,1]D.{0,1}【答案】D【解析】 ,.【考点】集合的交集运算.45.若集合,则()A.B.C.D.【答案】A【解析】,,则,故选A.【考点】集合的运算46.已知函数的定义域为集合,集合,则()A.B.C.D.【答案】D【解析】,则,故选D.【考点】集合的运算.47.“” 是“函数为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件【答案】B【解析】:当时,为非奇非偶函数,当时,为奇函数,故为必要不充分条件.【考点】函数的奇偶性,充要条件.48.“”的否定是()A.B.C.D.【答案】D【解析】因为全称命题的否定是存在性命题,所以“”的否定是“”,故选D.【考点】命题的否定.49.命题“,,使得”的否定是()A.,,使得B.,,使得C.,,使得D.,,使得【答案】C【解析】命题的否定,是条件不变,结论否定,同时存量词与全称量词要互换,因此命题“,,使得”的否定是“,,使得”.故选C.50.已知集合,则A.B.C.D.【答案】D【解析】因为,所以.故选D.51.已知集合,,则等于()A.B.C.D.【答案】C【解析】点晴:集合的三要素是:确定性、互异性和无序性.一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.52.已知集合,,则()A.B.C.D.【答案】A【解析】由已知,,则,故选A.53.已知,,则()A.B.C.D.【答案】D【解析】因为,所以,应选答案D。
集合与常用逻辑用语--2023高考真题分类汇编完整版
集合与常用逻辑用语--高考真题汇编第一章第一节集合1.(2023全国甲卷理科1)设集合{}31,A x x k k ==+∈Z ,{}32,B x x k k ==+∈Z ,U 为整数集,则()U A B = ð()A.{}3,x x k k =∈ZB.{}31,x x k k =-∈ZC.{}32,x x k k =-∈Z D.∅【分析】根据整数集的分类,以及补集的运算即可解出.【解析】因为整数集{}{}{}3,3+1,3+2,x x k k x x k k x x k k ==∈=∈=∈Z Z Z Z ,=U Z ,所以(){}3,U A B x x k k ==∈Z ð.故选A .2.(2023全国甲卷文科1)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}2,5N =,则U N M = ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,5【分析】利用集合的交并补运算即可得解.【解析】因为全集{1,2,3,4,5}U =,集合{1,4}M =,所以{}2,3,5U M =ð,又{2,5}N =,所以{2,3,5}U N M = ð.故选A.3.(2023全国乙卷理科2)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x =()A.()U M N ð B.U N Mð C.()U M N ð D.U M Nð【分析】由题意逐一考查所给的选项运算结果是否为{}2x x 即可.【解析】由题意可得{}2M N x x =< ,则(){}2U M N x x = ð,选项A 正确;{}1U M x x =ð,则{}1U N M x x =>- ð,选项B 错误;{}11M N x x =-<< ,则(){}11U M N x x x =- 或ð,选项C 错误;{}12U N x x x =-或ð,则{}12U M N x x x =< 或ð,选项D 错误;故选A.4.(2023全国乙卷文科2)设全集{}0,1,2,4,6,8U =,集合{}0,4,6M =,{}0,1,6N =,则U M N = ð()A.{}0,2,4,6,8 B.{}0,1,4,6,8 C.{}1,2,4,6,8 D.U【分析】由题意可得U N ð的值,然后计算U M N ð即可.【解析】由题意可得{}2,4,8U N =ð,则{}0,2,4,6,8U M N = ð.故选A.5.(2023新高考I 卷1)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N =()A.{}2,1,0,1--B.{}0,1,2 C.{}2- D.{}2【解析】{}(][)260,23,N x x x =--≥=-∞-+∞ ,所以{}2M N =- ,故选C.6.(2023新高考II 卷2)2.设集合{}{}0,,1,2,22A a B a a =-=--,若A B ⊆,则a =()A.2 B.1 C.23D.1-【解析】因为A B ⊆,所以必有20a -=或220a -=,解得2a =或1a =.当2a =时,{}{}0,2,1,0,2A B =-=,不满足A B ⊆;当1a =时,{}{}0,1,1,1,0A B =-=-,符合题意.所以1a =.故选B.7.(2023北京卷1)已知集合{}20M x x =+,{}10N x x =-<,则M N = ()A.{}21x x -<B.{}21x x -<C.{}2x x - D.{}1x x <【分析】先化简集合,M N ,然后根据交集的定义计算.【解析】由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣,根据交集的运算可知,{|21}M N x x =-≤< .故选A.8.(2023天津卷1)已知集合{}{}{}1,2,3,4,5,1,3,1,2,4U A B ===,则U B A = ð()A .{}1,3,5B .{}1,3C .{}1,2,4D .{}1,2,4,5【分析】对集合B 求补集,应用集合的并运算求结果;【解析】由{3,5}U B =ð,而{1,3}A =,所以{1,3,5}U B A = ð.故选A.第二节充分条件与必要条件、全称量词与存在量词1.(2023全国甲卷理科7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解.【解析】当2απ=,0β=时,有22sin sin 1αβ+=,但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,()2222sin sin cos sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选B.2.(2023新高考I 卷7)已记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:n S n ⎧⎫⎨⎬⎩⎭为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解析】{}n a 为等差数列,设首项为1a 公差为d ,则()112n n n S na d -=+,111222n S n d d a d n a n -=+=+-,所以n S n ⎧⎫⎨⎬⎩⎭为等差数列,所以甲是乙的充分条件.n S n ⎧⎫⎨⎬⎩⎭为等差数列,即()()()1111111n n n n n n nS n S S S na S n n n n n n +++-+--==+++为常数,设为t ,即()11n nna S t n n +-=+,故()11n n S na tn n +=-+,()()()1112n n S n a t n n n -=---≥,两式相减得()1112n n n n n a S S na n a tn -+=-=---,12n n a a t +-=为常数,对1n =也成立,所以{}n a 为等差数列,所以甲是乙的必要条件.所以,甲是乙的充要条件,故选C.3.(2023北京卷8)若0xy ≠,则“0x y +=”是“2x yy x+=-”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】解法一:证明充分性可由0x y +=得到x y =-,代入x yy x+化简即可,证明必要性可由2x y y x +=-去分母,再用完全平方公式即可;解法二:由x y y x+通分后用配凑法得到完全平方公式,证明充分性可把0x y +=代入即可;证明必要性把2x yy x+=-代入,解方程即可.【解析】解法一:充分性:因为0xy ≠,且0x y +=,所以x y =-,所以112x y y y y x y y-+=+=--=--,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.解法二:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xy y x xy xy xy xy+-+++--+===-,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+-++++-+====-=-,所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.4.(2023天津卷2)“22a b =”是“222a b ab +=”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【解析】由22a b =,则a b =±,当0a b =-≠时222a b ab +=不成立,充分性不成立;由222a b ab +=,则2()0a b -=,即a b =,显然22a b =成立,必要性成立;所以22a b =是222a b ab +=的必要不充分条件.故选B.。
高中数学第一章集合与常用逻辑用语总结(重点)超详细(带答案)
高中数学第一章集合与常用逻辑用语总结(重点)超详细单选题1、已知集合M={−1,0,1,2,3,4},N={1,3,5},P=M∩N,则P的真子集共有()A.2个B.3个C.4个D.8个答案:B分析:根据交集运算得集合P,再根据集合P中的元素个数,确定其真子集个数即可.解:∵M={−1,0,1,2,3,4},N={1,3,5}∴P={1,3},P的真子集是{1},{3},∅共3个.故选:B.2、已知集合A={1,2,3},B={(x,y)|x∈A,y∈A,|x−y∣∈A}中所含元素的个数为()A.2B.4C.6D.8答案:C分析:根据题意利用列举法写出集合B,即可得出答案.解:因为A={1,2,3},所以B={(2,1),(3,1),(3,2),(1,2),(1,3),(2,3)},B中含6个元素.故选:C.3、若集合A={x∣|x|≤1,x∈Z},则A的子集个数为()A.3B.4C.7D.8答案:D分析:先求得集合A,然后根据子集的个数求解即可.解:A={x∥x∣≤1,x∈Z}={−1,0,1},则A的子集个数为23=8个,故选:D.4、已知集合M={x|1−a<x<2a},N=(1,4),且M⊆N,则实数a的取值范围是()A.(−∞,2]B.(−∞,0]C.(−∞,13]D.[13,2]答案:C分析:按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解.因M ⊆N ,而ϕ⊆N ,所以M =ϕ时,即2a ≤1−a ,则a ≤13,此时 M ≠ϕ时,M ⊆N ,则{1−a <2a 1−a ≥12a ≤4⇒{a >13a ≤0a ≤2,无解,综上得a ≤13,即实数a 的取值范围是(−∞,13]. 故选:C5、已知集合P ={x|1<x <4},Q ={x|2<x <3},则P ∩Q =( )A .{x|1<x ≤2}B .{x|2<x <3}C .{x|3≤x <4}D .{x|1<x <4}答案:B分析:根据集合交集定义求解.P ∩Q =(1,4)∩(2,3)=(2,3)故选:B小提示:本题考查交集概念,考查基本分析求解能力,属基础题.6、已知集合S ={x ∈N|x ≤√5},T ={x ∈R|x 2=a 2},且S ∩T ={1},则S ∪T =( )A .{1,2}B .{0,1,2}C .{-1,0,1,2}D .{-1,0,1,2,3}答案:C分析:先 根据题意求出集合T ,然后根据并集的概念即可求出结果.S ={x ∈N|x ≤√5}={0,1,2},而S ∩T ={1},所以1∈T ,则a 2=1,所以T ={x ∈R|x 2=a 2}={−1,1},则S ∪T ={−1,0,1,2}故选:C.7、设集合A ={x |−2<x <4},B ={2,3,4,5},则A ∩B =( )A .{2}B .{2,3}C .{3,4}D .{2,3,4}答案:B分析:利用交集的定义可求A∩B.由题设有A∩B={2,3},故选:B .8、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.多选题9、若集合A={x|x=m2+n2,m,n∈Z},则()A.1∈A B.2∈A C.3∈A D.4∈A答案:ABD解析:分别令m2+n2等于1,2,3,4,判断m,n是否为整数即可求解.对于选项A:m2+n2=1,存在m=0,n=1或m=1,n=0使得其成立,故选项A正确;对于选项B:m2+n2=2,存在m=1,n=1,使得其成立,故选项B正确;对于选项C:由m2+n2=3,可得m2≤3,n2≤3,若m2=0则n2=3可得n=±√3,n∉z,不成立;若m2=1则n2=2可得n=±√2,n∉z,不成立;若m2=3,可得n2=0,此时m=±√3,m∉z,不成立;同理交换m与n,也不成立,所以不存在m,n为整数使得m2+n2=3成立,故选项C不正确;对于选项D:m2+n2=4,此时存在m=0,n=2或m=2,n=0使得其成立,故选项D正确,故选:ABD.10、已知全集U =R ,集合A ={x|−2≤x ≤7},B ={x|m +1≤x ≤2m −1},则使A ⊆∁U B 成立的实数m 的取值范围可以是( )A .{m|6<m ≤10}B .{m|−2<m <2}C .{m|−2<m <−12}D .{m|5<m ≤8}答案:ABC分析:讨论B =∅和B ≠∅时,计算∁U B ,根据A ⊆∁U B 列不等式,解不等式求得m 的取值范围,再结合选项即可得正确选项.当B =∅时,m +1>2m −1,即m <2,此时∁U B =R ,符合题意,当B ≠∅时,m +1≤2m −1,即m ≥2,由B ={x|m +1≤x ≤2m −1}可得∁U B ={x|x <m +1或x >2m −1},因为A ⊆∁U B ,所以m +1>7或2m −1<−2,可得m >6或m <−12, 因为m ≥2,所以m >6,所以实数m 的取值范围为m <2或m >6,所以选项ABC 正确,选项D 不正确;故选:ABC.11、“不等式x 2−x +m >0在R 上恒成立”的一个充分不必要条件是( )A .m >14B .0<m <1C .m >2D .m >1 答案:CD解析:先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.因为“不等式x 2−x +m >0在R 上恒成立”,所以等价于二次方程的x 2−x +m =0判别式Δ=1−4m <0,即m >14. 所以A 选项是充要条件,A 不正确;B 选项中,m >14不可推导出0<m <1,B 不正确;C 选项中,m >2可推导m >14,且m >14不可推导m >2,故m >2是m >14的充分不必要条件,故C 正确;D 选项中,m >1可推导m >14,且m >14不可推导m >1,故m >1是m >14的充分不必要条件,故D 正确. 故选:CD.小提示:名师点评本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.12、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( )A .函数F (x )是偶函数B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图.由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确;函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确.故选:ABD[0,1]13、使a∈R,|a|<4成立的充分不必要条件可以是()A.a<4B.|a|<3C.−4<a<4D.0<a<3答案:BD分析:根据集合的包含关系,结合各选项一一判断即可.由|a|<4可得a的集合是(−4,4),A.由(−4,4)⊂≠(−∞,4),所以a<4是|a|<4成立的一个必要不充分条件;B.由(−3,3)⊂≠(−4,4),所以|a|<3是|a|<4成立的一个充分不必要条件;C.由(−4,4)=(−4,4),所以−4<a<4是|a|<4成立的一个充要条件;D.由(0,3)(−4,4),所以0<a<3是|a|<4成立的一个充分不必要条件;故选:BD.填空题14、已知集合M={m|m=x|x|+y|y|+z|z|+xyz|xyz|,x、y、z为非零实数},则M的子集个数______答案:8分析:按x、y、z的正负分情况计算m值,求出集合M的元素个数即可得解.因为集合M={m|m=x|x|+y|y|+z|z|+xyz|xyz|,x、y、z为非零实数},当x、y、z都是正数时,m=4,当x、y、z都是负数时,m=-4,当x、y、z中有一个是正数,另两个是负数时,m=0,当x、y、z中有两个是正数,另一个是负数时,m=0,于是得集合M中的元素有3个,所以M的子集个数是8.所以答案是:815、设P,Q为两个非空实数集合,P中含有0,2两个元素,Q中含有1,6两个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是_________.答案:4分析:求得P+Q的元素,由此确定正确答案.依题意,0+1=1,0+6=6,2+1=3,2+6=8,所以P+Q共有4个元素.所以答案是:416、已知全集U=Z,定义A⊙B={x|a⋅b,a∈A,b∈B},若A={1,2,3},B={−1,0,1},则∁U(A⊙B)______.答案:{x∈Z||x|≥4}分析:利用集合运算的新定义和补集运算求解.全集U=Z,定义A⊙B={x|a⋅b,a∈A,b∈B},A={1,2,3},B={−1,0,1}所以A⊙B={−3,−2,−1,0,1,2,3},所以∁U(A⊙B)={x||x|≥4,x∈Z}.所以答案是:{x||x|≥4,x∈Z}解答题17、已知集合A={x|(x−a)(x+a+1)≤0},B={x|x≤3或x≥6}.(1)当a=4时,求A∪B;(2)当a>0时,若“x∈A”是“x∈B”的充分条件,求a的取值范围.答案:(1)A∪B={x|x≤4或x≥6};(2)(0,3].解析:(1)当a=4时,解出集合A,计算A∪B;(2)由集合法判断充要条件,转化为A⊆B,进行计算.解:(1)当a=4时,由不等式(x−4)(x+5)≤0,得−5≤x≤4,故A={x|−5≤x≤4},又B={x|x≤3或x≥6},所以A∪B={x|x≤4或x≥6}.(2)若“x∈A”是“x∈B”的充分条件,等价于A⊆B,因为a>0,由不等式(x−a)(x+a+1)≤0,得A={x|−a−1≤x≤a},又B={x|x≤3或x≥6},要使A⊆B,则a≤3或−a−1≥6,综合可得a的取值范围为(0,3].小提示:名师点评有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)若p是q的充分不必要条件,则p对应集合是q对应集合的真子集;(3)若p是q的充分必要条件,则p对应集合与q对应集合相等;(4)若p是q的既不充分又不必要条件,q对应集合与p对应集合互不包含.18、已知M={x|2≤x≤5},N={x|a+1≤x≤2a﹣1}.(1)若M⊆N,求实数a的取值范围;(2)若M⊇N,求实数a的取值范围.答案:(1)a∈∅(2)a≤3分析:(1)利用M⊆N,建立不等关系即可求解;(2)利用M⊇N,建立不等关系即可求解,注意当N=∅时,也成立(1)∵M⊆N,∴{a+1≤22a−1≥5,∴a∈∅;(2)①若N=∅,即a+1>2a﹣1,解得a<2时,满足M⊇N.②若N≠∅,即a≥2时,要使M⊇N成立,则{a+1≥22a−1≤5,解得1≤a≤3,此时2≤a≤3.综上a≤3.。
高一数学《集合与常用逻辑用语》检测卷与答案
高一数学《集合与常用逻辑用语》检测卷一.选择题(共8小题,满分40分,每小题5分)1.(5分)下列各对象可以组成集合的是()A.与1非常接近的全体实数B.中国著名的数学家C.高一年级视力比较好的同学D.某学校2022~2023学年度第一学期全体高一学生2.(5分)命题“∀∈0,1,3<2”的否定是()A.∀∈0,1,3>2B.∀∉0,1,3≥2C.∃0∈0,1,03≥02D.∃0∉0,1,03≥023.(5分)“≥4”是“≥4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)下列结论中正确的个数是()①命题“有些平行四边形是矩形”是存在量词命题;②命题“∀∈R,+1≥1”是全称量词命题;③命题“∃∈R,2−+1=0”的否定为“∀∈R,2−+1=0”;④命题“∀∈Z,∈N”是真命题;A.0B.1C.2D.35.(5分)已知集合=1<<,=2<<6,若⊆,则的取值范围是()A.≥6B.>6C.≤6D.<66.(5分)设全集=−3,−2,−1,0,1,2,3,集合=−2,−1,0,1,=−1,1,3,则−3,2=()A.∁U∩B.∁U∪C.∁U∩D.∁U∪7.(5分)已知集合=1,2,=3,4,定义集合:∗=s∈s∈,则集合∗的非空子集的个数是()个.A.16B.15C.14D.138.(5分)已知集合=1,2,3,=>,∩∁=,则实数的取值范围是()A.≥1B.≤1C.≥3D.≤3二.多选题(共4小题,满分20分,每小题5分)9.(5分)下列命题中是全称量词命题并且是真命题的是()A.∀∈,2+2+1≥0B.∃∈,2为偶数C.所有菱形的四条边都相等D.π是无理数10.(5分)下列说法正确的是()A.由1,2,3组成的集合可表示为1,2,3或3,2,1B.∅与0是同一个集合C.集合U=2−1与集合U=2−1是同一个集合D.集合U2+5+6=0与集合−2,−3是同一个集合11.(5分)若“<或>+2”是“−4<<1”的必要不充分条件,则实数的值可以是()A.−8B.−5C.−3D.112.(5分)已知全集=,集合=1,2,3,=+s∈,则下列结论正确的是()A.集合中有6个元素B.∪=1,2,3,4,5,6C.∁∩=4,5,6D.∩的真子集个数是3三.填空题(共4小题,满分20分,每小题5分)13.(5分)已知G>3,G>5,则是的.(选“充分不必要条件”“必要不充分条件”“充要条件”“即不充分也不必要条件”之一填空)14.(5分)若1∈0,s2−2+1,则=.15.(5分)设命题G∀∈2,2,+2≥,若¬是假命题,则实数的取值范围是. 16.(5分)已知集合=2−5+6=0,=−1<<5,∈,则满足⊆B的集合的个数为.四.解答题(共6小题,满分70分)17.(10分)用适当的方法表示下列集合:(1)大于1且不大于17的质数组成的集合;(2)所有奇数组成的集合;(3)平面直角坐标系中,抛物线=2上的点组成的集合;(4)=s+=5,∈N+,∈N+;18.(12分)已知命题:“∀−1≤≤1,不等式42−−<0成立”是真命题.(Ⅰ)求实数的取值范围;(Ⅱ)若G−4<−<4是的充分不必要条件,求实数的取值范围.19.(12分)已知集合=B2−3+2=0,∈s∈(1)若A中只有一个元素,求a的值(2)若A中至多有一个元素,求a的取值范围(3)若⊆0,+∞,求a的取值范围20.(12分)已知命题G∀∈,2+2−3>0,命题G∃∈,2−2B++2<0.(1)若命题p为真命题,求实数m的取值范围;(2)若命题p,q至少有一个为真命题,求实数m的取值范围.21.已知集合=4≤<8,=2≤≤10,=<2.(1)求∪,∁R∩;(2)若∩≠∅,求的取值范围.22.(12分)在①∪=;②“∈(是非空集合)”是“∈”的充分不必要条件;③∩=∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合=−1≤≤2+1,∈R,=−1≤≤3.(1)当=2时,求∪和∩∁;(2)若________,求实数的取值范围.高一数学《集合与常用逻辑用语》检测卷答案一.选择题(共8小题,满分40分,每小题5分)1.(5分)下列各对象可以组成集合的是()A.与1非常接近的全体实数B.中国著名的数学家C.高一年级视力比较好的同学D.某学校2022~2023学年度第一学期全体高一学生【解题思路】根据集合元素的确定性可得正确的选项.【解答过程】对于A,非常接近无法确定实数,根据元素的确定性可知A错误.对于B,著名无法确定数学家,根据元素的确定性可知B错误.对于C,视力比较好无法确定学生,根据元素的确定性可知C错误.对于D,根据元素的确定性可知D正确,故选:D.2.(5分)命题“∀∈0,1,3<2”的否定是()A.∀∈0,1,3>2B.∀∉0,1,3≥2C.∃0∈0,1,03≥02D.∃0∉0,1,03≥02【解题思路】由命题否定的定义即可得解.【解答过程】命题“∀∈0,1,3<2”的否定是∃0∈0,1,03≥02.故选:C.3.(5分)“≥4”是“≥4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题思路】利用集合的包含关系可得正确的选项.【解答过程】由≥4,解得≤−4或≥4,因为U≥4为{U≤−4或≥4}的真子集,则“≥4”是“≥4”的充分不必要条件.故选:A.4.(5分)下列结论中正确的个数是()①命题“有些平行四边形是矩形”是存在量词命题;②命题“∀∈R,+1≥1”是全称量词命题;③命题“∃∈R,2−+1=0”的否定为“∀∈R,2−+1=0”;④命题“∀∈Z,∈N”是真命题;A.0B.1C.2D.3【解题思路】根据全称量词命题、存在量词命题的定义,利用存在量词命题的否定及全称量词命题真假的判断依据即可求解.【解答过程】对①,“有些”为存在量词,所以命题“有些平行四边形是矩形”是存在量词命题;故①正确;对②,“∀”为任意,即为全称量词,所以命题“∀∈R,+1≥1”是全称量词命题,故②正确;对③,命题“∃∈R,2−+1=0”的否定为“∀∈R,2−+1≠0”;故③错误;对④,∵∀∈Z,≥0,∴∈N,故该命题为真命题,故④正确,所以正确的有3个.故选:D.5.(5分)已知集合=1<<,=2<<6,若⊆,则的取值范围是()A.≥6B.>6C.≤6D.<6【解题思路】根据给定条件,利用集合的包含关系列式求解即得.【解答过程】集合=1<<,=2<<6,由⊆,得≥6,所以的取值范围是≥6.故选:A.6.(5分)设全集=−3,−2,−1,0,1,2,3,集合=−2,−1,0,1,=−1,1,3,则−3,2=()A.∁U∩B.∁U∪C.∁U∩D.∁U∪【解题思路】根据集合的交并补运算逐项判断即可.【解答过程】对A,由∁U∩=−3,2,3∩−1,1,3=3,选项A错误;对B,,∁U∪=−3,2,3∪−1,1,3=−3,−1,1,2,3,选项B错误;对C,∁U∩=∁U−1,1=−3,−2,0,2,3,选项C错误;对D,因为∪=−2,−1,0,1,3,所以∁U∪=−3,2,所以选项D正确.故选:D.7.(5分)已知集合=1,2,=3,4,定义集合:∗=s∈s∈,则集合∗的非空子集的个数是()个.A.16B.15C.14D.13【解题思路】先确定集合∗有四个元素,则可得其非空子集的个数.【解答过程】根据题意,∗=s∈s∈=1,3,1,4,2,3,2,4,则集合∗的非空子集的个数是24−1=15.故选:B.8.(5分)已知集合=1,2,3,=>,∩∁=,则实数的取值范围是()A.≥1B.≤1C.≥3D.≤3【解题思路】先由∩∁=得出⊆∁R,再根据自己概念即可得解.【解答过程】由已知∩∁R=,所以⊆∁R,又∁R=≤,所以≥3,故选:C.二.多选题(共4小题,满分20分,每小题5分)9.(5分)下列命题中是全称量词命题并且是真命题的是()A.∀∈,2+2+1≥0B.∃∈,2为偶数C.所有菱形的四条边都相等D.π是无理数【解题思路】判断命题是否为全称量词命题,关键在于有无“∀,所有的,全部的,任意的”这些量词连接,判断命题真假需要具体分析,说明全称量词命题为真需要推理,为假时只需举个反例推翻;说明存在量词命题为真只需举个例子,为假时需要推理.【解答过程】对于A项,因∀∈,2+2+1=(+1)2≥0恒成立,故该命题是全称量词命题,且是真命题,故A正确;对于B项,该命题是真命题,但不是全称量词命题,故B不正确;对于C项,该命题是全称量词命题,且是真命题,故C正确;对于D项,该命题是真命题,但不是全称量词命题,故D不正确.故选:AC.10.(5分)下列说法正确的是()A.由1,2,3组成的集合可表示为1,2,3或3,2,1B.∅与0是同一个集合C.集合U=2−1与集合U=2−1是同一个集合D.集合U2+5+6=0与集合−2,−3是同一个集合【解题思路】根据集合的定义和元素的性质可判断AB的正误,对于CD,可计算出各自集合后判断其正误.【解答过程】对于A,根据集合元素的无序性可得1,2,3、3,2,1表示同一集合,元素有1,2,3,故A正确.对于B,0不是空集,故B错误.对于C,U=2−1=R,而U=2−1=U≥−1,故两个集合不是同一个集合,故C错误.对于D,U2+5+6=0=−2,−3,故D正确.故选:AD.11.(5分)若“<或>+2”是“−4<<1”的必要不充分条件,则实数的值可以是()A.−8B.−5C.−3D.1【解题思路】根据必要不充分条件列不等式,由此求得正确答案.【解答过程】若“<或>+2”是“−4<<1”的必要不充分条件,则≥1或+2≤−4,解得≤−6或≥1,所以AD选项符合,BC选项不符合.故选:AD.12.(5分)已知全集=,集合=1,2,3,=+s∈,则下列结论正确的是()A.集合中有6个元素B.∪=1,2,3,4,5,6C.∁∩=4,5,6D.∩的真子集个数是3【解题思路】计算出集合后,结合集合性质逐个选项计算即可得.【解答过程】由=+s∈,且=1,2,3,故=2,3,4,5,6,故集合中有5个元素,A错误;∪=1,2,3,4,5,6,B正确;∁∩=4,5,6,C正确;∩=2,3,真子集个数是22−1=3个,D正确.故选:BCD.三.填空题(共4小题,满分20分,每小题5分)13.(5分)已知G>3,G>5,则是的必要不充分条件.(选“充分不必要条件”“必要不充分条件”“充要条件”“即不充分也不必要条件”之一填空)【解题思路】由必要不充分条件的定义即可得解.【解答过程】由题意G>3,G>5,所以是的必要不充分条件.故答案为:必要不充分条件.14.(5分)若1∈0,s2−2+1,则=2.【解题思路】分类讨论结合互异性即可得出答案.【解答过程】因为1∈0,s2−2+1,所以=1或2−2+1=1,若=1,2−2+1=0,不满足互异性;若2−2+1=1⇒=0或2,又≠0,所以=2,故答案为:2.15.(5分)设命题G∀∈2,2,+2≥,若¬是假命题,则实数−∞【解题思路】根据命题的否定与原命题的关系得出命题是真命题,即可根据命题得出≤+,∈2,2,再根据基本不等式或对勾函数的性质得出+在∈2,2上的最小值,即可得出答案.【解答过程】∵¬是假命题,∴是真命题,∵G∀∈2,2,+2≥,∴≤+,∈2,2,当>0时,+2≥⋅=22,当且仅当=2时,即=2时,等号成立,∵∈2,2,可取到=2,∴min=22,∴≤22,故答案为:−∞,22.16.(5分)已知集合=2−5+6=0,=−1<<5,∈,则满足⊆B的集合的个数为7.【解题思路】化简集合s,结合求集合的子集的结论求结果.【解答过程】集合=b2−5+6=0=2,3,=−1<<5,∈=0,1,2,3,4,∴满足⊆B的集合中必有元素2,3,所以求满足⊆B的集合的个数即求0,1,4集合的真子集个数,所以满足⊆B的集合的个数为23−1=7个.故答案为:7.四.解答题(共6小题,满分70分)17.(10分)用适当的方法表示下列集合:(1)大于1且不大于17的质数组成的集合;(2)所有奇数组成的集合;(3)平面直角坐标系中,抛物线=2上的点组成的集合;(4)=s+=5,∈N+,∈N+;【解题思路】(1)结合质数的概念以及列举法即可求解.(2)由奇数的概念以及描述法即可求解.(3)由描述法即可求解.(4)用列举法即可求解.【解答过程】(1)大于1且不大于17的质数组成的集合=2,3,5,7,11,13,17.(2)所有奇数组成的集合==2+1,∈Z.(3)平面直角坐标系中,抛物线=2上的点组成的集合=s=2.(4)=s+=5,∈N+,∈N+=1,4,2,3,3,2,4,1. 18.(12分)已知命题:“∀−1≤≤1,不等式42−−<0成立”是真命题.(Ⅰ)求实数的取值范围;(Ⅱ)若G−4<−<4是的充分不必要条件,求实数的取值范围.【解题思路】(1)进行参变分离,进而通过求函数的最值解得答案;(2)根据充分不必要条件的定义即可得到答案.【解答过程】(1)由题意>42−−1≤≤1恒成立,设=42−=4−116,因为−1≤≤1,所以op B=−1=5,所以>5.(2)因为G−4<<+4是的充分不必要条件,所以−4≥5⇒≥9.19.(12分)已知集合=B2−3+2=0,∈s∈11(1)若A 中只有一个元素,求a 的值(2)若A 中至多有一个元素,求a 的取值范围(3)若⊆0,+∞,求a 的取值范围【解题思路】(1)分=0和≠0两种情况,结合二次方程的判别式分析求解;(2)分A 中有一个元素或=∅两种情况,结合二次方程的判别式分析求解;(3)分类讨论A 是否为空集以及是否为0,结合二次方程的Δ判别式和韦达定理分析求解.【解答过程】(1)若=0时,=U −3+2=当≠0时,可知方程B 2−3+2=0为一元二次方程,则Δ=9−8=0,解得=98;综上所述:=0或=98.(2)若A 中至多有一个元素,即A 中有一个元素或=∅,若A 中有一个,由(1)可知:=0或=98;若=∅,则≠0Δ=9−8<0,解得>98;综上所述:a 的取值范围为0∪+∞.(3)因为⊆0,+∞,则有:若=∅,由(2)可知:>98;若≠∅,则有:若=0时,由(1)可知=⊆0,+∞,符合题意;当≠0时,则Δ=9−8≥03>02>0,解得0<≤98;综上所述:a 的取值范围为0,+∞.20.(12分)已知命题G ∀∈,2+2−3>0,命题G ∃∈,2−2B ++2<0.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题p ,q 至少有一个为真命题,求实数m 的取值范围.【解题思路】(1)根据命题是真命题,将不等式转化为2>3−2对∈R 恒成立,即可求的取值范围;(2)求命题q 为真命题时的取值范围,再求两个集合的并集.12【解答过程】(1)若命题p 为真命题,则2>3−2对∈R 恒成立,因此3−2<0,解得>32.因此,实数m 的取值范围是>(2)若命题q 为真命题,则Δ=(−2p 2−4(+2)>0,即2−−2>0,解得<−1或m >2.因此,实数m 的取值范围是{<−1或>2};若命题p ,q 至少有一个为真命题,可得>∪{<−1或>2}={<−1或>32}.所以实数的取值范围{<−1或>32}.21.已知集合=4≤<8,=2≤≤10,=<2.(1)求∪,∁R ∩;(2)若∩≠∅,求的取值范围.【解题思路】(1)根据并集、补集、交集的知识求得正确答案.(2)根据∩≠∅列不等式,从而求得的取值范围.【解答过程】(1)依题意,集合=4≤<8,=2≤≤10,所以∪=2≤≤10,∁R =U <4或≥8,所以∁R ∩=U2≤<4或8≤≤10.(2)由于=<2,若∩≠∅,则2>4,∴>2.22.(12分)在①∪=;②“∈(是非空集合)”是“∈”的充分不必要条件;③∩=∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合=−1≤≤2+1,∈R ,=−1≤≤3.(1)当=2时,求∪和∩∁;(2)若________,求实数的取值范围.【解题思路】(1)先求出集合∪,再求出∁,进而可得集合∩∁;(2)分情况处理,若选择①,考虑⊆的情形即可,要分=∅和≠∅两种情况分析;若选择②,考虑⊆≠∅且≠的情形即可;若选择③,考虑∩=∅的情形即可,要分=∅和≠∅两种情况分析.【解答过程】(1)当=2时,集合=1≤≤5,=−1≤≤3,所以∪=−1≤≤5,又因为∁=<−1或>3,所以∩∁=3<≤5.13(2)若选择①,∪=,则⊆,当=∅时,−1>2+1,解得:<−2,当≠∅时,又⊆,=−1≤≤3,所以−1≤2+1−1≥−12+1≤3,得0≤≤1,所以实数a 的取值范围是−∞,−2∪0,1.若选择②,“∈“是“∈”的充分不必要条件,则⊆≠∅且≠,因为=−1≤≤3,−1≤2+1−1≥−12+1<3或−1≤2+1−1>−12+1≤3,解得:0≤≤1,由于−1=−12+1=3无解,=不成立,所以实数a 的取值范围是0,1.(不检验≠扣1分)若选择③,∩=∅,当=∅时,−1>2+1,解得:<−2,当=∅时,又∩=∅,则−1≤2+1−1>3或2+1<−1,解得:−2≤<−1或>4,所以实数a 的取值范围是−∞,−1∪4,+∞.。
集合与常用逻辑用语(解析版)-五年(2018-2022)高考数学真题分项汇编(全国通用)
专题01集合与常用逻辑用语1.【2022年全国甲卷】设集合={−2,−1,0,1,2},=b0≤<∩=()A.0,1,2B.{−2,−1,0}C.{0,1}D.{1,2}【答案】A【解析】【分析】根据集合的交集运算即可解出.【详解】因为=−2,−1,0,1,2,=b0≤<∩=0,1,2.故选:A.2.【2022年全国甲卷】设全集={−2,−1,0,1,2,3},集合={−1,2},=b2−4+3= 0,则∁(∪p=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}【答案】D【解析】【分析】解方程求出集合B,再由集合的运算即可得解.【详解】由题意,J{U2−4+3=0}={1,3},所以∪={−1,1,2,3},所以∁U(∪p={−2,0}.故选:D.3.【2022年全国乙卷】集合=2,4,6,8,10,=−1<<6,则∩=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}【答案】A【解析】【分析】根据集合的交集运算即可解出.【详解】因为=2,4,6,8,10,=U−1<<6,所以∩=2,4.故选:A.4.【2022年全国乙卷】设全集={1,2,3,4,5},集合M满足∁={1,3},则()A.2∈B.3∈C.4∉D.5∉【答案】A【分析】先写出集合,然后逐项验证即可【详解】由题知={2,4,5},对比选项知,A 正确,BCD 错误故选:A5.【2022年新高考1卷】若集合={b <4}, ={b3≥1},则∩=()A .{0≤<2}B .≤<2C .{3≤<16}D .≤<16【答案】D 【解析】【分析】求出集合s 后可求∩.【详解】={b0≤<16},={b ≥13},故∩={U 13≤<16},故选:D6.【2022年新高考2卷】已知集合={−1,1,2,4},=|−1|≤1,则∩=()A .{−1,2}B .{1,2}C .{1,4}D .{−1,4}【答案】B 【解析】【分析】求出集合后可求∩.【详解】={U0≤≤2},故∩={1,2},故选:B.7.【2021年甲卷文科】设集合{}{}1,3,5,7,9,27M N x x ==>,则M N = ()A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B 【解析】【分析】求出集合N 后可求M N ⋂.【详解】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=,8.【2021年甲卷理科】设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ()A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤【答案】B 【解析】【分析】根据交集定义运算即可【详解】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.9.【2021年乙卷文科】已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=ð()A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A 【解析】【分析】首先进行并集运算,然后进行补集运算即可.【详解】由题意可得:{}1,2,3,4M N =U ,则(){}5U M N = ð.故选:A.10.【2021年乙卷文科】已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是()A .p q ∧B .p q⌝∧C .p q∧⌝D .()p q ⌝∨【答案】A 【解析】【分析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项.【详解】由于sin 0=0,所以命题p 为真命题;由于x y e =在R 上为增函数,0x ≥,所以||01x e e ≥=,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .11.【2021年乙卷理科】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A .∅B .SC .TD .Z【答案】C 【解析】【分析】分析可得T S ⊆,由此可得出结论.【详解】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.12.【2021年新高考1卷】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B 【解析】【分析】利用交集的定义可求A B .【详解】由题设有{}2,3A B ⋂=,故选:B .13.【2021年新高考2卷】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B 【解析】【分析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.14.【2020年新课标1卷理科】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A .–4B .–2C .2D .4【答案】B 【解析】【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-.故选:B.【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.15.【2020年新课标1卷文科】已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ()A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B = ,故选:D.本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.16.【2020年新课标2卷理科】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=ð()A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A 【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.17.【2020年新课标2卷文科】已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}【答案】D 【解析】【分析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可.【详解】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =- .故选:D.【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题.18.【2020年新课标3卷理科】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B中元素的个数为()A .2B .3C .4D .6【解析】【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.19.【2020年新课标3卷文科】已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为()A .2B .3C .4D .5【答案】B 【解析】【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B 【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.20.【2020年新高考1卷(山东卷)】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =()A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C 【解析】【分析】根据集合并集概念求解.【详解】[1,3](2,4)[1,4)A B ==U U【点睛】本题考查集合并集,考查基本分析求解能力,属基础题.21.【2020年新高考2卷(海南卷)】设集合A={2,3,5,7},B ={1,2,3,5,8},则A B =()A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8}【答案】C 【解析】【分析】根据集合交集的运算可直接得到结果.【详解】因为A{2,3,5,7},B ={1,2,3,5,8},所以{}2,3,5A B = 故选:C 【点睛】本题考查的是集合交集的运算,较简单.22.【2019年新课标1卷理科】已知集合{}}242{60M x x N x x x =-<<=--<,,则M N⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【解析】【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.23.【2019年新课标1卷理科】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A .165cmB .175cmC .185cmD .190cm【答案】B 【解析】【分析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至肚脐的长为x cm ,肚脐至腿根的长为y cm ,则2626105x x y +=+42.07, 5.15x cm y cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B .【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.24.【2019年新课标1卷文科】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C 【解析】【分析】先求U A ð,再求U B A ð.【详解】由已知得{}1,6,7U C A =,所以U B C A ⋂={6,7},故选C .【点睛】本题主要考查交集、补集的运算.渗透了直观想象素养.使用补集思想得出答案.25.【2019年新课标2卷理科】设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B =A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)【答案】A 【解析】【分析】先求出集合A ,再求出交集.【详解】由题意得,{}{}23,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目.26.【2019年新课标2卷文科】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅【答案】C 【解析】【分析】本题借助于数轴,根据交集的定义可得.【详解】由题知,(1,2)A B =- ,故选C .【点睛】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.27.【2019年新课标2卷文科】在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙【答案】A 【解析】【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.28.【2019年新课标3卷理科】已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B = A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】先求出集合B 再求出交集.【详解】21,x ≤∴ 11x -≤≤,∴{}11B x x =-≤≤,则{}1,0,1A B =- ,故选A .【点睛】本题考查了集合交集的求法,是基础题.29.【2019年新课标3卷文科】记不等式组620x y x y +⎧⎨-≥⎩表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+ ;命题:(,),212q x y D x y ∀∈+ .给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是A .①③B .①②C .②③D .③④【答案】A【解析】【分析】根据题意可画出平面区域再结合命题可判断出真命题.【详解】如图,平面区域D 为阴影部分,由2,6y x x y =⎧⎨+=⎩得2,4x y =⎧⎨=⎩即A (2,4),直线29x y +=与直线212x y +=均过区域D ,则p 真q 假,有p ⌝假q ⌝真,所以①③真②④假.故选A .【点睛】本题将线性规划和不等式,命题判断综合到一起,解题关键在于充分利用取值验证的方法进行判断.30.【2018年新课标1卷理科】已知集合{}220A x x x =-->,则A =R ðA .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥【答案】B【解析】【详解】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果.详解:解不等式220x x -->得12x x <->或,所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.31.【2018年新课标1卷文科】已知集合{}02A =,,{}21012B =--,,,,,则A B = A .{}02,B .{}12,C .{}0D .{}21012--,,,,【答案】A【解析】【分析】分析:利用集合的交集中元素的特征,结合题中所给的集合中的元素,求得集合A B 中的元素,最后求得结果.【详解】详解:根据集合交集中元素的特征,可以求得{}0,2A B =I ,故选A.点睛:该题考查的是有关集合的运算的问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.32.【2018年新课标2卷理科】已知集合(){}223A x y x y x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】【分析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ 23,x ∴≤x Z∈ 1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【点睛】本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.33.【2018年新课标2卷文科】已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B = A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C【解析】【详解】分析:根据集合{1,3,5,7},{2,3,4,5}A B ==可直接求解{3,5}A B = .详解:{1,3,5,7},{2,3,4,5}A B == ,{}3,5A B ∴⋂=,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算.34.【2018年新课标3卷理科】已知集合{}|10A x x =-≥,{}012B =,,,则A B = A .{}0B .{}1C .{}12,D .{}012,,【答案】C【解析】【详解】分析:由题意先解出集合A,进而得到结果.详解:由集合A 得x 1≥,所以{}A B 1,2⋂=故答案选C.点睛:本题主要考查交集的运算,属于基础题.35.【2018年新课标3卷文科】已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B = A .{0}B .{1}C .{1,2}D .{0,1,2}【答案】C【解析】【分析】由题意先解出集合A,进而得到结果.【详解】解:由集合A 得x 1≥,所以{}A B 1,2⋂=故答案选C.【点睛】本题主要考查交集的运算,属于基础题.36.【2020年新课标2卷理科】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.。
集合与常用逻辑用语(含答案)
集合与常用逻辑用语一.选择题(共9小题)1.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=()A.{0}B.{0,1}C.{1,2}D.{0,2}2.集合P={﹣1,0,1},Q={y|y=cos x,x∈R},则P∩Q=()A.P B.Q C.{﹣1,1}D.[0,1]3.设集合A={x|1≤x≤2},B={x|x≥a}.若A⊆B,则a的范围是()A.a<1B.a≤1C.a<2D.a≤24.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.85.设全集为R,集合A={x|﹣1<x<1},B={x|x≥1},则∁R(A∪B)等于()A.{x|0≤0<1}B.{x|x≥1}C.{x|x≤﹣1}D.{x|x>﹣1}6.已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A.B.C.D.7.已知P={|=(1,0)+m(0,1),m∈R},Q={|=(1,1)+n(﹣1,1),n∈R}是两个向量集合,则P∩Q=()A.{(1,1)}B.{(﹣1,1)}C.{(1,0)}D.{(0,1)}8.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A ∩B的元素个数为()A.mn B.m+n C.n﹣m D.m﹣n9.定义A⊗B={z|z=xy+,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1}.则集合(A⊗B)⊗C的所有元素之和为()A.3B.9C.18D.27二.填空题(共5小题)10.若集合A={x|(x﹣1)2<3x+7,x∈R},则A∩Z中有个元素.11.设集合A={5,log2(a+3)},集合B={a,b}.若A∩B={2},则A∪B=.12.已知集合A={x|y=,x∈Z},B={y|y=2x﹣1,x∈A},则A∩B=.13.设全集I={2,3,a2+2a﹣3},A={2,|a+1|},∁I A={5},M={x|x=log2|a|},则集合M 的所有子集是.14.已知集合A={a,b,2},B={2,b2,2a},且A∩B=A∪B,则a=.三.解答题(共6小题)15.一个无重复数字的五位数,如果满足万位和百位上的数字都比千位上的数字小,百位和个位上的数字都比十位上的数字小,则这个五位数称为“倒W型数”,问:一共有多少个倒W型数?16.已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.(1)已知函数f(x)=﹣x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a 的取值范围;(2)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围;(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.(Ⅰ)已知当x∈[0,4]时,函数f(x)=x2﹣4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围;(Ⅱ)是否存在实数k,使函数f(x)=cos kx是R上的周期为T的T级类周期函数,若存在,求出实数k和T的值,若不存在,说明理由.17.已知全集U=A∪B={x∈N|0≤x≤10},A∩(∁U B)={1,3,5,7},求集合B.18.已知集合A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},分别求适合下列条件的a的值.(1)9∈(A∩B);(2){9}=A∩B.19.对于集合M、N,定义M⊖N={x|x∈M且x∉N},M⨁N=(M⊖N)∪(N⊖M),设A={y|4y+9≥0},B={y|y=﹣x+1,x>1},求A⨁B.20.记关于x的不等式的解集为P,不等式|x﹣1|≤1的解集为Q.(Ⅰ)若a=3,求P;(Ⅱ)若Q⊆P,求正数a的取值范围.。
第一章集合与常用逻辑用语-1.2集合(试题及答案解析)
第一章集合与常用逻辑用语§1.2.1 命题与量词一、选择题1.已知下列语句:①一束美丽的花;②x>3;③2是一个偶数;④若x=2,则x2−5x+6=0.其中是命题的个数是 ( )A.1 B.2 C.3 D.42.下列命题中为真命题的是()A.平行直线的倾斜角相等 B.平行直线的斜率相等C.互相垂直的两直线的倾斜角互补 D.互相垂直的两直线的斜率互为相反数3.下列命题中是全称量词命题的是()A.圆有内接四边形 B.√3>√2C.存在x0∈(0,1),使2x0=1D.若三角形的三边长分别为3、4、5,则这个三角形为直角三角形4.下列全称量词命题中真命题的个数是()①末位是0或5的整数,可以被5整除;②钝角都相等;③三棱锥的底面是三角形.A.0 B.1 C.2 D.35.下列存在量词命题中真命题的个数是()①∃x∈R,x≤0;②至少有一个整数,它既不是合数,也不是素数;③∃x{x|x是无理数},x2是无理数。
A.0 B.1 C.2 D.36.下列是全称量词命题且是真命题的是( )A.∀x∈R,x2>0 B.∀x∈Q,x2∈QC.∃x0∈R,x02>1 D.∀x,y∈R,x2+y2>07..下列存在量词命题中,假命题是()A.∃x∈Z,x2−2x−3=0 B.至少有一个x∈Z,x能被2和3整除C.存在两个相交平面垂直于同一条直线 D.∃x∈{x是无理数},x2是有理数8.下列四个命题中,既是存在量词命题又是真命题的是( )A.斜三角形的内角是锐角或钝角B.至少有一个实数x0,使x02>0C.任一无理数的平方必是无理数D.存在一个负数x>29.给出命题“方程x2+ax+1=0没有实数根”,则使该命题为真命题的a的一个值可以是( ) A.4 B.2 C.1 D.-310.已知“命题p:∃x∈R,使得ax2+2x+1<0成立”为真命题,则实数a满足( )A.[0,1) B.(-∞,1) C.[1,+∞) D.(-∞,1]二、填空题1、下列语句为命题的有________.①x∈R,x>2;②梯形是不是平面图形呢?③22 018是一个很大的数;④4是集合{2,3,4}中的元素;⑤作△ABC≌△A′B′C′2、命题p:∃x0∈R,x20+2x0+5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”)三、解答题11.已知命题“∃x∈[1,2],使x2+2x+a≥0”为真命题,求a的取值范围.12.是否存在整数,使得命题“∀x∈R,m2−m<x2+x+1”是真命题?若存在,求出m的值;若不存在,请说明理由.第一章集合与简易逻辑§1.2.2 全称量词命题与存在量词命题的否定一、选择题1.已知命题p:“∃a>0,有a+1a<2成立”,则命题¬p为()A.∀a≤0,有a+1a ≥2成立B.∀a>0,有a+1a≥2成立C.∃a>0,有a+1a ≥2成立D.∃a>0,有a+1a>2成立2.已知命题p:∀x∈R,e x≥1+sin x.则命题¬p为()A.∀x∈R,e x<1+sin x B.∀x∈R,e x≤1+sin xC.∃x0∈R,e x0≤1+sin x0D.∃x0∈R,e x0<1+sin x03.若命题p:∃x∈Z,e x<1,则¬p为()A.∀x∈Z,e x<1B.∀x∈Z,e x≥1C.∀x∉Z,e x<1D.∀x∉Z,e x≥1 4.命题“若a2+b2=0则a=0且b=0”的否定是()A.若a2+b2≠0,则a≠0且b≠0.B.若a2+b2=0,则ab≠0.C.若a2+b2≠0,则a≠0或b≠0.D.若a2+b2=0,则a2+b2≠0. 5.命题“存在x0∈R,使得x03>x02”的否定是()A.对任意x∈R,都有x3>x2B.不存在x0∈R,使得x03≤x02C.对任意x∈R,都有x3≤x2D.存在x0∈R,使得x03≤x02二、填空题6.命题“∀x∈R,3x2−2x+1>0”的否定是__________.7.命题:“∃x∈R,x2−ax+1<0”的否定为__________.8.若命题“存在x<2017,x>a”是假命题,则实数a的取值范围是__________.三、解答题9.写出下列命题的否定,并判断其真假:(1)任何有理数都是实数;(2)存在一个实数a,能使a2+1=0成立.10.已知命题“∃x∈[1,2],使x2+2x+a≥0”为真命题,求a的取值范围.11.是否存在整数m,使得命题“∀x∈R,m2−m<x2+x+1”是真命题?若存在,求出m的值;若不存在,请说明理由.12.已知命题p:∀x∈[0,1],x2−a≥0,命题q:∃x0∈R,x02+2ax0+a+2=0,若命题p,q至少有一个是真命题,求实数a的取值范围.第一章集合与简易逻辑§1.2.3 充分条件、必要条件一、选择题1.命题“正方形的四条边都相等”中的条件是( )A.正方形B.正方形的四条边C.四条边D.四条边都相等2.如果命题“p⇒q”是真命题,那么①p是q的充分条件②p是q的必要条件③q是p的充分条件④q是p的必要条件,其中一定正确的是( )A.①③B.①④ C.②③D.②④3.已知p:A=ϕ,q:A∩B=ϕ,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件5.已知p:x >0,q:x 2>0,则( ) A . q 是p 的充分条件 B . q 是p 的必要条件 C .命题是真命题D .命题是假命题 6.对任意的实数a,b,c ,在下列命题中的真命题是( )A .“ac >bc ”是“a >b ”的必要不充分条件B .“ac =bc ”是“a =b ”的必要不充分条件C .“ac >bc ”是“a >b ”的充分不必要条件D .“ac =bc ”是“a =b ”的充分不必要条件 二、填空题7.设x ∈R ,则“x =1”是“x 3=8.“a 2=b 2”是“a =充分也不必要).9.已知s 是r 的充分条件,r 是p 的充分条件,p 是s 充分条件,则s 是p 的________________条件. 10.已知A ={x|1≤x ≤2},{|}B x x a =<,如果B 的充分条件是A ,则实数a 的取值范围是_________. 三、解答题11.试判断“p:x =1”是“q:x 3−x 2−x +1=0”的充分条件还是必要条件?并给出证明.12.已知P ={x |x 2−3x +2≤0},S ={x |1−m ≤x ≤1+m }.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件?若存在,求出m 的取值范围,若不存在,请说明理由;(2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件?若存在,求出m 的取值范围,若不存在,请说明理由.答案与解析§1.2.1 命题与量词一、选择题1.已知下列语句:①一束美丽的花;②x>3;③2是一个偶数;④若x=2,则x2−5x+6=0.其中是命题的个数是 ( )A.1 B.2 C.3 D.4【答案】B【解析】①陈述句,但未表示判断;②表示判断,但是缺少必要的陈述条件;③是陈述句有判断,是命题;④是陈述句,也有判断,是命题.故选B.2.下列命题中为真命题的是()A.平行直线的倾斜角相等 B.平行直线的斜率相等C.互相垂直的两直线的倾斜角互补 D.互相垂直的两直线的斜率互为相反数【答案】A【解析】∵当两直线平行时,它们与x轴的夹角相等,即直线的倾斜角相等,故A成立.∵当两平行直线都与x轴垂直时,直线的倾斜角都为90°,斜率都不存在,故B不成立.∵互相垂直的两直线,当其中一条和x轴垂直,另一条和x轴平行时,它们的倾斜角一个为90度,另一个为0度,并不互补,故C不成立.∵互相垂直的两直线,当其中一条和x轴垂直,另一条和x轴平行时,它们的斜率一个为0,另一个不存在,故D不成立.故选 A.3.下列命题中是全称量词命题的是()A.圆有内接四边形 B.√3>√2C.存在x0∈(0,1),使2x0=1D.若三角形的三边长分别为3、4、5,则这个三角形为直角三角形【答案】A【解析】含有存在量词“有些”“至少”“存在”的命题都是特称命题;含有全称量词“任意”“所有”“全部”的命题都是全称量词命题.A中命题即为所有的圆都有内接四边形,是全称量词命题.其余三个命题均不是全称量词命题.故选A.4.下列全称量词命题中真命题的个数是()①末位是0或5的整数,可以被5整除;②钝角都相等;③三棱锥的底面是三角形.A.0 B.1 C.2 D.3【答案】C【解析】①正确;②错误,钝角不一定都相等,如120°,150°是钝角,但不相等;③正确,三棱锥四个面都是三角形.5.下列存在量词命题中真命题的个数是()①∃x∈R,x≤0;②至少有一个整数,它既不是合数,也不是素数;③∃x∈{x|x是无理数},x2是无理数。
第一章 集合与常用逻辑用语(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册
第一章集合与常用逻辑用语(单元测试卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列表述中正确的是( )A.{0}=∅B.{(1,2)}={1,2}C.{∅}=∅D.0∈N2.已知集合A={1,2},B={1},则下列关系正确的是( )A.B AB.B∈AC.B⊆AD.A⊆B3.已知集合A={a-2,2a2+5a,12},且-3∈A,则a=( )A.-1B.-23C.-32D.-134.集合A={1,2},B={2,4,6},则A∪B=( )A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}5.“x为整数”是“2x+1为整数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设集合M={菱形},N={平行四边形},P={四边形},Q={正方形},则这些集合之间的关系为( )A.P⊆N⊆M⊆QB.Q⊆M⊆N⊆PC.P⊆M⊆N⊆QD.Q⊆N⊆M⊆P7.已知a,b为实数,M:a<b ,N:a<b,则M是N的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.若命题“p:∀x∈R,x2-2x+m≠0”是真命题,则实数m的取值范围是( )A.{m|m≥1}B.{m|m>1}C.{m|m<1}D.{m|m≤1}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.下列关系正确的有( )A.12∈R B.2∉R C.|-3|∈N D.|-3|∈Q10.方程组Error!的解集可表示为( )A.Error!B.Error!C.(1,2)D.{(2,1)}11.已知A ={x|x +1>0},B ={-2,-1,0,1},则(A)∩B 中的元素有( )A.-2B.-1C.0D.1三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.若a ,b ∈R ,且a ≠0,b ≠0,则|a|a +|b|b的可能取值所组成的集合中元素的个数为________13.已知命题p :x 0∈R ,x 20-3x 0+3≤0,则¬p 为________14.已知集合A ={-2,1},B ={x|ax =2},若A ∪B =A ,则实数a 值集合为________四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知全集U =R ,集合A ={x|-1≤x ≤2},B ={x|-3≤x ≤1}.(1)求A ;(2)求B ∪(A).16.(14分)命题p 是“对任意实数x ,有x -a >0或x -b ≤0”,其中a ,b 是常数.(1)写出命题p 的否定;(2)当a ,b 满足什么条件时,命题p 的否定为真?R ð R ðR ð17.(15分)已知集合A ={x|2≤x <7},B ={x|5<2x -1<17}.(1)求A ∩B ,(B)∪A ;(2)已知C ={x|m +2<x ≤2m},若C ∩B =C ,求实数m 的取值范围.18.(16分)已知P ={x|1≤x ≤2},S ={x|1-m ≤x ≤1+m}.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件?若存在,求出m 的取值范围;若不存在,请说明理由.(2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件?若存在,求出m 的取值范围;若不存在,请说明理由.19.(18分)设集合A ={x|x 2-3x +2=0},B ={x|x 2+2(a -1)x +(a 2-5)=0}.(1)若A∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.R ð参考答案及解析:一、选择题1.D 解析:由集合的性质可知,∅表示没有任何元素的集合,而{0}表示有一个元素0,故A 错误;{(1,2)}表示有一个元素,是点的集合,而{1,2}表示有2个元素的集合,是数集,故B 错误;∅表示没有任何元素的集合,而{∅}表示有一个元素∅,故C 错误.故选D .2.C 解析:因两个集合之间不能用“∈或”,首先排除选项A ,B .因为集合A ={1,2},B ={1},所以集合B 中的元素都是集合A 中的元素,由子集的定义知B ⊆A .故选C .3.C 解析:因为-3∈A ,所以-3=a -2或-3=2a 2+5a ,所以a =-1或a =-32.所以当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去;当a =-32时,a -2=-72,2a 2+5a =-3,满足,所以a =-32.故选C .4.D 解析:∵A ={1,2},B ={2,4,6},∴A ∪B ={1,2,4,6}.故选D .5.A 解析:x 为整数时,2x +1也是整数,充分性成立;2x +1为整数时,x 不一定是整数,如2x +1=2时,x =12,所以必要性不成立,是充分不必要条件.故选A .6.B 解析:正方形都是菱形,菱形都是平行四边形,平行四边形都是四边形.故选B .7.A 解析:因为a ,b 为实数,所以由a <b ,能够得到a <b ,反之,由a <b ,不一定有a <b ,如-3<-2,而-3无意义,所以M 是N 的充分不必要条件.故选A .8.B 解析:命题p :∀x ∈R ,x 2-2x +m ≠0是真命题,则Δ<0,即m >1.二、选择题9.AC 解析:AC 正确,BD 错误.10.ABD 解析:方程组Error!只有一个解,解为Error!所以方程组Error!的解集中只有一个元素,且此元素是有序数对,所以A ,B ,D 都符合题意.11.AB 解析:∵A ={x|x +1>0}={x|x >-1},∴A ={x|x≤-1}.又∵B ={-2,-1,0,1},∴(A)∩B ={-2,-1}.∴(A)∩B 中的元素有-2,-1.三、填空题12.答案:3解析:当a ,b 同正时,|a|a +|b|b =a a +b b=1+1=2.当a ,b 同负时,|a|a +|b|b =-a a +-b b =-1-1=-2.当a ,b 异号时,|a|a +|b|b=0. R ðR ðR ð∴|a|a +|b|b的可能取值所组成的集合中元素共有3个.13.答案:x ∈R ,x 2-3x +3>0 解析:命题p :x 0∈R ,x 20-3x 0+3≤0,则¬p :x ∈R ,x 2-3x +3>0.14.答案:{0,-1,2} 解析:因为A ∪B =A ,所以B ⊆A ,当B =∅时,a =0;当B ≠∅时,B ={2a },则2a =-2或2a=1,解得a =-1或a =2,所以实数a 值集合为{0,-1,2}.四、解答题15.解:(1)∵A ={x|-1≤x ≤2},∴A ={x|x <-1或x >2}.(2)B ∪(A)={x|-3≤x ≤1}∪{x|x <-1或x >2}={x|x ≤1或x >2}.16.解:(1)命题p 的否定:存在实数x ,有x -a ≤0且x -b >0.(2)要使命题p 的否定为真,则需要使不等式组Error!的解集不为空集,通过画数轴(画数轴略)可看出,a ,b 应满足的条件是b <a .17.解:(1)因为B ={x|5<2x -1<17}={x|3<x <9},所以A ∩B ={x|3<x <7},B ={x|x ≤3或x ≥9},所以(B)∪A ={x|x <7或x ≥9}.(2)因为C ∩B =C ,所以C ⊆B .当C =∅时,m +2≥2m ,解得m ≤2;当C ≠∅时,{m +2<2m ,m +2≥3,2m <9,解得2<m <92.综上可得,实数m 的取值范围为Error!.18.解:(1)要使x ∈P 是x ∈S 的充要条件,需使P =S ,即Error!此方程组无解,故不存在实数m ,使x ∈P 是x ∈S 的充要条件.(2)要使x ∈P 是x ∈S 的必要条件,需使S ⊆P .当S =∅时,1-m >1+m ,解得m <0,满足题意;当S ≠∅时,1-m ≤1+m ,解得m ≥0,要使S ⊆P ,则有Error!解得m ≤0,所以m =0.综上可得,当实数m ≤0时,x ∈P 是x ∈S 的必要条件.∀∃∀R ðR ðR ðR ð19.解:(1)由题可知A ={x|x 2-3x +2=0}={1,2}.因为A∩B ={2},所以2∈B ,将2代入集合B 中,得4+4(a -1)+(a 2-5)=0,解得a =-5或a =1.当a =-5时,集合B ={2,10}符合题意;当a =1时,集合B ={2,-2},符合题意.综上所述,a =-5或a =1.(2)若A ∪B =A ,则B ⊆A .因为A ={1,2},所以B =∅或B ={1}或{2}或{1,2}.若B =∅,则Δ=4(a -1)2-4(a 2-5)=24-8a <0,解得a >3;若B ={1},则{Δ=24-8a =0,x =-2(a -1)2=1-a =1,不存在满足式子同时成立的a 值;若B ={2},则{Δ=24-8a =0,x =-2(a -1)2=1-a =2,不存在满足式子同时成立的a 值;若B ={1,2},则{Δ=24-8a >0,1+2=-2(a -1),1×2=a 2-5,不存在满足式子同时成立的a 值.综上所述,a >3.。
高一数学集合与常用逻辑用语试题答案及解析
高一数学集合与常用逻辑用语试题答案及解析1.(10分)已知全集,,,.(1)求;(2)求.【答案】(1)(2)【解析】集合的交集为两集合的相同元素构成的集合,集合的并集为两集合所有元素构成的集合,集合的补集为全集中除去集合中的元素,剩余的元素构成的集合,本题(1)中先求得再求与A的并集,(2)中先求得B,C两集合的补集,再求其并集试题解析:(1)依题意有:∴,故有.(2)由;故有【考点】集合的交并补运算2.已知集合,(Ⅰ)若,,求实数的取值范围;(Ⅱ)若,,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)解不等式,根据解分式不等式的方法,化不等式右端为0,即:,整理得:,化分式为整式,转化为,解得:,所以集合,若,则应先考虑B为空集时,此时有,解得:,然后再考虑集合B非空的情况,则应有:,解得:,所以,综合两种情况,所以;(Ⅱ)由于集合,若,则B为非空集合,所以应满足:,解得:,所以.试题解析:解不等式,得,即(Ⅰ)①当时,则,即,符合题意;②当时,则有解得:综上:(Ⅱ)要使,则,所以有解得:【考点】1.集合间的关系;2.分类讨论在集合中的应用.3.已知集合,,(1)当时,求(2)当时,求的取值范围.【答案】(1)[3,4)(2)m≥3或m≤一3【解析】(1)当代入不等式,求两集合的交集即两集合的公共部分;(2)由可知A B,借助于数轴可得两集合边界值的大小关系,从而得到不等式,求得的取值范围试题解析:(1) m=l时,A={x11<X<4}B={xIx≤0或x≥3}A B=[3,4)(2)A B=BA Bm+3≤0或m≥3解得m≥3或m≤一3【考点】1.集合的交集运算;2.集合子集关系4.已知集合A={1,3,},B={+2,1}.是否存在实数,使得B A?若存在,求出集合A,B;若不存在,说明理由.【答案】【解析】若存在则有或两种情况,分别求得x值,然后求出对应的集合A,B,进行检验是否满足试题解析:假设存在实数x,使,则或(1)当时,,此时,不满足集合元素的互异性.故.(2)当时,即,故x=-1或x=2.①当时,与元素互异性矛盾,故.②当时,,显然有.综上所述,存在x=2,使满足.【考点】集合间的关系5.已知全集,函数的定义域为集合,函数的定义域为集合.(1)求集合和集合;(2)求集合(∁U A)∪(∁UB).【答案】(1),;(2)【解析】(1)函数的定义域满足:,函数的定义域满足解得不等式即可得到函数定义域;(2)由(1)求得,再由集合并集运算即可求得试题解析:(1)所以集合所以(2),所以【考点】1.求函数的定义域;2.集合运算6.设M=,N=,若M N,则实数的取值范围为()A.B.C.D.【答案】A【解析】,,因为M N【考点】集合的子集关系7.集合,若,则的取值范围为( )A.B.C.D.【答案】B【解析】当时成立;时满足,当时综上的取值范围为【考点】解不等式与集合运算8.已知函数的定义域为集合A,函数的定义域为集合B.(1)求集合A、B;(2)若,求实数的取值范围.【答案】(1)(2)【解析】(1)由偶次根式下被开方数非负得:,,写成解集形式即得到集合A、B;(2)由得,再由数轴分析得试题解析:解:(1),(2)【考点】函数定义域,集合包含关系9.设A={a,b},集合B={a+1,5},若A∩B={2},则A∪B=()A.{1,2}B.{1,5}C.{2,5}D.{1,2,5}【答案】D【解析】由A∩B={2}可知集合A,B中都含有2,【考点】集合的交并运算10.已知集合()A.{x|2<x<3}B.{x|-1≤x≤5}C.{x|-1<x<5}D.{x|-1<x≤5}【答案】B【解析】集合的并集是由两集合所有的元素构成的集合,因此{x|-1≤x≤5}【考点】集合的并集11.(本小题满分10分)设,,(为实数)(Ⅰ)分别求,;(Ⅱ)若,求的取值范围.【答案】(Ⅰ){x|2<x≤3},{x|x≤3或x≥4}(Ⅱ)2<a<3【解析】(Ⅰ)两集合A,B的交集为两集合的相同的元素构成的集合,B的补集为全集中不在B中的元素构成的集合;(Ⅱ)由得到,进而得到关于的不等式,求解的取值范围试题解析:(1) A∩B={x|2<x≤3},B={x|x≤2或x≥4}UA∪(B)= {x|x≤3或x≥4}U(2)∵B∩C=C∴C B∴2<a<a+1<4∴2<a<3【考点】集合的交并补运算及子集关系12.用列举法表示集合:__ .【答案】{(0,3),(1,2),(2,1),(3,0)}【解析】集合表示直线上横纵坐标为自然数的点,因此,列举法表示为{(0,3),(1,2),(2,1),(3,0)}【考点】集合的表示方法13.设集合U=R,;(1)求:,;(2)设集合,若,求a的取值范围.【答案】(1),;(2).【解析】(1)解不等式分别求出集合A、B,然后根据交集、补集、并集运算即可求出,.(2)易得,.然后由子集关系列出关于a的不等式组即可求解,但要注意对集合C为空集和非空两种情况讨论,否则易漏解.试题解析:(1)可得,所以,,(2)易得,,i)时,即,显然符合题意;ii)时,,综上:.【考点】•集合的交集、并集、补集运算;‚由子集关系求参数范围.14.集合A={﹣1,3,5},若f:x→2x﹣1是集合A到B的映射,则集合B可以是()A.{0,2,3}B.{1,2,3}C.{﹣3,5}D.{﹣3,5,9}【答案】D【解析】由f:x→2x﹣1是集合A到B的映射可知-1对应-3,3对应5,5对应9【考点】映射15.已知A={x|﹣1<x<4},,C={x|x<2a}求:(1)A∪B(2)A⊆C求a的取值范围.【答案】(1);(2)【解析】(1)两集合的并集为两集合的所有元素构成的集合;(2)由A⊆C可得到与集合A 的边界值的大小关系试题解析:(1)A={x|﹣1<x<4},(2)由A⊆C可得【考点】集合的并集与子集关系16.设集合,则等于()A.B.C.D.【答案】D【解析】因为,所以应选D.【考点】集合的基本运算.17.,则取值范围是.【答案】【解析】因为,所以【考点】1.含参数的集合的运算;18.已知第一象限角,锐角,小于90°的角,那么关系是()A.B.C.D.【答案】B【解析】中包括第一象限的负角,如,不属于锐角,故A错;第一象限角中包括大于的角,如是第一象限角,但不小于,故C错;易知D错;故选B.【考点】象限角,集合间的关系.19.已知集合,.求:(1);(2);(3).【答案】(1);(2);(3).【解析】利用数轴,在数轴上画出全集,集合A,集合B,即可求得.试题解析:(1)(2),(3)【考点】集合的交集、并集、补集运算.20.设全集,,,则 __________ ,______________.【答案】【解析】根据集合交集并集的定义=,【考点】集合的运算21.已知a、b均为实数,设集合A=,B=,且A、B都是集合{x|0≤x≤1}的子集.如果把n-m叫做集合{x|m≤x≤n}的“长度”,那么集合A∩B的“长度”的最小值是_____.【答案】【解析】由已知得且,解得,且b≤1,解得,从而当b=,a=或b=1,a=0时A∩B的长度最小,当b=,a=时,A∩B=[,],长度为;当b=1,a=0时,A∩B=[,],长度为.所以A∩B的长度的最小值是.【考点】交集及其运算22.已知,则.【答案】【解析】因为,所以.【考点】1.指数、对数不等式运算;2.集合的并集运算.【方法点睛】指数不等式、对数不等式的解法指数不等式:转化为代数不等式对数不等式:转化为代数不等式.23.已知,.(1)当时,求;(2)若,求实数的取值范围.【答案】(1);(2).【解析】(1)根据的值可求得,再由并集的定义即可求解;(2)以是否为空集对的取值进行分类讨论,再根据,建立关于的不等式即可求解.试题解析:(1)当时,,∴;(2)∵,∴或,若,即时,符合题意;若,即时:∵,∴或,解得,综上,实数的取值范围是.【考点】1.集合的关系及其运算;2.分类讨论的数学思想.【技巧点拨】1.已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn图帮助分析;2.当题目中有条件时,不要忽略的情况.M=φ,则24.(2011•辽宁)已知M,N为整合I的非空真子集,且M,N不相等,若N∩∁UM∪N是()A.M B.N C.I D.φ【答案】A【解析】由N∩∁U M=φ可得N∩M=N ,从而可得M ∪N=M . 解:∵N∩∁U M=φ, ∴N∩M=N , 即M ∪N=M , 故选A .【考点】并集及其运算.25. 已知集合U={0,1,2,3,4},A={0,1,2,3},B={0,2,4},那么A∩(∁U B )等于( ) A .{1} B .{0,1} C .{1,3} D .{0,1,2,3} 【答案】C【解析】先求出(∁U B ),再根据交集的运算法则计算即可 解:∵U={0,1,2,3,4},A={0,1,2,3},B={0,2,4}, ∴(∁U B )={1,3} ∴A∩(∁U B )={1,3} 故选:C .【考点】交、并、补集的混合运算.26. 已知全集,, 求:(1); (2); (3) 【答案】(1);(2);(3).【解析】并集是两个集合的全部元素组成的集合,交集是两个集合的公共元素组成的集合,补集是属于全集,但不属于A 的元素组成的集合,,这样计算比较简单. 试题解析:(1)= (2)= (3) = 【考点】集合的运算27. 已知集合A={x ∈Z||x|<4},B={x|x ﹣1≥0},则A∩B 等于( ) A .(1,4) B .[1,4) C .{1,2,3} D .{2,3,4}【答案】C【解析】求出A 与B 中不等式的解集确定出A 与B ,找出两集合的交集即可.解:∵A={x ∈Z||x|<4}={x ∈Z|﹣4<x <4}={﹣3,﹣2,﹣1,0,1,2,3},B={x|x ﹣1≥0}={x|x≥1},∴A∩B={1,2,3}, 故选:C .【考点】交集及其运算.28. 已知集合M={(a ,b )|a≤﹣1,且 0<b≤m},其中m ∈R .若任意(a ,b )∈M ,均有alog 2b ﹣b ﹣3a≥0,求实数m 的最大值 . 【答案】2【解析】如图所示,由alog 2b ﹣b ﹣3a≥0,化为:.由于≥﹣m ,b ≤m 时,可得log 2m≤3﹣m .结合图形即可得出.解:如图所示,由alog 2b ﹣b ﹣3a≥0,化为:.∵≥﹣m ,b≤m 时, ∴log 2m≤3﹣m .当m=2时取等号,∴实数m 的最大值为2.【考点】对数的运算性质.29. 设函数f (x )=lg (x 2﹣3x )的定义域为集合A ,函数的定义域为集合B (其中a ∈R ,且a >0). (1)当a=1时,求集合B ;(2)若A∩B≠∅,求实数a 的取值范围. 【答案】(1)[1,3].(2)a >1 【解析】(1)函数=,令﹣x 2+4x ﹣3≥0,解出其定义域为集合B=[1,3].(2)当a >0时,由﹣x 2+4ax ﹣3a 2≥0,化为x 2﹣4ax+3a 2≤0,解得B=[a ,3a].函数f (x )=lg (x 2﹣3x ),由x 2﹣3x >0,解得定义域为集合A=(﹣∞,0)∪(3,+∞),利用A∩B≠∅,即可得出.解:(1)函数=,令﹣x 2+4x ﹣3≥0,化为x 2﹣4x+3≤0,解得1≤x≤3,其定义域为集合B=[1,3].(2)当a >0时,由﹣x 2+4ax ﹣3a 2≥0,化为x 2﹣4ax+3a 2≤0,解得a≤x≤3a . ∴B=[a ,3a].函数f (x )=lg (x 2﹣3x ),由x 2﹣3x >0,解得x <0,或x >3,可得定义域为集合A=(﹣∞,0)∪(3,+∞),∵A∩B≠∅,所以3a >3,解得a >1.【考点】集合的包含关系判断及应用;交集及其运算;函数的定义域及其求法.30. 对于集合M ,定义函数f M (x)=对于两个集合A ,B ,定义集合A*B ={x|f A (x)f B (x)=-1}.已知A ={2,4,6,8,10},B ={1,2,4,8,12},则用列举法写出集合A*B 的结果为________. 【答案】 【解析】因为集合中的元素满足,根据条件,那么只有,即且,或且,即,那么 【考点】新定义31. 设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数满足: (1); (2)对任意,当时,恒有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合与常用逻辑用语本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.(文)(2011·巢湖市质检)设U ={1,2,3,4,5},A ={1,2,3},B ={2,3,4},则下列结论中正确的是( )A .A ⊆B B .A ∩B ={2}C .A ∪B ={1,2,3,4,5}D .A ∩(∁U B )={1}[答案] D(理)(2011·安徽百校联考)已知集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M 且a ≠b },则集合M 与集合N 的关系是( )A .M =NB .M NC .NMD .M ∩N =∅ [答案] C[解析] ∵a 、b ∈M 且a ≠b ,∴a =-1时,b =0或1,x =0或-1;a =0时,无论b 取何值,都有x =0;a =1时,b =-1或0,x =-1或0.综上知N ={0,-1},∴NM .2.(2011·合肥质检)“a =1”是“函数f (x )=lg(ax +1)在(0,+∞)上单调递增”的( ) A .充分必要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件[答案] C[解析] a =1时,f (x )=lg(x +1)在(0,+∞)上单调递增;若f (x )=lg(ax +1)在(0,+∞)上单调递增,∵y =lg x 是增函数,∴y =ax +1在(0,+∞)上单调递增,∴⎩⎪⎨⎪⎧a >0a ×0+1>0,∴a >0,故选C. 3.(2011·福州期末)已知p :|x |<2;q :x 2-x -2<0,则綈p 是綈q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[答案] A[解析] ∵p :-2<x <2,∴綈p :x ≤-2或x ≥2; q :-1<x <2,∴綈q :x ≤-1或x ≥2, ∴綈p 是綈q 的充分不必要条件.4.(2011·福州期末)在△ABC 中,“AB →·AC →=BA →·BC →”是“|AC →|=|BC →|”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] 如图,在△ABC 中,过C 作CD ⊥AB ,则|AD →|=|AC →|·cos ∠CAB ,|BD →|=|BC →|·cos ∠CBA ,AB →·AC →=BA →·BC →⇔|AB →|·|AC →|·cos ∠CAB =|BA →|·|BC →|·cos ∠CBA ⇔|AC →|·cos ∠CAB =|BC →|·cos ∠CBA ⇔|AD →|=|BD →|⇔|AC →|=|BC →|,故选C.5.(文)(2011·山东日照调研)设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若α∥β,l ⊂α,m ⊂β则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则α⊥β.则下列命题为真命题的是( )A .p 或qB .p 且qC .綈p 或qD .p 且綈q[答案] C[解析] p 为假命题,q 为假命题,故p 或q ,p 且q ,p 且綈q 均为假命题,选C. (理)(2011·辽宁省丹东四校联考)已知α、β、γ为互不重合的三个平面,命题p :若α⊥β,β⊥γ,则α∥γ;命题q :若α上不共线的三点到β的距离相等,则α∥β.对以上两个命题,下列结论中正确的是( )A .命题“p 且q ”为真B .命题“p 或綈q ”为假C .命题“p 或q ”为假D .命题“綈p 且綈q ”为假 [答案] C[解析] 如图(1),正方体中,相邻三个面满足β⊥α,β⊥γ,但α⊥γ,故p 为假命题;如图(2),α∩β=l ,直线AB ,CD 是α内与l 平行且与l 距离相等的两条直线,则直线AB ,CD 上任意一点到平面β的距离都相等,三点A 、B 、C 不共线,且到平面β的距离相等,故命题q 为假命题,∴“p 或q ”为假命题.6.(2011·宁夏银川一中检测)下列结论错误的...是()A.命题“若p,则q”与命题“若綈q,则綈p”互为逆否命题B.命题p:∀x∈[0,1],e x≥1,命题q:∃x∈R,x2+x+1<0,则p∨q为真C.“若am2<bm2,则a<b”的逆命题为真命题D.若p∨q为假命题,则p、q均为假命题[答案] C[解析]根据四种命题的构成规律,选项A中的结论是正确的;选项B中的命题p是真命题,命题q是假命题,故p∨q为真命题,选项B中的结论正确;当m=0时,a<b⇒/ am2<bm2,故选项C中的结论不正确;选项D中的结论正确.7.(文)(2011·福州期末)已知集合M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R},则M∩N等于()A.(0,1),(1,2) B.{(0,1),(1,2)}C.{y|y=1或y=2} D.{y|y≥1}[答案] D[解析]由集合M、N的代表元素知M、N都是数集,排除A、B;又M={y|y≥1},N =R,∴选D.(理)(2011·陕西宝鸡质检)已知集合A={x|y=1-x2,x∈Z},B={y|y=x2+1,x∈A},则A∩B为()A.∅B.{1}C.[0,+∞) D.{(0,1)}[答案] B[解析]由1-x2≥0得,-1≤x≤1,∵x∈Z,∴A={-1,0,1},当x∈A时,y=x2+1∈{2,1},即B={1,2},∴A∩B={1}.8.(2011·天津河西区质检)命题p:∀x∈[0,+∞),(log32)x≤1,则()A.p是假命题,綈p:∃x0∈[0,+∞),(log32)x0>1B.p是假命题,綈p:∀x∈[0,+∞),(log32)x≥1C.p是真命题,綈p:∃x0∈[0,+∞),(log32)x0>1D .p 是真命题,綈p :∀x ∈[0,+∞),(log 32)x ≥1 [答案] C[解析] ∵0<log 32<1,∴y =(log 32)x 在[0,+∞)上单调递减,∴0<y ≤1,∴p 是真命题;∀的否定为“∃”,“≤”的否定为“>”,故选C.9.(2010·广东湛江模拟)“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题是( ) A .若x =a 且x =b ,则x 2-(a +b )x +ab =0. B .若x =a 或x =b ,则x 2-(a +b )x +ab ≠0. C .若x =a 且x =b ,则x 2-(a +b )x +ab ≠0. D .若x =a 或x =b ,则x 2-(a +b )x +ab =0. [答案] D10.(2011·四川资阳市模拟)“cos θ<0且tan θ>0”是“θ为第三角限角”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件[答案] A[解析] ∵cos θ<0,∴θ为第二或三象限角或终边落在x 轴负半轴上,∵tan θ>0,∴θ为第一或三象限角,∴θ为第三象限角,故选A.11.(文)(2011·湖南长沙一中月考)设命题p :∀x ∈R ,|x |≥x ;q :∃x ∈R ,1x =0.则下列判断正确的是( )A .p 假q 真B .p 真q 假C .p 真q 真D .p 假q 假[答案] B[解析] ∵|x |≥x 对任意x ∈R 都成立,∴p 真,∵1x =0无解,∴不存在x ∈R ,使1x =0,∴q 假,故选B.(理)(2011·福建厦门市期末)下列命题中,假命题是( ) A .∀x ∈R,2x -1>0 B .∃x ∈R ,sin x = 2 C .∀x ∈R ,x 2-x +1>0 D .∃x ∈N ,lg x =2[答案] B[解析] 对任意x ∈R ,总有|sin x |≤1,∴sin x =2无解,故选B.12.(2011·辽宁大连期末)已知全集U =R ,集合A ={x |x =2n ,n ∈N }与B ={x |x =2n ,n ∈N },则正确表示集合A 、B 关系的韦恩(Venn)图是( )[答案] A[解析] n =0时,20=1∈A ,但1∉B,2×0=0∈B ,但0∉A ,又当n =1时,2∈A 且2∈B ,故选A.[点评] 自然数集N 中含有元素0要特别注意,本题极易因忽视0∈N 导致错选C.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知命题甲:a +b ≠4,命题乙:a ≠1且b ≠3,则命题甲是命题乙的________条件. [答案] 既不充分也不必要[解析] 当a +b ≠4时,可选取a =1,b =5,故此时a ≠1且b ≠3不成立(∵a =1).同样,a ≠1且b ≠3时,可选取a =2,b =2,此时a +b =4,因此,甲是乙的既不充分也不必要条件.[点评] 也可通过逆否法判断非乙是非甲的什么条件. 14.方程x 24-t +y 2t -1=1表示曲线C ,给出以下命题:①曲线C 不可能为圆; ②若1<t <4,则曲线C 为椭圆; ③若曲线C 为双曲线,则t <1或t >4; ④若曲线C 为焦点在x 轴上的椭圆,则1<t <52.其中真命题的序号是______(写出所有正确命题的序号). [答案] ③④[解析] 显然当t =52时,曲线为x 2+y 2=32,方程表示一个圆;而当1<t <4,且t ≠52时,方程表示椭圆;当t <1或t >4时,方程表示双曲线,而当1<t <52时,4-t >t -1>0,方程表示焦点在x 轴上的椭圆,故选项为③④.15.(文)函数f (x )=log a x -x +2(a >0且a ≠1)有且仅有两个零点的充要条件是________. [答案] a >1[解析] 若函数f (x )=log a x -x +2(a >0,且a ≠1)有两个零点,即函数y =log a x 的图象与直线y =x -2有两个交点,结合图象易知,此时a >1;当a >1时,函数f (x )=log a x -x +2(a >0,且a ≠1)有两个零点,∴函数f (x )=log a x -x +2(a >0,且a ≠1)有两个零点的充要条件是a >1.(理)(2010·济南模拟)设p :⎩⎪⎨⎪⎧4x +3y -12≥03-x ≥0x +3y ≤12,q :x 2+y 2>r 2(x ,y ∈R ,r >0),若p 是q的充分不必要条件,则r 的取值范围是________.[答案] ⎝⎛⎭⎫0,125 [解析] 设A ={(x ,y )|⎩⎪⎨⎪⎧4x +3y -12≥03-x ≥0x +3y ≤12},B ={(x ,y )|x 2+y 2>r 2,x ,y ∈R ,r >0},则集合A 表示的区域为图中阴影部分,集合B 表示以原点为圆心,以r 为半径的圆的外部,设原点到直线4x +3y -12=0的距离为d ,则d =|4×0+3×0-12|5=125,∵p 是q 的充分不必要条件,∴A B ,则0<r <125.16.(2011·河南豫南九校联考)下列正确结论的序号是________. ①命题∀x ∈R ,x 2+x +1>0的否定是:∃x ∈R ,x 2+x +1<0.②命题“若ab =0,则a =0,或b =0”的否命题是“若ab ≠0,则a ≠0且b ≠0”. ③已知线性回归方程是y ^=3+2x ,则当自变量的值为2时,因变量的精确值为7. ④若a ,b ∈[0,1],则不等式a 2+b 2<14成立的概率是π4.[答案] ②[解析] ∀x ∈R ,x 2+x +1>0的否定应为∃x ∈R ,x 2+x +1≤0,故①错;对于线性回归方程y ^=3+2x ,当x =2时,y 的估计值为7,故③错;对于0≤a ≤1,0≤b ≤1,满足a 2+b 2<14的概率为p =14×π×⎝⎛⎭⎫1221×1=π16,故④错,只有②正确. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(文)(2011·重庆南开中学期末)已知函数f (x )=x +1x -2的定义域是集合A ,函数g (x )=lg [x 2-(2a +1)x +a 2+a ]的定义域是集合B .(1)分别求集合A 、B ;(2)若A ∪B =B ,求实数a 的取值范围. [解析] (1)A ={x |x ≤-1或x >2} B ={x |x <a 或x >a +1}.(2)由A ∪B =B 得A ⊆B ,因此⎩⎪⎨⎪⎧a >-1a +1≤2所以-1<a ≤1,所以实数a 的取值范围是(-1,1]. (理)已知函数f (x )=6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值. [解析] 由6x +1-1≥0知,0<x +1≤6,∴-1<x ≤5,A ={x |-1<x ≤5}. (1)当m =3时,B ={x |-1<x <3} 则∁R B ={x |x ≤-1或x ≥3} ∴A ∩(∁R B )={x |3≤x ≤5}.(2)A ={x |-1<x ≤5},A ∩B ={x |-1<x <4}, ∴有-42+2·4+m =0,解得m =8. 此时B ={x |-2<x <4},符合题意.18.(本小题满分12分)(文)已知函数f (x )是R 上的增函数,a 、b ∈R ,对命题“若a +b ≥0,则f (a )+f (b )≥f (-a )+f (-b ).”(1)写出其逆命题,判断其真假,并证明你的结论; (2)写出其逆否命题,判断其真假,并证明你的结论.[解析] (1)逆命题是:若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0,真命题. 用反证法证明:设a +b <0,则a <-b ,b <-a , ∵f (x )是R 上的增函数, ∴f (a )<f (-b ),f (b )<f (-a ),∴f (a )+f (b )<f (-a )+f (-b ),这与题设f (a )+f (b )≥f (-a )+f (-b )矛盾,所以逆命题为真. (2)逆否命题:若f (a )+f (b )<f (-a )+f (-b ), 则a +b <0,为真命题.由于互为逆否命题同真假,故只需证原命题为真. ∵a +b ≥0,∴a ≥-b ,b ≥-a , 又∵f (x )在R 上是增函数, ∴f (a )≥f (-b ),f (b )≥f (-a ).∴f (a )+f (b )≥f (-a )+f (-b ),∴原命题真,故逆否命题为真.(理)(2011·厦门双十中学月考)在平面直角坐标系xOy 中,直线l 与抛物线y 2=2x 相交于A 、B 两点.(1)求证:“如果直线l 过点(3,0),那么OA →·OB →=3”是真命题. (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由. [解析] (1)设l :x =ty +3,代入抛物线y 2=2x ,消去x 得y 2-2ty -6=0. 设A (x 1,y 1),B (x 2,y 2),∴y 1+y 2=2t ,y 1·y 2=-6, OA →·OB →=x 1x 2+y 1y 2=(ty 1+3)(ty 2+3)+y 1y 2 =t 2y 1y 2+3t (y 1+y 2)+9+y 1y 2 =-6t 2+3t ·2t +9-6=3. ∴OA →·OB →=3,故为真命题.(2)(1)中命题的逆命题是:“若OA →·OB →=3,则直线l 过点(3,0)”它是假命题. 设l :x =ty +b ,代入抛物线y 2=2x ,消去x 得y 2-2ty -2b =0. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t ,y 1·y 2=-2b . ∵OA →·OB →=x 1x 2+y 1y 2=(ty 1+b )(ty 2+b )+y 1y 2=t 2y 1y 2+bt (y 1+y 2)+b 2+y 1y 2=-2bt 2+bt ·2t +b 2-2b =b 2-2b , 令b 2-2b =3,得b =3或b =-1,此时直线l 过点(3,0)或(-1,0).故逆命题为假命题.19.(本小题满分12分)(文)(2011·华安、连城、永安、漳平龙海,泉港六校联考)已知集合A ={x |x 2-2x -3≤0,x ∈R },B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.(1)若A ∩B =[0,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围. [解析] A ={x |-1≤x ≤3} B ={x |m -2≤x ≤m +2}. (1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧ m -2=0m +2≥3,⎩⎪⎨⎪⎧m =2m ≥1,∴m =2. 故所求实数m 的值为2.(2)∁R B ={x |x <m -2或x >m +2} A ⊆∁R B ,∴m -2>3或m +2<-1. ∴m >5或m <-3.因此实数m 的取值范围是m >5或m <-3.(理)(2011·山东潍坊模拟)已知全集U =R ,非空集合A ={x |x -2x -(3a +1)<0},B ={x |x -a 2-2x -a<0}.(1)当a =12时,求(∁U B )∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围. [解析] (1)当a =12时,A ={x |x -2x -52<0}={x |2<x <52},B ={x |x -94x -12<0}={x |12<x <94}.∴(∁U B )∩A ={x |x ≤12或x ≥94}∩{x |2<x <52}={x |94≤x <52}.(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B , 由a 2+2>a ,得B ={x |a <x <a 2+2}, 当3a +1>2,即a >13时,A ={x |2<x <3a +1},⎩⎪⎨⎪⎧a ≤2a 2+2≥3a +1,解得13<a ≤3-52;当3a +1=2,即a =13时,A =∅,符合题意; 当3a +1<2,即a <13时,A ={x |3a +1<x <2}.⎩⎪⎨⎪⎧a ≤3a +1a 2+2≥2,解得-12≤a <13;综上,a ∈[-12,3-52].20.(本小题满分12分)(2010·常德模拟)已知命题p :∀x ∈[1,2],x 2-a ≥0.命题q :∃x 0∈R ,使得x 20+(a -1)x 0+1<0.若“p 或q ”为真,“p 且q ”为假,求实数a 的取值范围.[解析] 由条件知,a ≤x 2对∀x ∈[1,2]成立,∴a ≤1;∵∃x0∈R,使x20+(a-1)x0+1<0成立,∴不等式x2+(a-1)x+1<0有解,∴Δ=(a-1)2-4>0,∴a>3或a<-1;∵p或q为真,p且q为假,∴p与q一真一假.①p真q假时,-1≤a≤1;②p假q真时,a>3.∴实数a的取值范围是a>3或-1≤a≤1.21.(本小题满分12分)(文)已知函数f(x)=x2-2x+5,若存在一个实数x0,使不等式f(x0)-m>0成立,求实数m的取值范围.[解析]不等式f(x0)-m>0可化为m<f(x0),若存在一个实数x0使不等式m<f(x0)成立,只需m<f(x)min.又∵f(x)=x2-2x+5=(x-1)2+4,∴f(x)min=4,∴m<4.故所求实数m的取值范围是(-∞,4).(理)(2011·雅安中学期末)设函数f(x)=(x+1)ln(x+1),若对所有的x≥0,都有f(x)≥ax 成立,求实数a的取值范围.[解析]令g(x)=(x+1)ln(x+1)-ax,则g′(x)=ln(x+1)+1-a,令g′(x)=0,解得x=e a-1-1.(1)当a≤1时,对所有x>0,g′(x)>0.所以g(x)在[0,+∞)上是增函数.又g(0)=0,所以对x≥0,有g(x)≥g(0),即当a≤1时,对于所有x≥0,都有f(x)≥ax.(2)当a>1时,对于0<x<e a-1-1,g′(x)<0,所以g(x)在(0,e a-1-1)上是减函数.又g(0)=0,所以对0<x<e a-1-1,有g(x)<g(0),即f(x)<ax.所以当a>1时,不是对所有的x≥0,都有f(x)≥ax成立.综上所述a的取值范围是(-∞,1].22.(本小题满分12分)若规定E={a1,a2,…,a10}的子集{ai1,ai2,…,ai n}为E的第k个子集,其中k=2i1-1+2i2-1+…+2i n-1,则(1){a1,a3}是E的第几个子集?(2)求E的第211个子集.[解析](1)由k的定义可知k=21-1+23-1=5.高考总复习因此{a1,a3}是E的第5个子集.(2)∵21-1=1,22-1=2,23-1=4,24-1=8,…k=211,且211=128+64+16+2+1,∴i1=1,i2=2,i3=5,i4=7,i5=8,故E的第211个子集是{a1,a2,a5,a7,a8}.[点评]本题是新定义题型,构思新颖,视角独特,亮点明显,对考生在新情境下灵活运用所学知识分析,解决问题的能力要求较高,有较高的区分度.含详解答案。