03 MSA测量系统分析报告五性之线性

合集下载

MSA测量系统(三性)分析报告-精华

MSA测量系统(三性)分析报告-精华

JT/C-7.6J-003
1 目的 為了配備並使用與要求的測量能力相一致的測量儀器,通過適當的統
計技術,對測量系統的五個特性進行分析,使測量結果的不確定度已知, 為準確評定產品提高品質保證。 2 適用範圍
適用於公司使用的所有測量儀器的穩定性、偏移和線性的測量分析。 3 職責 3.1 檢驗科負責確定過程所需要的測量儀器,並定期校準和檢定,對使用的 測量系統分析,對存在的異常情況及時採取糾正預防措施。 3.2 工會負責根據需要組織和安排測量系統技術應用的培訓。 3.3 生產科配合對測量儀器進行測量系統分析。 4 術語 4.1 偏倚
的特殊原因影響。
6.2 偏移的分析研究
6.2.1 進行研究-控制圖法
1)如果均值-極差圖用於測量穩定性,其
偏倚
據可以用來進行偏倚評價。在偏倚被評價之前,
控制圖分析應該表明測量系統處於穩定狀態。
2)取得一個樣件,並且建立其與可追溯到
相關標準的參考值。如果不能得到這個參考值,
選擇一個落在生產測量範圍中間的的生產件,
H0:b=0 截距(偏倚)=0
如果下式成立,則不能被否定
b
[√ ] t =
1 gm
+
x2
Σ(xi—x)2
s
≤t gm——2,1——a/2
範例-線性
某工廠質檢員對某過程引進了一套新測量系統。作為 PPAP 的一部分,需要對 測量系統的線性進行評價。根據已檔化的過程變差描述,在測量系統的全部工作 量程範圍內選擇了 5 個零件。通過對每個零件進行全尺寸檢驗,從而確定它們的 參考值。然後由主要操作者對每個零件測量 12 次。在分析零件是隨機抽取的。
再現性是由不同的評價人,採用相同的測量儀器,測量同一零件的同 一特性的測量平均值的變差。 5 測量系統分析作業準備 5.1 確定測量過程需要使用的測量儀器以及測量系統分析的範圍。

计量型MSA五性分析报告

计量型MSA五性分析报告

XXX 公司计量型MSA 分析报告日 期:实 施 人: 评 价 人:仪器名称: 仪器编号: 分析结论: 合格 不合格 审 核:批 准:2017年2月23日陈秋凤、雷丽花、欧阳丽敏 张志超数显卡尺(中间检验) XXX计量型MSA分析报告目录稳定性 (1)偏倚 (4)线性 (7)重复性和 (9)再现性备注: 对于有条件接收的项目应阐述接受原因.第一节稳定性分析1.1 稳定性概述在经过一段长时间下,用相同的测量系统对同一基准或零件的同一特性进行测量所获得的总变差,即稳定性是整个时间的偏倚变化。

1.2 试验方案2017 年 02 月份,随机抽取一常见印制板样品,让中间检验员工每天的早上及晚上分别使用数显卡尺对样品外形尺寸测量5次/组,共测量25组数据,并将每次测量的数据记录在表1。

1.3 数据收集表1 稳定性分析数据收集记录表1.4 测量系统稳定性可接受判定标准1.4.1 不允许有超出控制限的点;1.4.2 连续7点位于中心线同一侧;1.4.3 连续6点上升或下降;1.4.4 连续14点交替上下变化;1.4.5 连续3点有2点距中心的距离大于两个标准差;1.4.6 连续5点中有4点距离中心线的距离大于一个标准差;1.4.7 连续15点排列在中心线的一个标准差范围内;1.4.8 连续8点距中心线的距离大于一个标准差。

1.5 数据分析图1 中间检验_数显卡尺 Xbar-R控制图从图1 Minitab生成Xbar-R控制图可知,没有控制点超出稳定性可接受判定标准,表明该测量系统稳定性可接受。

1.6 测量系统稳定性分析结果判定对中间检验_数显卡尺进行稳定性分析,分析结果表明该测量系统稳定性可接受。

第二节偏倚分析2.1 偏倚分析概述对相同零件上同一特性的观测值与真值(参考值)的差异。

2.2 试样方案2.2.1选择一个被测样品,确定样品的外形尺寸基准值x,样品外形尺寸基准值通过__铣边工序所使用的泛用型尺寸测量机重复测量10次取测量均值获得。

测量系统分析MSA--原理和通用方法

测量系统分析MSA--原理和通用方法

b= ∑y/n-a*(∑x/n)
R2=
[∑xy-∑x∑y/n]2 [∑x2-((∑x)2/n)]*[∑y2-((∑y)2/n)]
线性由最佳拟合直线的斜率而不是拟合优度(R2 )的值确定,斜率越低,线性越好。
分辨力对测量系统变差的影响
分 辨 力 合 适 的 控 制 图
0.145 0.144 0.143 0.142 0.141 0.14 0.139 0.138 0.137 0.136 0.135
0.02
0.015
0.01
0.005
0
0.14555(UCL) 控制上限
0.13571(LCL) 控制下限
0.1810(UCL) 控制上限
用规定的检测方式测量每个零件以确定其基准 值和确认包含了被检量具的工作范围;
让通常情况下使用该量具的操作人之一用该量 具测量每个零件12次;
计算每个零件平均值和偏移平均值; 计算回归直线和直线的拟合优度。
线性计算方法
Y=b+aX
其中:X=基准值;Y=偏倚;a=斜率
a=
∑xy-(∑x∑y/n) ∑x2-(∑x)2/n
再现性或评价人变差(AV或σo)由评价人的最 大平均差(XDIFF)乘以一个常数(K2)得出。 K2取决于量具分析中的评价人数量。评价人变 差包含设备变差,必须减去设备变差来校正。 AV=√[XDIFF×K2]2-(EV)2/n*r
n=零件数,r=试验次数
重复性和再现性——数据分析
测量系统变差重复性和再现性(R&R或σm)的 计算是将设备变差的平方与评价人变差的平方 相加并开方得出: R&R=√[(EV)2+(AV)2]
比较,确定测量系统的重复性是否适于应用。

测量系统分析MSA

测量系统分析MSA

测量系统分析MSA一.稳定性:1.定义:稳定性——测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。

2.使用均值和极差控制图,该控制图可提供方法以分离影响所有测量结果的原因产生的变差(普通变差)和特殊条件产生的变差(特殊原因变差)。

凡信号出现在控制值外点均表现“失控”或“不稳定”。

3.研究:绘出标准(样件)重复读数X或R,图中失控信号即为需核准测量系统的标志。

4.操作要领:必须仔细策划控制图技术(如取样时间、环境等),以防样本容量、频率等导致失误信号。

5.稳定性改进①从过程中排除特殊原因——由超出的点反应。

②减少控制限宽度——排除普通原因造成的变差。

图2测量系统特性图二.偏倚1.定义:偏倚——测量结果的观察平均值与基准的差值。

2.操作方式:①对一件样件进行精密测量。

②由同一评价人用被评价单个量具测量同一零件至少十次。

③计算读数平均值。

④偏倚=基准值-平均值3.产生较大偏倚的原因①基准误差②磨损的零件③制造的仪器尺寸不对④测量错误的特性⑤仪表未正确校准⑥评价人使用仪器不正确。

三.重复性1.定义:重复性——由一个评价人采用一种测量器具,多次测量同一零件的同一特性时获得的差值。

2.测量过程的重复性意味着测量系统自身的变异是一致的。

重复性可用极差图显示测量过程的一致性。

3.重复性或量具变差的估计:σe=5.15×R/d2d2——常数(查表得)与零件数量、试验次数有关。

5.15——代表正态分布的90%的测量结果。

四.再现性1.定义:再现性——由不同评价人采用相同测量器具测量同一零件的同一特性时测量平均值的变差。

2.测量过程的再现性表明评价人的差异性是一致的。

若评价人变异存在,则每位评价人所有平均值将会不同,可采用均值图来显示。

3.估计评价人标准偏差σo=5.15×R o/d2d2——常数(查表得)与零件数量、试验次数有关。

5.15——代表正态分布的90%的测量结果。

MSA测量系统五性说明

MSA测量系统五性说明
MSA测量系统分析方法
1、合格的检具
分析的前 2、盲测

3、分辨率(力)符合(是公差范围的1/10)
结合风险和成本,例如700+0.125,宁可缩小公差也不能上三座标。
分析方法
稳定性
偏倚
分析内容 检具在环境中的误差
多次测量的均值与基准值之间的误 差是否可接受
1、同一把检具或检测设备。 1、同一把检具或检测设备。
1、y=0的线段如果在y=ax+b直线的置信区间 b、GR&R大于等于10%,小于等于30%
之内,该测量系统的线性可接受,否则不可接受 时,由项目小组(APQP)协商确定;

c、GR&R大于30%时,不可接受。
2、可接受继续进行分析第6步,计算绝对的t 2、ndc(代表分辨的能力)大于等于5
值,是否小于被查的数值。小于线性可接受。 时,可接受,否则不可接受。零件变差
判断准则 统稳定性可以接受,否则不 于零,高值大于等于零,该检具的
可以接受。Biblioteka 偏倚可接受,否则不可接受。
3、以上1和2同时成立,才可接受
。主要看“t”值,关注附录C标准
第210页。
综述 对于一般的计量型检具:测量系统分析时:稳定性要分析,重复性和再现性要做,对于偏倚和
MSA测量系统分析方法
不能上三座标。
2、让测量人用被分析的检具测量 15次以上
析,描好点,做好图线即 3、计算每次测量的偏倚值(测量
可,不用分析。
值-基准值)
4、根据偏倚值或测量值做直方图
1、直方图如果成正态分布,该测
量系统的偏倚可接受,否则不可接
受。
2、如果可接受,计算偏倚的高值
当X-R图无异常时,该测量系 和低值,分别有公式:低值小于等

MSA线性研究测量报告

MSA线性研究测量报告

MSA线性研究测量报告一、引言测量系统分析(MSA)是确保测量过程稳定、可重复和准确的一种方法。

线性研究是一种MSA方法,用于评估测量系统的线性度。

本报告旨在通过对一些测量系统进行线性研究,评估其线性度。

二、方法1.样品选择:选择一组20个样品,每个样品有不同的已知值(称作参考值)。

确保样品的值分布均匀,覆盖整个测量范围。

2.测量过程:使用待测试的测量系统对每个样品进行测量,记录测量结果。

3.数据处理:计算每个样品的测量误差,即测量结果与参考值之间的差异。

4.统计分析:将测量误差按样品进行分组,计算每组的平均值和标准差。

5.绘制散点图:将每个样品的测量误差绘制成散点图,其中x轴表示参考值,y轴表示测量误差。

6.直线回归分析:对散点图进行直线回归分析,计算回归方程的斜率和截距。

7.判断线性度:根据回归方程的斜率和截距,判断测量系统的线性度。

如果斜率接近于1且截距接近于0,则说明测量系统具有较好的线性度。

三、结果1.数据处理:计算20个样品的测量误差,并将其按样品进行分组。

计算每组的平均值和标准差。

结果如下表所示:样品编号,参考值(单位),测量误差(单位)-------,-----------,-------1,10.0,-0.12,15.5,0.23,20.0,0.04,25.5,0.35,30.0,-0.26,35.5,-0.17,40.0,0.18,45.5,-0.29,50.0,0.110,55.5,0.011,60.0,-0.112,65.5,0.213,70.0,0.114,75.5,0.315,80.0,-0.216,85.5,-0.117,90.0,-0.118,95.5,0.219,100.0,0.020,105.5,-0.2平均值:0.03标准差:0.14[散点图]3.直线回归分析:对散点图进行直线回归分析,得到回归方程为y=0.99x+0.0154.判断线性度:根据回归方程的斜率和截距,该测量系统具有较好的线性度,斜率接近于1,截距接近于0。

(整理)MSA测量系统(稳定性、偏移和线性研究)分析报告

(整理)MSA测量系统(稳定性、偏移和线性研究)分析报告

莱州市XX机械有限公司作业文件文件编号:JT/C-7.6J-003版号:A/0(MSA)测量系统分析稳定性、偏移和线性研究作业指导书批准:审核:编制:受控状态:分发号:2006年11月15日发布2006年11月15日实施量具的稳定性、偏移、线性研究作业指导书JT/C-7.6J-0031目的为了配备并使用与要求的测量能力相一致的测量仪器,通过适当的统计技术,对测量系统的五个特性进行分析,使测量结果的不确定度已知,为准确评定产品提高质量保证。

2适用范围适用于公司使用的所有测量仪器的稳定性、偏移和线性的测量分析。

3职责3.1检验科负责确定过程所需要的测量仪器,并定期校准和检定,对使用的测量系统分析,对存在的异常情况及时采取纠正预防措施。

3.2工会负责根据需要组织和安排测量系统技术应用的培训。

3.3生产科配合对测量仪器进行测量系统分析。

4术语4.1偏倚偏倚是测量结果的观测平均值与基准值(标准值)的差值。

4.2稳定性(飘移)稳定性是测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。

4.3线性线性是在量具预期的工作量程内,偏倚值的变差。

4.4重复性重复性是由一个评价人,采用一种测量仪器,多次测量同一零件的同一特性获得的测量值的变差。

4.5再现性再现性是由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性的测量平均值的变差。

5测量系统分析作业准备5.1确定测量过程需要使用的测量仪器以及测量系统分析的范围。

a)控制计划有要求的工序所使用的测量仪器;b)有SPC控制要求的过程,特别是有关键/特殊特性的产品及过程;c)新产品、新过程;d)新增的测量仪器;e)已经作过测量系统分析,重新修理后。

5.2公司按GB/T10012标准要求,建立公司计量管理体系,确保建立的测量系统的可靠性。

6分析研究过程 6.1稳定性分析研究1)取一样件,并建立其可追溯到相关标准的参考值。

如果无法取得这样的样件,则选择一个落在产品测量范围中间的生产零件,指定它为基准样件进行稳定性分析。

测量系统分析报告MSA五性

测量系统分析报告MSA五性

测量系统分析报告MSA五性在制造业和质量控制领域,测量系统分析(Measurement System Analysis,简称 MSA)是一项至关重要的工作。

它有助于确定测量设备、方法和操作人员是否能够准确可靠地获取数据,从而保证产品质量和生产过程的稳定性。

MSA 通常包括五个特性的评估,即准确性、精确性、稳定性、重复性和再现性。

接下来,让我们详细了解一下这五个特性。

一、准确性(Accuracy)准确性是指测量结果与真实值之间的接近程度。

简单来说,就是测量是否正确。

如果一个测量系统的准确性差,那么即使测量结果很稳定和精确,也无法提供有价值的信息。

要评估测量系统的准确性,通常会使用偏倚(Bias)这个概念。

偏倚是测量值的平均值与参考值之间的差异。

例如,我们用一把尺子去测量一个标准长度为 10 厘米的物体,如果多次测量的平均值是 98 厘米,那么就存在-02 厘米的偏倚。

为了减少偏倚,提高准确性,我们需要对测量设备进行定期校准,确保其与标准值保持一致。

同时,操作人员的培训和正确的测量方法也对准确性有着重要的影响。

二、精确性(Precision)精确性反映的是测量结果的重复性和再现性。

重复性(Repeatability)指的是在相同条件下,由同一个操作人员使用同一测量设备对同一零件进行多次测量所得结果的一致性。

而再现性(Reproducibility)则是不同操作人员、不同测量设备或在不同环境条件下对同一零件进行测量所得结果的一致性。

如果一个测量系统的精确性好,那么无论谁来测量,或者在什么条件下测量,得到的结果都应该非常接近。

例如,在测量一个零件的尺寸时,如果同一个人多次测量的结果差异很小,或者不同的人测量的结果也很相近,那么这个测量系统的精确性就比较高。

为了提高精确性,我们需要选择合适的测量设备和测量方法,同时对操作人员进行充分的培训,减少人为因素的影响。

三、稳定性(Stability)稳定性是指测量系统在一段时间内保持其性能的能力。

MSA五性分析范本

MSA五性分析范本
测量系统分析 MSA
线性分析
No.:
量具
名称/
基准值
2
量具规
格:
4
6
操作人:
8
10
零件数(g)
1
读数
偏倚
2
读数
偏倚
3
读数
偏倚
4
读数
偏倚
5 读数
1
2.1
0.1
4.2
0.2
6.3
0.3
8.4
0.4
10.5
2
2.1
0.1
4.2
0.2
6.3
0.3
8.4
0.4
10.5
3
2.1
0.1
4.2
0.2
6.3
0.3
8.4
0.01
-0.5
-0.19
-0.76
-1.71
-2.31 -4.75 3.61
0.01
-0.5
-0.19
-0.76
-1.71
-2.31 -4.75 3.61
0.01
-0.5
-0.19
-0.76
-1.71
-2.31 -4.75 3.61
0.01
-0.5
-0.19
-0.76
-1.71
-2.31 -4.75 3.61
下限 上限
大下于限0
小于0
-0.1255 TRUE TRUE
-0.09773 -0.09085 -0.11692 -0.16357 0.6
TRUE TRUE TRUE TRUE
TRUE TRUE TRUE TR0U.E4
601.8275 m
b

(整理)MSA测量系统(稳定性、偏移和线性研究)分析报告

(整理)MSA测量系统(稳定性、偏移和线性研究)分析报告

莱州市XX机械有限公司作业文件文件编号:JT/C-7.6J-003版号:A/0(MSA)测量系统分析稳定性、偏移和线性研究作业指导书批准:审核:编制:受控状态:分发号:2006年11月15日发布2006年11月15日实施量具的稳定性、偏移、线性研究作业指导书JT/C-7.6J-0031目的为了配备并使用与要求的测量能力相一致的测量仪器,通过适当的统计技术,对测量系统的五个特性进行分析,使测量结果的不确定度已知,为准确评定产品提高质量保证。

2适用范围适用于公司使用的所有测量仪器的稳定性、偏移和线性的测量分析。

3职责3.1检验科负责确定过程所需要的测量仪器,并定期校准和检定,对使用的测量系统分析,对存在的异常情况及时采取纠正预防措施。

3.2工会负责根据需要组织和安排测量系统技术应用的培训。

3.3生产科配合对测量仪器进行测量系统分析。

4术语4.1偏倚偏倚是测量结果的观测平均值与基准值(标准值)的差值。

4.2稳定性(飘移)稳定性是测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。

4.3线性线性是在量具预期的工作量程内,偏倚值的变差。

4.4重复性重复性是由一个评价人,采用一种测量仪器,多次测量同一零件的同一特性获得的测量值的变差。

4.5再现性再现性是由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性的测量平均值的变差。

5测量系统分析作业准备5.1确定测量过程需要使用的测量仪器以及测量系统分析的范围。

a)控制计划有要求的工序所使用的测量仪器;b)有SPC控制要求的过程,特别是有关键/特殊特性的产品及过程;c)新产品、新过程;d)新增的测量仪器;e)已经作过测量系统分析,重新修理后。

5.2公司按GB/T10012标准要求,建立公司计量管理体系,确保建立的测量系统的可靠性。

6分析研究过程 6.1稳定性分析研究1)取一样件,并建立其可追溯到相关标准的参考值。

如果无法取得这样的样件,则选择一个落在产品测量范围中间的生产零件,指定它为基准样件进行稳定性分析。

MSA测量系统(稳定性、偏移和线性研究)分析报告

MSA测量系统(稳定性、偏移和线性研究)分析报告

XXXX作业文件文件编号:JT/C-7.6J-003 版号:A/0(MSA)测量系统分析稳定性、偏移和线性研究作业指导书批准:吕春刚审核:尹宝永编制:邹国臣受控状态:分发号:2006年11月15日发布2006年11月15日实施量具的稳定性、偏移、线性研究作业指导书 JT/C-7.6J-0031目的为了配备并使用与要求的测量能力相一致的测量仪器,通过适当的统计技术,对测量系统的五个特性进行分析,使测量结果的不确定度已知,为准确评定产品提高质量保证。

2适用范围适用于公司使用的所有测量仪器的稳定性、偏移和线性的测量分析。

3职责3.1检验科负责确定过程所需要的测量仪器,并定期校准和检定,对使用的测量系统分析,对存在的异常情况及时采取纠正预防措施。

3.2工会负责根据需要组织和安排测量系统技术应用的培训。

3.3生产科配合对测量仪器进行测量系统分析。

4术语4.1偏倚偏倚是测量结果的观测平均值与基准值(标准值)的差值。

4.2稳定性(飘移)稳定性是测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。

4.3线性线性是在量具预期的工作量程内,偏倚值的变差。

4.4重复性重复性是由一个评价人,采用一种测量仪器,多次测量同一零件的同一特性获得的测量值的变差。

4.5再现性再现性是由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性的测量平均值的变差。

5测量系统分析作业准备5.1确定测量过程需要使用的测量仪器以及测量系统分析的范围。

a)控制计划有要求的工序所使用的测量仪器;b)有SPC控制要求的过程,特别是有关键/特殊特性的产品及过程;c)新产品、新过程;d)新增的测量仪器;e)已经作过测量系统分析,重新修理后。

5.2公司按GB/T10012标准要求,建立公司计量管理体系,确保建立的测JT/C -7.6J -003量系统的可靠性。

6分析研究过程 6.1稳定性分析研究1)取一样件,并建立其可追溯到相关标准的参考值。

MSA测量系统分析报告五性

MSA测量系统分析报告五性

2013年102013年11XXXXXX公司(MSA)测量系统分析(重复性和再现性)作业指导书受控状态:分 发 号:SL/IM-16-0批 准:审 核:编 制:品技部/2013-10-201 目的2 适用范适用于公3 职责4 术语4.1偏倚是测4.2稳定性4.3线性是在4.4重复4.5再现5 测量系5.1确定5.1.1控制5.1.2有SPC 5.1.3新产5.1.4新增5.1.5已经5.4操作5.4.1确定5.4.2确定2再现性是由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性的测量平均值的变差。

5.2 公司按GB/T 19022-2003/ISO 10012:2003GB/T 10012- 测量管理体系 测量过程和测量设备的要求建立公司计量管理体系,确保建立的测量系统的可靠性。

5.3 品质科对测量仪器按规定的权限进行校准和调整,除使测量仪器的偏倚、稳定性、线性等符合规定要求之外,还应确认以下条件:5.4.5 确定测量仪器的分辨力,应允许至少直接读数的特性的预期过程变差的十分之一。

例如,如果特性的变差为0.01,仪器应能读取0.001的变化。

5.4.6 测量应按随机顺序,以确保整个研究过程中产生的的任何漂移或变化将随机分布。

稳定性是测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。

5.3.2 确定测量系统中的变差只是由变差的普通原因引起的,而不是特殊原因引起的(可采取SPC技术)。

为了配备并使用与要求的测量能力相一致的测量仪器,通过适当的统计技术,对测量系统的五个特性进行分析,使测量结果的不确定度已知,为准确评定产品提高质量保证。

3.1 品质科负责确定过程所需要的测量仪器,并定期校准和检定,对使用的测量系统分析,对存在的异常情况及时采取纠正预防措施。

5.3.1 确定量具检验的零件质量特性为计数型数据还是计量性数据。

针对批量生产(一般≥300件)的零件,其统计特性为计量型数据的采用R&R分析,针对计数型数据采用小样法分析。

MSA测量系统五性说明

MSA测量系统五性说明

1、让每个测量人用检具测量每个部件2 次或以上,计入表格。 2、计算GR&R数据表(每个人的均值与极 差,每一行也求均值。) 3、计算重复性和再现性报告,先上后 下,先左后右。
95%,由无数个点的偏倚置信组合成一条“河”
斜率未变,节距变化,意味着平行的斜线。
6、计算绝对的t值
1、GR&R评价标准
a、GR&R小于10%,该测量系统可接受;
2、让测量人用被分析的检具测量 15次以上
析,描好点,做好图线即 3、计算每次测量的偏倚值(测量
可,不用分析。
值-基准值)
4、根据偏倚值或测量值做直方图
1、直方图如果成正态分布,该测
量系统的偏倚可接受,否则不可接
受。
2、如果可接受,计算偏倚的高值
当X-R图无异常时,该测量系 和低值,分别有公式:低值小于等
判断准则 统稳定性可以接受,否则不 于零,高值大于等于零,该检具的
可以接受。
偏倚可接受,否则不可接受。
3、以上1和2同时成立,才可接受
。主要看“t”值,关注附录C标准
第210页。
综述 对于一般的计量型检具:测量系统分析时:稳定性要分析,重复性和再现性要做,对于偏倚和
MSA测量系统分析方法
不能上三座标。
1、y=0的线段如果在y=ax+b直线的置信区间 b、GR&R大于等于10%,小于等于30%
之内,该测量系统的线性可接受,否则不可接受 时,由项目小组(APQP)协商确定;

c、GR&R大于30%时,不可接受。
2、可接受继续进行分析第6步,计算绝对的t 2、ndc(代表分辨的能力)大于等于5
值,是否小于被查的数值。小于线性可接受。 时,可接受,否则不可接受。零件变差

MSA测量系统线性分析

MSA测量系统线性分析

6.7 MSA 测量系统线性分析说明:参考张智勇所著《ISO/TS16949五大工具最新版一本通》编写。

6.7.1 .1 线性概述线性概述每个测量系统都有其量程,因此,好的测量系统应该要求在量程的任何一处都不存在偏倚。

但由于偏倚可以通过校准而加以修正,因此有时可以对测量系统的偏倚放宽些要求,但为了在任何一处都能对观测值加以修正,我们必须要求测量系统的偏倚具有线性。

测量系统的线性是指如下两点要求:1)偏倚应是基准值的线性函数。

若记x 为基准值,y 为偏倚,则应有:y ax b =+ 这个要求对控制偏倚有好处,这样一来,当测量基准值较小(量程较低的地方)时,测量偏倚会比较小,当测量基准值较大(量程较高的地方)时,测量偏倚会比较大。

2)该线性函数的斜率a 要求较小。

因为斜率a 偏大,将会导致偏倚分散。

而斜率a 偏小,将会导致偏倚集中(见图6-14)。

图6-14 14 斜率斜率a 对偏倚的影响对偏倚的影响6.7.2 线性线性分析方法分析方法1)选择g 个(g≥5)零件作为基准件,这些零件的测量值应覆盖量具的操作范围。

2)用比要研究的测量系统更高级别的测量系统对这些零件进行多次测量,取多次测量值的平均值作为它们各自的基准值,如案例6-3所示。

3)选择1个测量人,对每个零件件重复测量m 次(m ≥10次),将测量数据记录在数据表里(见案例6-3)。

测量时,应注意保持各次测量结果之间的统计独立性,也就是要使后面的测量读数不受前面读数的影响,具体方法就是使各个零件和测量次数的组合随机化。

记i x 为第i 个零件的基准值,i j x ,为第i 个零件第j 次重复测量时的测量值,这样共有g m ×对数据:i i j x x ,(,),12i =,,......,g;j=1,2,......,m。

4)计算零件每次测量的偏倚i j B ,及每个零件的偏倚均值i B 。

i j i j i B x x =−,,1m i jj i BB m==∑,5)在线性图上画出相对于基准值的每个偏倚及偏倚均值(线性图见案例6-3)。

MSA五性分析(最新版)

MSA五性分析(最新版)

1.48测量系统稳定性分析表量具名称: 量具编号: 量具类型: 日 期: 时 间: 作业员:12 3 4 5平均值(X)全距(R)基 准 件: 测量周期: 测量参数: 测量频率:06.3.8 06.3.9 06.3.10 06.3.11 06.3.12 06.3.13 06.3.14 06.3.15 06.3.16 06.3.17 06.3.18 06.3.19 8:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45 12:00 12:15 李小梅 李小梅 李小梅 李小梅 李小梅 李小梅 李小梅 李小梅 李小梅 李小梅 李小梅 李小梅1.49 1.49 1.49 1.48 1.5 1.51 1.5 1.5 1.5 1.5 1.5 1.51 1.5 1.5 1.51 1.51 1.49 1.49 1.5 1.49 1.51 1.5 1.5 1.51 1.5 1.5 1.49 1.5 1.5 1.49 1.5 1.5 1.51 1.49 1.49 1.51.5 1.5 1.49 1.5 1.5 1.49 1.49 1.49 1.5 1.51 1.49 1.5 1.51 1.49 1.5 1.51 1.5 1.49 1.51 1.49 1.5 1.5 1.49 1.51.500 1.496 1.496 1.500 1.498 1.494 1.500 1.494 1.504 1.500 1.494 1.504 0.020 0.010 0.020 0.030 0.010 0.020 0.020 0.010 0.010 0.020 0.010 0.010X R1.498 0.016UCLx=X+A R 2 UCL R =D4RLCL =D3R 1.508 1.489 0.036 0.000A2 D3 D40.580 0 2.28注:1)每次测量资料不少于三个 2)每组测量资料数量应统一1X .均51值 1.5L x .C 5Lx 1.R 45值1.491.485LCLr1.498 1.508 1.489 0.016 0.036 0.0001.498 1.508 1.489 0.016 0.036 0.0001.498 1.508 1.489 0.016 0.036 0.0001.498 1.508 1.489 0.016 0.036 0.0001.498 1.508 1.489 0.016 0.036 0.000均值图1.498 1.508 1.489 0.016 0.036 0.0001.498 1.508 1.489 0.016 0.036 0.0001.498 1.508 1.489 0.016 0.036 0.0001.498 1.508 1.489 0.016 0.036 0.0001.498 1.508 1.489 0.016 0.036 0.0001.498 1.508 1.489 0.016 0.036 0.0001.498 1.508 1.489 0.016 0.036 0.000由以上資料總得控制圖1.47506.3.8 06.3.90.04 0.03 0.02 0.0106.3.8 06.3.906.3.1006.3.1006.3.1106.3.1106.3.1206.3.1206.3.13 06.3.14 06.3.15 06.3.16 06.3.17 06.3.18 06.3.19极差图06.3.13 06.3.14 06.3.15 06.3.16 06.3.17 06.3.18 06.3.19判 定 若所有X 值及R 值均在管制上下限內则可接受若有任何一个X 值及R 值在管制上下限外则不可接受判定者:制作/日期:FM:AD0012审核/日期:版本:A2 LCLx=X-A R RUCLr 測 量 值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

零件编号 Part Name :量具名称 Gage Name :评价人Appraiser :特性 Characteristics :直径量具编号 Gage No.:α水准 α
Level :
0.05
规范 Specifications :量具型式 Gage Type.:
单位 Units :mm
日期 Date :2019.08.20
线性研究数据线性研究-中途的结果
零件编号 Part Name :量具名称 Gage Name :评价人Appraiser :特性 Characteristics :直径量具编号 Gage No.:α水准 α
Level :
0.05
规范 Specifications :量具型式 Gage Type.:
单位 Units :mm
日期 Date :2019.08.20
R-Sq=0.1%
|t a
|=0.22094≤t gm-2,1-α/2|t b |=0.21873

t gm-2,1-α/2
计算最适合的线及该线的置信度区间。

Calculate the best fit line and the confidence band of the line using the following equations.
Y=-0.00021X-0.008692
评审图示,观察是否存在特殊原因,以及线性是否可接受:
Review the graph for indications of special causes and the acceptability of the linearity :
结果分析-数值法
Analysis of Results - Numerical
结果分析-图示法
Analysis of Results - Graphical
由于“偏倚=0”的整个直线都位于置信度区间以内,该测量系统的线性是可接受的。

The “ bias = 0 ” line lie entirely within the confidence bounds of the fitted line , so the measurement system linearity to be acceptable .
由图示法分析得到的结论经过了数值法分析的证实——本测量系统不存在线性问题。

The result obtained from the graphical analysis is reinforced by numerical analysis - there isn't a linearity problem with this measurement system .。

相关文档
最新文档